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Facilitating practical fault-tolerant quantum computing based on color codes
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Color codes are a promising topological code for fault-tolerant quantum computing. Insufficient research on
color codes has delayed their practical application. In this work, we address several key issues to facilitate
practical fault-tolerant quantum computing based on color codes. First, by introducing decoding graphs with
error-rate-related weights, we obtain the threshold of 0.47% of the 6.6.6 triangular color code under the standard
circuit-level noise model, narrowing the gap to that of the surface code. Second, our work first investigates the
circuit-level decoding of color code lattice surgery, then gives an efficient decoding algorithm, which is crucial
to perform logical operations in a quantum computer with two-dimensional architectures. Last, a state injection
protocol of the triangular color code is proposed, reducing the output magic state error rate in one round of 15 to
1 distillation by two orders of magnitude compared to a previous rough protocol. We also prove that our protocol
offers the lowest logical error rates for state injection among all possible CSS codes.
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I. INTRODUCTION

Quantum computation provides a potential way to solve
classically intractable problems, such as integer factoriza-
tion [1] and simulation of large quantum systems [2,3]. To
enable practical large-scale quantum computation, quantum
error correction (QEC) is a crucial technique that protects
information against the noise by encoding physical qubits into
logical qubits of a certain type of QEC code [4–6].

Much of the current work focuses on a subset of QEC
codes named the stabilizer code [7]. As a type of stabilizer
code, topological codes [8,9], including color codes [10,11]
and surface codes [12], draw extra attention since they are
compatible with the real hardware limited by the local con-
straints in a two-dimensional (2D) architecture. Compared to
surface codes, the advantage of color codes is that they encode
a logical qubit with fewer physical qubits and can implement
logical Clifford gates transversally.

An important indicator of the performance of a QEC code
is the threshold. However, it had long been believed that
the circuit-level threshold of color codes is about an order
of magnitude lower than that of surface codes, which is a
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significant reason why color codes fall behind in the competi-
tion with surface codes [13–16]. In the first part of our work,
by improving the decoding algorithm, we obtain the threshold
of 0.47% for the 6.6.6 triangular color code [17], basically the
same order of magnitude as the threshold of surface codes of
∼0.7–0.9 using an efficient decoder [15,16].

When performing logical operations on 2D hardware, lat-
tice surgery [13,18–21] is currently the mainstream scheme
since it retains locality constraints and offers lower overhead
compared to braiding schemes [22]. Lattice surgery imple-
ments logical gates, including Clifford gates and non-Clifford
gates, through fault-tolerant measurements of multibody logi-
cal Pauli operators. Recent work shows that lattice surgery of
color codes can further reduce the time cost by measuring an
arbitrary pair of commuting logical Pauli operators in parallel
[19], which offers additional evidence of the advantage of
color codes. Moreover, in the lattice surgery of surface codes,
measurements involving Pauli Y operators typically need to
introduce twist defects, which increase the requirement of
device connectivity and resource costs [23,24]. In spite of
Ref. [25] that proposes a twist-free lattice surgery scheme,
it still requires additional space and time overhead, while in
color code lattice surgery, the difficulties of measuring Y -type
logical Pauli operators are almost nonexistent since they can
transform into X - or Z-type Pauli operators through transver-
sal single-qubit Clifford gates. Although color code lattice
surgery is theoretically feasible and may have advantages, a
decoding strategy at the circuit level is still lacking. Our work
investigates this process and proposes an efficient circuit-level
decoding algorithm for a class of color code lattice surgery.
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Magic states, as the ancilla states for performing non-
Clifford gates [26], represent another widely studied research
focus in fault-tolerant quantum computing. Obtaining high-
fidelity magic states requires an expensive process called
magic state distillation [27–29]. The first step of magic state
distillation is injecting a physical magic state into a logical
state. The quality of the initial logical magic states from state
injection will remarkably affect the error rate of the output
state after distillation. Previous research has demonstrated that
magic states from a surface code state injection protocol have
a better fidelity than the operations used to construct them
[30–32]. In contrast, well-designed state injection protocols
for color codes and error rate analyses of them are still quite
limited. This work proposes a state injection protocol of the
color code. Compared to a rough protocol used in Ref. [33],
our protocol reduces the output magic state error rate in one
round of 15 to 1 distillation by two orders of magnitude.

Overall, there are three main results in this paper. First,
a decoding algorithm is proposed, achieving a threshold of
0.47% for 6.6.6 triangular color codes. Based on the pro-
jection decoder [33,34], we construct decoding graphs by an
automated procedure and introduce error-rate-related weights
to implement more accurate matching by the minimum weight
perfect matching (MWPM) algorithm [35,36]. Our algorithm
significantly improves the decoding accuracy of the previous
6.6.6 triangular color code decoder [33] under circuit-level
noise. The numerical results show that the threshold under
the circuit-level noise model is around 0.47%, which, to the
best of our knowledge, is the highest threshold among all
types of 2D color codes without circuit optimization. We also
note that in Ref. [37], a higher threshold for color codes is
demonstrated. However, this is primarily due to their opti-
mization of the stabilizer measurement circuits rather than the
decoder itself, and thus cannot be directly compared to our re-
sults. Second, we demonstrate the decoding process of lattice
surgery between two logical qubits under a circuit-level noise
model. This algorithm is applicable to lattice surgery schemes
on color code with color boundaries [38]. We simulate an
example in which logical operators XL ⊗ XL and ZL ⊗ ZL are
measured in parallel and find that the spacelike effective code
distance is slightly less than that of the timelike one, and the
spacelike error is the dominated logical error in color code
lattice surgery. Lastly, we investigate state injection of the
color code and give a protocol based on postselection. The
performance of our protocol is superior to the existing state
injection protocols of surface codes in terms of logical error
rates, postselection success rates, and process complexity.
Furthermore, it has been proven that the logical error rate of
this protocol is lowest compared to any state injection protocol
among all possible CSS codes [39,40]. We also discuss how to
design a proper postselection scheme by the correlation co-
efficients of syndrome changes and the occurrence of logical
errors.

The remainder of this paper is organized as follows.
Section II reviews some basic but important concepts in fault-
tolerant quantum computation and specifies notations used
in this paper. Section III introduces the improved color code
decoding strategy and presents the numerical results of the
threshold. In Sec. IV, we describe the circuit-level decoding of
color code lattice surgery and discuss its applicability. Then,

in Sec. V, the state injection protocol of color codes is pro-
posed, where we use a theorem to summarize its optimality.
Finally, the conclusion and outlook are presented in Sec. VI.

II. PRELIMINARIES

In this section, we briefly review some important back-
ground materials for 2D color codes, which are referred to
throughout the paper. Section II A introduces the basic def-
initions and notations about 6.6.6 triangular color codes. In
Sec. II B, we discuss the Pauli-based computation and how
the lattice surgery performs in the 2D color codes. In Sec. II C,
we review another key problem of the fault-tolerant quantum
computation—magic state distillation. Lastly, the details of
the circuit-level noise model are presented in Sec. II D, which
is the premise of the following discussions and numerical
results.

A. Triangular color codes and notations

2D color codes are topological QEC codes constructed in a
three-colorable and trivalent lattice. In this paper, we focus on
the hexagonal color code with triangular boundaries (referred
to as the triangular color code below). The triangular color
code is defined in the hexagonal lattice L with three bound-
aries. Let us denote the sets of vertices, edges, and faces of a
lattice (or a graph) L by V (L), E (L), and F (L), respectively.
As illustrated in Fig. 1(a), each data qubit of the triangular
color code is placed in a vertex v ∈ V (L), and each face f ∈
F (L) corresponds to two stabilizer generators SX

f = ⊗v∈ f Xv

and SZ
f = ⊗v∈ f Zv , respectively. The logical code space is the

simultaneous eigenspace of all the stabilizers and the mea-
surement results of all stabilizer generators form a binary
string called syndrome. The triangular color code encodes one
logical qubit, a representative logical Pauli operator which can
be defined as the tensor product of Pauli operators supported
by a string in the boundary. The minimum weight of all logical
X or Z operators is defined as the code distance, denoted by d .
Note that color codes are Calderbank-Shor-Steane stabilizer
codes and self-dual, i.e., the supports of SX

f and SZ
f are the

same. Hence, the X or Z errors can be corrected separately in
an analogous manner.

Given the primal lattice L of the color code, it is convenient
to discuss the decoding problem on its dual lattice L∗. In
the dual lattice L∗, each face corresponds to a data qubit
and each vertex corresponds to two stabilizer generators SX

f

and SZ
f , except for the three boundary vertices vR, vG, and

vB [see Fig. 1(b)]. We use F1 ⊆ F (L∗) to denote the set
of faces identified with qubits affected by X (or Z) errors
and σ ⊆ V (L∗) to denote the vertex set in which the identi-
fied stabilizer generators anticommutes with the Pauli error
supported by F1.

We also need to define three restricted lattices L∗
C , where

C ∈ {RG, RB, GB}. The restricted lattice, say L∗
RG, is obtained

from L∗ by removing all blue vertices of L∗ as well as all the
edge and faces incident to the removed vertices.

Moreover, for color code decoding under the circuit-level
noise model, 3D lattices or graphs are usually employed,
where the vertical direction represents the time layers,
and each time layer corresponds to a 2D lattice. We use
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FIG. 1. (a) Primal lattice L of the triangular color code. Each hexagonal or half-hexagonal face corresponds to two stabilizers which are
the tensor products of X and Z supported by the qubits located in the vertices of the face, respectively. A representative of the X (or Z) logical
operator is defined as tensor products of X (or Z) supported by the qubits located in a string (colored by yellow). (b) Dual lattice L∗ of the
triangular color code with d = 7. The green lines and circles are two examples of paths and the corresponding corrections in the decoding.
(c) 3D lattice L∗ × t (here, t = 2). Each layer of L∗ × t is the 2D dual lattice L∗. The corresponding vertices of adjacent layers are connected
vertically. To avoid clutter, we only show the vertical connections of three boundary vertices.

vt
i to denote the vertex in a 3D lattice or graph, where

t ∈ Z+ is the number of layers in which vt
i is located,

and vi is the projection of vt
i on the 2D lattice. One type

of 3D lattice that we frequently use is L∗ × n, which is
defined by V (L∗ × n) = {vt

i |vi ∈ V (L∗), t = 1, 2, . . . , n} and
E (L∗ × n) = {(vt

i , v
t
j )|(vi, v j ) ∈ E (L), t = 1, 2, . . . , n} ∪

{(vt
i , v

t+1
i )|vi ∈ V (L∗), t = 1, 2, . . . , n − 1}, where L∗ is a

2D lattice and n is a positive integer. In particular, we say the
two edges e1 = (vt1

1 , v
t2
2 ) and e2 = (vt3

3 , v
t4
4 ) are parallel in a

3D lattice if v1 = v3, v2 = v4 and t3 − t1 = t4 − t2, notated
by e1//e2.

