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Saturation of exponents and the asymptotic fourth state of turbulence
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A recent discovery about the inertial range of homogeneous and isotropic turbulence is the saturation of the
scaling exponents ζn for large n, defined via structure functions of order n as Sn(r) = 〈(δru)n〉 = A(n)rζn . We
focus on longitudinal structure functions for δru between two positions that are r apart in the same direction as
u. In a previous work [Phys. Rev. Fluids 6, 104604 (2021)], two of the present authors developed a theory for ζn,
which agrees with measurements for all n for which reliable data are available, and shows saturation for large
n. Here, we derive expressions for the probability density functions of δru for four different states of turbulence,
including the asymptotic fourth state defined by the saturation of exponents for large n. This saturation means
that the scale separation is violated in favor of strongly coupled quasiordered flow structures, which likely take
the form of long and thin (worm-like) structures of length L and thickness l = O(L/Re).

DOI: 10.1103/PhysRevResearch.6.033087

I. PROBLEM DEFINITION

We are interested in fluid flows described by the Navier-
Stokes equations

∂t u + u · ∇u = −∇p + ν∇2u + f (1)

subject also to the incompressibility condition ∇ · u = 0; f is
a body force. Of particular interest to this study is the case
when f is a random stirring force generating turbulent cascade.
Depending on the Reynolds number, Eq. (1) describes both
laminar and turbulent flows. A goal of proper theory is to
deduce observed properties of turbulence from (1). We focus
here on the small-scale properties of the turbulent state. To
make progress, it is customary [1] to introduce the velocity
increments ur ≡ δru ≡ u(x + r) − u(x) and define structure
functions as their moments. In particular, there is a natural
expectation following Kolmogorov [1] that power laws of the
form

Sn(r) = 〈
un

r

〉 = A(n)rζn , (2)

where the angular brackets indicate a suitable average, hold
for the intermediate separation distances L � r � η, known
as the inertial range; here, L is the large scale of turbulence and
η = (ν3/ε)1/4 is the dissipation scale, ν being the kinematic
viscosity of the fluid and ε the rate of energy dissipation. Kol-
mogorov’s theory [1], based on the assumption of localness in
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the space of interacting scales and isotropy, led subsequently
to the famous linear relation, ζn = n/3. This elegant result
invariably fails for high-Reynolds-number velocity fields in
three dimensions (see, e.g., [2–4]), because of the occurrence
of rare and extreme events corresponding to the tails of the
probability density function (PDF). Increasingly intense fluc-
tuations can be probed by considering 〈(ur )n〉1/n for increasing
moment order n (i.e., by knowing ζn for increasing n). Thus,
a major problem of the turbulence theory, similar to those of
high-energy and condensed matter physics, is the evaluation
of the exponents ζn in Eq. (2). We show here that four dif-
ferent states of turbulence can be identified depending on the
qualitative behavior of ζn versus n. Our specific goal here is
to define these four states on the basis of the results of our
previous work [5].

II. BACKGROUND

As a statistical mechanical result, it would be instructive to
create a basic argument beyond the Kolmogorov-type reason-
ing. Renormalization group and related techniques have been
applied to turbulence (e.g., [6–9]), with focus on low-order
moments. For high-order moments, the following two ideas
were combined in our recent work [5] to produce the sem-
blance of a theory. The first idea is that an initially Gaussian
flow state stirred by a random force acquires anomalous scal-
ing at and beyond a presumably universal Taylor microscale
Reynolds number of Rλ ≈ 9 in direct numerical simulations
(DNS) [10]. The second idea is that the inertial range of turbu-
lence also has an Rλ ≈ 9 when based on the scale dependent
viscosity. The intuitive hypothesis of our previous work [5]
linking (a) and (b) is that the anomalous scaling of the inertial
range manifests as a marginally unstable state given by the
stability boundary of the transition to anomalous scaling of
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a stochastically forced random Gaussian field. Note that our
previous work [5] draws heavily on conclusions from succes-
sively eliminating high wavenumber bands and rescaling until
a fixed point is reached, based on a “dynamic renormalization
group technique” supplemented by a certain degree of phe-
nomenology.

The theory from our previous work [5] combines Hopf
equations with dynamic renormalization mentioned above, for
the pressure gradient equations for white-in-time Gaussian
forcing at large scales, valid for all moments n > 0. In par-
ticular, the following expression was derived for the scaling
exponents of the longitudinal structure functions:

ζ2n = 0.366n

0.05n + 0.475
= 7.32 − 69.54

n + 9.5
. (3)

This expression was found to be in excellent agreement with
the available simulations data [5] up to the highest-order n for
which data were available (∼10).

