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Weyl superconductivity and quasiperiodic Majorana arcs in quasicrystals
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Weyl superconductivity is a topological phase in three-dimensional crystals in which the Weyl equa-
tion describes quasiparticle excitation near band-touching points in momentum space called Weyl nodes.
For quasicrystals which lack translational symmetry, a theory of Weyl superconductivity has not been estab-
lished, in spite of recent extensive studies on quasicrystalline topological phases. Here, we demonstrate the
occurrence of quasicrystalline Weyl superconductivity by extending the definition of Weyl superconductivity
to periodically stacked, two-dimensional superconducting quasicrystals. We identify quasicrystalline Weyl
nodes—topologically protected point nodes in one-dimensional momentum space corresponding to the stacking
direction—in terms of a topological invariant given by a change in the Bott index in quasicrystalline layers. We
find that these Weyl nodes exist in pairs and that Majorana zero-energy modes protected by the nonzero Bott
index between a pair of quasicrystalline Weyl nodes appear on surfaces. These Majorana zero modes form an
infinite number of arcs in momentum space, densely and quasiperiodically distributed as a function of momentum
in the direction of surfaces within each quasicrystalline layer. In Ammann-Beenker (Penrose) quasicrystals, the
quasiperiodicity of Majorana arcs is governed by the silver (golden) ratio associated with the quasicrystalline
structure.

DOI: 10.1103/PhysRevResearch.6.033088

I. INTRODUCTION

Quasicrystals (QCs) are materials whose structure is ape-
riodic with a long-range order [1]. Recent experiments in
QCs have shown the presence of electronic long-range orders,
similarly to crystals, such as a long-range magnetic order [2]
and superconductivity [3,4]. On the other hand, it has been
shown theoretically that quasicrystalline superconductors ex-
hibit Cooper pairs with finite center-of-mass momentum [5–8]
and anomalous paramagnetic response [9], which are different
from crystalline superconductors. Furthermore, some theoret-
ical works have predicted topological phases in QCs without
crystalline counterparts [10].

One cannot use a topological band theory for QCs be-
cause they lack translational symmetry. Nevertheless, in
quasicrystalline systems, topological insulator phases be-
yond a topological band theory [11–20], topological charge
pumping [21–25], and topological semimetals [26–32] have
been proposed theoretically. In particular, layered QCs have
attracted attention recently as a platform for realizing topo-
logical semimetallic phases [29–32].

Some crystalline topological superconductors show gap-
less points in momentum space called point nodes. If those
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points cannot be gapped out by weak perturbations that
conserve symmetries of the system, such points are called
topologically protected nodes. For example, a Weyl super-
conductor (WSC) is a three-dimensional (3D) superconductor
with topologically protected point nodes called Weyl nodes,
which exist pairwise and are described by the Weyl equa-
tion with chirality ±1 [33–42]. In 3D momentum space, the
Chern number changes at each Weyl node by its chirality
[43–45]. WSCs also have zero-energy surface states protected
by the nonzero Chern number between a pair of Weyl nodes
[46]. Those zero-energy modes are localized at the surfaces
and form arcs in momentum space. These arcs are called
Majorana arcs because zero-energy modes in topological su-
perconductors can be described as Majorana fermions [47].
Also in QCs, some theoretical works [48–51], including stud-
ies by some of the present authors [52,53], have proposed
topological superconductivity with no node. Whether a qua-
sicrystalline topological superconductor with nodes can exist
or not has yet to be understood because the nodes generally
appear in the Brillouin zone of periodic systems.

