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Spin-dependent interactions in orbital-density-dependent functionals:
Noncollinear Koopmans spectral functionals
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The presence of spin-orbit coupling or noncollinear magnetic spin states can have dramatic effects on
the ground-state and spectral properties of materials, in particular on the band structure. Here, we develop
noncollinear Koopmans-compliant functionals based on Wannier functions and density-functional perturbation
theory, targeting accurate spectral properties in the quasiparticle approximation. Our noncollinear Koopmans-
compliant theory involves functionals of four-component orbital densities that can be obtained from the charge
and spin-vector densities of Wannier functions. We validate our approach on four emblematic nonmagnetic
and magnetic semiconductors where the effect of spin-orbit coupling goes from small to very large: the
III-IV semiconductor GaAs, the transition-metal dichalcogenide WSe2, the cubic perovskite CsPbBr3, and
the ferromagnetic semiconductor CrI3. The predicted band gaps are comparable in accuracy to state-of-the-art
many-body perturbation theory and include spin-dependent interactions and screening effects that are missing
in standard diagrammatic approaches based on the random phase approximation. While the inclusion of orbital-
and spin-dependent interactions in many-body perturbation theory requires self-screening or vertex corrections,
they emerge naturally in the Koopmans-functionals framework.
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I. INTRODUCTION

The spin degree of freedom is crucial to describe elec-
trons in materials and molecules. At a fundamental level, spin
properties and spin-dependent interactions can play important
roles and sometimes be dominant effects. Indeed, many tech-
nological applications related to the storage and transmission
of information rely on pure spin phenomena or to interactions
between the spin and the orbital degrees of freedom. Remark-
ably, most electronic structure calculations often take into
account spin only implicitly, neglecting spin-dependent cou-
plings. A prime example is density functional theory (DFT),
where the total energy is a functional of the ground-state
charge density [1,2] and Kohn-Sham (KS) orbitals are scalar
quantities. A simple extension of DFT for magnetic systems,
named spinDFT, is based on a functional of two scalar densi-
ties corresponding to the spin-up and spin-down component of
the ground-state electronic distribution, where a fixed quanti-
zation axis is aligned to the magnetization direction. SpinDFT
allows studying ferromagnetic or antiferromagnetic orders,
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which are called collinear as there is a common quantization
axis for the whole system.

While the majority of magnets can effectively be described
by either ferromagnetic or antiferromagnetic collinear mag-
netic order, magnetic systems can also exhibit noncollinear
(NC) spin states, where the spin density—which in general
is a vector—can change direction over space and there is
no common spin quantization axis for the entire crystal [3].
Beyond relatively simple coplanar spin states, more exotic NC
ground states are spin spirals [3], skyrmions [4,5], and spin
glasses [6,7]. A major source of noncollinearity is spin-orbit
coupling (SOC), which is responsible for important effects
such as the Dzyaloshinskii-Moriya interaction and the mag-
netic anisotropy [8]. Crucially, SOC can lead to strong spin
couplings even in the absence of magnetism, that is for time-
reversal (TR) invariant systems.

Being a relativistic effect SOC is always present, but it is
stronger in the presence of heavy chemical elements: while
often negligible for carbon, SOC has already tangible con-
sequences in GaAs semiconductors and becomes a dominant
factor for fifth-period elements. The impact of SOC on the
electronic structure can be dramatic, including splitting of
bands and renormalization of band gaps. For example, the
band gap of organohalide perovskites is about 1 eV smaller
than it would be in the absence of SOC [9,10]. Finally, SOC
can also affect the structural properties such as bond lengths,
phonon frequencies [11], and even structural stability [12,13].

A NC extension [14,15] of spinDFT can be obtained by
considering a total energy functional that depends on the
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ground-state charge density as well as the ground-state spin-
density vector, where the latter can change direction over
space. In this framework, KS orbitals are two-component
spinors and the KS Hamiltonian can be written in terms of the
Pauli matrices in spin space. Today, NC DFT calculations with
SOC have become routine, although sensibly more computa-
tionally intensive than their collinear counterparts. The higher
computational cost of NC calculations is even more relevant
in the context of many-body perturbation theory (MBPT),
which is the gold standard for band structure calculations
of solids. While one-shot G0W0 calculations with SOC have
been performed in the literature (see, e.g., Refs. [9,10,12,16–
23]), it is still very challenging to perform NC calculations
that include SOC with more accurate methods such as self-
consistent GW (scGW) [24,25] or quasiparticle self-consistent
GW (QSGW ) [26–29], even more so if vertex corrections in
the screened interaction W are included (QSGW̃ ) [30–32].
Notably, beyond-G0W0 MBPT calculations often treat SOC
with the second-variation approach [33,34] or with lower lev-
els of theory such as G0W0 [35] or hybrid functionals [36],
which are approximations that might be rather inaccurate in
systems where SOC is more relevant [17,22]. Finally, we note
that Hedin’s equations [37] have spin dependence, while their
extension to spin-dependent electron-electron interactions and
the corresponding GW approximation have been developed
[38,39]. Nonetheless, actual GW calculations are performed
with a spin-independent interaction at the diagrammatic level
[22,40]. In other words, spin-dependent screening effects are
not usually accounted for.

In this work we develop a theory and implementation
to calculate accurate spectral properties of NC electronic
structures of materials, such as in the presence of strong
SOC, based on a functional dependent upon the orbital
charge and spin-vector densities. Our approach enforces the
Koopmans-compliance condition to each spin orbital and
leads to a spectral functional of four-component orbital
densities, which can be obtained from the charge and spin-
vector densities of Wannier functions (WFs). The formalism
takes into account spin-dependent screening effects related
to spin-spin and spin-charge interactions. We implement and
validate the theory as a one-shot approach that corrects DFT
band structures, where screening coefficients are calculated
through NC density-functional perturbation theory (DFPT)
[41–46].

II. PRIMER ON KOOPMANS-COMPLIANT FUNCTIONALS

Koopmans-compliant (KC) spectral functionals [47–51]
are orbital-dependent functionals capable of delivering accu-
rate spectral properties for molecular [52–55] and extended
systems [50,56–59] at low computational cost and complexity.
Remarkably, the KC approach maintains a simple functional
formulation while being typically as accurate as state of
the art in Green’s function theory [50,55,58,59], at a cost
which is broadly comparable to standard DFT. The simplicity
and accuracy of the KC framework rests on three funda-
mental concepts: linearization, screening, and localization.
First, a generalized linearization condition is imposed on
each charged excitation: the energy of any orbital must be
independent of the occupation of the orbital itself. This is

