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Noise is resource-contextual in quantum communication
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Estimating the information transmission capability of a quantum channel remains one of the fundamental
problems in quantum information processing. In contrast to classical channels, the information-carrying capa-
bility of quantum channels is contextual. One of the most significant manifestations of this is the superadditivity
of the channel capacity: the capacity of two quantum channels used together can be larger than the sum of the
individual capacities. Here, we present a one-parameter family of channels for which, as the parameter increases,
its one-way quantum and private capacities increase while its two-way capacities decrease. We also exhibit a one-
parameter family of states with analogous behavior with respect to the one- and two-way distillable entanglement
and secret key. Our constructions demonstrate that noise is context dependent in quantum communication.
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I. INTRODUCTION

Determining the capability of a quantum channel for send-
ing quantum information is a notoriously difficult problem.
Classical communication channels can be effectively char-
acterized by a single number—capacity—which completely
describes its ability to convey information. The analogous
expression for quantum channels is easy to write down, but
exceptionally difficult to compute in general. It involves reg-
ularization over an unbounded number of uses of the channel
making the task of characterizing the potential for sending
quantum information computationally intractable.

Di Vincenzo et al. [1] were the first to observe that reg-
ularization is necessary by showing the underlying entropic
quantity, the coherent information to be superadditive. Since
then, there has been an effort to understand superadditivity
and its relation to the computation of capacity in the context
of sending quantum information, but also for other communi-
cation tasks where capacity is given by a regularized formula
[2–13]. Notably, since generally regularized formulas are the
only proxy for capacity, even elementary questions such as
whether or not a channel has positive capacity have no known
algorithmic answer [14] (see [15,16] for recent progress). On
the other hand, there exist a few families of channels, such
as degradable channels [17], for which both the capacity for
sending quantum information and private classical informa-
tion are given by the coherent information.

The capacity of quantum channels can itself be superad-
ditive. This property implies that the utility of a channel may
depend on the other accompanying channels. Winter et al. [18]
defined the potential capacity of a channel as its maximum
information-carrying capability when used in combination
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with an auxiliary contextual channel. Quantum capacity is
highly contextual: it is known that there exist channels with
zero quantum capacity but positive potential capacity [19].

Moreover, in contrast to the classical case, it is possible to
consider a host of scenarios for communication tasks in the
presence of different resources. For each such scenario, one
can consider the optimal rate, giving rise to a different channel
capacity. Here, we consider two tasks: the transmission of
quantum and private classical information. We consider the
resources of free classical communication either from sender
to receiver or bidirectional. Depending on the type of infor-
mation transmitted—quantum information or private classical
information—we will refer to the corresponding capacities
as one- and two-way quantum and private capacities. In this
work, we show that noise is resource-contextual. We present a
one-parameter family of degradable channels, i.e., for which
the one-way quantum and private capacities are fully char-
acterized by the coherent information. An increase of the
parameter leads to the decrease in the two-way quantum ca-
pacity, and thus can be regarded as “noise”. Surprisingly, it has
the opposite effect on the one-way communication rates: the
one-way capacity increases (see Fig. 1). Beyond degradable
channels, we prove a weaker version of this phenomenon for
a family of channels with superadditive coherent information.
Achieving this effect is not possible for classical communi-
cation over classical noisy channels. However, we identify an
analogous behavior in the scenario of private communication
over classical wiretap channels.

II. USEFUL NOTATIONS AND DEFINITIONS

Throughout this article we work with finite-dimensional
Hilbert spaces denoted by the letter H with dim(H) = |H|.
The notations ϕ and πA are used to denote a pure state
of the form |ϕ〉〈ϕ| and completely mixed state IA

|A| , re-
spectively. H (ρ) denotes the von Neumann entropy of the
state ρ and is defined as H (ρ) := −Tr(ρ log ρ) and the
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FIG. 1. Noise resource-contextuality: Capacity of a family of
channels for transmitting quantum information as a function of the
noise parameter λ. The top scenario corresponds to the capacity in
the absence of feedback (one-way capacity) and the bottom scenario
corresponds to the capacity with feedback (two-way capacity). Intu-
itively, one would expect both capacities to be quantitatively different
but have similar qualitative behavior; that is, either both increase
or both decrease as a function of the noise parameter. We exhibit
families of channels for which, as the two-way capacity decreases,
the one-way capacity increases. Increasing λ represents noise for
two-way communications while decreasing λ represents noise for
one-way communications.

von Neumann information between subsystems A and B of
a bipartite state ρAB is defined as I (A; B)ρAB := H (A)ρ +
H (B)ρ − H (AB)ρ . We also use H and I for the respec-
tive Shannon entropy and mutual information, when it is
clear from the context. Given {pi}n

i=1,
∑n

i=1 pi = 1, pi � 0,
H ({p1, . . . , pn}) := −∑n

i=1 pi log pi and if n = 2, H (p) :=
H ({p, 1 − p}). The short-hand notation, diag[a1, a2, . . .] is
used to denote a diagonal matrix with the diagonal elements
a1, a2, . . . , whereas random variables are denoted by plain
capital letters X,Y, Z . The mathematical operation “

⊕
” be-

tween two channels denotes the direct sum of the range space
of the underlying channels. We denote by Q(N ), the one-way
quantum capacity of the channel N , defined as the maximum
number of qubits that can be reliably transmitted per channel
use given free access to forward classical communication.
Similarly, we use Q↔(N ) to denote the capacity with free
classical communication allowed at the transmitter (classical
feedforward) as well as the receiver end (classical feedback),
henceforth referred as the two-way quantum capacity. We use
P (N ) to denote the private classical capacity of N which
represents the maximum rate at which the users of the channel
can communicate classical information privately, and anal-
ogously P↔(N ) denotes the private capacity with two-way
(public) classical communication assistance. We refer to [2]
for a rigorous treatment of these notions.

A. Quantum channels

A quantum channel N : HA → HB is a completely pos-
itive and trace-preserving map (CPTP) map. One way to
represent a quantum channel is the so-called Stinespring di-
lation as follows.

Definition 1. Let UN : HA → HB ⊗ HE denote an iso-
metric embedding, also known as, Stinespring dilation, of the

channel N , with E denoting an environment system. Then N
can be represented as

N (ρ) := TrE [UNρU †
N ].

Similarly, one can define the complementary channel N :
HA → HE as

N (ρ) := TrB[UNρU †
N ].

Next, we define the notion of degradability of quantum
channels.

Definition 2. A quantum channel N is said to be degrad-
able when it can be degraded to its complementary channel
N with the help of another channel, often referred to as the
degrading map, T : HB → HE with the property that

N = T ◦ N .

Similarly, a channel is said to be antidegradable if its com-
plement is degradable, that is, there exists a CPTP map S :
HE → HB such that

N = S ◦ N .

B. Channel capacities

Definition 3. The quantity Ic(N ) denotes the “coherent in-
formation” of N and is defined as

Ic(N ) := max
|φ〉AA′

Ic(N , ρ), with

Ic(N , ρ) := H (B)ω − H (AB)ω,

where ωAB := (IA ⊗ N A′→B)|φAA′ 〉〈φAA′ | and |φAA′ 〉 is a state
such that ρA = TrA′ (|φAA′ 〉〈φAA′ |).

We now state a single letter lower bound on the quantum
capacity of a quantum channel as the following fact.

Fact 4. [20,21] The quantum capacity of a quantum chan-
nel, Q(N ) is lower bounded by the single letter coherent
information of the channel N :

Q(N ) � Ic(N ).

Fact 5. [22] The quantum capacity of a degradable channel
N is fully characterized by its coherent information, that is,

Q(N ) = Ic(N ).

The quantum capacity of an antidegradable channel N is zero.
Definition 6. The private classical capacity P (N ) of a

quantum channel N is operationally defined as the maximum
rate at which the classical information can be transmitted
reliably and securely from an eavesdropper, through N . It is
lower bounded by [21]

max
σ XA: σ XA=	x pX (x)|x〉〈x|⊗σ A

x

[I (X ; B)σ − I (X ; E )σ ],

where the mutual information is evaluated with respect to the
state U A→BE

N (σ XA).