In this work, we study periodically stacked, two-
dimensional (2D) quasicrystalline topological superconduc-
tors. We find that this system shows topologically protected
nodes in one-dimensional momentum space corresponding to
the stacking direction. At these nodes, the Bott index changes
its value in the same way as does the Chern number at Weyl
nodes in crystalline WSCs. We thus call them quasicrystalline
Weyl nodes [30] and the resulting superconductors quasicrys-
talline WSCs. Between two of such quasicrystalline Weyl
nodes in momentum space, zero-energy modes protected by
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the nonzero Bott index appear on surfaces. Fourier momenta
at which the Fourier amplitudes of these zero-energy surface
modes are finite are densely and quasiperiodically distributed
in one-dimensional momentum space that corresponds to the
direction of surfaces within each layer. This quasiperiodic
distribution of momenta of the motion along each surface in
2D QCs is in stark contrast to periodic distribution due to re-
peating Brillouin zones of layered 2D crystalline topological
superconductors.

The paper is organized as follows. We first review a 2D
quasicrystalline topological superconductor in Sec. II A and
then introduce a layered quasicrystalline superconductor in
Sec. II B. In Sec. III A, we extend the definition of Weyl super-
conductivity in crystals to QCs and obtain a topological phase
diagram for a layered quasicrystalline Weyl superconductor.
To understand the difference between quasicrystalline and
crystalline WSCs, we calculate the spectral density of states
for topologically protected zero-energy modes in Sec. III B.
Finally, we summarize our work in Sec. IV.

II. MODEL

A. Two-dimensional quasicrystalline superconductor

We consider 2D s-wave topological superconductivity with
Rashba spin-orbit coupling in magnetic field perpendicular to
the 2D (xy) plane [54,55] in a QC, which is modeled as [52]

H2D = 1

2

∑
rr′σσ ′

(c†
rσ crσ )

(
H2D

0 (μ) �

�† −H2D
0 (μ)∗

)(
cr′σ ′

c†
r′σ ′

)
,

(1)

where c†
rσ is the creation operator of an electron with spin

σ (=↑,↓) at the rth vertex. We use the vertex model, where
the vertices of the quasiperiodic tiling are the lattice sites of
a QC and the electron moves from a vertex to another vertex
along the edge of a tile.

The 2D normal-state Hamiltonian H2D
0 (μ) is given by[

H2D
0 (μ)

]
rσ,r′σ ′

= [(trr′ − μδrr′ )σ0 − hzδrr′σz + iλrr′ez · σ × R̂rr′ ]σσ ′, (2)

where trr′ ≡ −t is the hopping amplitude along nearest-
neighbor links between the rth and r′th vertices, μ the
chemical potential, −hz (+hz) the Zeeman energy due to the
magnetic field for spin up (down), λrr′ ≡ λ the Rashba spin-
orbit coupling constant along nearest-neighbor links between
the rth and r′th vertices, ez a unit vector in the direction
perpendicular to the plane, σ = (σx, σy, σz ) the Pauli matrices
acting on spin space, σ0 an identity matrix, and R̂rr′ the nor-
malized vector from the rth to r′th vertices. In the following,
we set t as the unit of energy. An s-wave superconducting
pairing operator � is defined as

[�]rσ,r′σ ′ = [δrr′ i�0σy]σσ ′, (3)

where �0 is the superconducting order parameter. In the fol-
lowing, we set λ = 0.5t , hz = −0.5t , and �0 = 0.2t .

The Hamiltonian Eq. (1) describes a topological supercon-
ductor with time-reversal symmetry broken by the magnetic
field, and this model belongs to class D in the Altland-
Zirnbauer classification [56]. In 2D systems of class D, it is

(a)

(b)

-4.0-5.0 -3.0
μ/t

NSC

μ+/t

-4.5 -3.5 -2.5

TSC NSC

x
y

μ-/t

FIG. 1. (a) Ammann-Beenker approximant of square shape with
1393 vertices. The structure is identical to that of an Ammann-
Beenker QC inside the octagon outlined by red dashed lines. The red
circle indicates the center of the Ammann-Beenker QC. (b) Topo-
logical phase diagram as a function of chemical potential μ of the
2D model in Eq. (1) on the Ammann-Beenker QC. TSC (NSC)
represents topological (normal, i.e., trivial) superconductivity with
B = 1 (B = 0).