Lastly, it is also required to define the path s in a lattice
or graph G to be a sequence of vertices s = [vt1

1 , v
t2
2 , . . . , vtn

n ],
where (vtk

k , v
tk+1

k+1) ∈ E (G) for any k ∈ 1, 2, . . . , n − 1. The re-
verse of s is defined as s̄ = [vtn

n , v
tn−1
n−1, . . . , v

t1
1 ]. We refer to s(k)

as the kth vertex in path s and refer to the first and last vertices
as the endpoints of s. If an edge e satisfies e = (s(k), s(k+1)),
we say edge e is on the path s. If the two endpoints of path s
are the same, we say s is enclosed. In addition, two functions
acting on the paths are defined as follows. First, if s1 and s2

have the same endpoint, we say s1, s2 can be concatenated and
s = s1 + s2 is the concatenation of s1 and s2, where s is the se-
quence of n + m − 1 vertices satisfying [s(1), s(2), . . . , s(n)] =
s1 or s̄1, and [s(n), s(n+1), . . . , s(n+m−1)] = s2 or s̄2. Second,
suppose s = [vt1

1 , v
t2
2 , . . . , vtn

n ] is a path in a 3D lattice L∗ × n;
then the projection of s is defined as [v1, v2, . . . , vn], denoted
by proj(s), which is a path in the 2D lattice L∗. Here the
projection is modulo 2, which means that if an even number
of edges on s are projected into the same edge, it is equivalent
to deleting this edge in the projection.

B. Color code lattice surgery and Pauli-based computation

Lattice surgery [13,18–21] is a measurement-based scheme
allowing for efficient implementation of universal gate sets by
fault-tolerant logical multibody Pauli operator measurements.
It is especially suitable for 2D topological quantum codes,
such as color codes or surface codes, as it only requires 2D
qubit layout and local interactions.

For triangular color codes, Fig. 2(a) shows an example of
lattice surgery for measuring XL ⊗ XL of two logical qubits.
Two triangular logical qubits are merged by an ancillary lattice
in the middle, where data qubits are initialized to Bell pairs.
Then the QEC cycles are performed to measure the stabilizers
given in Fig. 2(c). The outcome of the XL ⊗ XL measurement
is determined by the product of some stabilizer measurement
outcomes, based on XL ⊗ XL = S∗B∗, where S∗ is the product
of X -type stabilizers labeled by a star and B∗ is the product
of the stabilizers X ⊗ X of yellow Bell states in Fig. 2(a).
After repeating d rounds of QEC circuits for fault tolerance,
two logical qubits are split by measuring their own stabilizers.
Based on XL ⊗ XL measurement and transversal logical Clif-
ford gates of color codes, one can realize arbitrary two-qubit
logical Pauli operator measurements by lattice surgery.

Different from surface codes, lattice surgery of color codes
allows arbitrary pairs of commuting logical Pauli measure-
ments in parallel, while the space cost remains the same [19].
For example, keeping the qubit layout in Fig. 2(a), parallel
measurements of XL ⊗ XL and ZL ⊗ ZL can be achieved as
long as the stabilizers that connect the logical qubits and
ancillary lattice are replaced with the stabilizers shown in
Fig. 2(b). References [19,38] give more general examples of
color code lattice surgery with different types of weight-4 and
weight-8 stabilizers at the boundaries between regions.

Through lattice surgery, one can perform gate-based com-
putation where a universal gate set is realized by Pauli
operator measurements and ancilla qubits [22]. However, with
the capacity of measuring arbitrary Pauli operators, a natural
way to achieve universal quantum computing is Pauli-based
computation (PBC) [25,41,42].

In the PBC model, a gate-based quantum circuit is equiva-
lent to a series of Pauli operator measurements on initial states
|0⊗n〉 and ancilla magic states |m⊗k〉. To illustrate this, let us
start with a Clifford+T circuit in Fig. 3, which is well known
to form a universal gate set. By commuting all T gates to the
foreside of the circuit, the Clifford+T circuit is replaced with
a series of π

8 Pauli rotations P( π
8 ) = e−iπP/8, followed by Clif-

ford gates C′ and Z-basis measurements. Then, a π/8 Pauli
rotation can be realized by Pauli operator measurement Mi

and Clifford gates with an ancilla magic state [see Fig. 4(a)].

033086-3



ZHANG, WU, AND GUO PHYSICAL REVIEW RESEARCH 6, 033086 (2024)

I

Ⅱ

Ⅲ

I

Ⅱ

Ⅲ

(a) (b) (c)

FIG. 2. (a) Lattice surgery of triangular color codes for measuring XL ⊗ XL . The qubits in the middle part are initialized to Bell states (red
and yellow pairs). Then the result is the product of the measurement outcomes of starred X -type stabilizers. (b) Lattice surgery of triangular
color codes for measuring XL ⊗ XL and ZL ⊗ ZL in parallel. The results are the product of the measurement outcomes of starred X -type (or
Z-type) stabilizers. The lattice is divided into three regions, comprising the upper and lower logical qubit regions and the middle auxiliary
lattice region (marked by three different colors). At the boundaries between two regions, there exist stabilizer generators with weights of 8 and
4 (or 2). (c) Specific forms of the stabilizer generators at the boundaries between regions.

Lastly, we commute all Clifford gate and Z-basis measure-
ments, which transforms Z-basis measurements to multibody
Pauli operator measurements. Therefore, we have proven that
the PBC model is equivalent to a universal gate-based compu-
tation model.

Note that the outcome of measurement Mi may affect
subsequent measurements since there is a Clifford gate P( π

4 )
controlled by measurement outcome when we perform P( π

8 )
gate. Hence, the execution time of the PBC circuit is linearly
related to the layers of P( π

8 ) gates where P( π
8 ) gates commute

in the same layer. Some research has focused on reducing
the time overhead. For instance, the time-optimal scheme
[21,43] allows parallelism of the measurement layers by using
a large number of ancilla qubits, and the temporally encoded
lattice surgery scheme [25] effectively reduces the time per
measurement.

FIG. 3. Equivalence of the gate-based quantum computation
model and the PBC model. Any computation can be expressed as
a Clifford+T circuit. First we commute all the Clifford gates to the
right of the circuit and then perform all P( π

8 ) gates by introducing
magic states |mi〉 and multibody Pauli operator measurements Mi.
Lastly, the Clifford gates can be absorbed by the final measurements.

C. Magic state distillation

In general, a practical quantum computer requires a univer-
sal gate set. According to the Eastin-Knill theorem [44], no
QEC code admits a universal and transversal logical gate set.
The logical Clifford gates in the topological quantum codes
are typically easier to implement by lattice surgery or braiding
operations [15,45]. However, performing non-Clifford logical
gates such as a π/8 Pauli rotation gate P( π

8 ) requires an extra
resource state |m〉 = |0〉 + eiπ/4|1〉, called the magic state.

Utilizing a magic state as the ancilla qubit, one can realize
a logical gate P( π

8 ) by the circuits in Fig. 4(a) using multi-
body Pauli operator measurements and classically controlled
Clifford gates. Suppose the Pauli operator measurements

(a)

(b)

FIG. 4. (a) π/8 rotation gate implemented by consuming a magic
state. (b) Circuit of the 15 to 1 magic state distillation protocol. Four
magic states are consumed in the initial states and 11 magic states
are consumed to implement P( π

8 ) gate (total of 15).
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0

+

0

FIG. 5. An example of the noisy circuit to prepare a Bell state.
We label the noise channels of the initialization errors, two-qubit gate
errors, idling errors, and measurement errors separately.

and Clifford gates are fault-tolerantly implemented by lattice
surgery, and the fidelity of the logical gate P( π

8 ) is mainly de-
termined by the fidelity of |m〉. High-fidelity magic states can
be produced by several copies of noisier magic states, which is
called magic state distillation. Magic state distillation is often
considered to be the most costly part of fault-tolerant quantum
computing, even though there are an increasing number of
proposed efficient protocols [29,46–49].

Here, we briefly review the most well-known magic state
distillation protocol, i.e., the 15 to 1 protocol, as an example
[21]. This protocol is based on the 15-qubit Reed-Muller code,
which is the smallest QEC code with the transversal T gate
[50]. The distillation circuit starts with four magic states |m〉
and a |+〉 state, followed by π/8 Pauli rotation gates and
X -basis measurements, as shown in Fig. 4(b). Since one magic
state is consumed in each π/8 Pauli rotation gate implemen-
tation, a total of 15 magic states are consumed to distill one
high-fidelity magic state. The errors of, at most, two of 15
magic states can be detected by the X -basis measurements. If
any X -basis measurement outcome is −1, all qubits are dis-
carded and the distillation protocol is restarted. Suppose that
every input magic state suffers Pauli Z error with probability
pi; then the error rate of the output magic state is pout ≈ 35p3

i
since there are 35 combinations of three faulty magic states
that cannot be detected. If the input magic states suffer X , Y ,
Z Pauli errors with probabilities px, py, pz, respectively, the
output error rate is pout ≈ 35[pz + (px+py )

2 ]3 [29].
Typically, the initial input magic states are produced by a

non-fault-tolerant procedure called state injection. This proce-
dure injects an arbitrary physical state |ψ〉 = α|0〉 + β|1〉 into
the logical state |ψL〉 = α|0L〉 + β|1L〉. The state injection is
crucial since the fidelity of the distilled magic states strongly
depends on the quality of the initial magic states. For example,
in the 15 to 1 distillation protocol, if the error rate of the initial
states pi is reduced to pi/n, the error rate of the output state is
reduced by around n(3k ) times for k rounds of distillation.