a necessary condition for a correct description of an elec-
tron addition/removal process and implies that the KC total
energy functional is piecewise linear with respect to frac-
tional occupations. Second, screening and relaxation effects
(due to the electron addition/removal) are taken into ac-
count by orbital-dependent screening coefficients, which can
be calculated by finite differences [50] or linear-response
approaches [49,58]. Finally, the Koopmans compliance is im-
posed on the variational orbitals—i.e., those that minimize
the KC energy functional—which are typically localized in
space. For periodic systems, the variational orbitals are Wan-
nier like, and typically resemble maximally localized WFs
(MLWFs) [50,58,60]. This property has allowed the devel-
opment of a Wannier-interpolation and unfolding scheme
to calculate the band structure from a supercell Koopmans-
functional calculation [57] and more recently the development
of a convenient Koopmans formulation that operates fully
in periodic-boundary conditions (PBC) and it is based on
explicit Brillouin-zone (BZ) sampling and DFPT [58]. This
Koopmans-Wannier (KCW) formulation [58] can be deployed
as a one-shot correction to DFT and delivers improved scaling
with system size, making band-structure calculations with
KC functionals much more straightforward. KC functionals
resonate with other efforts aimed at calculating excitation
energies where the piecewise linearity (PWL) condition and
the use of localized orbitals are often a key ingredient [61–68].
For an exhaustive and detailed description of the Koopmans
functionals we refer the reader to Refs. [50,51,58].

III. NONCOLLINEAR KOOPMANS-COMPLIANT
FUNCTIONALS

As a first step and in the spirit of what has been done
for collinear systems in Ref. [48], we introduce a NC KC
functional that, once added to the NC DFT energy functional,
linearizes the total energy with respect to orbital occupations:

�rKI
i = − {EDFT[ρ, m] − EDFT[ρ fi=0, m fi=0]}

+ fi{EDFT[ρ fi=1, m fi=1] − EDFT[ρ fi=0, m fi=0]}, (1)

where EDFT is the DFT total energy, which is a functional of
the total electron charge ρ and spin-vector m densities, and fi

is the occupation of the ith orbital. This correction removes
from the underlying DFT energy functional the contribution
that is nonlinear in the occupation fi and replaces it with a
linear term that interpolates between integer occupation num-
bers; this enforces a generalized PWL condition that makes
single-particle eigenvalues consistent with the energy differ-
ences that define charged excitations. Evaluating the total
energy differences appearing in the curly brackets of Eq. (1)
can be done either by resorting to a frozen orbitals approx-
imation plus a post hoc scaling down of the frozen orbitals
correction via a screening coefficient, as originally proposed
[47,48], or by resorting to a Taylor expansion of the DFT
energy with respect to the occupation fi truncated to second
order as discussed in Refs. [49,58]. In this work we follow
the latter strategy as it enables an efficient implementation
in PBCs using a primitive cell setup and a sampling of the
BZ and ultimately gives direct access to the band structure of
periodic solids at reduced computational costs [58] (a strategy
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to go beyond the second-order approximation is discussed in
Sec. III D). By applying the second-order approximation to
the NC Koopmans functional in Eq. (1) we get

�
(2)rKI
i = 1

2
fi(1 − fi )

d2EDFT

df 2
i

∣∣∣∣
f̄

, (2)

where f̄ is the reference ground-state occupation and the
superscript (r) marks that orbital relaxation effects are taken
into account.

We note that even in the case of TR-invariant systems,
the addition or removal of an electron generally breaks TR
as the system becomes spin polarized. In fact, derivatives
are first computed for a general NC system, possibly with a
nonvanishing spin magnetization, and only later evaluated for
a system with TR symmetry [where |m(r)| = 0 everywhere].
This is a crucial aspect of the theory that we will elaborate
more later on: the KC functional framework correctly requires
dealing with perturbations that break TR symmetry, even for
TR-invariant systems.

We exploit the Hellmann-Feynman theorem and express
Eq. (2) as

d2EDFT

df 2
i

∣∣∣∣
f̄

= dεi

dfi

∣∣∣∣
f̄

=
[
〈ψi|dVHxc

dfi
|ψi〉 + 〈ψi|dWxc · σ

dfi
|ψi〉

]
f̄

=
[
〈ψi|dVHxc

dfi
|ψi〉 + 〈ψi|dWxcm̂

dfi
· σ|ψi〉

]
f̄

, (3)

where εi = dEDFT/dfi = 〈ψi|ĥDFT|ψi〉 is the expectation
value of the DFT Hamiltonian on the single-particle spin or-
bitals |ψi〉. In the expression above, we separated the Hartree
and exchange-correlation potential into a scalar part VHxc

(which includes the Hartree term) and a spin-dependent part
Wxc; the latter is expressed on the basis of Pauli matrices σ.
Note that while our theory is very general, common DFT NC
exchange-correlation potentials adopt the local spin-density
approximation (LSDA) [14]; hence they always point to the
direction of local spin magnetization and do not include any
spin torque [69].

We can evaluate the two terms of Eq. (1) by using the chain
rule for functional derivatives:

〈ψi|dVHxc

dfi
|ψi〉 =

∫
dr dr′ni,ρ (r)

(
Fρ,ρ

Hxc (r, r′)
dρ(r)

dfi

+
∑

α

Fρ,mα

xc (r, r′)
dmα (r′)

dfi

)
, (4)

〈ψi|dWxc,α

dfi
σα|ψi〉 =

∫
dr dr′ni,mα

(r)

(
F mα,ρ

xc (r, r′)
dρ(r)

dfi

+
∑

β

F mα,mβ

xc (r, r′)
dmβ (r′)

dfi

)
, (5)

where F i, j
Hxc represents the charge and spin-magnetization com-

ponents of the Hartree and exchange-correlation (Hxc) kernel.
Equations (4) and (5) highlight the symmetry between the

scalar and spin-dependent components, so we introduce a
compact notation based on four-vector quantities for the elec-
tron number ni(r) and charge ρi(r) densities, and four-by-four
matrices for the Hxc kernel FHxc:

〈ψi|dVHxc

dfi
· σ̃|ψi〉 =

∫
dr dr′ni(r)FHxc(r, r′)

dρ(r′)
dfi

, (6)

where scalar and vector-matrix products are understood, and
we introduced an extended set of Pauli matrices σ̃ including
a two-by-two identity matrix σ0. Equation (6) is perspicuous:
the NC case can be recast in the same form of a collinear prob-
lem for four-vector densities and promoting the Hxc kernel to
four-by-four matrices [compare Eq. (6) above with Eq. (5) in
Ref. [49]]. This holds true also for the Dyson equations (see
Appendix A for a detailed derivation) that allow us to write
the derivative of the density as

dρ(r)

dfi
= ni(r) +

∫
dr′χ(r, r′)

∫
dr′′FHxc(r′, r′′)ni(r′′),

(7)

where the NC interacting response function χ is calculated
from the noninteracting one χ0 as

χ(r, r′) = χ0(r, r′) +
∫

dr′′χ0(r, r′′)

×
∫

dr′′′FHxc(r′′, r′′′) χ(r′′′, r′). (8)

We can use these results in Eq. (2) and obtain an expression
for the second-order expansion of the NC KC functional:

�
(2)rKI
i = 1

2
fi(1 − fi )

∫
dr dr′ni(r)FHxc(r, r′)ni(r′), (9)

where we define the screened Hxc kernel as

FHxc(r, r′) = FHxc(r, r′) +
∫

dr′′FHxc(r, r′′)

×
∫

dr′′′χ(r′′, r′′′)FHxc(r′′′, r′). (10)

A. Noncollinear Koopmans potentials

From Eq. (9) we can derive the corresponding local and
orbital-dependent potential by taking the functional derivative
with respect to all components of the four-vector orbital den-
sity and write the result in a compact form:

VKI(2)
i (r) = −1

2

∫
dr dr′ni(r)FHxc(r, r′)ni(r′)σ0

+ (1 − fi )
∑

α

∫
dr′[FHxc(r, r′)ni(r′)]ασα. (11)

The first term of Eq. (11) is a scalar shift while the other
four terms are local potentials. Even for TR-invariant (non-
magnetic) systems, not only the charge component of the
orbital density is nonvanishing but necessarily also some of its
spin components as each spin orbital has always a finite spin
density. Indeed, TR symmetry only implies that the total spin
density is vanishing, not orbital spin densities. In addition,
even the orbital charge density alone couples not only with the
charge-charge component of the FHxc but also with the charge-
spin components, once again even for nonmagnetic systems
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FIG. 1. Schematics of the charge-charge (yellow), charge-spin (green), and spin-spin (blue) interactions and screening effects in the
noncollinear Koopmans-Wannier functional theory. In the bottom left corner, one of the valence Wannier functions for bulk WSe2 is shown.
The noncollinear Koopmans potential is based on an interaction kernel that couples the spin and charge degrees of freedom of the (Wannier)
orbital densities, even for nonmagnetic systems with time-reversal symmetry. Also, the screening of the interaction is treated as noncollinear
and involves spin-dependent terms originating both from the kernel and the response function of the charge and magnetization densities. Note
that in the random phase approximation all the spin-charge and spin-spin channels would be absent and the charge-charge interaction would
be given simply by the Hartree term alone (as opposed to the Hartree and exchange-correlation kernel, which appears instead in the Koopmans
approach).

with TR symmetry. Figure 1 summarizes the charge-charge,
charge-spin, and spin-spin interactions and screening effects
in the noncollinear KCW functional theory, while Sec. VI A
contains a more thorough discussion of these spin-dependent
effects.

B. Wannier Hamiltonian for the noncollinear
Koopmans correction

At variance with DFT, KC functionals are not invariant
under unitary rotations of the occupied manifold, due to their
orbital-dependent nature: the energy functional is minimized
by the so-called variational orbitals. These variational orbitals
have been shown to be very similar to maximally localized
WFs (MLWFs), which can be a good proxy to avoid the mini-
mization procedure [49,50,55,58]. We introduce a notation for
the most general case, where a set of J WFs is extracted from
a higher number of Jk entangled bands [60,70,71]:

|R j〉 = 1

N

∑
k

e−ik·R∣∣ψW
jk

〉
, (12a)

∣∣ψW
jk

〉 =
Jk∑

n=1

|ψnk〉Vk,n j, (12b)

where the Jk × J matrices Vk = ṼkUk represent the net result
of the disentanglement (Ṽk, subspace-selection) and maximal
localization (Uk, gauge-selection) steps. The case of isolated

bands [70] can be retrieved by setting Vk = ṼkUk and replac-
ing Jk with J .

As already done for collinear KC functionals [58], we also
adopt MLWFs in place of variational orbitals and express the
Koopmans correction in a WF basis (see Appendix B for a
detailed derivation):

	HKI(2)
i j (R) = − 1

2	
KI(2)
0 j δR,0δi, j + 	HKI(2)

i j,r (R). (13)

The two terms come from the scalar and local Koopmans
potentials of Eq. (11). The first correction is purely on site
and leads mostly to a downward rigid shift of the bands

	
KI(2)
0 j = 1

Nq

∑
q

〈
n0 j

q

∣∣Fq
Hxc

∣∣n0 j
q

〉
, (14)

where n0 j
q (r) is the q component of charge-spin four-vector

density of the WF |0 j〉. The second correction acts only on
empty states:

	HKI(2)
i j,r (R) =(1 − fi )

1

Nk

∑
k

eik·R 1

Nq

∑
q

〈
n ji

k−q,k

∣∣Fq
Hxc

∣∣n0 j
q

〉
,

(15)

where we introduce a monochromatic expansion of the den-
sities calculated as the overlap between the periodic part of
Bloch states in the Wannier gauge uW

i,k(r) at different k points:

ni j
k,k+q(r) = 〈

uW
i,k(r)

∣∣σ̃∣∣uW
j,k+q(r)

〉
. (16)
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At variance with the collinear KCW formulation [58], the
corresponding NC expression for the nonscalar correction
term [Eq. (15)] leads to a coupling between q and k − q (as
opposed to k + q) if TR symmetry is not assumed.

C. Screening coefficients and DFPT

In the spirit of the original formulation of KC function-
als [47], we split the screened Koopmans correction into an
unscreened one, obtained from Eq. (9) by using the bare
Hxc kernel FHxc (this would give PWL in the absence of
orbital relaxation) and an orbital-dependent screening coeffi-
cient defined as the ratio between the screened and unscreened
second-order Koopmans correction:

α0i = 〈n0i|FHxc|n0i〉
〈n0i|FHxc|n0i〉 = 1 + 〈n0i|FHxcχFHxc|n0i〉

〈n0i|FHxc|n0i〉 . (17)

Within this approximation the KI Hamiltonian in the WF basis
reads

HKI(2)
i j (R) = HDFT

i j (R) + α0i	HuKI(2)
i j (R), (18)

where 	HuKI(2)
i j (R) is the unscreened Koopmans correction

to the DFT Hamiltonian HDFT
i j (R), that is the analogous of

Eq. (13) where the screened Hxc kernel FHxc is replaced by
the bare one FHxc. The final expression for the KI Hamitonian
in Eq. (18) is an exact reformulation for the diagonal matrix el-
ements, but introduces an approximation for the off-diagonal
ones [that can be understood by comparing the second term
in the right-hand side of Eq. (18) with Eq. (13)]. However,
because of the localization properties of WFs, off-diagonal
matrix elements are often much smaller compared to diagonal
ones (and exactly zero for occupied states) and this approxi-
mation has negligible effects on the final band structure.