possible to define a topological invariant that takes on integer
values. The topological invariant changes its value only when
the bulk energy gap vanishes, and Majorana edge modes can
appear when the invariant is nonzero in the bulk [57,58].
Among such topological invariants, the Bott index B is ap-
plicable not only for periodic systems, but also for aperiodic
systems including QCs (see Appendix A) [52,59]. The Bott
index for H2D in Eq. (1) can vary as a function of μ, for exam-
ple. Figure 1(a) illustrates an Ammann-Beenker approximant
of square shape that contains 1393 vertices. Approximants
are identical to QCs except for regions close to the edges, to
which the periodic boundary condition (PBC) can be applied.
In Fig. 1(a), vertices enclosed by the octagon in red dashed
lines compose an Ammann-Beenker QC. Since calculation of
the Bott index requires PBC imposed on the system, we use
an Ammann-Beenker approximant to study the topological
properties of Ammann-Beenker QCs. In Appendix B we show
our study of the topological properties of Penrose QCs in
terms of a Penrose approximant. Figure 1(b) is a topological
phase diagram for a superconducting Ammann-Beenker QC
for low electron density [52]. A topological phase transition
occurs when B changes due to closing of the bulk spectral
gap. In Fig. 1(b), μ+/t � −3.76 and μ−/t � −4.68 are the
chemical potential at the topological phase boundaries [52],
such that B = 1 for μ− < μ < μ+ and B = 0 for μ outside
this region.

B. Layered quasicrystalline superconductor

To define quasicrystalline Weyl superconductivity, we con-
sider periodic stacking of infinitely many, 2D quasicrystalline
topological superconductors described in Sec. II A; i.e., with
magnetic field in the stacking (z) direction and intralayer
Rashba spin-orbit coupling. As a 2D quasicrystalline system
in the xy plane, we use Ammann-Beenker QCs and apply PBC
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in the z direction. We introduce interlayer nearest-neighbor
hopping:

Hz =
∑

kz

2tz cos(kzc)c†
kzrσ ckzrσ , (4)

where kz and c are, respectively, momentum and the interlayer
distance in the z direction, tz is the interlayer hopping ampli-
tude, and c†

kzrσ is the creation operator of an electron at the rth
vertex in each layer with spin σ (=↑,↓) and momentum kz.
Since there is an infinite number of layers, kz is a continuous
variable in the Brillouin zone, −π/c � kz < π/c. Thus, a
layered quasicrystalline superconductor is described by

H3D = 1

2

∑
kz

∑
rr′σσ ′

(c†
kzrσ ckzrσ )

×
(
H3D

0 (kz ) �

�† −H3D
0 (kz )∗

)(
ckzr′σ ′

c†
kzr′σ ′

)
. (5)

Here the 3D normal-state Hamiltonian is given by
[H3D

0 (kz )]r,r′ = [H2D
0 (μ)]r,r′ + 2tz cos (kzc)δrr′σ0, which can

be written as

H3D
0 (kz ) = H2D

0 (μ̃(kz )) (6)

with μ̃(kz ) = μ − 2tz cos kzc. Therefore, μ̃(kz ) can be re-
garded as a kz-dependent effective chemical potential in the
2D Hamiltonian.

A possible setup for realizing our model is alternating
layers of a 2D superconducting QC and a ferromagnetic in-
sulator. This is analogous to a 2D QC sandwiched between
a superconductor and a ferromagnetic insulator proposed in
Ref. [52], and also to the experimental realization of 2D topo-
logical superconductivity in monolayer lead covering a cobalt
island [60]. Another possible approach is doping layered su-
perconducting QCs with magnetic impurities. For periodic
systems, Weyl superconductivity has been suggested to occur
in superlattices of superconductors and magnetically doped
topological insulators [33].