D. Qubit layout and circuit-level noise model

Here we introduce the basic assumptions about the qubit
layout. The data qubit is placed in each vertex of the primal
lattice of the triangular color code, and two syndrome qubits
are in each colored face for the stabilizer measurements. One
of the syndrome qubits is initialized to |0〉 for measuring the
Z-type stabilizer and the other is initialized to |+〉 for mea-
suring the X -type stabilizer. The syndrome qubits are coupled
with data qubits in the corresponding faces by CNOT gates.

Those assumptions run through the following discussions
of the color code decoding, lattice surgery, and magic state
injection.

It is known that error correcting performance of QEC codes
largely depends on noise models. Throughout this paper, the
noise model we considered is the circuit-level depolarizing
noise model. The depolarizing error channels are defined as

E1(ρ1) = (1 − p)ρ1 + (p/3)
∑

P∈{X,Y,Z}
Pρ1P,

E2(ρ2) = (1 − p)ρ2 + (p/15)

×
∑

P1,P2∈{I,X,Y,Z},
P1⊗P2 �=I⊗I

P1 ⊗ P2ρ2P1 ⊗ P2, (1)

where ρ1 and ρ2 are single-qubit and two-qubit density matri-
ces, respectively, and p is the physical error rate.

When simulating a noisy quantum circuit, we approximate
every noisy operation by an ideal operation, followed by the
depolarizing error channel E1 or E2. Specifically, the depolar-
izing error channels are added to the circuits by the following
rules:

(1) add E1 after preparing each |0〉 or |+〉 state,
(2) add E1 after each idle operation,
(3) add E1 before each measurement in Z or X basis,
(4) add E2 after each CNOT gate.
A noisy quantum circuit for preparing a Bell state is shown

in Fig. 5. Note that if a qubit in some step is not acted upon
by any of the preparation, two-qubit gate, or measurement
while operations of other qubits are being performed, it is
assumed to be applied to an idle operation and suffer the
error channel E1. In fact, errors from idle operations account
for a large portion when we simulate a high-weight stabilizer
measurement circuit of the color code.

III. IMPROVED COLOR CODE DECODING

This section describes the improved color code decoding
strategy and presents numerical results. Our improved de-
coding strategy is based on the projection decoder [33,34].
The variation is that we execute the MWPM algorithm on the
graphs with error-rate-related weights (referred to as decoding
graphs below), rather than the original dual lattice L∗ × n. In
Sec. III A, we discuss how to construct the decoding graphs
and the criterion that a proper CNOT schedule (i.e., the or-
der of the CNOT gates in the QEC circuits) needs to meet.
In Sec. III B, we explain the entire process of the decoding
algorithm and give the numerical results.

A. Decoding graphs and CNOT schedules

When decoding topological QEC codes by the MWPM al-
gorithm, the performance of the decoder is affected by the
matching weights. For example, in the surface code, the
MWPM algorithm is typically applied in a graph with weights
where the weight of the edge is related to the probability of
the given pair of syndrome changes [15,51–54]. Reference
[51] has calculated the probabilities of the six types of edges
by categorically analyzing the error in the surface code QEC
circuit.
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By introducing the error-rate-related weights, the decoding
performance increases substantially. Therefore, this inspires
us to consider introducing the error-rate-related weights in
the color code decoding graph. However, constructing such
decoding graphs of color codes faces two main challenges:

(a) The QEC circuit of the color code is deeper and the
qubit array is more complex compared to that of surface
codes, which makes analyzing the edge error rate categori-
cally more difficult.

(b) For the surface code, by setting the proper CNOT sched-
ule, a single error in the circuit always causes two syndrome
changes or less. Here a single error means the Pauli error from
one depolarizing error channel in the noisy circuit. However,
for the color code, because of the high-weight stabilizer mea-
surements and error propagations, a single error may cause
syndrome changes of more than two, in which case an error
no longer corresponds to just one edge in the decoding graph.

To address challenge (a), we designed an automated pro-
cedure to count the syndromes of various errors in the QEC
circuit. First, we construct three 3D decoding graphs GC

(C ∈ {RG, RB, GB}), where the vertical dimension is the time
layers, and in each time layer there is a 2D graph. We assume
that the total number of time layers in the decoding graph
GC is d + 1, which corresponds to d rounds of noisy QEC
circuits and one round of perfect QEC circuit. The vertices of
the decoding graph are the same as those in the 3D restricted
lattice L∗

C × (d + 1), but the edges are different.
Second, the edges in the decoding graph GC are determined

by the single error in the QEC circuit. To establish the relation
between a single error and an edge, we simulated a perfect cir-
cuit attached to a single error ε in the different positions in the
QEC circuit. This single error could originate from channel E1

(ε ∈ {X,Y, Z}) or from channel E2 (ε ∈ {I, X,Y, Z}⊗2/I⊗2).
For each possible position and type of single error, the pro-
cedure simulates the QEC circuit one time and records the
syndrome changes in each simulation.

Suppose that in the decoding graph GC , these recorded
vertices are connected in pairs by some rules (see Appendix A
for details) and the error ε leads to the edge e. Then the weight
of e is assigned we = − log

∑
ε pε (e), where pε (e) = p/3 if ε

is a single-qubit error, and otherwise pε (e) = p/15.
Now let us consider challenge (b): how to reduce the num-

ber of syndrome changes caused by a single error. In fact,
the problem can be dealt with by a proper CNOT schedule.
Intuitively, we hope that the multiple errors resulting from a
single error propagation are located in neighbor vertices on
a face of the primary lattice, so that some syndrome changes
can cancel each other out. For example, let us consider the
measurement circuit of the stabilizer generator on a hexago-
nal face. If an X error in syndrome qubit propagates to two
neighbor data qubits, the number of syndrome changes is two.
In contrast, if two error data qubits are not neighbors, the
number of syndrome changes is four. Based on this intuition,
we propose a criterion that a proper CNOT schedule needs to
meet.

Suppose li is the position label of the data qubit where
the ith CNOT gate (i = 1, 2, 3, . . .) is applied, with li =
1, 2, . . . , N representing integers fixed on the weight-N sta-
bilizer that increase clockwise (see Fig. 6). A proper CNOT

schedule is defined as follows: given any i ∈ {1, 2, . . . , N},
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FIG. 6. CNOT schedules of stabilizers with different weights used
in color code QEC circuits and lattice surgery. The outside and inside
numbers indicate position labels and time orders, respectively. The
CNOT schedules for weight-4 stabilizers on the triangular boundary
can be derived by partitioning the CNOT schedules for weight-6
stabilizers. For example, the red trapezoid in the figure corresponds
to the weight-4 stabilizer on the left boundary of the triangle. Sim-
ilarly, the CNOT schedules of the stabilizers on the right and bottom
boundaries of the triangle can be derived by partitioning the hexagon
into trapezoids in different orientations.

∀a, b ∈ {li+1, li+2, . . . , lN }, we have |a − b| mod N � N − i,
where x mod N is the modulo function ranged in [0, N ). In
other words, the criterion guarantees that the syndrome qubit’s
error after the ith CNOT gate always propagates to the data
qubits whose positions {li+1, li+2, . . . , lN } are N − i neighbor
positions. It can be verified that when N takes values of 2, 4,
6, or 8 (corresponding to all the stabilizer generators involved
in this paper), the syndrome changes of these N − i errors on
each 2D restricted lattice do not exceed 2.

Previous work [33] identified the optimal CNOT schedule
with a specific physical error rate and qubit layout through nu-
merical testing, which exactly meets the criterion. Therefore,
we continue to use this CNOT schedule of weight-6 stabilizers
in Fig. 6. It should be noted that the criterion we proposed also
applies to higher-weight stabilizer measurements, such as the
weight-8 stabilizers used in the lattice surgery (see Sec. IV
and Fig. 6).

Once the CNOT schedule is given, we can explain how to
connect the syndrome changes in pairs of a single error. There
are five types of syndrome changes of a single error using the
well-selected CNOT schedule. As explained in Appendix A and
Fig. 7, the edges e ∈ E (GC ) in the three decoding graphs are
determined by the circuit error that connects the syndrome
change pairs. Except for one type in the bottom-left corner
of Fig. 7, only two syndrome changes occur in each decoding
graph, at most. Moreover, if the error propagates to the bound-
ary data qubits, one of the vertices of the edge may come from
the boundary vertex set {v(t )

R , v
(t )
G , v

(t )
B }, where t is the time

layer in which the error occurs.

B. Improved color code decoding algorithm

In this section, we show the whole decoding process of
triangular color codes. Without loss of generality, we assume
that one corrects X -type errors using the Z-type syndromes.
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2

2

FIG. 7. Five possible syndrome changes (colored faces) and their
connections (solid lines) of a single error in the color code QEC
circuit with the proper CNOT schedule. We only show the projection
of the faces, which means that the syndrome changes may come from
different time layers. A face labeled 2 indicates that the syndrome
changes twice in two consecutive time layers and corresponds to a
vertical connection.

Roughly speaking, the decoding algorithm can be divided
into three parts. First, we construct three decoding graphs and
apply the MWPM algorithm on them. Then the matching results
will be mapped to the 3D lattice L∗

C × (d + 1). Finally, the
error data qubits are determined by combining the matching
results.

The inputs of the decoding algorithm are code distance
d , physical error rate p, and syndrome changes σ ⊆ V [L∗ ×
(d + 1)]. In order to get the error correction set R ⊆ F (L∗),
the decoding algorithm is performed in the following steps:

(1) Input d , p and syndrome changes σ , and construct the
2D dual lattice L∗. For C ∈ {RG, RB, GB}, construct the 3D
dual lattice L∗ × (d + 1), the 3D restricted lattice L∗

C × (d +
1), and the decoding graph GC .