Introducing the unscreened monochromatic perturbing po-
tential V0i

pert,q

V0i
pert,q(r) =

∫
dr′[Fq

Hxc(r, r′)n0i
q (r′)

]
, (19)

the expression for the screening coefficient can be recast into
a linear response problem:

α0i = 1 +
∑

q

〈
V0i

pert,q

∣∣	0i
q ρ

〉
∑

q

〈
V0i

pert,q

∣∣n0i
q

〉 , (20)

where 	0i
q ρ(r) = ∫

dr′χq(r, r′)V0i
pert,q(r′) is the four-density

response of the system to the perturbation V0i
pert,q(r). For-

mally, this is identical to the expression derived in Ref. [58]
for the collinear case but now using four-vector quantities
rather than just the density component. The matrix-vector
product between the Hxc kernel and the four-density involves
charge-charge, charge-spin, and spin-spin couplings even for
nonmagnetic systems. As already done for the collinear case
[49,58], we avoid the explicit evaluation of the NC response
functions as sums over empty states by resorting to DFPT
[41], which is based on the Sternheimer equation and re-
quires computing only occupied states. The generalization of
DFPT to the magnetic case with broken TR symmetry was
first developed for the calculation of spin-fluctuation spectra
[42–44] and later extended to the calculation of vibrational
spectra [45,46] and Hubbard parameters [72]. We follow the

same strategy and adapt it to the Koopmans-specific external
perturbations V0i

pert,q(r′). The four-density response in Eq. (20)
can be conveniently written [43] in terms of the (periodic part
of the) ground state KS spinors uk,v and T̂ u−k,v and its linear
variations 	0i

q uk,v and T̂ 	0i
−qu−k,v:

	0i
q ρ(r)

=
∑
kv

[
u†

kv (r)	0i
q ukv (r) + [T̂ u−kv (r)]†

[
T̂ 	0i

−qu−kv (r)
]]

,

	0i
q m(r)

=
∑
kv

[
u†

kv (r)σ	0i
q ukv (r)−[T̂ u−kv (r)]†σ

[
T̂ 	0i

−qu−kv (r)
]]

,

(21)

where T̂ = iσyK̂ is the time-reversal operator with K̂ being
the complex-conjugation operator. The linear variations defin-
ing the four-density response are given by the solutions of the
following Sternheimer equations [43,45]:

(hk+q − εkv )
∣∣	0i

q ukv

〉 = −Pk+q
c 	0i

q VSCF|ukv〉,(
h[−B]

k+q − ε−kv

)∣∣T̂ (
	0i

−qu−kv

)〉 = −�k+q
c 	0i

q V [−B]
SCF |T̂ (u−kv )〉.

(22)

In the expressions above hk+q is the KS Hamiltonian at
wave vector k + q, Pk+q

c is the projector operator on the
empty states with wave vector k + q, and it is defined as
Pk

c = I − Pk
v with I the identity and Pk

v = ∑occ
i=1 |uki〉〈uki|,

�
k+q
c = T̂ P−k−q

c T̂ −1, and 	0i
q VSCF is the monochromatic q

component of the screened perturbing potential, which reads

	0i
q VSCF(r) = V0i

pert,q(r) + 	0i
q VHxc

[
	0i

q ρ
]
(r),

	0i
q VHxc

[
	0i

q ρ
]
(r) =

∫
dr′Fq

Hxc(r, r′)	0i
q ρ(r′). (23)

The superscript “[−B]” indicates that the corresponding op-
erator is evaluated after reversing the direction of the
exchange-correlation magnetic field Wxc, i.e., the vector part
of total Hxc potential [see Eq. (3)]. Equations (21)–(23) form
a set of coupled equations whose self-consistent solution
provides the four-density variation and hence the screening
coefficients in Eq. (20).

Note that, at variance with the phonons case and more
similarly to the case of magnons, our Koopmans perturbation
is magnetic (see Fig. 1) and involves the coupling of the spin
and charge degrees of freedom through the interaction kernel
in both terms appearing in Eq. (23).

D. Corrections beyond second order

One can go beyond the second-order approximation used
in the derivation above by adding a corrective term to the
Taylor expansion of the KI energy correction [Eq. (2)]. A
formally exact correction is given by 	r

i = �rKI
i − �

(2)rKI
i

and would revert the second-order approximation into the
full KI functional in Eq. (1). If relaxation effects are ne-
glected, the correction can be approximated as 	r

i � 	u
i =

�uKI
i − �

(2)uKI
i . For convenience, the effect of this corrective

term is essentially incorporated into a renormalized screening
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coefficient:

�rKI
0i = �

(2)rKI
0i + 	r

0i � α0i�
(2)uKI
0i + 	u

0i = α̃0i�
(2)uKI
0i

→ α̃0i = α0i + 	u
0i

�
(2)uKI
0i

= α0i + 	α0i. (24)

Being dependent only on unscreened quantities, 	u
0i can be

computed by the sole knowledge of the KS orbitals of the
neutral system. Evaluating the corrective term 	α0i at the
occupation of the reference neutral system we get (see Ap-
pendix C for more details on the derivation)

	α0i = −2	̃u
0i

〈n0i|Fxc[ρ]|n0i〉 , (25)

where

	̃u
0i = EDFT

xc [ρ] − EDFT
xc

[
ρN−1

0i

] − 〈0i|VDFT
xc [ρ] · σ̃|0i〉

+ 1
2 〈n0i|Fxc[ρ]|n0i〉. (26)

In the expression above ρN−1
0i (r) = ρ(r) − ρ0i(r) is the den-

sity of the system where an electron is removed from the
ith WF and no orbital relaxation is accounted for (a similar
expression holds for empty states, where the energy of the
N + 1 electron system needs to be computed). Only terms
involving the xc potential and kernel appear in this expres-
sion, as the kinetic, external, and Hartree terms are strictly
linear or quadratic in the occupation and are therefore already
accounted for in �

(2)rKI
i .

IV. METHODS

We implement NC KCW functionals in the KCW code of
the QUANTUM ESPRESSO (QE) distribution [73–75]. The NC
screening coefficients are obtained by solving the two NC
Sternheimer equations of Eq. (22) through the correspond-
ing solvers in the PHONON code of QE, originally developed
for calculating phonons [41]. Notably, and at variance with
phonons, in the NC KCW theory the perturbation is always
magnetic and a magnetic calculation is performed also for
TR-invariant systems. The starting DFT calculations are done
in the LSDA approximation [14] and norm-conserving ONCV
pseudopotentials [76,77] are used. NC calculations have been
performed with fully relativistic pseudopotentials generated
from the scalar-relativistic LDA PseudoDojo library version
0.4.1 [78]. We use a plane-wave kinetic energy cutoff of 80
Ry for the wave functions and 320 Ry for the electronic
density. We employ MLWFs [60,70,71] in the calculation of
the Koopmans correction and perform separate Wannieriza-
tion for the valence and conduction bands. MLWFs for the
valence bands are computed first for each isolated manifold
separately and then merged together, to reduce the mixing
between core and valence bands and obtain a block diag-
onal unitary matrix. We use the disentanglement approach
[71] to construct MLWFs for the low-lying conduction bands.
In all the following numerical calculations, results without
SOC are obtained with collinear spin-polarized DFT and
collinear KCW [58]. Results with SOC are obtained with
NC DFT and NC KCW. In all cases, and for the reasons
discussed above, the full Hxc kernel is calculated, includ-
ing spin-spin and charge-spin components. The renormalized