Despite this success, we should point out that this key
conclusion of our previous work [5] applies to the randomly
stirred fluid. Thus, a priori, that work [5] is not an exact
theory applicable to fluid turbulence driven by actual physical
shear—especially because it assumes that the delicate prop-
erties of large moments defined by a functional equation are
stable with respect to the change in dynamics from a flow
driven by a white-in-time stirrer to the Navier-Stokes turbu-
lence in a physical system. Basic intuition combined with
experiment and numerics suggests that these conclusions can
perhaps be generalized, but it implies a considerable jump in
physical reasoning.

III. SPECIFIC CONTRIBUTIONS OF THIS ARTICLE
AND THEIR SIGNIFICANCE

As already mentioned, we distinguish four distinct states
of turbulence on the basis of the theory from our previous
work [5], and derive expressions for the PDFs of velocity
increments in all these states, including what we regard as
the asymptotic (or the fourth) state, which is defined by the
saturation of ζn with respect to n, as given by (3) for the
longitudinal case. This saturation shows that 〈(ur )n〉1/n, which
is characteristic of intense small-scale fluctuations when n is
large, approaches an r-independent constant quite rapidly in
n, suggesting that fluctuations on the smallest scales could
often be as large as u0, the fluctuation at the largest scale L
itself—thus calling to question the concept of scale separation
and confirming the violation of local Galilean invariance.

To strengthen this last point, we recall from the work of
Monin and Yaglom [11] that the Kolmogorov theory assumes
turbulence in the inertial range to be universal and indepen-
dent of both L and η. However, at very high Reynolds numbers
(i.e., ν → 0), the length scale L remains O(1) but η → 0.
Since the amplitude of fluctuation on scales of O(η) or smaller
(as we shall see) can occasionally be of the order of large-scale
fluctuations u0, both L and η are simultaneously important.
This nudges us in the direction of coherent, “worm-like” or
“pancake-like” structures, with L and η (or a smaller scale)
as their linear dimensions. This provides a physical picture
for the notion that the turbulence problem is one of strong
interactions. Indeed, if we take the only characteristic length

scale in the inertial range to be the space increment r and its
characteristic velocity ur , the effective local viscosity
ν(r) ≈ rur and the characteristic Reynolds number is Rλ =
rur/ν(r) = constant, as readily seen in perturbation expan-
sions such as those of Wyld [12]. A fixed point has been
evaluated to be ≈ 9 in a prior work [13], implying, as is
well known, that the perturbation theory is divergent, and that
turbulence belongs to the class of strong interactions. Making
progress on this strongly coupled problem was a major contri-
bution of our previous work [5].

IV. THE FIRST STATE OF TURBULENCE

According to other works [10,14,15], in a low-Reynolds
number regime defined by Re = u0L/ν � 9, the weak fluctu-
ations generated by forcing on a large length scale L reside
in the scale range r > L and obey Gaussian statistics. (If
the forcing is different, one expects the PDF in this state of
turbulence to be accordingly different.) For this condition,
there is no distinction to be made between L and the Taylor
microscale λ, so we might as well state that Re = Rλ, where
the microscale Reynolds number is based on λ or L. This is the
first stage of “turbulence.” Its character is dependent entirely
on details of forcing.

V. THE SECOND STATE OF TURBULENCE

In statistically isotropic turbulence, if the moments of ve-
locity increments ur are given by power laws (2), their PDF
can be found from the Mellin transform

P(ur, r) = 1

ur

∫ C+i∞

C−i∞
A(n)rζ (n)u−n

r dn, (4)

where we have set the integral scale L and the dissipation rate
ε to unity. Multiplying (4) by uk

r and evaluating the integral
yields Sk = A(k)rζk . At the transition or instability point at
Rλ ≈ 9 (for a discussion that is similar in spirit, see Ref. [16]),
this Gaussian state becomes unstable due to nonlinearity,
giving rise to the smaller scale fluctuations in the interval
L > r > η, making the problem hard [10,13]. The dynamics
of spreading energy in the range between L and η has often
been thought of in terms of a cascade with constant energy
flux, leading to the formation of successively smaller scales,
L1 = L/2, L2 = L/4, L3 = L/8, and so on, proceeding all the
way to η. It had been assumed in early models that each step of
the cascade was space filling, but past work [2–4] has shown
that such models are, in general, not adequate.