(2) For C ∈ {RG, RB, GB}, apply the MWPM algorithm on
GC to pair up the vertices in σC = σ ∩ V (GC ) and obtain a path
set SC .

(3) For all s in SC , check whether the edge e ∈ E [GC]
satisfies e ∈ E [L∗

C × (d + 1)]. If not, replace e on s with the
shortest path connecting endpoints of e in L∗

C × (d + 1).
(4) Combine path sets S = SRG ∪ SRB ∪ SGB. For s1, s2 in

S, if s1, s2 can be concatenated, replace s1, s2 of S with their
concatenation s1 + s2. Repeat this step until all the paths in S
cannot be concatenated.

(5) For path s ∈ S, project s to the 2D lattice L∗. The
projection proj(s) will divide L∗ into two face sets F1 and
F [L∗]\F1, and select the smaller one as the correction set Rs.
Output the total correction set R = ⊕sRs, where ⊕ is modulo
2 addition.

The algorithm essentially follows the steps outlined in
Ref. [33]. The distinction is that we introduce decoding graphs
with error-rate-related weights and map it back to a 3D lattice
L∗

C × (d + 1) in the third step.
After the fourth step, the paths in S are either enclosed

or have two endpoints from the boundary vertex set Ṽ =
{vt

x|vx ∈ {vR, vB, vG}, t = 1, 2, . . . , d + 1}. Therefore, after
the projection in the fifth step, the path always divides L∗ into
two complementary regions.

We also remark that the entire algorithm can be efficiently
executed in polynomial time. First, when constructing the
decoding graph GC , it is necessary to simulate approximately
O(m) QEC circuits, where m is the number of data or syn-
drome qubits. This simulation frequency is proportional to
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FIG. 8. (a) Logical error rates PL of the triangular color code
under the circuit-level noise model for various code distances d .
The curves are fitted by the ansatz PL = αpβ , where α and β vary
with d . (b) The intersections of pairs of curves of PL with distances
{d, (d + 1)/2} and {d, (d − 1)/2}. From the linear extrapolation of
the data, the threshold is around 0.47%.

the number of noise channels in the QEC circuit and, con-
sequently, proportional to the number of qubits. The time
complexity for simulating one QEC circuit is O(m2) [55],
resulting in an overall time complexity of O(m3). For given
d and p, the decoding graphs only need to be generated one
time and can be repeatedly used. Additionally, the primary
time consumption in the decoding algorithm occurs in the
MWPM algorithm, which has a time complexity of O(m3 log m)
[36]. Overall, the time complexity of the decoding algorithm
is O(m3 log m).

We simulate the logical error rates PL of the color code
with code distance from d = 3 to d = 21 and fit the curves by
ansatz PL = αpβ , where parameters α and β vary with differ-
ent d [see Fig. 8(a)]. Theoretically, the threshold is the value
of the physical error rate p of the intersection of the curves
when d → ∞. Here the threshold is progressively estimated
by the intersections of two classes of the logical error rate
curves, similar to the method in Ref. [33]. We select the curves
with distances {d, (d + 1)/2} and {d, (d − 1)/2}, since their
slopes differ quite remarkably, to identify the intersections
[see Fig. 8(b)]. From a linear extrapolation of the data, the
threshold is around 0.47%. For the convenience of future
research, we provide a formula for the average logical error
rate per round of QEC circuit, P̄L = 0.018(p/0.47%)d/3+0.04,
obtained through fitting data with d � 11.

Intuitively, our strategy improves upon the decoder pre-
sented in Ref. [33]. However, we emphasize that the threshold
result here cannot be directly compared to the 0.37% thresh-
old in Ref. [33] because our noise model is slightly weaker.
Nonetheless, we provide some simulation results under the
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FIG. 9. Circuit to measure X ⊗ X and Z ⊗ Z using a |+〉 state as
ancilla. The result of X ⊗ X is the measurement outcome on |+〉, and
the result of Z ⊗ Z is the product of measurement outcomes on |ψ1〉
and |ψ2〉. After the measurements, all the states will be discarded.
Note that this circuit can be viewed as the inverse of the circuit in
Fig. 5.

same noise model in Appendix D to directly demonstrate the
performance improvement.

IV. CIRCUIT-LEVEL DECODING OF COLOR
CODE LATTICE SURGERY

Although, in principle, the lattice surgery of triangular
color codes is feasible, it still requires a circuit-level decoding
strategy for its practical application. In this section, we focus
on the decoding process during the measurement of two-body
Pauli operators using lattice surgery. Section IV A presents
the detailed steps of the decoding algorithm. Section IV B
provides numerical results and discusses the applicability of
the algorithm.

A. Decoding algorithm

Let us clarify the decoding strategy in the specific example
of Fig. 2(b), where two-qubit logical operators XL ⊗ XL and
ZL ⊗ ZL are measured in parallel. Suppose the logical qubits
are in the PBC model; then, d rounds of QEC circuits will
be implemented alternately in the merged and split lattice.
Here, we consider a section in this process with a total of
2d + 1 layers. Namely, the first (d + 1)/2 layers and the last
(d + 1)/2 layers are split lattices, while the middle d layers
are merged lattices. In the QEC circuits, we continue to use
CNOT schedules of weight-6 stabilizers, and give weight-8 and
weight-4 CNOT schedules in Fig. 6, which meets the criterion
proposed in Sec. III A.

At the beginning and end of the merged step, the Bell
pairs are prepared and measured by the circuits in Figs. 5
and 9. Note that there are enough syndrome qubits with our
qubit layout to act as the ancilla in these two circuits since
the number of syndrome qubits is approximately 2n f and the
number of Bell states is approximately n f , where n f is the
number of the faces in the middle region. Also, remarkably, at
the beginning and end of the merged step, the syndromes of
green and blue stabilizers are inferred by the product of sta-
bilizers of the Bell states after initialization or measurements,
making them noiseless. On the other hand, the red syndromes
are random during these two steps, meaning they have no
determined initial and final values. After measuring Bell
state measurements, the weight-8 stabilizers will transform
into weight-4 stabilizers in the next QEC round. Therefore,
in the first QEC round of the split lattice, the syndromes

of the green or blue stabilizers at the boundaries between
regions that used to be weight-8 stabilizers in the merged
lattice need to be multiplied by the outcomes of two Bell pair
measurements.

Before introducing the decoding algorithm, we specify
some notations about lattices and vertices. We use Lm (Ls),
Lm

C (Ls
C), and Lls

C to denote the 2D merged (split) dual lattice,
the 2D restricted merged (split) lattice, and the 3D restricted
lattice, respectively, where C ∈ {RG, RB, GB}. Note that all
the lattices discussed in this section are dual lattices, so we
omit the superscript asterisk in lattice labeling. Additionally,
when referring to a 3D lattice, we assume that there are only
vertically connected edges in the vertical direction, without
diagonal edges (diagonal edges will appear in the decoding
graphs). In the 3D restricted lattice Lls

C , the vertices of d layers
in the middle are from the merged lattice Lm

C and the vertices
in other layers are from the split lattice Ls

C (see Fig. 10). In
particular, attention is paid to the red vertices in the lattice
Lm. The red vertices in region k (k = 1, 2, 3) form a vertex
set denoted by V k

R . Beyond the three regions, there are some
weight-2, weight-4, or weight-8 stabilizers at the boundaries
between regions, corresponding to vertices in set V m

K (K ∈
{R, G, B} indicating the color). We also define a boundary ver-
tex set: Ṽ = {vt

x|vx ∈ {vB, vG} ∪ V m
R , t = 1, 2, . . . , 2d + 1} ∪

{vt
x|vx ∈ V 2

R , t = (d + 3)/2 or (3d + 3)/2}.
There are two goals of the lattice surgery decoding al-

gorithm. One is obtaining the correction set R ⊆ F (Lm) as
accurately as possible and the other is obtaining the correct
measurement results of XL ⊗ XL and ZL ⊗ ZL. Overall, our
decoding strategy has three main parts. At the beginning, we
construct three decoding graphs GC (C ∈ {RG, RB, GB}) with
2d + 1 layers [see Fig. 10(b)]. The edges and their weights
in GC can be obtained by simulating lattice surgery circuits
by the automated procedure using a similar method as in
Sec. III B. Then we input the syndrome changes σ and apply
the MWPM algorithm. Likewise, we map the matching results
to 3D lattice Lls

C . Lastly, each path is projected on the 2D
merged dual lattice Lm.

Different from Sec. III B, after the projection, there are
three types of paths instead of two. The first is enclosed and
the second starts and ends with vG or vB. These two types of
paths can divide the lattice into two complementary regions
and we select the smaller one as the correction. The third type
is the path that starts or ends with the vertices in V m

R ∪ V 2
R

and is not enclosed [see the green line in Fig. 10(a)]. This
results from the indeterminate measurement results in V m

R
and V 2

R , as their initial values are random and there is no
perfect measurement in the final round. The syndromes on
V m

R ∪ V 2
R correspond to X ⊗ X (or Z ⊗ Z) errors on several

Bell pairs (see Fig. 2). Therefore, the incorrect measurements
on V m

R ∪ V 2
R are equivalent to errors on several Bell pairs after

decoding. However, as described in Appendix C, the impact
of X ⊗ X (or Z ⊗ Z) errors within Bell pairs on the decoding
outcome is trivial. Hence, in the decoding, the lattice Lm is di-
vided into several subareas by the blue lines and the outermost
circle [see Fig. 10(a)]. Each subarea corresponds to a Bell pair
or a logical qubit and the error suffusing any subareas is trivial
or a logical error. We find the smaller regions separated by the
path in each subarea as the correction [see green circles in
Fig. 10(a)].
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FIG. 10. (a) The merged dual lattice Lm of lattice surgery of color code lattice surgery for measuring XL ⊗ XL and ZL ⊗ ZL in parallel.
The lattice is divided into several subareas by the blue lines and the outermost circle. An example of the path that ends inside the lattice and
corresponding correction are illustrated by green lines and circles. Additionally, the blue circles indicate all the data qubits on the left boundary,
which support the boundary operator bB. (b) Vertices in decoding graph G ls

RG (or lattice Lls
RG). Two dimensions in space are compressed into

one. The boundary vertex vG is not shown, although it is also in each layer of G ls
RG or Lls

RG. In our simulation, regions I and III are split in the
first and last (d + 1)/2 layers and merged by region II in the middle d layers. The magnified vertices represent red vertices in the boundary
vertex set Ṽ . Beyond the three regions, the vertices in V m

R ∪ V m
G are retained in each layer of the split steps. To avoid clutter, only vertical edges

are shown, while horizontal edges as well as diagonal edges in G ls
RG or Lls

RG are omitted.