FIG. 2. Band structure of GaAs obtained with Koopmans-
Wannier (KCW) functionals both with and without spin-orbit
coupling (SOC). Calculations with SOC (green solid line) have been
performed with the noncollinear framework, including screening co-
efficients from noncollinear density-functional perturbation theory.
KCW corrections are calculated on top of LSDA simulations, lines
are the result of Wannier interpolation, and energy zero is set at the
top of the valence bands.

screening coefficients designed to include a correction beyond
the second-order Taylor expansion and described in Sec. III D
are used for all the systems except CrI3, where corrections
beyond second order are negligible and are not included for
computational efficiency. Hybrid-functional calculations are
performed by using the Heyd-Scuseria-Ernzerhof (HSE) func-
tional [79] with the acceleration provided by the adaptively
compressed exchange operator [80]. For the evaluation of the
Fock operator we use a reduced cutoff of 80 Ry for WSe2 and
CsPbBr3 and 120 Ry for CrI3 and a q-point grid (6 × 6 × 2 for
WSe2, 4 × 4 × 4 for CsPbBr3, and 3 × 3 × 3 for CrI3) that
is coarser by a factor of 2 with respect to the k-point mesh.
PBE PseudoDojo pseudopotentials are used for the HSE cal-
culations. For the case of CrI3 we used pseudopotentials with
semicore electrons in the valence and an increased energy
cutoff of 120 Ry and 480 Ry for the wave functions and
electron density, respectively.

V. NUMERICAL RESULTS

A. GaAs

First, we test our theory and implementation on GaAs
where the effect of SOC on the band structure is moderate and
has been well characterized experimentally [81,82]. We cal-
culate the KCW band structure with and without SOC; results
are shown in Fig. 2. The KCW Hamiltonian and screening
coefficients are calculated respectively with 12 × 12 × 12 k-
point and 6 × 6 × 6 q-point grids. In Table I, we report the
band gap and two SOC-driven energy splittings, the 	E15

SOC
at the top of the valence bands and the 	Ed

SOC between the
low-lying J = 5/2 and J = 3/2 d orbitals of Ga. The effect
of SOC on the band gap is small, about 0.1 eV of reduction
at the KCW and LDA levels, in agreement with previous
studies [36], but contributes to the overall accuracy: our KCW
band gap with SOC is about 1.51 eV and in good agreement
with the experimental value (1.52 eV). It is well known that
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TABLE I. Comparison of spin-orbit coupling (SOC) effects on
the band structure of GaAs between the local-density approximations
(LDA), Koopmans-Wannier (KCW) functionals, and experiments.
The band gap (Eg) and spin-orbit driven splittings at the top of the
valence bands 	E 15

SOC and between low-lying Ga d orbitals (J = 5/2
and J = 3/2) are considered. KCW corrections preserve the already-
accurate LDA splittings due to SOC but substantially correct the
band gap and bring it on top of experiments.

With SOC LDA KCW Expt.

Eg (eV) 0.17 1.51 1.52 eV
	E 15

SOC (eV) 0.35 0.35 0.3464(5) [81]
	Ed

SOC (eV) 0.45 0.46 0.4 ± 1 [82]

LDA generally underestimates the band gap; here we obtain
0.17 eV with SOC. However, at least for GaAs, LDA yields
SOC energy splittings that match experiments rather accu-
rately. Notably, not only is KCW capable of substantially
correcting the LDA band gap (from 0.17 to 1.51 eV) but at
the same time KCW preserves the SOC energy splittings of
the valence band that are already accurate at the LDA level
(see Table I).

B. WSe2

Now we consider a transition metal dichalcogenide, 2H-
WSe2, where SOC is stronger due to the presence of tungsten,
and the spin texture is strongly modulated in both real
and momentum space [83,84]. Although being globally cen-
trosymmetric, the material exhibits a large spin polarization
and spin-valley coupling of its bulk electronic states, due to
the in-plane net dipole moment of each of the two layers in
the unit cell (local inversion asymmetry) [83,85].

To facilitate comparison, we consider the experimental
structural parameters of Ref. [86]. We report in Fig. 3 the band
structure calculated at the KCW level both with and without

FIG. 3. Band structure of WSe2 obtained with Koopmans-
Wannier (KCW) functionals both with and without spin-orbit
coupling (SOC). Calculations with SOC (green solid line) have been
performed with the noncollinear framework, including screening co-
efficients from noncollinear density-functional perturbation theory.
KCW corrections are calculated on top of LSDA simulations, lines
are the result of Wannier interpolation, and the energy zero is set at
the top of the valence bands.

TABLE II. Indirect band gap of bulk WSe2 calculated with dif-
ferent methods, with and without including spin-orbit coupling, and
compared with experimental results [87–90]. Koopmans-Wannier
(KCW) calculations are performed on top of LSDA; GW0 results are
taken from Ref. [91].

Method Band gap (eV)

LDA 0.9
Without SOC HSE 1.47

KCW 1.52

LDA 0.82
HSE 1.38

With SOC
GW0 1.19 [91]
KCW 1.44

Expt. 1.22 [88], 1.27 [87],
1.2 [89], 1.3 ± 0.1 [90]

SOC. The KCW Hamiltonian and screening coefficients are
calculated with 6 × 6 × 2 k/q-point grids. The top valence
bands are characterized by a splitting at the special point K
of about half eV (in agreement with experiments [83]). The
band gap is indirect and reduced by the inclusion of SOC. We
calculate the band gap with LDA, HSE hybrid functionals, and
KCW both with and without SOC, and compare with experi-
ments [87–90] and GW0 calculations [91] from the literature;
all results are reported in Table II. The GW0 calculations of
Ref. [91] are partially self-consistent for the Green’s function
G through updated quasiparticle energies at each iteration, but
with fixed screening W0 in the random phase approximation
(RPA); at variance with our work, their starting point is the
Perdew-Burke-Ernzerhof (PBE) functional [92] and SOC is
included only perturbatively.

The experimental results are spread by about 0.1 eV around
the value 1.3 eV and, as expected, LDA underestimates
the band gap by about one-third, even by including SOC
(0.9 eV). All the beyond-DFT methods considered here per-
form reasonably well if SOC is included: HSE (1.38 eV) and
KCW (1.44 eV) are on the upper side of the experimental
range while self-consistent GW0 (1.19 eV) on the lower side.
Notably the effect of SOC on the band gap is about the same
(around 80–90 meV) among different methods (LDA, HSE,
and KCW).