III. CHANNELS WITH INCREASING ONE-WAY
CAPACITY AND DECREASING TWO-WAY CAPACITY

We now describe the main building block of our construc-
tion. We consider a family of channels denoted by Nλ, p that
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FIG. 2. Weighted direct sum construction. Dp is the complement
of a qubit dephasing channel with parameter p, I is the noiseless
channel, and λ, p ∈ [0, 1]. This way of combining quantum chan-
nels is also referred to as “gluing” [23].

are parameterized by the parameters λ, p. Later we will set
p as a function of λ or vice versa singling out the family of
channels Nλ, p depending on a single parameter.

The channel construction is depicted in Fig. 2. It maps
states from the input space A to space B with |HA| = 2,
|HB| = 4 and HC represents the environment. Let

|ϕ0〉 :=
√

1 − p|0〉 + √
p|1〉 and

|ϕ1〉 :=
√

1 − p|0〉 − √
p|1〉.

The action of the channel and its complement on an arbitrary
input state can be described as

Nλ, p(ρ) := (1 − λ)ρ ⊕ λDp(ρ), (1)

and

Nλ, p(ρ) := (1 − λ)| f 〉〈 f | ⊕ λDp(ρ), (2)

where | f 〉 is a fixed pure state and Dp,Dp denote, respectively,
the dephasing channel and its complementary. These channels
are defined as

Dp(ρ) := (1 − p)ρ + pZρZ and

Dp(ρ) := 〈0|ρ|0〉|ϕ0〉〈ϕ0| + 〈1|ρ|1〉|ϕ1〉〈ϕ1|.
We note that the channel in Eq. (2) is the so-called “de-
phrasure” channel [24]. The dephrasure channel and its
complementary channel [given in Eq. (1)] proved to be a
fertile ground for the study of coherent information superad-
ditivity [15,23–26].

A direct computation gives that the output entropy of Nλ, p

and Nλ, p are respectively given by

H[Nλ, p(ρ)] = H (λ) + λH[Dp(ρ)] + (1 − λ)H (ρ), (3)

and

H[Nλ, p(ρ)] = H (λ) + λH[Dp(ρ)] + (1 − λ)H (| f 〉〈 f |)
= H (λ) + λH[Dp(ρ)]. (4)

The channel Nλ, p from Eq. (1) has several important proper-
ties, stated as the following facts.

Fact 7. The coherent information of Nλ, p is invariant with
respect to conjugation of the input state by a qubit Pauli X or
Z .

We defer the proof to Appendix A.
Fact 8. Nλ, p is degradable for λ ∈ [0, 1/2].
For completeness, we provide a proof of this fact in Ap-

pendix B.

FIG. 3. One- versus two-way capacity of Nλ, p as a function of
λ when p(λ) = 4λ − 1. In the range λ ∈ [0.25, 0.3125] the one-way
quantum (and private) capacity monotonically increases while the
two-way quantum (and private) capacity decreases.

We refer to [24] for the original proofs and additional
analysis of this channel.

The simple structure of Nλ, p allows us to characterize its
capacity.

Lemma 9. In particular, for λ ∈ [0, 1/2]:

P (Nλ, p) = Q(Nλ, p) = 1 − λ[2 − H (p)], (5)

and for λ ∈ [0, 1]

P↔(Nλ, p) = Q↔(Nλ, p) = 1 − λ. (6)

Proof sketch of the capacity characterization. For charac-
terizing the one-way capacities (5), we first observe that Nλ, p

is degradable (see Appendix B for the proof) and hence its
quantum and private capacities coincide [27]. Moreover, the
quantum (and private) capacity is then given by the coherent
information (by [27, Theorem 2], also [17]). For a detailed
argument see Appendix E.

For characterizing the two-way capacities (6), one may
note that Nλ, p is teleportation stretchable [28], (also from [29,
Theorem 12]). Thus the two-way classically assisted private
capacity and hence the quantum capacity is upper bounded by
the relative entropy of entanglement of Nλ, p (formally defined
in Sec. D of the Appendix) which evaluates to 1 − λ. The
upper bound is achievable and can be observed by inspection;
the encoder can send half of a maximally entangled state. This
procedure prepares a joint maximally entangled state when
the channel acts as the identity which occurs with probability
1 − λ. Exploiting the direct-sum structure of the channel, the
communicating parties can distinguish between the action of
Dp and I and consume the maximally entangled states to com-
municate noiselessly at a rate of 1 − λ (see Appendix E). �

Example 1 (Examples of noise resource contextuality in
degradable regime for p ∈ [0, 1/2]). Combining Eq. (5) with
Eq. (6) and choosing an appropriate relation between p and λ,
we construct a one-parameter family of channels {Nx}x∈[a,b]

for which Q↔(Nx ) > Q↔(Ny) and Q(Nx ) < Q(Ny) for
x < y and x, y ∈ [a, b] (the same statement holds for the
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FIG. 4. One- versus two-way quantum (and private) capacity of
Nλ, p as a function of p when λ(p) = p/ log p. In the range p ∈
[0.35, 0.5] the one-way quantum (and private) capacity monotoni-
cally increases while the two-way quantum (and private) capacity
decreases.

private capacity). We illustrate this effect with two examples.
First, we choose p(λ) = 4λ − 1 and see the desired behav-
ior in the range λ ∈ [0.25, 0.3125] (see Fig. 3). Second, we
choose λ(p) = p/ log p with the desired behavior in the range
p ∈ [0.35, 0.5] (see Fig. 4). Additionally with this second
parametrization the one-way capacity reaches its maximum
for p = 1/2, matching the two-way assisted capacity (see
Appendix C for details).

IV. ONE-WAY AND TWO-WAY DISTILLABLE
ENTANGLEMENT AND DISTILLABLE SECRET KEY

The previous discussion can directly be extended to the
distillable entanglement and the distillable secret key [30]. We
consider the family of bipartite states given by the Choi states
of the above channels.

We calculate the two-way capacities by evaluating the
two-way distillable entanglement of the Choi state (see
Appendix E). In particular, distillable entanglement and se-
cret key are upper bounded by the relative entropy of
entanglement [31]. In Appendix E, we show that this upper
bound is achievable.

The one-way capacity coincides with the coherent infor-
mation of the Choi state (see Appendix E). In principle, the

coherent information is only a lower bound on the one-way
distillable entanglement and secret key of a state. However,
for degradable states the coherent information coincides with
the distillable entanglement [32] and also the distillable key.
This can be straightforwardly deduced from [33, Eq. (1.9)].
We give a direct proof in Appendix H, for completeness. This
result might be of independent interest.

It remains to show that the Choi state is a degradable state.
We reproduce the argument for completeness: A bipartite
state ρAB, with purification |φABE 〉, is called degradable if
and only if there exists a quantum channel RBE that satisfies
RBE (ρAB) = trB(|φABE 〉〈φABE |). Consequently, the Choi state
of a degradable channel is a degradable state with the same
degrading map.

It follows that Figs. 3 and 4 can be interpreted as depicting
respectively the one and two-way distillable entanglement
(and secret key) of the family of Choi states.

V. ONE-WAY AND TWO-WAY ASSISTED QUANTUM
CAPACITIES OF Nλ, p BEYOND THE DEGRADABLE

REGIME

We now characterize the behavior of Q, Q↔, P, P↔ of
Nλ, p in the regime λ > 1/2. Note that, the channel is not
degradable for λ > 1/2 and the coherent information of Nλ, p

is known to be superadditive [23].
Following the previous discussion, also in this region (λ >

1/2), the two-way assisted quantum and private classical ca-
pacity Q↔(Nλ,p) = P↔(Nλ,p) = 1 − λ.

Lemma 11. The one-way classical private and the quantum
capacities are bounded from below with the coherent informa-
tion for one use of the channel

P (Nλ, p) � Q(Nλ, p) � max{0, 1 − λ[2 − H (p)]}. (7)

Proof. The proof is given in Appendix F 1.
We next obtain an upper bound using a continuity ar-

gument. Observe that Nλ, p is ε-close to the antidegradable
channel T (·) := λTr(·)|ϕo〉〈ϕo| ⊕ (1 − λ)I. The strong con-
tinuity property of the one-way quantum capacity [34], gives
us the following upper bound.