As mentioned, the measurement outcome of XL ⊗ XL (or
ZL ⊗ ZL) is also required to be determined. We use the prod-
uct of all measurement outcomes of the starred stabilizers in
the (d + 3)/2 layer as the raw result. Apparently, the raw
result is inaccurate unless there are no errors affecting the
measurement results. Therefore, if any syndrome change of
the starred stabilizer occurs before or in the (d + 3)/2 layer,
we flip the raw result. In addition, we specifically consider
the third type of paths mentioned above. The syndrome of the
correction Rs obtained from the third type of paths and the
actual syndrome change may be different in some boundary
vertices from V m

R ∪ V 2
R . If such vertices are before or in the

(d + 3)/2 layer and the number of these vertices is odd, the
raw result also needs to be flipped.

In summary, the decoding algorithm is applied as follows:
(1) Input d , p and syndrome changes σ and construct the

2D merged dual lattice Lm. For C ∈ {RG, RB, GB}, construct
the 3D restricted lattices Lls

C and decoding graph G ls
C by the

automated procedure in the similar way as before.
(2) For C ∈ {RG, RB, GB}, apply the MWPM algorithm on

G ls
C to pair up the vertices in σC = σ ∩ V (G ls

C ) and obtain a
path set SC .

(3) For path s ∈ SC , check whether the edge e ∈ E (G ls
C ) on

s satisfies e ∈ E (Lls
C ). If not, replace e with the shortest path

connecting endpoints of e in Lls
C .

(4) Combine path sets S = SRG ∪ SRB ∪ SGB. For s1, s2 in
S, if s1, s2 can be concatenated, replace s1, s2 of S with their
concatenation s1 + s2. Repeat this operation until all the paths
in S cannot be concatenated.

(5) For path s ∈ S, project s to Lm. If proj(s) divide Lm

into two regions, select the smaller one as the correction.
Otherwise, select the smaller region separated by proj(s) in
each subarea as the correction Rs. Output the total correction
set R = ⊕sRs.

(6) Initialize the measurement outcome of XL ⊗ XL (or
ZL ⊗ ZL) mo as the product of measurement results of the
starred stabilizers in the (d + 3)/2 layer. For path s ∈ S, if an
odd number of syndrome changes of starred stabilizers in s oc-
curs before the (d + 3)/2 + 1 layer, replace mo with −mo. For
s that has an endpoint in {vt

x|vx ∈ V m
R ∪ V 2

R , t � (d + 3)/2},
compare the syndrome of correction Rs in the lattice Lm and
the projections of actual syndrome changes. If they differ in
an odd number of vertices, replace mo with −mo. Output mo

as the measurement outcome.

B. Numerical results and further discussions

We use Monte Carlo simulation to test the performance
of our algorithm. For the results in the simulations, we say
a spacelike error occurs if R causes a logical error, and a
timelike error occurs if mo is an incorrect outcome and no
spacelike errors occur. The numerical results of the error rates
of these two type of errors are shown in Fig. 11. The error
rate curves are also fitted by the ansatz αpβ . In principle,
we estimate that the curves’ spacelike error rates have the
parameters β ∼ d/3 since our decoding algorithm is based
on the projection decoder, which admits that it can correct
all the errors of weight, at most, d/3 (up to an additive con-
stant) [33]. On the other hand, the timelike error curves are
expected to have the parameters β ∼ d/2 since they mainly
result from the inaccurate measurement results of d rounds
of QEC circuits. Therefore, in Fig. 11(e), we use the lines
with fixed slopes to fit the parameters β of the curves, which
indicates that the spacelike effective code distance is less than
that of the timelike one. We also find that the timelike error
rate is generally one to two orders of magnitude smaller than
the spacelike error rate, implying that the dominated logical
error in color code lattice surgery is the spacelike type. Note
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FIG. 11. Space-like error rates and time-like error rates in the lattice surgery for various code distances d . All the curves of error rates are
fitted by the ansatz αpβ . (a), (b) X -type and Z-type space-like error rates. (c), (d) X -type and Z-type time-like error rates. (e) Parameter β of
the curves in (a-d) for various code distances d . The parameters β in space-like error rates and time-like error rates are fitted by β = d/3 + c1

and β = d/2 + c2 respectively.

that the rates of X -type and Z-type errors are not equal in our
simulation, and we speculate that this is due to the order of the
X -type and Z-type stabilizer measurements.

It should be emphasized that since our algorithm is based
on the projection decoder [33,34], it may not be applicable to
arbitrary forms of lattice surgery on color codes. Therefore, in
the following, we will use the symmetry theory from Ref. [56]
to explain why our decoding algorithm can decode lattice
surgery in the previous section and its applicable scope.

For a subset 	 of the stabilizer group, we say it is a
symmetry if

∏
S∈	 S f = 1. It is easy to verify that any error

will cause an even number of syndrome changes within 	,
thus allowing the matching algorithm to be applied to the
restricted lattice corresponding to 	. Now consider the set
of stabilizers shown in Fig. 10(a). Define the tensor product
of X or Z operators on all data qubits on the left (or right)
boundary as the boundary operator bB (bG). It is easy to verify
the following relationships:∏

f is not green

S f × bB = 1,

∏
f is not blue

S f × bG = 1,

and ∏
f is not red

S f × bGbB = 1, (2)

where f is the face in the primal lattice, and S f is an X -type
or Z-type stabilizer generator on the face f . Correspondingly,
we can define three subsets of stabilizers with symmetry:

	RB = {S f | f is not green} ∪ {bB},
	RG = {S f | f is not blue} ∪ {bG},

and

	GB = {S f | f is not red} ∪ {bG, bB}. (3)

It is clear that bB and bG correspond to the boundary vertices
vB and vG in Fig. 10(a), and these three subsets correspond
to the three restricted lattices in the decoding algorithm. This
explains why a matching algorithm-based decoder can ef-
fectively handle the lattice surgery example discussed in the
previous section.

In general, more examples of lattice surgery are presented
in Refs. [19,38], which involve different types of boundaries
between two regions. Reference [38] classifies these bound-
aries into color boundaries and Pauli boundaries. For lattices
with only color boundaries, finding the above symmetries
is straightforward (they correspond to three restricted lat-
tices). Therefore, decoding algorithms based on the MWPM

(including our decoding algorithm) can effectively handle the
decoding problems of this type of lattice surgery. However,
for lattices with Pauli boundaries or mixed colored and Pauli
boundaries, it is unclear whether such symmetries exist. The
study of decoding algorithms on such lattices remains an open
problem.

V. STATE INJECTION

In this section, we propose the state injection protocol of
the triangular color code. First, we describe the process and
the principles of the protocol in Sec. V A. We also prove that
the logical error rate of our protocol is lowest compared to the
state injection protocol among all CSS codes. In Sec. V B, the
performances of diverse postselection schemes are shown by
numerical results.

A. State injection protocol

State injection is the process of obtaining an arbitrary log-
ical state |ψL〉 from a physical state |ψ〉. Let us describe our
state injection protocol of triangular color code. The protocol
is executed in two steps. As illustrated in Fig. 12(a), in the
first step, the top qubit is initialized to |ψ〉 and the other qubits
are initialized to Bell states |φ〉 = 1√

2
(|00〉 + |11〉) in pairs. In
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(a)

(b)

FIG. 12. (a) Prime (dashed lines) and dual (solid lines) lattice
of state injection protocol. The qubits are prepared in Bell pairs
(yellow), except for the injected qubit on the top. The lattice is
divided into several subareas by the blue lines and the outermost
circle. (b) The CNOT schedule in the state injection protocol that
offers the lowest logical error rate.

the second step, the QEC cycles are performed with the CNOT

schedule we give in Fig. 12(b), which is carefully selected
from 12 different schedules (see Appendix B for details).

To prove that the final state is |ψL〉 after all noiseless
operations, we can simply verify the following equation:

|ψL〉〈ψL|
∏

i

I + Si

2
|ψ〉|φ〉⊗m

= I + αXL + βYL + γ ZL

2

∏
i

I + Si

2
|ψ〉|φ〉⊗m

=
(∏

i

I + Si

2

)
I + αXL + βYL + γ ZL

2
|ψ〉|φ〉⊗m

=
∏

i

I + Si

2
|ψ〉|φ〉⊗m, (4)

where we use |ψ〉〈ψ | = (I + αX + βY + γ Z )/2,
|ψL〉〈ψL| = (IL + αXL + βYL + γ ZL )/2, and Si are the
stabilizer generators of the triangular color code. Hence, the
final state

∏
i(I + Si )/2|ψ〉|φ〉⊗m is the +1 eigenstate of

|ψL〉〈ψL|, i.e.,
∏

i(I + Si )/2|ψ〉|φ〉⊗m = |ψL〉.
The state injection protocol is non-fault-tolerant because a

single error in the circuit may cause a logical error that cannot

be corrected by the decoding algorithm. More seriously, some
errors cannot even be detected, which means postselection is
also powerless against these errors. For example, the error
occurring in the top qubit |ψ〉 before the first QEC cycle
cannot be identified since the injection protocol is applicable
to an arbitrary state, even though it is a faulty state.