To make use of (4), we need dynamic information on both
the amplitudes A(n) and the exponents ζn in (2). We obtain the
expression for A(n) from the large-scale boundary condition
for the PDF. To do this, we first have to define the scale L
more precisely. Based on experimental data and theoretical
considerations discussed in the following, L is the scale at
which the energy flux toward small scales changes sign or
tends to zero. This suggests [11] that at small scales r < L,

the structure function S3(r) < 0, whereas for the larger scales,
r > L, S3 � 0. Typically, at this scale L, which depends upon
the geometric details of the flow, the odd moments S2n+1(L) =
0 and the even moments saturate [i.e., ∂rS2n(L) = 0]. From
other works [6,13], L ≈ 5.88/k f when S3(L) = 0. This scale
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also appears naturally in Navier-Stokes equations defined on
an infinite domain driven by the white-in-time forcing func-
tion f (k), k being the wave number, with the variance

〈 f 2(k)〉 = P
2(2π )4

δ(k − k f )/k2,

where P is the forcing power and k f is the forcing wave num-
ber. The exact calculation of the relation for the third-order
structure function S3(r) gives an oscillating expression [17]

S3 = −P−36r cos r + 12 sin r − 12(−2 + r2) sin r

r4
.

In the limit r → 0, we have the Kolmogorov-like relation

S3 = −(4/5)Pr.

It is interesting that no viscosity, and therefore no dissipation
scale η, appears in the preceding relation that resembles Kol-
mogorov’s 4/5 law, though not identical to it. We would like to
stress that the integral scale defined this way typically corre-
sponds to the top of the inertial range marking constant energy
flux toward small scales. The Gaussian boundary condition at
r = L is the result of a fluctuation-dissipation theorem and
leads to the expression A(2n) = (2n − 1)!! (well tested both
experimentally and numerically [5]).

For n between 0 and 4, say, the behavior of ζn is close
to normal scaling; in other words, ζn ≈ (1/3)n, where the
proportionality coefficient of 1/3 is a consequence of the
Kolmogorov-like relation S3 ∝ r with S3(r = L) = 0. Writing
(2n − 1)!! = 2n√

π

∫ ∞
−∞ e−x2

x2ndx and rotating the integration
axis by 90◦, we have

P(ur, r) = 1√
πur

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e

in

(
ln ra√

2
ur

+ln x

)
dn

= 1√
πur

∫ ∞

−∞
e−x2

δ

(
ln

ra
√

2

ur
+ ln x

)
dx, (5)

where δ is the standard delta function. This integral is evalu-
ated readily to yield the result

P(ur ) = 1√
2πra

e−
(

u2
r

2r2a

)
. (6)

As we see, an unbounded flow governed by (1) is charac-
terized by a single length scale in this state.

VI. THE THIRD STATE OF TURBULENCE

We now consider a somewhat larger range of n for which
the anomalous behavior has set in, but they are not so large
that saturation has become visible. We account for the emer-
gence of anomalous scaling by introducing small deviations
from the linear relation for ζn, as

ζn = an − bn2. (7)

For a moment order n that is not too large, Eq. (7) can be
perceived as containing the first two terms of the Taylor ex-
pansion of ζn near n = 0, independent of the detailed nature
of the problem. Using the Kolmogorov constraint ζ3 = 1, we

get b = (3a − 1)/9. The PDF of ur is then given by

P(ur, r) = 2

πur

√
4 ln rb

∫ ∞

−∞
e−x2

exp[−

(
ln ur

ra
√

2x

)2

4b ln r
]dx.

(8)
It is clear that the expansion (7) cannot be correct for all n. In-
deed, in accordance with the Hölder inequality, ζn is a concave
and nondecreasing function giving ζn/n � 1/n as n → ∞.
So, it is a pleasant surprise that for n � 10, the experimental
data on strong turbulence are consistent with a ≈ 0.383 and
b ≈ 0.0166, and that the expression (8) is accurate up to
n = O(10) (see Ref. [5]).