III. RESULTS

A. Quasicrystalline Weyl nodes

We introduce a kz-dependent Bott index B(kz ) for a given kz

in right-hand side of Eq. (5) and define a topological invariant
χ at kz = k0 as

χ (k0) = lim
δ→0+

[B(k0 + δ) − B(k0 − δ)]. (7)

Nonzero χ (k0) implies closing of the spectral gap as the
Bott index changes at kz = k0. We call such a nodal point
in momentum space a quasicrystalline Weyl node [30] and
define superconductivity with such Weyl nodes in QCs as
quasicrystalline Weyl superconductivity.

For a given kz, the 3D Hamiltonian of our model con-
tains H2D

0 (μ̃(kz )) via Eq. (6). This means that if there is a
quasicrystalline Weyl node at kz = k0, μ̃(k0) corresponds to
the chemical potential at which the 3D Hamiltonian for a
given kz = k0 exhibits a topological phase transition, as illus-
trated in Fig. 1(b). That is, |k0| is equal to either |k+| or |k−|
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FIG. 2. (a) Topological phase diagram for a layered supercon-
ducting Ammann-Beenker QC. (b) Band structure of the model in
Eq. (5) with PBC in the x, y, and z directions on layered 1393-site
Ammann-Beenker approximants for the parameter set marked by the
red star in (a). (c) Bott index B(kz ) as a function of kzc, where c is the
interlayer distance, for the same system as in (b). (d) Same as (b) but
for the parameter set marked by the purple circle in (a). (e) Same as
(c) but for the same system as in (d).

defined by

μ̃(k±) = μ±, (8)

at which B(k0) changes from 1 to 0 or 0 to 1, respectively. This
can occur if |μ − μ±| < |2tz| and k± satisfy

k±c = arccos
μ − μ±

2tz
. (9)

Topological phase boundaries are given by

|μ − μ±| = |2tz|. (10)

Figure 2(a) shows a resulting topological phase diagram.
When tz = 0, each layer is completely isolated with no inter-
layer hopping and the topological phase diagram in Fig. 2(a)
reduces to Fig. 1(b). As in Fig. 1(b), the yellow region denoted
as TSC in Fig. 2(a) represents a topological superconducting
phase with B(kz ) = 1, where Majorana zero-energy modes
appear at surfaces, for arbitrary kz (for nonzero tz). In addition,
when tz 	= 0 two new topological phases emerge, denoted
as WSC1 (green) and WSC2 (light blue) in Fig. 2(a). The
system in the WSC1 and WSC2 phase possesses, respec-
tively, one |k0| which is either |k+| or |k−| and two |k0|’s,
|k0| = |k+| and |k0| = |k−|. Therefore, the WSC1 (WSC2)
phase is a quasicrystalline Weyl superconducting phase with
a pair (two pairs) of quasicrystalline Weyl nodes. The red star
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FIG. 3. (a) Band structure of the same system as in Figs. 2(b),
2(c) but with OBC in the x direction, where zero-energy Majorana
surface modes can be seen between the Weyl nodes at kzc = ±π/2.
(b) SDOS at zero energy ρ(qx = 0, qy, kz, ε = 0) in the qya − kzc
plane (left panel) and ρ(0, qy, kz = 0, 0) as a function of qya (right
panel) for the same system as in (a). Here a is the link length in
the 2D QC and the logarithm of SDOS normalized by its maximum
value is shown. The ratio of |qya| at which SDOS is the third largest
(denoted as 1) to |qya| for the second and fourth largest peaks is found
to be the silver ratio τs = 1 + √

2 and τs − 1, respectively.

(purple circle) in Fig. 2(a) indicates a representative parameter
set, μ = μ+ and tz = (μ+ − μ−)/4 [μ = (μ+ + μ−)/2 and
tz = 3(μ+ − μ−)/8], which is used for studying the WSC1
(WSC2) phase below.