Through exhaustive search, we find that in our protocol
with postselections, there are two types of errors that cannot
be detected. The first is the single-qubit error when preparing
the physical state |ψ〉. The second is the two-qubit errors after
some CNOT gates in the first QEC cycle, including X ⊗ I ,
Z ⊗ Z , and Y ⊗ Z errors after the CNOT gate between |ψ〉
and syndrome qubit |+〉, and X ⊗ X error after the CNOT gate
between |ψ〉 and syndrome qubit |0〉. We will discuss in detail
later why these errors are undetectable.

Therefore, with the postselection, the logical error rates of
our state injection protocol are

PL = 4
15 p2 + pI + 2

3 p1 + O(p2), (5)

where p1, p2, and pI are the error rate of single-qubit gates,
CNOT gates, and initializing |0〉 or |+〉 state, respectively,
which is consistent with Refs. [30,31]. We assume that |ψ〉
initialization is performed one time step before the first CNOT

gate on |ψ〉 is applied. Hence there is no need to consider the
contribution of idling errors of |ψ〉 to PL.

As mentioned, the error rate of the input state of magic
state distillation will remarkably affect the output error rates.
In a rough version of the injection protocol in Ref. [33], the
logical error rate after state injection is 6.07p + O(p2) and 4p
is from single-qubit errors. If the error rate of a two-qubit gate
is assumed to be 10 times as the rate of a single-qubit error
and we let p2 = p, the parameter PL in their protocol can be
estimated as PL = (2.07 + 0.4)p + O(p2) and PL in our pro-
tocol is 4p/15 + p/6 + O(p2). Taking the 15 to 1 distillation
protocol as an example, we use po = 35PL

3 to estimate the
error rate of the distilled magic state. The output error rate po

from our state injection is over two orders of magnitude lower
than that of the rough injection protocol. It is important to em-
phasize that in the comparison, we neglected the higher-order
terms of PL. This was done for two reasons: first, only the
first-order term of PL is provided in Ref. [33], and second, our
numerical results indicate that the contribution of higher-order
terms to PL is negligible for p = 10−4 and below.

Compared to previous works in surface codes, our protocol
admits a lower logical error rate (see the second column in
Table I). Further, we claim that the logical error rate of our
protocol is lowest for state injection protocols among all CSS

codes. Let us clarify it clearly with the following theorem.
Theorem 1. For any CSS code with standard stabilizer mea-

surement circuits, the logical error rate of a state injection
protocol is at least 4/15p2 + pI + 2/3p1 + O(p2) under the
circuit-level depolarizing noise model.

Here, standard stabilizer measurement circuits are the cir-
cuits using CNOT gates, measurement in Z (or X ) basis, and
|0〉 (or |+〉) as the ancilla for Z-type (or X -type) stabilizer
measurements. Now let us prove the theorem by stating that
several errors must not be detected in the state injection cir-
cuits. Without loss of generality, we suppose that |ψ〉 first
couples with syndrome qubit |+〉 and then couples with
syndrome qubit |0〉 in a QEC cycle. An obvious fact is that
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TABLE I. Comparison of several state injection protocols.

Injection protocol Logical error rate Success rate of postselection Other features

On planar surface
codes [30]

2
5 p2 + 2pI + 2

3 p1 + O(p2) 60% with p = 10−3 Two steps where physical
state is first injected to a

d = 7 logical qubit
On rotated surface codes
from corner [31]

3
5 p2 + 2pI + 2

3 p1 + O(p2) No data Only gives results of d � 5

On rotated surface codes
from middle [31]

3
5 p2 + pI + 2

3 p1 + O(p2) No data Only gives results of d � 5

On triangular color codes
(this work)

4
15 p2 + pI + 2

3 p1 + O(p2) Around 98% with p = 10−4 and
88% with p = 10−3

One step to the logical qubit
with any large code distance

any error of |ψ〉 before the first stabilizer measurement is
undetectable since |ψ〉 is arbitrary for an injection protocol.
Therefore, the error of |ψ〉 initialization cannot be detected
with rate pI + 2/3p1 + O(p2). In addition, the X error of
|ψ〉 before the first CNOT gate between |ψ〉 and |0〉 but af-
ter the first CNOT between |+〉 and |ψ〉 is undetectable with
the error rate of at least p2/15 + O(p2), in which case the
error is exactly I ⊗ X error after the first CNOT gate between
|ψ〉 and |+〉. Further, utilizing the commuting relationship,
a Z ⊗ Z error after the first CNOT gate between |+〉 and |ψ〉
is equivalent to an I ⊗ Z error before the stabilizer measure-
ment, which is undetectable. Likewise, an X ⊗ X error after
the first CNOT gate between |ψ〉 and |0〉 is also undetectable.
Lastly, since I ⊗ X and Z ⊗ Z are undetectable, their product
Z ⊗ Y after the first CNOT gate is also undetectable. In total,
the logical error rate in a state injection protocol is at least
4/15p2 + pI + 2/3p1 + O(p2), which is exactly the result in
our protocol. Hence, we have demonstrated that the logical
error rate in our protocol serves as a lower bound for the
logical error rate achievable by any state injection protocol
among CSS codes.

B. Postselection schemes and numerical results

In the previous section, we theoretically analyze the
leading-order term of the logical error rate in our protocol. In
this section, we show the details of the postselection schemes
and estimate the logical error rates in diverse schemes by
numerical simulations. In our simulations, the noise model
in Sec. II D continues to be used in the QEC circuits and
the Bell state initialization circuits. We also assume that the
initialization of |ψ〉 is perfect since errors in this step always
cause logical errors. The logic error rates are counted after
d + 1 rounds of QEC circuits.

Although the state injection protocol is non-fault-tolerant,
it still requires decoding to suppress errors. We mainly follow
the decoding strategy in Sec. III B, but make three minor
changes. First, in the first step when constructing the decoding
graphs, we take the errors in the Bell state initialization cir-
cuits into account. Second, the definition of boundary vertex
set Ṽ is modified as {vt

x|vx ∈ {vR, vB, vG}, t = 1, 2, . . . , d +
1 or vx is red and t = 1}. This means that the red vertices in
the first time layer are boundary vertices because the outcomes
of the stabilizer measurements in these positions are undeter-
mined. Third, in the fifth step, the path s may start or end with
the red vertex in the first time layer, whose projection cannot

divide L∗ into two parts. In this case, we use the method
similar to that in Sec. IV A to divide L∗ into several subareas
to address this problem [see Fig. 12(a)].

In order to further suppress the logical error rate PL, post-
selection schemes are introduced. The postselection means
that if some syndromes are not as expected, we discard cur-
rent states and restart the state injection protocol. Our results
show that the postselections only need to be applied to five
syndromes to minimize the leading-order term of PL. The
postselection scheme applied to these five syndromes is de-
fined as Scheme A (see Fig. 13). Through exhaustive search,
we find that there are 90 errors (excluding single-qubit errors
in preparing the |ψ〉 state) that will lead to a logical error
with the probability of 12.4p + O(p2), and 86 of them can be
detected by those five syndromes. The numerical results show
that the logical error rate of postselection scheme A is close to
4/15p when p = 10−4 [see Fig. 13(a)].

When p = 10−3, however, the logical error rate is more
than a dozen times of 4/15p, since higher-order terms con-
tribute a lot in this case. Therefore, it is necessary to apply
postselection to more syndromes to suppress higher-order
errors. To understand which syndromes are related to log-
ical errors, we test the correlation coefficients of syndrome
changes and the occurrence of logical errors by Monte Carlo
simulations in a d = 7 triangular color code with p = 10−3

[see Fig. 13(d)]. The correlation coefficient of events A and B
is computed by

ρAB = |p(AB) − p(A)p(B)|√
p(A)[1 − p(A)]p(B)[1 − p(B)]

, (6)

where p(A), p(B), p(AB) are the probabilities of A, B, and
both A and B occurring, respectively.

According to these correlation coefficients, one can design
the postselection scheme flexibly with the syndromes whose
correlation coefficients are larger. Apparently, the postselec-
tion with more syndromes will lead to a lower success rate
of postselection. Here we present an example with 35 posts-
elected syndromes (scheme B) where the logical error rate is
reduced by four times when p = 10−3 compared to scheme A,
while the success rate of postselection is still over 56%. More
examples of postselection schemes with lower success rates
are shown in Appendix B.

Contrary to previous works on state injections in surface
codes, the success rate of postselections in our protocol does
not sharply decay as the code distance increases, but is only
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FIG. 13. (a),(b) The logical error rates of the state injection protocol in schemes A and B, respectively, where the preparation of the injected
state is assumed to be noiseless since it always causes a logical error. (c) Success rates of the postselection as the linear function of the physical
error rate p. The data are obtained from the state injection with d = 11, and the results with other code distances are very close to them.
(d) Correlation coefficients between syndrome changes and the occurrence of logical errors. The label, say R2 and 3Z, means the syndrome
of the second red Z-type stabilizer [in the order from top to bottom and left to right in Fig. 12(a)] in the third QEC round. The postselected
syndromes in schemes A and B are framed, respectively.

linearly related to the physical error rate [see Fig. 13(c) and
Table I]. On account of the fact that errors farther from the
top qubit |ψ〉 are on a longer logical string (i.e., the data qubit
string that connects left and right boundaries), the stabilizers
of the postselected syndromes are located around the top
qubit. Therefore, the number of postselected syndromes does
not increase with the code distance, which means one can
inject a physical state into a logical state with arbitrary code
distance in one step, rather than two steps as in Ref. [30]. In
addition, this feature provides our protocol with a high success
rate of postselection, around 98% (88%) in scheme A when
p = 10−4 (10−3).

VI. CONCLUSION AND OUTLOOK

In this paper, we solved several key problems on the road
towards practical fault-tolerant quantum computation with
2D color codes, including improving the threshold of the
triangular color code, decoding color code lattice surgery with
color boundaries under circuit-level noise, and proposing an
optimal state injection protocol. We believe these works are
expected to promote the development of quantum computing
based on color codes.