VII. THE FOURTH AND FINAL STATE OF TURBULENCE

This state is defined by the effects of saturated ζn. We first
explore some qualitative consequences of the saturation of ex-
ponents, which do not depend on the precise saturation value.
As indicated a few lines after Eq. (2), the largest fluctuations
of scale r have amplitudes given by 〈un

r 〉1/n for large n, which,
as a result of saturation of ζn in Eq. (2), will have amplitudes as
large as u0 itself. The Reynolds number of the finest of these
large fluctuations should be unity, which specifies the scale
l via the requirement that u0l/ν = 1, to be l = ηRe−1/4. In
other words, there are very large excursions on scales that are
smaller than the Kolmogorov scale η by the factor Re1/4, with
their amplitudes of the order of u0 itself. The corresponding
finest time scale will also be smaller than the conventional
estimate by the factor Re−1/4. Technically, then, computa-
tionally resolving the smallest scales of motion requires grid
size that is finer than η by the factor Re1/4, and an improved
time resolution by the same factor of Re1/4, than is adopted
in standard DNS of Eq. (1). This requirement becomes quite
demanding as the Reynolds number becomes large.

This observation blunts the great progress made by DNS in
the past 50 years. The development of powerful computers has
resulted in larger computational domains from N = 323 in the
early 1970s [18] to N = 32, 7683 today [19]—a billion-fold
increase in N , the number of grid points in each direction
of a periodic box within which forced turbulence is studied.
Despite this accomplishment, it is becoming clearer that DNS
is unable to keep up, in resolving extreme events, because
the scale ranges in both time and space widen well beyond
the Kolmogorov estimates, as demonstrated above. (We do
not imply that existing data resolved on Kolmogorov scales
are inadequate for studying low-order moments.) As a re-
sult, theoretical models based on various averaging methods
and dynamic renormalization have important roles to play,
especially in engineering. In particular, they supplement the
one-loop renormalized perturbation expansions which have
led to various models for turbulent viscosity, which have been
successful in simulations of large flow features.

VIII. THE PDF OF ur IN THE FOURTH STATE

To obtain the PDF, one needs the limiting value of ζn as
n → ∞; according to our previous work [5], ζ∞ = 7.3. It
should be pointed out that similar saturation properties are
shared, for less extreme values of n, by the random Burgers
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equation [20–22], the passive scalar [23], the transverse struc-
ture functions [4], and the Lagrangian scaling exponents [24].
The PDF

P(ur, r) = 2√
πur

∫ ∞

−∞
e−x2

dx
∫ i∞

−i∞
x2nrζn u−n

r dn (9)

can be evaluated for constant ζn by the use of the steepest
descent approximation, yielding

P(ur, r) ∝ 1

ur

(
ra

ur

) 1
b

e−√| ln ur || ln ra|. (10)

It describes the PDF with algebraically decaying tails fa-
miliar in the literature on three-dimensional turbulence.

Now let us extend the use of Eq. (4) beyond the original
range η � r � L into the range r � L. Then the main con-
tribution in the PDF is due to n → ∞ so that we have the
PDF that is qualitatively different from (8). We then have

P(ur, r) = 2√
πur

∫ ∞

−∞
e−x2

dx
∫ i∞

−i∞
x2nrζn u−n

r dn

=
(

r

L

)7.3

g(U ), (11)

where U = 2u0 and the single-point PDF is equal to

g(U ) ∝ exp(−U 2/2), (12)

for r � L, so that the single-point PDF is given by P(U ) =
exp(−U 2/2)/

√
2π . Needless to say, this holds for the satura-

tion state with the asymptotic exponent of 7.3.

IX. THE BREAKDOWN OF LOCAL GALILEAN
INVARIANCE IN THE FINAL STATE

The nonlinearity in (1) is a consequence of Galilean in-
variance. Indeed, the transformation to a frame moving with
the velocity u + V, where V = constant, keeps the Navier-
Stokes equations for fluctuations unchanged. However, it is
clear from (12) that Galilean invariance is broken locally.
The corresponding dynamics was experimentally studied [25]
and shown to possess a single-point, non-Galilean-invariant
contribution to P(ur, r;U ). This breakdown of Galilean in-
variance was previously obtained [26] in the context of
the Burgers equation (which, as already pointed out, also
possesses saturated scaling exponents). We stress that the
saturation emerged in our previous work [5] as a solution to
the Hopf equation, and that one cannot expect universality in
this regime.

X. GEOMETRIC STRUCTURE

The analysis so far demonstrates the relevance of both large
and small scales when fluctuations are intense. This points to
the existence of powerful structures with one dimension that
is very small, of the order l = ηRe−1/4, and the other of the
order L. Between vortex sheets and tubes, it would appear
that the inherent instability of the sheets and their tendency
to roll up suggests that the final structures are likely to be
in the form of tubes. If tubes are the most likely objects, it
is clear that they are like the “worms” described in many
simulations (see especially Ref. [27]), with lengths that are

much larger than their diameters. Qualitative observations
from simulations suggest that they could be sometimes of the
order of L. These vortical motions, which are thin and long
at the same time, are a feature of all high-Reynolds-number
flows such as homogeneous turbulence, thermal convection,
and meteorological flows.