We first examine the bulk band structure of our 3D model
Eq. (5) calculated with PBC in all of the x, y, and z directions.
The parameter set marked by the red star in Fig. 2(a) in the
WSC1 phase leads to the band structure shown in Fig. 2(b),
with a pair of quasicrystalline Weyl nodes at k0c = ±π/2.
In Fig. 2(c) B(kz ) is plotted as a function of kz, and we find
χ = 1 (−1) for the Weyl node at k0c = −π/2 (π/2). With
the parameter set marked by the purple circle in Fig. 2(a)
in the WSC2 phase, the band structure exhibits two pairs of
quasicrystalline Weyl nodes as can be seen in Fig. 2(d). The
kz dependence of B(kz ) in Fig. 2(e) shows that two nodes have
χ = 1 and the other two have χ = −1. We note that qua-
sicrystalline Weyl nodes with opposite signs in χ necessarily
appear in pairs, so that when the system has a Weyl node with
χ = +1, another Weyl node with χ = −1 exists.

B. Quasiperiodic Majorana arcs

It can be seen in Fig. 2(c) that B(kz ) = 1 for −π/2 < kzc <

π/2 between the two Weyl nodes, and similarly in Fig. 2(e)

FIG. 4. (a) Same as Fig. 3(a) but for the parameter set marked by
the purple circle in Fig. 2(a). Two branches of Majorana zero modes
can be seen between each of the two pairs of Weyl nodes. (b) Same
as Fig. 3(b) but for the same system as in (a) and zero-energy SDOS
at kzc = π/2 in the right panel. Similarly to the system shown in
Fig. 3, the distribution of major peaks is governed by the silver
ratio.

that B(kz ) = 1 between a pair of Weyl nodes for kz < 0 and
between another pair for kz > 0. We have confirmed the exis-
tence of zero-energy Majorana surface modes for kz between
a pair of Weyl nodes where B(kz ) 	= 0, just as in crystalline
WSCs and consistently with the bulk-boundary correspon-
dence. We present the band structure of our system with OBC
in the x direction and PBC in the y and z directions in Fig. 3(a)
[Fig. 4(a)], for the parameter set denoted by the red star (pur-
ple circle) in Fig. 2(a). Figures 3(a) and 4(a) clearly show the
presence of zero-energy modes between the two Weyl nodes
and each pair of Weyl nodes, respectively. These modes are
Majorana surface bound states with equal-magnitude electron
and hole amplitudes.

Furthermore, we calculate the spectral density of states
(SDOS) defined as

ρ(qx, qy, kz, ε) =
∑

m,σ,τ

|〈qx, qy, σ, τ |ψm(kz )〉|2δ(ε − Em),

(11)

where qx (qy) is Fourier momentum in the x (y) direc-
tion, ε is energy, τ (= e, h) indicates electron or hole,
|ψm(kz )〉 and Em are eigenstates and eigenenergies, respec-
tively, of the 3D Bogoliubov–de Gennes Hamiltonian matrix
in Eq. (5) for a given kz. The projection of eigenstate
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|ψm(kz )〉,

〈qx, qy, σ, τ |ψm(kz )〉 = 1√
N

∑
r

e−i(qx,qy )·Rr ψm,σ,τ (Rr, kz ),

(12)

for a given σ and τ = e (h), where N is the total number of
vertices and ψm,σ,τ (Rr, kz ) is the quasiparticle wave function
at vertex coordinate Rr for a given kz, is the Fourier amplitude
for momentum (qx, qy, kz ) of the electron (hole) component
of the eigenstate with spin σ . SDOS has been used to in-
vestigate the effects of band structure on superconductivity
in QCs [52,61]. Experimentally, SDOS can be probed by
angle-resolved photoemission spectroscopy.