Lemma 12. The one-way classical private and the quantum
capacities are bounded from above (for one use of the channel)
as

Q(Nλ, p) � P (Nλ, p) � min

{
1 − λ, 16λ

√
p(1 − p) + (4 + 8λ

√
p(1 − p))H

(
4λ

√
p(1 − p)

2 + 4λ
√

p(1 − p)

)}
. (8)

Proof. The proof of the above lemma including the tools
required for the proof are presented in Appendix F 2. �

With the above bounds, we also show a similar
context-dependent behavior of the two capacities when
λ > 1/2 (see Appendix F for further details and proofs).
In particular, we show that there exists an infinite dis-
crete one-parameter family of channels {Nxn}n∈N for

which Q(Nxm ) < Q(Nxn ) and Q↔(Nxm ) > Q↔(Nxn ) for all
n < m and decreasing sequence {xn}n∈N (so that xn >

xm). The analogous statement holds for the private
capacity.

Finally, for completeness, we characterize the one-way and
two-way assisted quantum capacity of the complementary
channel Nλ, p in Appendix G.
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FIG. 5. Weighted direct sum classical wiretap channel. With
probability 1 − λ the channel gives Bob Alice’s input and Eve a
random outcome. With probability λ it gives Eve Alice’s input and
Bob a noisy version of Alice’s input.

VI. ANALOGY WITH CLASSICAL WIRETAP CHANNELS

The behavior that we observed for quantum channels is not
possible for classical communication over discrete memory-
less classical channels. It is known that feedback does not
increase the capacity of a discrete memoryless channel [35]
and, consequently, one- and two-way capacities coincide [35].

Nevertheless, we find a meaningful analogy in the context
of wiretap channels. Consider a sender, Alice, transmitting
information to Bob and Eve through a noisy classical channel.
Her task is to send information encoded in such a way that
Bob can decode it but Eve learns nothing about the message.
The capacity of a wiretap channel N is the maximum rate
at which the task can be achieved. We consider two differ-
ent versions; the one- and two-way capacity depending on
whether one-way or two-way public classical communication
is a free resource which we respectively denote as C(N ) and
C↔(N ).

We exhibit the general model of the channel in Fig. 5.
The channel has input X ∈ X and outputs Y ∈ Y , Z ∈ Z
along with a broadcast parameter L ∈ L to both receivers.
All the alphabets are binary. We associate the receiver ob-
taining Y with “Bob” and the receiver getting Z with “Eve.”
The broadcast parameter takes the value L = 1 with prob-
ability λ. In this case, the channel behaves like a Markov
chain X −→ Z1 −→ Y1 with probability λ. More precisely,
pY1,Z1|X (y, z|x) := δ(x, z1)BSCZ1→Y1 (p), where BSCZ1→Y1 (p)
represents the binary symmetric channel from Z1 to Y1 with
crossover probability p. With probability 1 − λ, L takes
the value 2 and the channel behaves like pY2,Z2|X (y, z|x) :=
δ(x, y)pZ2 (z).

We are able to characterize the one- and two-way capacity
of the wiretap channel.

Lemma 13. For λ ∈ [0, 1/2] the one-way capacity of the
classical wiretap channel is given by

C(Nλ, p) = 1 − λ[1 + H (p)] (9)

and, for λ ∈ [0, 1], the two-way capacity of the classical wire-
tap channel is given by

C↔(Nλ, p) = 1 − λ. (10)

Proof. Proof sketch of the wiretap channel capacities.
One-way capacity: For this, we first observe that the chan-

nel Nλ, p is degraded [2, Proposition 13.2.1] (which is a
classical analog to a quantum channel being degradable).
A channel is degraded if X , Y, and Z form the following

Markov chain: X −→ Y −→ Z . When λ � 1/2, the follow-
ing stochastic map, allows Bob to produce Z from Y . If L = 1,
then Bob provides to Eve L = 2 and a value z following the
probability distribution pZ2 (z). If L = 2, then with probability
λ/(1 − λ) Bob provides to Eve L = 1 and z = y and with the
complementary probability he provides L = 2 and z following
the probability distribution pZ2 (z).

For degraded channels [36], the capacity is given by the
simple expression: C(Nλ, p) = maxpX (x)[I (X ;Y ) − I (X ; Z )].
Let us first expand the difference between the mutual
information as a function of the value of the broadcast pa-
rameter: I (X ;Y ) − I (X ; Z ) = λ[I (X ;Y1) − I (X ; Z1)) + (1 −
λ)(I (X ;Y2) − I (X ; Z2)].

We can further expand the expressions: I (X ;Y1) =
H (X ) − H (p), I (X ; Z1) = H (X ) and I (X ;Y2) = H (X ),
I (X ; Z2) = 0. Substituting these values we get:

I (X ;Y ) − I (X ; Z ) = (1 − λ)H (X ) − λH (p). (11)

The above quantity is maximized when X is uniformly dis-
tributed and hence H (X ) = 1. This implies that C(Nλ, p) =
1 − λ(1 + H (p)) as claimed.

Two-way capacity: We first prove that the rate 1 − λ is
achievable. When Bob receives Y = Y1, Bob discards it and
sends a re-transmission request to Alice. If Y = Y2 then
Bob accepts and reports this back to Alice who aborts fur-
ther transmission so that Eve cannot learn any more. Since,
pY2|X (y|x) = δ(x, y), Bob is able to decode x correctly from
Y2 = y with probability 1 − λ. Note that Z2 ⊥⊥ X and since
Bob aborts on Y1, Eve cannot learn more than Bob. Thus,
the number of private bits that Alice can convey reliably and
to Bob per channel use is 1 − λ and hence is an achievable
rate.

We now prove the converse, that is, 1 − λ is also an up-
per bound as follows: From the channel X −→ Z1 −→ Y1,
we see that Y1 is a degraded version of Z1 and hence in
this case Bob cannot learn more than Eve, so the optimal
strategy for Bob is to ignore it and inform Alice. On the
other hand, the second channel ensures that Y2 = X and the
decoder can output Y = Y2 to infer X correctly without any
further communication from Alice. Thus, if Alice does not
abort and sends more than 1 − λ bits per channel use then
Eve can learn as much as Bob compromising the privacy.
Hence the two-way assisted capacity is also upper bounded
by 1 − λ. Combining the achievability and the converse part,
we conclude that C↔(Nλ, p) = 1 − λ. �

Example 2 (Noise resource contextuality for a parame-
terized family of wiretap channels). We obtain the desired
behavior (see Fig. 6), that is the one-way capacity mono-
tonically increases while the two-way decreases, by choosing
λ(p) = p/[2 log(6/p)] and p ∈ [0.8687, 1].

VII. DISCUSSION

Capacities of a noisy quantum channel exhibit puzzling
behavior like superadditivity [1,12], superactivation [19], and
nonconvexity [19,37]. It can be linked to the contextuality
of channel capacity [18]. Here, we find that the notion of
noise turns out to be relative to the communication con-
text. If we associate the noise to a continuous reduction of
transmission capabilities for a fixed task and resource set,
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FIG. 6. One- versus two-way capacity of the wiretap channels
Nλ, p as a function of p when λ(p) = p/[2 log(6/p)]. In the range
p ∈ [0.8687, 1] the one-way capacity monotonically increases while
the two-way capacity decreases.

in this case, quantum communication assisted by two-way
classical communication, then we can find that for the
same task and different auxiliary resources, the behavior is
reversed.

The proofs of superactivation, superaddivity, and noncon-
vexity of quantum and private capacity typically rely on the
superadditivity of the coherent or private information. One of
the two families of channels that we present here has additive
coherent information, both the channels themselves as well as
their complementary channels, discarding the possibility that
the noise resource-contextuality is a byproduct of coherent
information superadditivity.

Our result strengthens the difference between classical in-
formation theory, where channel capacity represents its utility
and quantum information theory, where the utility of a channel
depends on the context. Indeed, the behavior we describe
cannot exist classically. However, going beyond unicast com-
munication scenarios, we identify the curious case of a similar
behavior for classical wiretap channels.