C. CsPbBr3

Next, we consider a lead-halide perovskite, CsPbBr3,
where SOC is known to have a dramatic effect on the band
gap magnitude [35]. We consider the system in its high-
temperature cubic phase and set the lattice constant to the
experimental one [93] (5.87 Å). We calculate the KCW band
structure with and without SOC; results are shown in Fig. 4.
The KCW Hamiltonian and screening coefficients are cal-
culated on a 4 × 4 × 4 k/q mesh. The band gap is direct
and located at the high symmetry point R. The bottom of
the conduction band is mainly from lead 6p states. At the R
point, SOC splits the three times-degenerate band into 6p1/2

and 6p3/2 bands, leading to a reduction of the band gap by
more than 1 eV regardless of the level of theory. In Table III
we compare the KCW band gap with results from MBPT
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FIG. 4. Band structure of CsPbBr3 obtained with Koopmans-
Wannier (KCW) functionals both with and without spin-orbit
coupling (SOC). Calculations with SOC (green solid line) have been
performed with the noncollinear framework, including screening co-
efficients from noncollinear density-functional perturbation theory.
KCW corrections are calculated on top of LSDA simulations, lines
are the result of Wannier interpolation, and energy zero is set at the
top of the valence bands. The main effect of SOC is to reduce the
band gap, which is direct, by 1.34 eV. The KCW band gap with SOC
(1.78 eV) compares well with QSGW̃ + 	

G0W0
SOC (1.53 eV) and even

experiments after removing temperature effects (1.85 eV).

[35]. Calculations without SOC show that the KCW band gap
is in close agreement with that obtained with quasiparticle
self-consistent GW plus vertex corrections (QSGW̃ ) in the
screened Coulomb interaction and significantly larger than the
G0W0 one. By including SOC the KCW band gap reduces
by 1.34 eV (a reduction comparable to that observed for
LDA and HSE: 1.22 eV and 1.31 eV, respectively) leading
to a zero-temperature band gap of 1.78 eV which com-
pares favorably with high-temperature experimental results
[94] (2.36 eV) once the effects of temperature are accounted
for [35] (0.51 eV). The band gap from G0W0 with SOC is
about 1 eV too small compared to experiments, while a fully

TABLE III. Direct band gap of CsPbBr3 at the high-symmetry
point R. Many-body perturbation theory results are from Ref. [35].
For a meaningful comparison with zero-temperature simulations
(both GW and KCW), the experimental band gap [94] (2.36 eV)
is corrected by removing the temperature effects evaluated at the
hybrid-DFT PBE0 level of theory in Ref. [35] (	EPBE0

T = 0.51 eV).

Method Band gap (eV)

LDA 1.40
HSE 2.09

Without SOC G0W0 2.56 [35]
QSGW̃ 3.15 [35]
KCW 3.12

LDA 0.18
HSE 0.78

With SOC G0W0 0.94 [35]
QSGW̃ + 	

G0W0
SOC 1.53 [35]

KCW 1.78

Expt. −	ET 1.85 [35,94]

FIG. 5. Screening coefficients for the MLWFs of CsPbBr3 cal-
culated with and without SOC. Results including SOC (green dots)
have been obtained with the noncollinear linear-response formalism
introduced in this work starting from a noncollinear LSDA ground
state. Results without SOC have been performed with the collinear
formalism introduced in Refs. [49,58], starting from a collinear
LSDA ground state. Relative variation between results with and
without SOC are shown with gray bars. Changes up to 7% signify the
importance of SOC effects in the response properties of the system.

consistent comparison with state-of-the-art GW calculations
(QSGW̃ ) with SOC is actually not possible as, to the best of
our knowledge, no such simulation has been reported in the
literature yet. Still, Ref. [35] included the effect of SOC at the
G0W0 level and added that on top of QSGW̃ calculations with-
out SOC, leading to a predicted band gap of about 1.53 eV,
which slightly underestimates the experimental value.

Finally, we mention that in this case the quality of the final
result is also due to the consistent evaluation of the screening
coefficients through the noncollinear linear response formal-
ism detailed in Sec. III C. At variance with the other systems
presented above, the screening coefficients are significantly
affected by the inclusion of SOC when solving the LR equa-
tions. This is ultimately due to the fact that SOC drastically
modifies the band structure of CsPbBr3, leading to a signifi-
cant change in the response function of the system. In Fig. 5,
we compare the screening coefficients evaluated with and
without SOC for the MLWFs of CsPbBr3. We observe relative
variations as large as 7%; these are much larger than those
observed for GaAs and WSe2 (always <1%) and signify the
importance of consistently including SOC in the calculation
of the response function of this system.

D. CrI3

Finally, we consider the ferromagnetic semiconductor
CrI3, where both magnetism and SOC play a significant role
in the electronic band structure. Bulk CrI3 is a layered material
where each layer consists of edge-sharing CrI6 octahedra with
Cr atoms arranged in a honeycomb lattice. We consider the
system in its low-temperature rhombohedral phase and adopt
experimental lattice constant and atomic positions [95]. The
KCW band structures with and without SOC are shown in
Fig. 6. The KCW Hamiltonian and screening coefficients are
calculated on a 4 × 4 × 4 k/q mesh.
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FIG. 6. Band structure of CrI3 obtained with Koopmans-Wannier
(KCW) functionals both with and without spin-orbit coupling (SOC).
Calculations with SOC (green solid line) have been performed with
the noncollinear framework, including screening coefficients from
noncollinear density-functional perturbation theory. Spin-polarized
collinear calculations without SOC are shown for the spin-up (red
dashed line) and spin-down (blue dotted line) channels. KCW cor-
rections are calculated on top of LSDA simulations, lines are the
result of Wannier interpolation, and energy zero is set at the top of the
valence bands. SOC reduces the band gap by 0.3 eV and pushes the
� point of the top valence band above the L point. The KCW band
gap with SOC (1.92 eV) compares well with QSGW̃ calculations
(2.2–2.5 eV [96,97]) and even optical experiments (1.2 eV [98]) after
the large exciton binding energy (1 eV) is accounted for [97].

In the following we focus the discussion on calculations
with SOC that decrease the band gap by about 0.3 eV both
at the LDA and KCW level and push the � point of the top
valence band above the L point. Indeed, the gap is indirect
both with and without SOC, but the transition shifts from L −
T without SOC to � − T with SOC.

In Table IV we compare the KCW band gap with results
obtained with LDA and HSE hybrid functionals, as well as

TABLE IV. Indirect band gap of CrI3. Many-body perturbation
theory results are from Refs. [96,97,99,100]. For a meaningful com-
parison, the experimental optical band gap [98] (1.2 eV) is corrected
by the exciton binding energy as calculated with the Bethe-Salpeter
equation in Ref. [97] (Eb = 1 eV).