The left panel in Fig. 3(b) [4(b)] shows SDOS at zero
energy in the qya − kzc plane, ρ(qx = 0, qy, kz, ε = 0), where
a is the link length in the 2D QC, for the parameter set
marked by the red star (purple circle) in Fig. 2(a). The zero-
energy SDOS is peaked at a series of qya values, forming
lines between the two (each pair of) Weyl nodes. By analogy
with “Fermi-Bragg” arcs in quasicrystalline Weyl semimetals
[30], we call these lines Majorana arcs, which are distributed
densely and quasiperiodically as a function of qya. Quasiperi-
odic Majorana arcs are analogous to Majorana arcs in crystals
repeating in momentum space, where the repetition corre-
sponds to the periodicity of Bragg peaks (see Appendix C).
Since Bragg peaks in a QC exhibit quasiperiodicity, its Ma-
jorana arcs, e.g., at qy = 0 are quasiperiodically repeated in
momentum space [30]. We note that the arcs are all lines
owing to the simplicity of our model. The quasiperiodic-
ity is illustrated in the right panels of Figs. 3(b) and 4(b),
where ρ(0, qy, kz = 0, 0) and ρ(0, qy, kzc = π/2, 0), respec-
tively, are plotted as a function of qya and can be seen to be
the largest at and symmetric about qy = 0. The ratio of the
smallest |qya| 	= 0 at which SDOS is substantially large (the
third largest in the range shown), denoted as 1, to |qya| for the
second and fourth largest peaks in SDOS is found to be the sil-
ver ratio τs = 1 + √

2 and τs − 1, respectively. The silver ratio
τs is associated with the structure of Ammann-Beenker QCs
[62,63]. We have checked for major peak (SDOS > max/2)
positions in a range much larger than shown in Figs. 3(b) and
4(b) (|qya| � 50π ) that the ratio of a given |qya| at which
SDOS is peaked to another |qya| where SDOS has another
peak is given by ατs + β, where α and β are rational numbers.
Since ατs + β is an irrational number, the distribution of Ma-
jorana arcs is quasiperiodic in momentum in the direction of
surfaces within each quasicrystalline layer. This makes sense,
as we have also checked that the positions of major peaks in
SDOS in the qy axis match those of major Bragg peaks of
Ammann-Beenker QCs. Like the Bragg peaks, with higher
resolution, an infinite number of Majorana arcs will fill in the
entire qy space.

Weyl superconductivity can also occur in periodically
layered Penrose QCs. It is shown in Appendix B that Ma-
jorana arcs appear between a pair of Weyl nodes and their
quasiperiodic distribution in momentum along each surface
of quasicrystalline layers is characterized by the golden
ratio τg = (1 + √

5)/2, which is inherent in the structure
of Penrose QCs. The quasiperiodic distribution of Majo-
rana arcs in quasicrystalline WSCs is in striking contrast

to the periodic distribution of Majorana arcs in momentum
space of crystalline WSCs. In Appendix C, we demon-
strate periodic Majorana arcs in a layered square-lattice Weyl
superconductor.

IV. SUMMARY

In summary, we have demonstrated the occurrence of qua-
sicrystalline Weyl superconductivity. We have generalized the
concept of Weyl superconductivity in 3D crystals to period-
ically stacked 2D QCs, by identifying quasicrystalline Weyl
nodes in one-dimensional momentum space corresponding to
the stacking direction, where the Bott index changes its value.
Between two quasicrystalline Weyl nodes in momentum
space, where the Bott index is nonzero, Majorana zero modes
appear on surfaces. By calculating SDOS, we have found that
these Majorana arcs appear densely and quasiperiodically as
a function of momentum in the direction of surfaces within
each 2D QC, whose quasiperiodicity is governed by the sil-
ver and golden ratio, respectively, for Ammann-Beenker and
Penrose QCs.