Our construction is simple enough to be experimentally
feasible with present-day technology. Yu et al. [25], while
investigating the coherent information for a “dephrasure chan-
nel” in an optical setup, consider a dephasing channel, an
erasure channel as well as their complementary channels.
To realize our channel, one would need access to the com-
plementary of the dephrasure channel and the capability
of fine-tuning the dephasing parameter p and the erasure
probability λ.
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APPENDIX A: XZ INVARIANCE OF THE Ic OF Nλ, p

For completeness, we show that the coherent information
of Nλ, p is invariant by conjugating the input state with a qubit
Pauli X or Z .

Let us first start with the action of the channel on a state
conjugated by Pauli Z:

Nλ, p(ZρZ ) = λDp(ZρZ )
⊕

(1 − λ)ZρZ

= λ[〈0|(ZρZ )|0〉ϕ0 + 〈1|(ZρZ )|1〉ϕ1]⊕
(1 − λ)ZρZ

= λ[〈0|ρ|0〉ϕ0 + 〈1|ρ|1〉ϕ1]
⊕

(1 − λ)ZρZ.

Thus from Eq. (3) we get that

H[Nλ, p(ZρZ )] = H (λ) + λH[Dp(ρ)] + (1 − λ)H (ZρZ )

= H (λ) + λH[Dp(ρ)] + (1 − λ)H (ρ)

= H[Nλ, p(ρ)].

Similarly, Nλ, p(ZρZ ) := λDp(ZρZ )
⊕

(1 − λ)Tr(ZρZ )
| f 〉〈 f | = Nλ, p(ρ), since Dp(ZρZ ) = Dp(ρ), as Dp

is the dephasing channel in Pauli Z-bases. Thus,
H[Nλ, p(ZρZ )) = H (Nλ, p(ρ)] and hence

Ic(Nλ, p, ZρZ ) = H (Nλ, p, ZρZ ) − H[Nλ, p(ZρZ )]

= H (Nλ, p, ρ) − H[Nλ, p(ρ)]

= Ic(Nλ, p, ρ). (A1)

Let us now consider the action of the channel on a state
conjugated by Pauli X :

Nλ, p(XρX ) = λDp(XρX )
⊕

(1 − λ)XρX

= λ[〈0|(XρX )|0〉ϕ0 + 〈1|(XρX )|1〉ϕ1]⊕
(1 − λ)XρX

a= λ[〈1|(ρ)|1〉Zϕ1Z + 〈0|(ρ)|0〉Zϕ0Z]⊕
(1 − λ)XρX

= Z[λ(〈1|(ρ)|1〉ϕ0 + 〈1|(ρ)|1〉ϕ1)]Z⊕
(1 − λ)XρX,

where (a) holds as X |0〉 = |1〉, X |1〉 = |0〉, Z|ϕ0〉 = |ϕ1〉 and
Z|ϕ1〉 = |ϕ0〉. From Eq. (3),

H[Nλ,p(XρX )] = H (λ) + λH[ZDp(ρ)Z] + (1 − λ)H (XρX )

= H (λ) + λH[Dp(ρ)] + (1 − λ)H (ρ)

= H[Nλ, p(ρ)].

Since XDp(XρX )X = (1 − p)ρ + p(−X )ZXρXZ (−X ) =
Dp(ρ) (as Dp is the dephasing channel in Pauli Z-bases),
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therefore from Eq. (4) we get

H[Nλ, p(XρX )] = H (λ) + λH[XDp(XρX )X ]

= H[Nλ, p(ρ)].

Thus,

Ic(Nλ, p, XρX ) = H (Nλ, p, XρX ) − H[Nλ, p(XρX )]

= H (Nλ, p, ρ) − H[Nλ, p(ρ)]

= Ic(Nλ, p, ρ). (A2)

APPENDIX B: PROOF THAT Nλ, p IS DEGRADABLE

Proposition 15. The channel Nλ, p given in Eq. (1) is
degradable for λ ∈ [0, 1/2].

Proof. We provide the following proof for completeness.
Let V A→BC

Nλ, p
denote the isometric extension of the channel

Nλ, p. VNλ, p can be written as

VNλ, p =
√

λ{
√

1 − pIA→B1 ⊗ |0〉C + √
pZA→B1 |1〉C}⊕ √

1 − λIA→B2 | f 〉C,

where |A| = |B1| = |B2| = 2, B = B1
⊕

B2. We need to
prove that there exists a map R such that R ◦ Nλ, p = Nλ, p.
We will prove this by showing that R is a measure-and-
prepare channel.

For this, we can leverage the direct sum structure of the
channel. Since B = B1

⊕
B2, there exists a measurement that

distinguishes between the two spaces. The degrading map
performs a different action depending on the measurement
outcome.

The measurement outcome will correspond to B1 with
probability λ, the postmeasurement state is D̄p(ρ). In this
case, the degrading map action consists in preparing the state
| f 〉〈 f |. The resulting “substate” is λ| f 〉〈 f |.

The measurement outcome will correspond to B2 with
probability 1 − λ and the postmeasurement state is ρ. In this
case, with probability x ∈ [0, 1] the degrading map action
consists in preparing the state | f 〉〈 f | and with probability
1 − x applying the dephasing map Dp to ρ. The resultant
substate is (1 − λ)x| f 〉〈 f | ⊕(1 − λ)(1 − x)Dp(ρ).

Since λ ∈ [0, 1/2] we can choose (1 − λ)x + λ = 1 − λ,
which explicitly gives x = 1−2λ

1−λ
and also (1 − λ)(1 − x) = λ.

The overall action of the degrading map thus prepares the
state

(λ| f 〉〈 f | + (1 − λ)x| f 〉〈 f |)
⊕

(1 − λ)(1 − x)Dp(ρ)

= (1 − λ)| f 〉〈 f |
⊕

λDp(ρ) = Nλ, p(ρ).

We thus constructed a measure-and-prepare channel R such
that R(Nλ, p(ρ)) = Nλ, p(ρ) for any input ρ.1 �

APPENDIX C: VARIATION OF Q(Nλ, p) FOR λ � 1/2

In this Appendix, we provide intuition of how to find an
appropriate parametrization of p. Since the two-way capacity

1A similar proof can also be found in [24, Appendix C].

Q↔(Nλ, p) for λ � 1/2 (that is when it is additive) is 1 − λ

(independent of p) we need to show that Q(Nλ, p) increases
as a function of λ with p being a function of λ, in the range
p(λ) ∈ (0, 1/2).

To see where Q(Nλ, p) increases, we use elementary differ-
entiation for Eq. (E3) by treating the parameter p as a function
of λ, denoted by p(λ) as follows:

d

dλ
Q(Nλ, p) = d

dλ
[1 − λ{2 − H[p(λ)]}]

= H[p(λ)] − 2 + λ
d

dλ
p(λ) log

(
1 − p(λ)

p(λ)

)

⇒ H[p(λ)] + λp′(λ) log

(
1 − p(λ)

p(λ)

)
� 2.

(C1)

Since H (p(λ)) � 0, we have

p′(λ) � 2

λ
× 1

log [1/p(λ) − 1]

� 2

λ
× 1

log [1/p(λ) + 1]

� 2

λ
× 1

1/p(λ)

= 2
p(λ)

λ
.

In particular, the choice of p(λ) = 4λ − 1, for λ ∈ [1/4, 3/8),
fulfills the condition of the above inequality. The behavior for
this choice is depicted in Fig. 3.

APPENDIX D: UPPER BOUND FOR Er(Nλ, p)

For completeness, we reproduce the definition and selected
properties of the relative entropy of entanglement.

Definition 16. Let SEP denote set of all separable bipartite
states. The relative entropy of entanglement of a bipartite state
ρAB is defined as

Er (ρAB) := inf
σ AB:σ AB∈ SEP

D(ρAB||σ AB).

Similarly, the relative entropy of entanglement of a channel
Nλ, p is defined as

Er (Nλ, p) := sup
|φ〉AA′

:TrA′ (φAA′ )=ρA

Er[(IA ⊗ N A′→B
λ, p )(φAA′

)].