Our results show that more accurate matching weights
can effectively improve the threshold of the color code. This
improvement can also be applied to other matching-based
decoders, for example, a concatenated MWPM decoder [57]
whose scaling of the logical error rate is better than the projec-
tion decoder. Moreover, a better weight setting is to calculate
the posterior probability of errors in the circuits by the belief
propagation algorithm, known as the BP-matching algorithm,
whose improvement has been demonstrated in surface codes
[53,54]. In addition, the logical error rates of the color code

lattice surgery in this work are higher than the results of the
mature surface coding protocols [23,25]. Nevertheless, we
believe that the results can be further improved by optimizing
the circuits in the lattice surgery protocol, as in Ref. [37], nar-
rowing the performance gap between color codes and surface
codes in storage experiments through circuit optimization.

There are still many other challenges in quantum comput-
ing based on color codes that are left for future work. For
example, the PBC model is probably not the final form of
quantum computation based on color codes since it does not
utilize the advantages of transversal Clifford gates on color
codes. According to the specific quantum algorithm, a proper
way to use color codes for quantum computing still needs to
be developed.

In addition, we also note the color codes with other bound-
aries, such as square color codes or thin color codes [19,38],
which are also candidates for color code quantum computing.
These color codes encode more than one logical qubit in an in-
dividual patch and may further reduce the overhead under the
special structured noise (e.g., biased noise). When the bound-
aries are of the colored type, we do not perceive fundamental
difficulties in applying our lattice surgery decoding strategies
to them. However, if Pauli boundaries are considered, decod-
ing lattice surgery on such boundaries remains an unresolved
issue. In particular, thin color codes with dz > dx can reduce
the cost of magic state distillation since the distillation error is
more sensitive to the Z-type error [29]. Based on the feature
of parallel measurements and our lattice surgery decoding
algorithm, estimating and optimizing the time and space over-
head of magic state distillation in a color-code-based quantum
computation will also be an interesting question.

Lastly, our state injection protocol can enhance recent re-
sults on magic state preparation [49], further improving the
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fidelity of magic states. A possible future direction is the
quantum computation with surface and color codes combined,
where surface codes are used for computation and color codes
are used for distillation.
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APPENDIX A: AUTOMATED PROCEDURE FOR
CONSTRUCTING DECODING GRAPHS

The automated procedure extracts error information of
noisy circuits based on the circuit-level depolarizing noise
model. In a noisy quantum circuit, we approximate every
noisy operation by an ideal operation followed by the depo-
larizing error channel E1 or E2. We simulate the circuits in
the Heisenberg representation [58], randomly inserting Pauli
errors with corresponding probability. Since the circuits are
Clifford circuits, according to the Gottesman-Knill theorem,
they can be efficiently simulated in polynomial time [5,55].

As mentioned in the main text, in each time, the automated
procedure simulates an ideal QEC circuit attached to a single
error in the different channels in the circuit. If the error is
located in channel E1, the error is X , Y , or Z . If the error
is located in channel E2, the error is one of P1 ⊗ P2, where
P1, P2 ∈ I, X,Y, Z and P1 ⊗ P2 �= I ⊗ I .

In fact, there is no need to simulate every round of the QEC
cycle since the effect of a single error is limited to two, the
difference between two layers. For each position and type of
error, we only simulate the circuit in two QEC rounds, where
the error is only added in the first round and the circuit in the
second round is perfect. We record the vertex sets correspond-
ing to the syndrome changes in each simulation.

In the automated procedure, we connect the syndrome
changes in pairs to form edges by the following rule. First, we
connect the vertices that are projected into the same position,
if they exist. Then we connect the remaining vertices with the
same color, if they exist. Using the CNOT schedules in Fig. 6,
there are, at most, two vertices remaining unmatched in each
decoding graph after this step. If there are two vertices left, we
connect them, and if there is only one vertex left, we check the
syndrome of the error and connect the vertex with the proper
boundary vertex.

Based on these connections, the edges in the first two layers
of GC are determined, denoted by e0 = (vt1

1 , v
t2
2 ). All edges e0

obtained from the simulations in two QEC rounds form an
edge set β0. Then one can construct the edge set β in GC by β0:

β = {
e = (

v
t1
1 , v

t2
2

)∣∣vt1
1 , v

t2
2 ∈ GC, e//e0, e0 ∈ β0

}
, (A1)

where we say two edges e1 = (vt1
1 , v

t2
2 ), e2 = (vt3

3 , v
t4
4 ) are

parallel in a 3D lattice if they have the same vertical projection
and t3 − t1 = t4 − t2, notated by e1//e2.

Suppose edge e0 ∈ β0 is obtained from the syndrome
changes of the single error ε; the error rate corresponding
to e0 is pε (e0), where pε (e0) = p/3 if ε is the result of

TABLE II. Logical error rates in different CNOT schedules with
and without postselection.

CNOT schedule
PL with postselection (to

the leading order)
PL without postselection

(to the leading order)

0+ 0.6p 10.6p
0− 1.26̇p 13.26̇p
1+ 0.3̇p 9.86̇p
1− 0.53̇p 11.13̇p
2+ 0.3̇p 10.8p
2− 0.26̇p 12.4p
3+ 0.6p 11.53̇p
3− 1.26̇p 12.2p
4+ 1.2p 12.06̇p
4− p 12.6̇p
5+ 0.93̇p 13.6p
5− p 11.73̇p

E1, otherwise pε (e0) = p/15. By accumulating pε (e0) with
different ε, we obtained the error-rate-related weight of the
edge e = (vt1

1 , v
t2
2 ) ∈ β,

we =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log
∑

e0∈β
(1)
0 ,

and e0//e

∑
ε

pε (e0) if t1 = t2 = 1

− log
∑

e0∈β
(2)
0 ,

and e0//e

∑
ε

pε (e0) if t1 = t2 = d + 1

− log
∑

e0∈β0,
and e0//e

∑
ε

pε (e0) otherwise,

(A2)

where β
(1)
0 = {e0|e0 = (v1

i , v
1
j ) ∈ β0} and β

(2)
0 = {e0|e0 =

(v2
i , v

2
j ) ∈ β0}. Note that the edges in the time boundaries (i.e.,

the first and last layers) are considered individually in the first
two cases.

APPENDIX B: DIFFERENT CNOT SCHEDULES AND MORE
POSTSELECTION SCHEMES IN THE STATE INJECTION

PROTOCOL

In order to find the optimal CNOT schedule of state in-
jection, we test 12 kinds of CNOT schedules, as shown in
Fig. 14. Note that 0+ is the CNOT schedule used in color code
QEC circuits and other schedules are obtained by flipping or
rotating 0+. We use these CNOT schedules since the flip or
rotation operation will hold the relationship in the criterion of
a proper CNOT schedule. The complete data of logical error
rates to the leading order are shown in Table II.

In Table III, we tested more postselection schemes for
the case of p = 10−3 and d = 11. Recall that we prioritize
syndromes with higher correlation coefficients for posterior
selection. As more syndromes are postselected, PL decreases
to below p, with the cost of reduction in the success rate of
postselection. Note that the logical error rate tends to stabilize
with more syndromes being postselected. We infer that this
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FIG. 14. Details of the 12 types of CNOT schedules that we considered in the state injection. (a)–(l) correspond to 0+, 0−, 1+,..., 5−,
respectively. The CNOT schedules with + are obtained by rotating 0+, and CNOT schedule k− is the flip of k+.

is due to the inherent logical error rate of d = 11 logical
qubits, approximately 5 × 10−4. Although postselection can
reduce this value, the effect is not significant because the
range of stabilizers we postselect is limited. Therefore, as the
code distance of logical qubits continues to increase, achiev-
ing lower logical error rates than those listed in Table III is
possible.

APPENDIX C: OTHER DETAILS OF THE SIMULATIONS

We use Monte Carlo simulation to estimate the logical
error rates in different cases. In each time of simulation,

TABLE III. Logical error rates with other postselection schemes.

No. postselected
syndromes

Logical error
rate PL

Success rate of the
postselection

50 8.9 × 10−4 40%
62 8.2 × 10−4 34%
76 7.7 × 10−4 27%
93 6.0 × 10−4 21%
124 5.7 × 10−4 14%
136 5.4 × 10−4 12%
148 5.2 × 10−4 10%
164 5.2 × 10−4 9%

QEC circuits are executed for d + 1 rounds in the color code
decoding and state injection, and 2d + 1 rounds (including
the merged step and split step) in the lattice surgery. In all
three situations, the circuit in the last round is assumed to be
noiseless.

Another key question is how to determine if there is a
logical error after decoding. In the color code decoding, we
check whether the product of correction, R, and actual error
ε is a logical operator (up to a stabilizer) by commutation
relations.

In the lattice surgery, spacelike and timelike errors should
be considered separately. Note that the spacelike logical error
must anticommute with an odd number of starred stabilizers.
The output correction R may cause a logical error as well as
the stabilizers of several Bell states in the middle region since
some boundary vertices are located inside the lattice. These
stabilizers are trivial for our decoding because they always
anticommute with an even number of starred stabilizers. The
spacelike errors in the top and bottom logical qubits are equiv-
alent since XL ⊗ XL and ZL ⊗ ZL have been measured. For the
timelike error, we set all the red boundary vertices with the
initial syndromes +1 to guarantee that the expected outcome
of the XL ⊗ XL or ZL ⊗ ZL measurement is +1. Then we check
the actual outcome to determine if there is a timelike logical
error.

In the state injection, the correction R may differ from
the actual error ε by X ⊗ X (or Z ⊗ Z) error in the qubits
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FIG. 15. (a) Logical error rates PL of the triangular color code under the same circuit-level noise model as that in Ref. [33] with d � 15.
(b) The intersections of pairs of curves of PL with distances {d, (d + 1)/2} and {d, (d − 1)/2}. From the linear extrapolation of the data, the
threshold is around 0.45%.

of the initial Bell pairs whose syndrome corresponds to two
red vertices since the measurements of red stabilizers do not
have determined initial syndromes. However, they will be
fault-tolerantly determined after sufficient rounds of measure-
ments and then X ⊗ X will be corrected. Therefore, we do
not think the decoding fails when such errors are left after
decoding. From another perspective, such X ⊗ X (or Z ⊗ Z)
errors will not change the measurement result of the logical
Pauli operators (XL, YL or ZL) since the Bell pairs and the
logical Pauli operator always have an even number of common
qubits.