One of the candidate materials to be a quasicrystalline
WSC is a van der Waals-layered Ta1.6Te QC [64] whose
structure consists of layered 2D dodecagonal QCs. Recently,
Tokumoto et al. [4] have observed bulk superconductivity in
Ta1.6Te QCs. This finding expands the possibility of realiza-
tion of quasicrystalline Weyl superconductivity.
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APPENDIX A: BOTT INDEX

We review the Bott index B [59] which is an integer
topological invariant. Whether the system is periodic or not,
the Bott index B topologically classifies phases of a 2D
system whose Hamiltonian belongs to class D, including
time-reversal-breaking superconductors [52,56–59]. In a su-
perconducting state with B 	= 0, Majorana zero-energy modes
can appear at surfaces or topological defects.

The Bott index is given by

B = 1

2π
ImTr[log(UY UXU †

Y U †
X )], (A1)

where UX (UY ) is a projected position operator in the x (y)
direction. Using an occupation projector that is defined as

P =
∑
Em<0

|ψm〉〈ψm|, (A2)

the projected position operators are given by

UX = Pe2π iX P + (I − P), UY = Pe2π iY P + (I − P), (A3)

where |ψm〉 is an eigenstate of the Bogoliubov–de Gennes
Hamiltonian for a given system with a negative eigenvalue Em,
X (Y ) is a rescaled position operator defined in the interval
[0, 1) in the x (y) direction, and I is the identity operator.
When the spectral gap of the system closes as a system
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FIG. 5. (a) Band structure of the model in Eq. (5) for layered
3571-site Penrose approximants with PBC in the x, y, and z direc-
tions, for μ = μ+ and tz = (μ+ − μ−)/4. (b) Same as (a) but for
μ = (μ+ + μ−)/2 and tz = 3(μ+ − μ−)/8. (c) The Bott index B(kz )
as a function of kzc for the same system as in (a). (d) Same as (c) but
for the same system as in (b).

parameter is varied, the value of B can change. In the ther-
modynamic limit, any 2D system with OBC has B = 0.
Therefore, we use approximants of Ammann-Beenker and
Penrose QCs with PBC in both directions to calculate B.

FIG. 6. (a) Band structure of the same system as in Figs. 5(a),
5(c) but with OBC in the x direction, showing Majorana surface
states between the two Weyl nodes at kzc = ±π/2. (b) Logarithm of
SDOS at zero energy ρ(qx = 0, qy, kz, ε = 0) in the qya − kzc plane
(left panel) and ρ(0, qy, kz = 0, 0) as a function of qya (right panel),
where a is the link length in the 2D QC, for the same system as in
(a). The ratio of |qya| at which SDOS is the fourth largest (denoted
as 1) to |qya| for the third and second largest peaks is found to be the
golden ratio τg = (1 + √

5)/2 and τ 2
g , respectively.

FIG. 7. (a) Same as Fig. 6(a) but for μ = (μ+ + μ−)/2 and
tz = 3(μ+ − μ−)/8, where Majorana zero modes appear between
each pair of Weyl nodes. (b) Same as Fig. 6(b) but for the same
system as in (a) and zero-energy SDOS at kzc = π/2 in the right
panel. Similarly to the system shown in Fig. 6, the distribution of
major peaks is governed by the golden ratio.

APPENDIX B: QUASICRYSTALLINE WEYL
SUPERCONDUCTIVITY IN LAYERED PENROSE QCs

We consider periodically stacked, superconducting Pen-
rose QCs whose Hamiltonian is given by Eq. (5). For Penrose
QCs, by using μ+/t � −3.78 and μ−/t � −4.69 [52], we
obtain a topological phase diagram similar to Fig. 2(a). We
choose two parameter sets given by μ = μ+ and tz = (μ+ −
μ−)/4, and μ = (μ+ + μ−)/2 and tz = 3(μ+ − μ−)/8, to
calculate the band structure which is shown in Figs. 5(a) and
5(b), respectively. Figure 5(a) [5(b)] shows the band structure
of the model with PBC in the x, y, and z directions, where we
find a pair (two pairs) of quasicrystalline Weyl nodes. It can
be seen from the Bott index B(kz ) shown in Figs. 5(c) and 5(d)
that χ = +1 or −1 at each of these Weyl nodes.