Fact 17. [38, Proposition 3] The relative entropy of entan-
glement is convex. For all a ∈ [0, 1] and all density operators
ρ1, ρ2 it holds that

Er[aρ1 + (1 − a)ρ2] � aEr (ρ1) + (1 − a)Er (ρ2).
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We upper bound relative entropy of entanglement of Nλ, p as follows:

Er (Nλ, p)
a= Er

(
ρAB
Nλ, p

)
b= inf

σ AB∈SEP

[
D

({
λ(IA ⊗ Dp)

(
φAA′
Nλ, p

)⊕
(1 − λ)(IA ⊗ Tr)

(
φAA′
Nλ, p

)
(I ⊗ | f 〉〈 f |)}∥∥σ AB

)]
c= inf

σ AB∈SEP

[
D

({
λρAB

1

⊕
(1 − λ)(ρA ⊗ | f 〉〈 f |B)

}∥∥σ AB
)]

= inf
σ AB∈SEP

[
D

({
λ
(
ρAB

1

⊕
|0〉〈0|AB

) + (1 − λ)
(|0〉〈0|AB

⊕
ρA ⊗ | f 〉〈 f |B)}∥∥σ AB

)]

= Er
[
λ
(
ρAB

1

⊕
|0〉〈0|AB

) + (1 − λ)
(|0〉〈0|AB

⊕
ρA ⊗ | f 〉〈 f |B)]

d
� λEr

(
ρAB

1

) + (1 − λ)Er (ρA ⊗ | f 〉〈 f |B)
e
� λEr (Dp)

f= λIc(Dp) = λ[1 − H (p)],

where (a) and (b) follows by choosing φNλ, p
to be the purifi-

cation of an input that achieves the maximum for Er (Nλ, p) in

Definition 16 and ρAB
Nλ, p

:= (IA ⊗ Nλ, p
A′→B

)(�Nλ, p
)AA′

;

(c) follows from the following identification:

ρ1 := [
IA ⊗ DA′→B

p

(
φAA′
Nλ, p

)]
and ρ := TrA′

(
φAA′
Nλ, p

)
;

(d) follows by the convexity of the relative entropy [38, Propo-
sition 3];

(e) follows since Er (ρA ⊗ | f 〉〈 f |B) = 0 and ρNλ, p
might

not be the maximizing state for Er (Dp);
(f) follows from [28, Eq. (39)].

APPENDIX E: PROOF OF THE ONE-WAY CAPACITY
OF Nλ, p FOR λ ∈ [0, 1/2] AND TWO-WAY CAPACITY

OF Nλ, p FOR λ ∈ [0, 1]

We prove the one-way capacity in Lemma 18 and two-way
capacity in Lemma 19.

Lemma 18. The one-way classically assisted quantum and
private capacities of Nλ, p when λ ∈ [0, 1/2] are given by

P (Nλ, p) = Q(Nλ, p) = 1 − λ[2 − H (p)].

Proof. Given that Nλ, p is degradable (see Appendix B for
the proof), its quantum and private capacities coincide [27].
Moreover, the quantum (and private) capacity is given by the
coherent information (by [27, Theorem 2], also [17]). We now
evaluate the coherent information of Nλ, p and then maximize
it over all the input density operators to get the capacity. Using
the definition of Nλ, p and Nλ, p we can rewrite

Ic(Nλ, p) = max
ρA

{H[Nλ, p(ρ)] − H[Nλ, p(ρ)]}. (E1)

Since Nλ, p is a combination of the complementary dephasing
channel and identity channel, for any input ρ the following
equalities hold (proved in Appendix A):

Ic(Nλ, p, ρ) = Ic(Nλ, p, ZρZ ) = Ic(Nλ, p, XρX ). (E2)

The coherent information of a degradable channel is concave
with respect to input density operators [2, Theorem 13.5.2]

and using Eq. (E2), we get

Ic(Nλ, p, ρ) = 1

2
Ic(Nλ, p, ρ) + 1

2
Ic(Nλ, p, ZρZ )

� Ic

(
Nλ, p,

ρ + ZρZ

2

)
.

The above equation shows that Ic(Nλ, p, ρ) is upper bounded
by the coherent information of Nλ, p evaluated over the states
diagonal in the Z basis, such as ρ+ZρZ

2 . Hence, Ic(Nλ, p) is
maximized for an input ρA that is diagonal in the Z basis.
Similarly,

Ic(Nλ, p, ρ) = 1

2
Ic(Nλ, p, ρ) + 1

2
Ic(Nλ, p, XρX )

� Ic

(
Nλ, p,

ρ + XρX

2

)

shows that Ic(Nλ, p, ρ) is maximized for a ρA which is di-
agonal in the X basis. Hence, we get that the maximum in
Ic(Nλ, p) is attained for an input density operator that is si-
multaneously diagonal in both X and Z bases. This implies
that maximum is achieved for ρA = πA.

Substituting Eqs. (3) and (2) in Eq. (E1) we get the desired
result:

Ic(Nλ, p, π ) = (1 − λ)H (π ) + λ{H[Dp(π )] − H[Dp(π )]}
a= (1 − λ) − λ[1 − H (p)] = 1 − λ[2 − H (p)].

(E3)

where (a) follows due to the following:
(1) H[Dp(π )] = H[diag[1 − p, p])] = H (p);
(2) H[Dp(π )] = H (π ) = 1. �
Lemma 19. For all λ ∈ [0, 1]: Q↔(Nλ, p) = P↔(Nλ, p) =

1 − λ.
Proof. Since Nλ, p is teleportation stretchable, by [28, The-

orem 5], we have that the two-way classically assisted private
capacity and hence the quantum capacity is upper bounded by
the relative entropy of entanglement of Nλ, p (formally defined
in Sec. D of the Appendix). We thus have

Q↔(Nλ, p) � Er (Nλ, p), (E4)
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where

Er (Nλ, p) := sup
�AA′ :pure

Er
[{
I ⊗ Nλ, p

}
(�)

]

= sup
�AA′ :pure

Er[λ
{
I ⊗ Dp

}
(�)

⊕
(1 − λ)

{
I ⊗ Dp

}
(�)]

(a)
� λ sup

�AA′ :pure

Er
[{
I ⊗ Dp

}
(�)

] + (1 − λ)

× sup
�AA′ :pure

Er[λ{I ⊗ I}(�)]
(b)= 1 − λ,

where (a) holds by applying convexity of the relative entropy
[38, Proposition 3] and (b) holds by the observation that
Dp(ρ) is separable for all ρ so Er (Dp) = 0 and Er (I ) = 1 by
[39, Proposition 1]. Combining the above with Eq. (E4) gives
the desired upper bound.

The upper bound is achievable. This can be observed by in-
spection; the encoder can send half of a maximally entangled
state. This procedure will prepare a joint maximally entangled
state when the channel acts as the identity which occurs with
probability 1 − λ. Exploiting the direct-sum structure of the
channel, the communicating parties can distinguish between
the action of Dp and I and consume the maximally entangled
states to communicate noiselessly at a rate of 1 − λ.

APPENDIX F: CHARACTERIZING THE ONE-WAY
CAPACITY USING CONTINUITY WHEN λ ∈ [1/2, 1]

The one-way quantum and private capacities of the channel
from (1) are not characterized by the coherent information in
this range of λ, p [23]. For this reason, we resort to analyzing
the lower and upper bounds for the quantum capacity.

1. Lower bound on Q(Nλ, p) for λ ∈ [1/2, 1]:
Proof of Lemma 11

One can consider the coherent information Ic(N , ρ) for
one use of the channel as a trivial lower bound

Ic(N , ρ) = H[Nλ, p(ρ)] − H[Nλ, p(ρ)]

= λ{H[Dp(ρ)] − H[Dp(ρ)]} + (1 − λ)H (ρ).
(F1)

For ρ = π , this turns out to be 1 − λ[2 − H (p)].

2. Upper bound on Q(Nλ, p) for λ ∈ [1/2, 1]

We start by stating the following continuity property of the
one-way classically assisted capacity of almost antidegradable
channels.

Definition 20. [34] A quantum channel χA→B is
said to be ε-close antidegradable if there exists an
antidegradable channel ηA→B such that ‖χ − η‖� � ε where
‖χ − η‖� ≡ supn‖χ ⊗ In − η ⊗ In‖tr and ‖χ − η‖tr ≡
maxρ‖χ (ρ) − η(ρ)‖tr with ‖.‖tr denoting the usual trace
norm of an operator.