Lastly, we list the simulation times of the numerical results
in the main text. In Figs. 8(a) and 11, each point is obtained by
over 106 simulations. In Figs. 13(a) and 13(b), we obtain each
point by 103/p times of simulations, where p is the physical
error rate ranging from 10−4 to 10−3.

APPENDIX D: DIRECT COMPARISON WITH THE
THRESHOLD IN REF. [33]

In the main text, we avoided directly comparing our thresh-
old results with those in Ref. [33] because our circuit-level
noise model is slightly weaker than theirs. Specifically, they
assume that the measurement results (or state preparations)
flip with probability p, whereas we assume 2p/3 (the equiva-
lent result for a depolarizing channel E1). Here, we provide
some simulation results under the same noise model as in
Ref. [33]. We tested the logical error rates of the triangular
color code for d � 15 and evaluated the threshold using the
same method as in the main text (see Fig. 15). The results
show that both the logical error rates and the threshold (around
0.45%) outperform those in Ref. [33] (around 0.37%), directly
demonstrating the improvements our decoding algorithm
provides.

[1] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[2] R. P. Feynman, Quantum mechanical computers, Opt. News 11,
11 (1985).

[3] M. H. Freedman, A. Kitaev, and Z. Wang, Simulation of topo-
logical field theories by quantum computers, Commun. Math.
Phys. 227, 587 (2002).

[4] J. Preskill, Reliable quantum computers, Proc. R. Soc. London,
Ser. A 454, 385 (1998).

[5] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[6] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[7] D. Gottesman, Stabilizer Codes and Quantum Error Correction
(California Institute of Technology, 1997).

[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[9] J. K. Pachos, Introduction to Topological Quantum Computation
(Cambridge University Press, Cambridge, 2012).

[10] H. Bombin and M. A. Martin-Delgado, Topological quantum
distillation, Phys. Rev. Lett. 97, 180501 (2006).

[11] A. M. Kubica, The ABCs of the color code: A study of topo-
logical quantum codes as toy models for fault-tolerant quantum
computation and quantum phases of matter, Ph.D. thesis,
California Institute of Technology, 2018.

[12] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[13] A. J. Landahl and C. Ryan-Anderson, Quantum computing by
color-code lattice surgery, arXiv:1407.5103.

[14] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Triangular
color codes on trivalent graphs with flag qubits, New J. Phys.
22, 023019 (2020).

[15] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, To-
wards practical classical processing for the surface code, Phys.
Rev. Lett. 108, 180501 (2012).

033086-16

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1364/ON.11.2.000011
https://doi.org/10.1007/s002200200635
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/1407.5103
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1103/PhysRevLett.108.180501


FACILITATING PRACTICAL FAULT-TOLERANT QUANTUM … PHYSICAL REVIEW RESEARCH 6, 033086 (2024)

[16] A. M. Stephens, Fault-tolerant thresholds for quantum error
correction with the surface code, Phys. Rev. A 89, 022321
(2014).

[17] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant
quantum computing with color codes, arXiv:1108.5738.

[18] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface
code quantum computing by lattice surgery, New J. Phys. 14,
123011 (2012).

[19] F. Thomsen, M. S. Kesselring, S. D. Bartlett, and B. J.
Brown, Low-overhead quantum computing with the color code,
arXiv:2201.07806.

[20] D. Litinski and F. von Oppen, Lattice surgery with a twist:
Simplifying Clifford gates of surface codes, Quantum 2, 62
(2018).

[21] D. Litinski, A game of surface codes: Large-scale quantum
computing with lattice surgery, Quantum 3, 128 (2019).

[22] A. G. Fowler and C. Gidney, Low overhead quantum computa-
tion using lattice surgery, arXiv:1808.06709.

[23] C. Chamberland and E. T. Campbell, Circuit-level protocol
and analysis for twist-based lattice surgery, Phys. Rev. Res. 4,
023090 (2022).

[24] C. Gidney, In-place access to the surface code y basis, Quantum
8, 1310 (2024).

[25] C. Chamberland and E. T. Campbell, Universal quantum com-
puting with twist-free and temporally encoded lattice surgery,
PRX Quantum 3, 010331 (2022).

[26] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[27] S. Bravyi and J. Haah, Magic-state distillation with low over-
head, Phys. Rev. A 86, 052329 (2012).

[28] E. T. Campbell and M. Howard, Unified framework for magic
state distillation and multiqubit gate synthesis with reduced
resource cost, Phys. Rev. A 95, 022316 (2017).

[29] D. Litinski, Magic state distillation: Not as costly as you think,
Quantum 3, 205 (2019).

[30] Y. Li, A magic state’s fidelity can be superior to the operations
that created it, New J. Phys. 17, 023037 (2015).

[31] L. Lao and B. Criger, Magic state injection on the rotated
surface code, in Proceedings of the 19th ACM International
Conference on Computing Frontiers (unpublished).

[32] S. Singh, A. S. Darmawan, B. J. Brown, and S. Puri,
High-fidelity magic-state preparation with a biased-noise
architecture, Phys. Rev. A 105, 052410 (2022).

[33] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of univer-
sality: A comparative study of the overhead of state distillation
and code switching with color codes, PRX Quantum 2, 020341
(2021).

[34] N. Delfosse, Decoding color codes by projection onto surface
codes, Phys. Rev. A 89, 012317 (2014).

[35] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[36] O. Higgott, Pymatching: A PYTHON package for decoding
quantum codes with minimum-weight perfect matching, ACM
Trans. Quantum Comput. 3, 1 (2022).

[37] C. Gidney and C. Jones, New circuits and an open source
decoder for the color code, arXiv:2312.08813.

[38] M. S. Kesselring, J. C. M. de la Fuente, F. Thomsen, J. Eisert,
S. D. Bartlett, and B. J. Brown, Anyon condensation and the
color code, PRX Quantum 5, 010342 (2024).

[39] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[40] A. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. London, Ser. A 452, 2551 (1996).

[41] S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and
quantum computational resources, Phys. Rev. X 6, 021043
(2016).

[42] P. Prabhu and C. Chamberland, New magic state distilla-
tion factories optimized by temporally encoded lattice surgery,
arXiv:2210.15814.

[43] A. G. Fowler, Time-optimal quantum computation,
arXiv:1210.4626.

[44] B. Eastin and E. Knill, Restrictions on transversal encoded
quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).

[45] R. Raussendorf, J. Harrington, and K. Goyal, A fault-
tolerant one-way quantum computer, Ann. Phys. 321, 2242
(2006).

[46] T. Jochym-O’Connor and S. D. Bartlett, Stacked codes: Uni-
versal fault-tolerant quantum computation in a two-dimensional
layout, Phys. Rev. A 93, 022323 (2016).

[47] B. J. Brown, A fault-tolerant non-Clifford gate for the surface
code in two dimensions, Sci. Adv. 6, eaay4929 (2020).

[48] C. Chamberland and A. W. Cross, Fault-tolerant magic state
preparation with flag qubits, Quantum 3, 143 (2019).

[49] C. Chamberland and K. Noh, Very low overhead fault-tolerant
magic state preparation using redundant ancilla encoding and
flag qubits, npj Quantum Inf. 6, 91 (2020).

[50] S. Koutsioumpas, D. Banfield, and A. Kay, The smallest code
with transversal T, arXiv:2210.14066.

[51] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Surface
code quantum computing with error rates over 1%, Phys. Rev.
A 83, 020302(R) (2011).

[52] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A.
Rabbani, Topological code AUTOTUNE, Phys. Rev. X 2, 041003
(2012).

[53] O. Higgott, T. C. Bohdanowicz, A. Kubica, S. T. Flammia, and
E. T. Campbell, Improved decoding of circuit noise and fragile
boundaries of tailored surface codes, Phys. Rev. X 13, 031007
(2023).

[54] B. Criger and I. Ashraf, Multi-path summation for decoding 2D
topological codes, Quantum 2, 102 (2018).

[55] S. Aaronson and D. Gottesman, Improved simulation of stabi-
lizer circuits, Phys. Rev. A 70, 052328 (2004).

[56] K. Sahay and B. J. Brown, Decoder for the triangular color
code by matching on a möbius strip, PRX Quantum 3, 010310
(2022).

[57] S.-H. Lee, A. Li, and S. D. Bartlett, Color code de-
coder with improved scaling for correcting circuit-level noise,
arXiv:2404.07482.

[58] D. Gottesman, The Heisenberg representation of quantum com-
puters, in Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics, edited
by S. P. Corney, R. Delbourgo, and P. D. Jarvis (International
Press, Cambridge, MA, 1999), pp. 32–43.

033086-17

https://doi.org/10.1103/PhysRevA.89.022321
https://arxiv.org/abs/1108.5738
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/2201.07806
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2019-03-05-128
https://arxiv.org/abs/1808.06709
https://doi.org/10.1103/PhysRevResearch.4.023090
https://doi.org/10.22331/q-2024-04-08-1310
https://doi.org/10.1103/PRXQuantum.3.010331
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.95.022316
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1088/1367-2630/17/2/023037
https://doi.org/10.1103/PhysRevA.105.052410
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1145/3505637
https://arxiv.org/abs/2312.08813
https://doi.org/10.1103/PRXQuantum.5.010342
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevX.6.021043
https://arxiv.org/abs/2210.15814
https://arxiv.org/abs/1210.4626
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1103/PhysRevA.93.022323
https://doi.org/10.1126/sciadv.aay4929
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1038/s41534-020-00319-5
https://arxiv.org/abs/2210.14066
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevX.13.031007
https://doi.org/10.22331/q-2018-10-19-102
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PRXQuantum.3.010310
https://arxiv.org/abs/2404.07482