Method Band gap (eV)

LDA 0.89
HSE 1.85
G0W0 2.07 [99]

Without SOC
QSGW 80 2.23 [100]

QSGW 3.11 [99]
KCW 2.22

LDA 0.63
HSE 1.45
G0W0 1.99 [99]

With SOC QSGW 80 1.68 [100]
QSGW 2.64 [99], 3.0 [96,97]
QSGW̃ 2.5 [96], 2.2 [97]
KCW 1.92

Expt. [98] +Eb (1 eV) 2.2

with MBPT calculations from the literature [96,97,99,100]
that cover different flavors of QSGW with and without vertex
corrections. From Ref. [99], we also report the results for
G0W0 calculations on top of PBE. In addition to the QSGW̃
results, where the polarizability includes vertex corrections
(ladder diagrams) by solving a Bethe-Salpeter equation (BSE)
for the two-particle Hamiltonian, we also report QSGW 80
calculations from Ref. [100], which uses an empirical mixing
of 80% QSGW and 20% LDA to generate the xc potential
[101,102].

The band gap of CrI3 gradually increases in going from
LDA to QSGW through HSE and G0W0: with SOC, the gap
is 0.64 eV with LDA, 1.45 eV with HSE, 1.99 eV with G0W0

[99], and between 2.64 [99] and 3.0 [96,97] eV with QSGW .
Including vertex corrections within the QSGW̃ approach re-
duces the band gap from 3.0 eV [96,97] to 2.2–2.5 eV [96,97].
The KCW band gap (calculated on top of LSDA) is 1.92 eV,
which compares well with G0W0 (1.99 eV [99]) and is not
far from QSGW̃ results (2.2–2.5 [96,97] eV). The comparison
with the experimental optical gap (1.2 eV) is not straight-
forward due to the strong excitonic effects that are expected
in 2D and layered materials. If we consider 1 eV of exciton
binding energy as calculated in Ref. [97] through the BSE,
the estimated electronic gap should be around 2.2 eV, which
compares well with KCW (1.92 eV), G0W0 (1.99 eV [99]),
and QSGW̃ (2.2–2.5 eV [96,97]). On the other hand, QSGW
band gaps (2.64 [99] and 3.0 [96,97] eV) are overestimated
with respect to experiments (even if considering the effect of
large exciton binding energies), while HSE (1.45 eV) under-
estimates, although less severely than LDA (0.63 eV). This
resonates with the common knowledge that G0W0 calculations
can often be remarkably accurate, despite their simplified self-
energy, due to a compensation of errors between the lack of
self-consistency and vertex corrections [103].

Similar trends hold also for spin-polarized calculations
without SOC (see Table IV), although the QSGW 80 (2.23 eV
[100]) and also the KCW band gaps (2.22 eV) are now slightly
larger than in G0W0 (2.07 [99]); we have not found in the
literature QSGW̃ results without SOC for a comparison.

To further elucidate the role of spin-dependent screening,
we also calculate the KCW corrections at the RPA level,
i.e., neglecting xc effects in the response function, and ob-
tain larger values for the screening coefficients (that signal
a reduction in electronic screening) such that the band gap
increases by approximately 0.6 eV. This is consistent with the
trend observed in going from QSGW to QSGW̃ [96,97] (see
also Table IV) and supports the importance of going beyond
the RPA to describe electronic screening and predict more
accurately band structure properties.

VI. DISCUSSION

The numerical results presented for GaAs, WSe2,
CsPbBr3, and CrI3 indicate that NC KCW calculations can
provide accurate band structures for semiconductors in the
presence of SOC interactions. Remarkably, the theory is inher-
ently spin-dependent and treats charge-charge, spin-charge,
and spin-spin interactions on the same footing. This aspect has
a few important implications we want to briefly discuss here.
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A. Spin-dependent interaction and screening

The NC Koopmans-functional theory includes spin-
dependent effects in two different ways: by considering a spin-
dependent effective potential for each spin-orbital [Eq. (11)]
and by considering spin-dependent screening effects [see, e.g.,
Eq. (20)]. As argued in Ref. [55], the KI effective potential
[Eq. (11)] transforms the xc potential of the underlying DFT
into a local, orbital- and spin-dependent approximation of the
electronic self-energy beyond the RPA, i.e., including approx-
imate (DFT-based) vertex corrections both in the effective
potential and in the screening. These two effects can be parsed
by considering the relaxed Koopmans functional introduced in
Eq. (9), the relaxed Koopmans potential in Eq. (11), and their
schematic representation given in Fig. 1: the unscreened KI
effective potential involves the product of the bare Hxc kernel
with the WF four-density, where there are always not only
charge-charge terms but also charge-spin and spin-spin terms.
In fact, even for a nonmagnetic system, each WF has a finite
magnetization density that sums up to one and the four-vector
has always at least one nonvanishing spin-component (more
than one if, e.g., Rashba SOC is present).

All these degrees of freedom are coupled by the four-by-
four matrix representing the NC Hxc kernel. The inclusion
of screening effects transforms the bare Hxc kernel into the
screened one via the Dyson equation in Eq. (10), which
involves matrix-matrix products with the spin-dependent
response function. This differs from the standard RPA ap-
proximation where only the classical test-charge-test-charge
interaction is considered [104–106]. A RPA in the Koop-
mans framework essentially amounts to neglecting all the
spin-charge (green) and spin-spin (blue) channels in Fig. 1
or, equivalently, to set to zero all the xc components of the
Hxc kernel in Eq. (11) both in the effective interaction and in
the response function, and ultimately makes the KI potential
a local approximation of the static GW self-energy (COH-
SEX) [55]. The inclusion of xc effects via the Fxc kernel
in the Dyson equation (10) transforms the test charge-test
charge (RPA) response function in the test charge-test elec-
tron response [105–107]. The electrons contributing to the
screening are now dressed by an approximate xc hole and the
potential induced by the additional electron or hole includes
spin-dependent xc interactions beyond the classical Hartree
term. Moreover, this improved response function is used to
screen the bare Hxc kernel which by itself already includes
nonclassical terms.

From the perspective of photoemission experiments, an
accurate theory of band structures should indeed take into ac-
count that an electron removal/addition perturbs not only the
charge distribution of the orbitals but also their spin densities
and the two can be coupled by spin-dependent interactions
such as SOC. We therefore argue that the additional physics
borrowed from that of the homogeneous electron gas via
the screened xc kernel of the underlying density functional
might explain the quality of the results presented here and in
previous benchmarks [50,55,56] and makes Koopmans func-
tionals typically as accurate as state-of-the-art Green’s func-
tion methods.

The crucial role of orbital- and spin-dependent interac-
tions emerges also in MBPT, where it can be taken into
account either by adding second-order exchange diagrams

through vertex corrections or by implementing self-screening
corrections to the GW self-energy [108,109]. Indeed, the
absence of spin-dependent interactions in standard GW man-
ifests through the presence of self-screening in the RPA,
where an electron screens itself. Aryasetiawan, Sakuma, and
Karlsson have shown [108] that removing the self-screening
terms in the GW self-energy is partially equivalent to adding
vertex corrections in the form of exchange diagrams, which
leads to band gaps of semiconductors that better agree with
experiments [109]. While this physics is not captured by
standard GW and RPA, and requires self-screening or vertex
corrections to be treated in MBPT, it is naturally built in for
Koopmans functionals and, likely, for other orbital-density-
dependent functionals that implement a generalized PWL.