Fact 21. [34, Corollary A.4] For a quantum channel χA→B

that is ε-close antidegradable it holds that

Q(χ ) � P (χ ) � 2ε log |B| + 2(2 + ε)H

(
ε

2 + ε

)
.

Building on Definition 20 and Fact 21, we prove the upper
bound for Q(Nλ, p) given in Eq. (8).

Proof of Eq. (8), We consider the channel T A→B :=
λTr(·)|ϕ0〉〈ϕ0|

⊕
(1 − λ)I and show that it is close to the

channel Nλ, p in the diamond norm. For this, we expand any
density matrix ρAR in the computational basis for A and any
canonical basis for R, as ρAR = 	i, j∈A 	k,l∈R ρi jkl |i〉〈 j|A ⊗
|rk〉〈rl |R. The following chain of inequalities holds:

‖Nλ, p − T ‖�

= max
ρAR

∥∥(
N A→B

λ, p ⊗ IR
)
ρAR − (T A→B ⊗ IR)ρAR

∥∥
1

= max
ρAR

λ‖	i, j∈A	k,l∈Rρi jkl{(〈0||i〉〈 j||0〉ϕ0

+ 〈1||i〉〈 j||1〉ϕ1) − Tr(|i〉〈 j|)ϕ0} ⊗ |rk〉〈rl |‖1

a= max
ρAR

λ‖	k,l∈Rρ00klϕ0 ⊗ |rk〉〈rl |

+ 	k,l∈Rρ11klϕ1 ⊗ |rk〉〈rl | − ϕ0 ⊗ ρR‖1

= max
ρAR

λ‖ϕ0 ⊗ ρR − 	k,l∈Rρ11klϕ0 ⊗ |rk〉〈rl |

+ 	k,l∈Rρ11klϕ1 ⊗ |rk〉〈rl | − ϕ0 ⊗ ρR‖1

= max
ρAR

λ‖	k,l∈Rρ11kl (ϕ1 − ϕ0) ⊗ |rk〉〈rl |‖1

= max
ρAR

λ‖	k,l∈Rρ11kl‖1‖ϕ1 − ϕ0‖1

b
� λ‖ϕ1 − ϕ0‖1

= λ2
√

1 − |〈ϕ0||ϕ1〉|2
c= 4λ

√
p(1 − p),

where (a) holds by the observation that ρR =
	i∈A	k,l∈Rρiikl |rk〉〈rl |R;

(b) holds as 1 = ‖ρR‖1 = ‖	i∈A	k,l∈Rρiikl |rk〉〈rl |‖1 �
‖	k,l∈Rρ11kl |rk〉〈rl |‖1;

and (c) holds by direct calculation of the eigenvalues of the
operator ϕ1 − ϕ0 and the fact that ϕ0 = (

√
1 − p,

√
p)T and

ϕ1 = (
√

1 − p,−√
p)T .

It is easy to see that the channel T is an antidegradable
channel (can be proved by the help of a simple measure-and-
prepare map).

Finally, by Definition 20, the channel Nλ, p is
4λ

√
p(1 − p)-close antidegradable and hence by Fact 21,

we have that the private and quantum capacities are bounded
from above by

Qub(Nλ, p) := 16λ
√

p(1 − p) + 2(2 + 4λ
√

p(1 − p))

× H

(
4λ

√
p(1 − p)

2 + 4λ
√

p(1 − p)

)
.

�
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3. Discrete family of channels for which the one-way capacity
increases and the two-way capacity decreases with λ ∈ [1/2, 1]

Let us first show a general statement regarding how to
construct a family of channels for which the one-way and
two-way assisted capacities have opposite behavior. For this
purpose it is enough to have monotonic bounds on the capac-
ity.

Proposition 22. Let a, b ∈ R and let {Nx}x∈[a,b] be a fam-
ily of quantum channels. Let Q↔(Nx ) be a continuous and
strictly monotonically decreasing function of x ∈ [a, b]. Fur-
ther suppose that there exists an upper and a lower bound
on the (one-way) capacity of the form Qlb(Nx ) � Q(Nx ) �
Qub(Nx ) < Q↔(Nx ) that are continuous and increase mono-
tonically in x ∈ [a, b] and that Qlb(Na) = Qub(Na). Then
there exists a strictly decreasing infinite sequence of values
{xn}n∈N with b > xi > a for all i and such that for all n < m:

Q(Nxn ) < Q(Nxm ),

and Q↔(Nxm ) > Q↔(Nxn ).

Proof. Let x0 = b, we define xn from xn−1 recursively for
n ∈ N as follows. We let the auxiliary variable t take the value
such that Qub(Nt ) = Qlb(Nxn−1 ). The existence of t < xn−1

is guaranteed because Qlb(Nx ),Qub(Nx ) are monotonically
increasing and Qlb(Na) = Qub(Na). Then xn = (t + a)/2.

Let us now show that the infinite sequence of chan-
nel indexed by n verifies the desired properties. First,
since xn is monotonically decreasing with n, Q↔(Nxn )
is monotonically increasing. Second, Q(Nxn ) � Qlb(Nxn ) >

Qub(Nxn+1 ) � Q(Nxn+1 ) which completes the proof. �
Observation. The one-parameter family of channels Nλ(p),p

with λ(p) = 1
2 + p in the range p ∈ [0, 0.0002] verifies the

conditions of Proposition 22.
First, let us now verify the conditions for the one-way ca-

pacity. Let us first analyze the lower bound, which was given
in Eq. (E3). It particularizes to 1 − (1/2 + p)[2 − H (p)] =
H (p)/2 − 2p + pH (p). To show that the lower bound is in-
creasing with p, let us take the derivative with respect to p.
The derivative turns out to be

1
2 {−4 − (1 − 4p) log[1 − p] − (1 + 4p) log[p]}.

For p < 1/4, the derivative is larger than 1
2 (−4 − log[p]),

which in turn is larger than zero if p < 1/16.
The upper bound on the one-way assisted capacity is given

by (8), which for the given parametrization reduces to

Qub(Nλ(p), p)

:= (8 + 16p)
√

p(1 − p) + (4 + (4 + 8p)

×
√

p(1 − p))H

(
(1 + 2p)

√
p(1 − p)

1 + (1 + 2p)
√

p(1 − p)

)
. (F2)

The upper bound is monotonically increasing in the range
p ∈ [0, 1/16]. This follows from the observation that the func-
tions

√
p(1 − p), 8 + 16p as well as H ( (1+2p)

√
p(1−p)

1+(1+2p)
√

p(1−p)
) are

all monotonically increasing with respect to p in this range.
Second, the two-way capacity is given by Q↔(Nλ(p),p) =

1 − λ = 1/2 − p which is monotonically decreasing with p.
The upper bound on the one-way capacity is smaller than the
two-way capacity for p < 0.0002. We end by observing that

Qub(Nλ(p), p) = Qlb(Nλ(p), p) = 0 at p = 0. Therefore, from
the above proposition, there exists a discrete infinite family
of channels for which the one-way capacity increases and the
two-way capacity decreases.

APPENDIX G: ONE-WAY AND TWO-WAY ASSISTED
CAPACITY OF THE COMPLEMENTARY CHANNEL

In this section, we fully characterize the capacity of the
channel given by Eq. (2) in the range λ ∈ [0, 1/2]; i.e., the
complementary channel to our main construction.

Since Nλ, p is degradable for λ ∈ [0, 1/2], therefore the
complementary channel Nλ, p := λDp

⊕
(1 − λ)| f 〉〈 f | is an-

tidegradable and the one-way assisted capacity of Q(Nλ, p) =
0 [40].

Lemma 23. The two-way classically assisted capacity of
Q↔(Nλ, p) = λ[1 − H (p)].

Proof. For any input state ρA, the channel output can be
written as

σ B := Nλ, p(ρ) := (1 − λ)| f 〉〈 f |
⊕

λDp(ρ).

Since the channel is a direct sum channel, let the output space
of the “flag” channel (that maps any input to a fixed pure state
referred to as the flag) be B2 and the output space of Dp be B1,
such that B = B1

⊕
B2 and B1 ∩ B2 = {0}.