Given this picture of high-Reynolds-number turbulence,
it is clear that no local filtering procedure can be applied
successfully. Neither Kolmogorov-like arguments nor other
qualitative or approximate approaches can account for struc-
tures that are very small and very large simultaneously. It
might have been reasonable to do so if they were extremely
rare, but the saturation of exponents makes them not so rare.
In particular, this property of the asymptotic state does not
augur well for large-eddy-simulation methods.

XI. SUMMARY

In our previous work [5], we considered the dynamics
of spatially infinite fluid driven by white-in-time Gaussian
random force acting on a length scale L. Our goal was to probe
the velocity field in terms of structure functions defined in (2).
Of particular interest is (〈un

r 〉)1/n for large n, the magnitude of
local mean velocity corresponding to the far tails of the PDFs,
dominated by extreme events.

We note that many years of experimental and numerical
work [2–4] has revealed power laws with anomalous expo-
nents departing from ζn = n/3 (except for n = 3). The theory
of turbulence giving the result (3) was produced only recently
(see Ref. [5] and references cited therein). Here, based on that
expression for the exponents, we have analyzed the PDFs of
velocity increments to investigate the structure of turbulence.
To estimate the effect of intermittency in the limit of large
n, we approximate (3) as ζ 41

n /ζn = 0.0455n + 0.864. When
n � 4, this ratio is within a few percent of unity, showing
that intermittency is practically not important in this range.
However, as n → ∞ (say, for n � 20), the intermittent be-
havior dominates the velocity field and all models based on
arguments of Kolmogorov [1], which do not recognize inter-
mittency, are quite problematic. For other quantities such as
transverse exponents and Lagrangian exponents, the state of
saturation sets in at much lower n.

We can now state the basic ingredients of the present the-
ory, valid in the entire range of Reynolds numbers, as follows:

1. Linear regime and the onset of turbulence: The velocity u
is proportional to the forcing f . This corresponds to the lowest
Reynolds number, Rλ → 0 [5]. In the Reynolds number range
Rλ < 9, the quasilaminar Gaussian random flow consists of
random patches of the typical scale L [10,14,15]. In this range,
L is the only relevant scale, and, in particular, it is of the same
order as λ.

2. Approximately K41 range: At Rλ ≈ 9, local transition
to anomalous scaling ensues, seen by the broadening of the
PDF tails of velocity increments. For small orders (n < 4),
this broadening does not matter significantly and the dynamics
can be regarded as being close to K41.

3. Significant deviations from K41: For higher orders in n,
deviations from K41 become stronger. This is the range most
often studied in the literature.
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4. Well-defined structures and the asymptotic fourth state:
With further increase of Rλ, the tails of the PDFs broaden and
the middle part becomes sharper [28]. This is accompanied
by the appearance of elongated, thin structures responsible for
limiting intermittency. One might regard the entire flow as a
Gaussian gas of long spaghetti-like structures with length of
the order L and thickness l = O(L/Re). Note that the imme-
diate appearance of non-Gaussian statistics at the transitional
Rλ ≈ 9 is indicative of a strong dynamic coupling between
large and small scales. The corresponding geometric concept
of stretched “worms” is already implicit in the suggestion that
turbulence dynamics is organized around such a critical state.
At larger Reynolds numbers, such a dynamic process is further
excited so that the flow is locked to this marginally stable state
that is effectively transitional in Rλ: a self-organized criticality
due to the direct balance between the large-scale stretching
and small-scale excitation and dissipation of worms. Quan-
titative verification and developments of this concept allow
simulation and modeling of a variety of flows (see, e.g.,
Ref. [29]).

XII. WE CONCLUDE ON THIS OPTIMISTIC NOTE

The theory developed in our previous work [5] and in
the present article is for a specific type of turbulence. While
there are gaps between the conditions of the theory and
the case of Navier-Stokes turbulence under actual physical
conditions, one expects that the physics can be general-
ized. Likewise, we believe that the theory can be extended
to compressible hydrodynamic turbulence and gravitational
collapse of interstellar dust which are of interest for star for-
mation and related applications. They will be topics of future
studies.
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