Figure 6(a) [7(a)] shows the band structure of the model
with OBC in the x direction and PBC in the y and z directions
for the first (second) parameter set above. Zero-energy modes
appear at surfaces between two quasicrystalline Weyl nodes
in kz space, where the Bott index is nonzero. We have calcu-
lated SDOS in Eq. (11) and present ρ(qx = 0, qy, kz, ε = 0)
in the left panel of Fig. 6(b) [7(b)], where Majorana arcs
can be seen between the two (each pair of) Weyl nodes at
densely and quasiperiodically distributed positions in qya.
This is illustrated further in terms of ρ(0, qy, kz = 0, 0) and
ρ(0, qy, kzc = π/2, 0) shown in the right panels of Figs. 6(b)
and 7(b), respectively. As in Ammann-Beenker QCs, SDOS
is the largest at and symmetric about qy = 0. The ratio of
the smallest |qya| 	= 0 at which SDOS has a major peak (the
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fourth highest in the range shown) to |qya| for the third and
second highest peaks is found to be, respectively, 1 : τg and
1 : τg

2, where τg = (1 + √
5)/2 is the golden ratio. Geometric

and physical properties of Penrose QCs are governed by τg

[62,65,66]. We have confirmed for |qya| � 50π that the ratio
of |qya| for a major peak (SDOS > max/2) in SDOS to |qya|
for another major peak can be expressed as 1 : ατg + β, where
α and β are rational numbers, and that those peak positions
coincide with qya values of major Bragg peaks of Penrose
QCs. Hence, similarly to Ammann-Beenker QCs, layered
Penrose QCs exhibit quasicrystalline Weyl superconductivity,
with Majorana arcs between a pair of quasicrystalline Weyl
nodes positioned quasiperiodically in momentum in the direc-
tion of surfaces within each layer.

APPENDIX C: COMPARISON
WITH A CRYSTALLINE WSC

We now study a layered square-lattice superconductor
whose Hamiltonian is given by Eq. (5). For a square lattice,
topological phase boundaries are given analytically by μ± =
−4t ±

√
h2

z − �2
0 for low electron density [54,55], which

yield a topological phase diagram similar to Fig. 2(a). For
the parameter set μ = μ+ and tz = (μ+ − μ−)/4, the band
structure shows one pair of Weyl nodes with χ = ±1 (at
kzc = ∓π/2), which is the chirality of each Weyl node in
this case. The band structure of the model with OBC in the
x direction and PBC in the y and z directions is presented
in Fig. 8(a), where zero-energy surface states can be seen.
The corresponding SDOS ρ(qx = 0, qy, kz, ε = 0) is shown
in the left panel of Fig. 8(b), where Majorana arcs appear
between the two Weyl nodes where the Bott index is unity.
As illustrated in the right panel of Fig. 8(b) in terms of
ρ(0, qy, kz = 0, 0), the Majorana arcs are equally spaced in
qy and positioned at qya = 0,±2π,±4π,±6π . . .. Therefore,
any distance from a given Majorana arc to another Majorana
arc is a natural-number multiple of 2π and their ratio is a
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FIG. 8. (a) Band structure of a layered square-lattice Weyl su-
perconductor with OBC in the x direction and PBC in the y and
z directions, for μ = μ+ and tz = (μ+ − μ−)/4. (b) Logarithm of
SDOS at zero energy ρ(qx = 0, qy, kz, ε = 0) in the qya − kzc plane
(left panel) and ρ(0, qy, kz = 0, 0) as a function of qya (right panel)
for the system as in (a), where a is the lattice constant of the square
lattice. Each layer has 50 × 50 lattice sites.

rational number, as indicated in the right panel of Fig. 8(b).
This contrasts with the quasiperiodic distribution of Majorana
arcs in quasicrystalline WSCs, where an irrational number
characterizes those ratios.
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