Achievability: When Bob receives the state σ B, Bob ap-
plies the measurement of form {MB1 , I − MB1}. If Bob gets a
nonzero outcome, he sends an acknowledgement classically
to Alice, to abort the protocol. If Bob gets a zero outcome, he
knows that he received the outcome of dephasing channel Dp

and indicates this back to Alice and declares that as the output.
This ensures that a rate of λIc(Dp) (which is the probability
of getting the outcome from a dephasing channel times its
capacity) is achievable.

Converse: Since Nλ, p is teleportation stretchable [28], the
relative entropy of entanglement of Nλ, p upper bounds the
two-way assisted private and quantum capacity.

Finally, in Appendix D we show that Er (Nλ, p) =
λIc(Dp) = λ[1 − H (p)]. This proves the claim. �

APPENDIX H: ONE-WAY DISTILLABLE
ENTANGLEMENT AND SECRET KEY OF

DEGRADABLE STATES

The one-way distillable entanglement (respectively secret
key) of a bipartite quantum state ρAB, denoted by D→(ρAB)
[or K→(ρAB)] is defined as the maximal rate of distilling en-
tangled bits (respectively secret classical bits) given access to
identical and independent copies of ρAB using local operations
and forward (or one-way) classical communication (LOCC)
from sender to receiver. We refer to [30] for the formal defini-
tions.

In general, a one-way LOCC protocol can be modeled as a
quantum instrument T : A → A′M, and is defined as

T A→A′M (ηA) :=
∑

m

T A→A′
m (ηA) ⊗ |m〉〈m|M,

where |m〉 forms an orthonormal basis for the classical register
M, to be transmitted using forward classical communication
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and for each m the map Tm : A → A′ is completely positive
map.

The closed form expression for D→(ρAB) is given by the
following regularized formula [30]:

D→(ρAB) = lim
n→∞

1

n
max

T A→A′M
Ic(A′ > BM )((T A→A′M⊗IB )(ρAB )),

(H1)

where the maximum is taken over all quantum instruments.
The following fact gives a characterization of the D→(ρAB)

for degradable bipartite quantum states.
Fact 24. [32, Proposition 2.4] Given a degradable state

ρAB, the one-way distillable entanglement is additive and is
given by its coherent information, that is,

D→(ρ⊗n
AB ) = nD→(ρAB) = nIc(ρ).

In the remainder of this Appendix we prove that the one-
way distillable secret key of a bipartite state is also equal to its
coherent information. We recall the theorem of Devetak and
Winter on the one-way secret key distillation as the following
fact.

Fact 25. [30, Theorem 8] For any state ρABE ,

K→(ρ) = lim
n→∞ K (1)(ρ⊗n),

with K (1)(ρ) := max
�,T |X

[I (X ; B|T ) − I (X ; E |T )],

where the maximization is over all POVMs � = {�x}x∈X
and channels R such that T = R(X ). The information quan-
tities are evaluated with respect to the state ωT XBE =
	t,xR(t |x)P(x)|t〉〈t |T ⊗ |x〉〈x|X ⊗ TrA[ρABE (�x ⊗ IBE )].

We now state our observation as the following lemma.

Lemma 26. For any degradable state ρAB, with the purifi-
cation |ρ〉ABE and the system E holds the purifying register of
ρAB, the one-way distillable secret key is given by the coherent
information of ρAB, that is,

K→(ρ) = Ic(ρ) := H (B)ρ − H (AB)ρ.

Proof. From [31, Corollary 2] we have that K→(ρ) �
D→(ρ), where D→(ρ) = Ic(ρ) (from [32, Proposition 2.4]).
Thus K→(ρ) � Ic(ρ).

It remains to show that K→(ρ) � Ic(ρ). For this, fix any
POVM � and the classical R in Fact 25. We now define the
following classical-quantum state obtained from the measure-
ment �:

ωXBE :=
∑

x

p(x)|x〉〈x|X ⊗ ρBE
x ,

where p(x) := Tr[(�A
x ⊗ IBE )|ρ〉〈ρ|ABE ] and ρBE

x :=
TrA[(�A

x ⊗ IBE )|ρ〉〈ρ|ABE ]. Now the channel T in Fact
25 is a classical channel that maps the measurement outcome
x to t with probability R(t |x) and we thus get the overall state
as

ωT XBE :=
∑
t,x

R(t |x)p(x)|t〉〈t |T ⊗ |x〉〈x|X ⊗ ρBE
x . (H2)

We also consider the spectral decomposition ρBE
x =∑

y p(y|x)|φy(x)〉〈φy(x)|BE and the following extension:

ωT XY BE := 	t,x,yR(t |x)p(y|x)p(x)|t〉〈t |T ⊗ |x〉〈x|X ⊗ |y〉〈y|Y
⊗ |φy(x)〉〈φy(x)|BE . (H3)

We thus have the following chain of equations:

I (X ; B|T ) − I (X ; E |T )
a= I (X,Y ; B|T ) − I (Y ; B|X, T ) − [I (X,Y ; E |T ) − I (Y ; E |X, T )]

= I (X,Y ; B|T ) − I (X,Y ; E |T ) − [I (Y ; B|X, T ) − I (Y ; E |X, T )]

b
� I (X,Y ; B|T ) − I (X,Y ; E |T ), (H4)

where (a) follows from chain rule for mutual information;
and (b) holds since I (X,Y ; B|T ) � I (X,Y ; E |T ) by data pro-
cessing inequality for mutual information as the state ρABE is
degradable from B → E and conditioning is done with respect
to the classical system.

Now, we need to show that I (X,Y ; B|T ) − I (X,Y ; E |T ) �
Ic(ρ). For this, the key idea is to consider the coherent version
of the state obtained from the application of � and the channel
R. We define the following pure state:

|ω〉A′T T ′XX ′BE := V A→A′XX ′T T ′ |ρ〉ABE

=
∑
t,x

√
R(t |x)

√
p(x)|t〉T ′ ⊗ |t〉T ⊗ |x〉X ′

⊗ |x〉X ⊗ |ρx〉A′BE , (H5)

where A′ ∼= A, V A→A′XX ′T T ′
is the isometry that is the compo-

sition of the Stinespring isometry of the POVM � followed

by the Stinespring isometry of the channel R. Note that
|ω〉A′T T ′XX ′BE is a purification of the state ωT XBE .

Now consider the following chain of equations with the
identification that A′′ := A′XX ′:

I (X,Y ; B|T ) − I (X,Y ; E |T )

= H (B|T ) − H (E |T ) − [H (XY B|T ) − H (XY E |T )]

= H (B|T ) − H (E |T ) − [H (XY BT ) − H (XY ET )]
a= H (B|T ) − H (E |T )

b= H (BT ) − H (A′XX ′T ′B)
c= H (BT ) − H (A′XX ′T B)

= Ic(A′′ > B, T )

d
� D→(ρ)
e= Ic(ρ), (H6)
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where (a) follows from the observation that the classical-
quantum states on the systems XY BT and XY ET, respec-
tively, have the same eigen values [as can be seen from the
state given by Eq. (H3)] and thus H (XY ET ) = H (XY BT );
(b) follows from the state defined in Eq. (H5) and (c) fol-
lows since the state on T and T ′ is same. The distillable
entanglement is given by the optimization of the coher-
ent information over all quantum instruments [Eq. (H1)],
(d) follows from the construction of the quantum instru-
ment DA→A′′T (|ρ〉〈ρ|ABE ) := TrT ′[V A→A′XX ′T T ′ |ρ〉〈ρ|ABEV †],
where the the quantum systems of the instrument output are

A′XX ′ and the classical output register (for LOCC) is T ; (e)
follows from the Fact 24.

We thus showed that for any degradable state its one-
way distillable secret key is the same as its coherent
information. �

Remark 27. The above result can also be easily deduced
from [33, Eq. (1.9)], where it was shown that for a pure state
ρABC : D→(ρAB) � K→(ρAB) � D→(ρAB) + D→(ρAC ) and for
a degradable state ρAB, one has that D→(ρAC ) = 0 from a no-
cloning argument, thus implying the result. We give a more
direct proof above.

[1] D. P. DiVincenzo, P. W. Shor, and J. A. Smolin, Quantum-
channel capacity of very noisy channels, Phys. Rev. A 57, 830
(1998).

[2] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, England, 2013).

[3] E. Y. Zhu, Q. Zhuang, M.-H. Hsieh, and P. W. Shor, Superaddi-
tivity in trade-off capacities of quantum channels, IEEE Trans.
Inf. Theory 65, 3973 (2018).

[4] E. Y. Zhu, Q. Zhuang, and P. W. Shor, Superadditivity of the
classical capacity with limited entanglement assistance, Phys.
Rev. Lett. 119, 040503 (2017).

[5] D. Elkouss and S. Strelchuk, Superadditivity of private infor-
mation for any number of uses of the channel, Phys. Rev. Lett.
115, 040501 (2015).

[6] G. Smith and J. A. Smolin, Extensive nonadditivity of privacy,
Phys. Rev. Lett. 103, 120503 (2009).

[7] F. G. S. L. Brandão, J. Oppenheim, and S. Strelchuk, When
does noise increase the quantum capacity? Phys. Rev. Lett. 108,
040501 (2012).

[8] M. E. Shirokov and T. Shulman, On superactivation of
zero-error capacities and reversibility of a quantum channel,
Commun. Math. Phys. 335, 1159 (2015).

[9] F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A. Smolin,
Generic nonadditivity of quantum capacity in simple channels,
Phys. Rev. Lett. 130, 200801 (2023).

[10] G. L. Sidhardh, M. Alimuddin, and M. Banik, Exploring
superadditivity of coherent information of noisy quantum chan-
nels through genetic algorithms, Phys. Rev. A 106, 012432
(2022).

[11] D. Leung, K. Li, G. Smith, and J. A. Smolin, Maximal privacy
without coherence, Phys. Rev. Lett. 113, 030502 (2014).

[12] K. Li, A. Winter, X. B. Zou, and G. C. Guo, Private capacity of
quantum channels is not additive, Phys. Rev. Lett. 103, 120501
(2009).

[13] S. Singh and S. Strelchuk, Simultaneous superadditiv-
ity of the direct and complementary channel capacities,
arXiv:2301.05142.

[14] T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García,
and S. Strelchuk, Unbounded number of channel uses may be
required to detect quantum capacity, Nat. Commun. 6, 6739
(2015).

[15] V. Siddhu, Entropic singularities give rise to quantum transmis-
sion, Nat. Commun. 12, 5750 (2021).

[16] S. Singh and N. Datta, Detecting positive quantum capacities of
quantum channels, npj Quantum Inf. 8, 50 (2022).

[17] I. Devetak and P. W. Shor, The capacity of a quantum channel
for simultaneous transmission of classical and quantum infor-
mation, Commun. Math. Phys. 256, 287 (2005).

[18] A. Winter and D. Yang, Potential capacities of quantum chan-
nels, IEEE Trans. Inf. Theory 62, 1415 (2016).

[19] J. Yard, P. Hayden, and I. Devetak, Quantum broadcast chan-
nels, IEEE Trans. Inf. Theory 57, 7147 (2011).

[20] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A
55, 1613 (1997).

[21] I. Devetak, The private classical capacity and quantum capacity
of a quantum channel, IEEE Trans. Inf. Theory 51, 44 (2005).

[22] T. S. Cubitt, M. B. Ruskai, and G. Smith, The structure
of degradable quantum channels, J. Math. Phys. 49, 102104
(2008).

[23] V. Siddhu and R. B. Griffiths, Positivity and nonadditivity of
quantum capacities using generalized erasure channels, IEEE
Trans. Inf. Theory 67, 4533 (2021).

[24] F. Leditzky, D. Leung, and G. Smith, Dephrasure channel and
superadditivity of coherent information, Phys. Rev. Lett. 121,
160501 (2018).

[25] S. Yu, Y. Meng, R. B. Patel, Y.-T. Wang, Z.-J. Ke, W. Liu,
Z.-P. Li, Y.-Z. Yang, W.-H. Zhang, J.-S. Tang, C.-F. Li, and
G.-C. Guo, Experimental observation of coherent-information
superadditivity in a dephrasure channel, Phys. Rev. Lett. 125,
060502 (2020).

[26] J. Bausch and F. Leditzky, Quantum codes from neural net-
works, New J. Phys. 22, 023005 (2020).

[27] G. Smith, Private classical capacity with a symmetric side chan-
nel and its application to quantum cryptography, Phys. Rev. A
78, 022306 (2008).

[28] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fun-
damental limits of repeaterless quantum communications, Nat.
Commun. 8, 15043 (2017).

[29] M. M. Wilde, M. Tomamichel, and M. Berta, Converse bounds
for private communication over quantum channels, IEEE Trans.
Inf. Theory 63, 1792 (2017).

[30] I. Devetak and A. Winter, Distillation of secret key and entan-
glement from quantum states, Proc. Math. Phys. Eng. Sci. 461,
207 (2005).

[31] K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim,
General paradigm for distilling classical key from quantum
states, IEEE Trans. Inf. Theory 55, 1898 (2009).

[32] F. Leditzky, N. Datta, and G. Smith, Useful states and en-
tanglement distillation, IEEE Trans. Inf. Theory 64, 4689
(2017).

033089-12

https://doi.org/10.1103/PhysRevA.57.830
https://doi.org/10.1109/TIT.2018.2889082
https://doi.org/10.1103/PhysRevLett.119.040503
https://doi.org/10.1103/PhysRevLett.115.040501
https://doi.org/10.1103/PhysRevLett.103.120503
https://doi.org/10.1103/PhysRevLett.108.040501
https://doi.org/10.1007/s00220-015-2345-5
https://doi.org/10.1103/PhysRevLett.130.200801
https://doi.org/10.1103/PhysRevA.106.012432
https://doi.org/10.1103/PhysRevLett.113.030502
https://doi.org/10.1103/PhysRevLett.103.120501
https://arxiv.org/abs/2301.05142
https://doi.org/10.1038/ncomms7739
https://doi.org/10.1038/s41467-021-25954-0
https://doi.org/10.1038/s41534-022-00550-2
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1109/TIT.2016.2519920
https://doi.org/10.1109/TIT.2011.2165811
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1063/1.2953685
https://doi.org/10.1109/TIT.2021.3080819
https://doi.org/10.1103/PhysRevLett.121.160501
https://doi.org/10.1103/PhysRevLett.125.060502
https://doi.org/10.1088/1367-2630/ab6cdd
https://doi.org/10.1103/PhysRevA.78.022306
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1109/TIT.2017.2648825
https://doi.org/10.1098/rspa.2004.1372
https://doi.org/10.1109/TIT.2008.2009798
https://doi.org/10.1109/TIT.2017.2776907


NOISE IS RESOURCE-CONTEXTUAL IN QUANTUM … PHYSICAL REVIEW RESEARCH 6, 033089 (2024)

[33] C. Hirche and F. Leditzky, Bounding quantum capacities via
partial orders and complementarity, IEEE Trans. Inf. Theory
69, 283 (2023).

[34] D. Sutter, V. B. Scholz, A. Winter, and R. Renner, Approximate
degradable quantum channels, IEEE Trans. Inf. Theory 63,
7832 (2017).

[35] C. Shannon, The zero error capacity of a noisy channel, IEEE
Trans. Inf. Theory 2, 8 (1956).

[36] A. D. Wyner, The wire-tap channel, Bell Syst. Tech. J. 54, 1355
(1975).

[37] D. Elkouss and S. Strelchuk, Nonconvexity of private capacity
and classical environment-assisted capacity of a quantum chan-
nel, Phys. Rev. A 94, 040301(R) (2016).

[38] J. Eisert, K. Audenaert, and M. B. Plenio, Remarks on entangle-
ment measures and non-local state distinguishability, J. Phys. A:
Math. Gen. 36, 5605 (2003).

[39] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quan-
tifying entanglement, Phys. Rev. Lett. 78, 2275 (1997).

[40] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Capacities
of quantum erasure channels, Phys. Rev. Lett. 78, 3217 (1997).

033089-13

https://doi.org/10.1109/TIT.2022.3199578
https://doi.org/10.1109/TIT.2017.2754268
https://doi.org/10.1109/TIT.1956.1056798
https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
https://doi.org/10.1103/PhysRevA.94.040301
https://doi.org/10.1088/0305-4470/36/20/316
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.78.3217