B. Spin torque

Common density functionals assume the magnetization
m(r) to be locally collinear to the exchange-correlation “mag-
netic field” Wxc(r) [15]. Strictly speaking, this is allowed
only within purely local functionals like LSDA, but it is also
used in the context of the generalized gradient approximation
(GGA) [110]. This approximation implies a vanishing spin
torque m(r) × Wxc(r) everywhere in space. While including
the spin torque within a pure density-functional framework is
a nontrivial task, approaches based on the optimized effective
potential (OEP) [69,111], which involve the knowledge of
the KS orbitals, and source-free functionals [112,113] have
been developed for that purpose. At variance with standard
DFT, the NC Koopmans potential [Eq. (11)] can naturally
lead to spin-orbit torque: the WF spin densities are not forced
to be collinear among themselves and all aligned to the total
spin magnetization. This is also in line with recent numerical
evidences that the NC extension of Perdew-Zunger self-
interaction correction (PZ-SIC) functional [114], which is also
an orbital-density dependent functional, produces nonvanish-
ing spin torque [115]. We therefore expect similar conclusions
to apply to the NC Koopmans functional discussed here and
even more to the KIPZ Koopmans functional [48], which adds
to the basic KI functional an extra orbital-dependent term
inspired by the PZ-SIC scheme.

VII. SUMMARY AND CONCLUSIONS

We have developed NC Koopmans-compliant spectral
functionals and discussed the role of spin-dependent inter-
actions and screening in the Koopmans theory. In particular,
we propose a NC perturbative formulation based on MLWFs
and DFPT, which allows calculating accurate band struc-
tures in the presence of SOC with a one-shot correction on
top of LSDA calculations. The approach has been validated
on GaAs, WSe2, CsPbBr3, and CrI3, where the predicted
band gaps compare well with experiments and match in
accuracy state-of-the-art MBPT. These results reiterate the
message that Koopmans functionals (i) are able to deliver
charged excitations that are as accurate as those obtained
from diagrammatic approaches and (ii) thus provide a reli-
able and efficient alternative when such approaches become
unfeasible due to the higher computational complexity and
cost.
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We have argued that the NC KCW theory presented here
includes spin-dependent interactions and screening effects
that are missing in standard diagrammatic approaches based
on the RPA. Indeed, the NC KCW approach involves simple
functionals of the charge and spin-vector densities of WFs,
where the interaction kernel couples the spin and charge de-
grees of freedom, even for nonmagnetic systems with TR
symmetry. Also, the screening of the interaction is treated
as noncollinear and involves spin-dependent terms originating
both from the kernel and the response function of the charge
and spin magnetization densities.

The method is computationally efficient and simple, re-
quiring essentially the same resources and convergence tests
of a NC phonon calculation in DFPT. That, together with
automated Wannierization protocols [116–118], makes it par-
ticularly suited for high-throughput computational screening
of materials databases and for studying complex materials,
also at finite temperature [35,119,120].

Finally, we note that accurate spin-resolved band structures
are very relevant not only for spectral properties such as band
gaps or effective masses, but also for calculating magnetic ex-
change constants through the magnetic force theorem [8] and
other response properties; the impact of NC KCW corrections
beyond band structures will be the subject of future work.

The data used to produce the results of this work are avail-
able at the Materials Cloud Archive [121].
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APPENDIX A: SECOND-ORDER EXPANSION OF
NONCOLLINEAR KOOPMANS-COMPLIANT

FUNCTIONALS

In the following we provide more details about the
derivation of the second-order expansion of the noncollinear
Koopmans-compliant functional given in Eq. (1). We start by
evaluating Eq. (3); first we consider the scalar term:

〈ψi|dVHxc

dfi
|ψi〉 =

∑
σ,σ ′

∫
dr dr′ ψ∗

i (r, σ )
dVHxc(r)

dfi
δσ,σ ′δ(r − r′)ψi(r′, σ ′)

=
∑

σ

∫
dr nσ

i,ρ (r)
dVHxc(r)

dfi

=
∫

dr ni,ρ (r)
∫

dr′
(

δVHxc(r)

δρ(r′)
dρ(r′)

dfi
+

∑
α

δVHxc(r)

δmα (r′)
dmα (r′)

dfi

)

=
∫

dr dr′ ni,ρ (r)

(
Fρ,ρ

Hxc (r, r′)
dρ(r′)

dfi
+

∑
α

Fρ,mα

xc (r, r′)
dmα (r′)

dfi

)
, (A1)

where we use completeness, the chain rule for functional derivatives, and introduce the Hartree and xc kernel F i, j
Hxc. Now we

consider the noncollinear xc terms:

〈ψi|dWxc,α

dfi
σα|ψi〉 =

∑
σ,σ ′

∫
dr dr′ ψ∗

i (r, σ )
dWxc,α (r)

dfi
σαδ(r − r′)ψi(r′, σ ′) =

∫
dr ni,mα

(r)
dWxc,α (r)

dfi

=
∫

dr ni,mα
(r)

∫
dr′

⎛
⎝δWxc,α (r)

δρ(r′)
dρ(r′)

dfi
+

∑
β

δWxc,α (r)

δmβ (r′)
dmβ (r′)

dfi

⎞
⎠

=
∫

dr dr′ ni,mα
(r)

⎛
⎝F mα,ρ

xc (r, r′)
dρ(r)

dfi
+

∑
β

F mα,mβ

xc (r, r′)
dmβ (r′)

dfi

⎞
⎠. (A2)
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Summing the two terms one obtains

〈ψi|dVHxc

dfi
+

∑
α

dWxc,α

dfi
σα|ψi〉 =

∫
dr dr′

⎡
⎣ni,ρ (r)

⎛
⎝Fρ,ρ

xc (r, r′)
dρ(r)

dfi
+

∑
β

Fρ,mβ

xc (r, r′)
dmβ (r′)

dfi

⎞
⎠

+ ni,mα
(r)

⎛
⎝F mα,ρ

xc (r, r′)
dρ(r)

dfi
+

∑
β

F mα,mβ

xc (r, r′)
dmβ (r′)

dfi

⎞
⎠

⎤
⎦. (A3)

We leverage the symmetry between charge and magnetization
that is manifest in the equations above and introduce a more
compact notation:

ρ(r) = (ρ(r), mx(r), my(r), mz(r)),

ni(r) = (
ni,ρ (r), ni,mx (r), ni,my (r), ni,mz (r)

)
,

σ̃ = (σ0, σx, σy, σz ),

VKS(r) = (VKS(r),VKS,x(r),VKS,y(r),VKS,z(r)),

VHxc(r) = (VHxc(r),Wxc,x(r),Wxc,y(r),Wxc,z(r)),

FHxc(r, r′) =

⎛
⎜⎜⎜⎜⎜⎝

Fρ,ρ
Hxc Fρ,mx

xc F
ρ,my

xc Fρ,mz
xc

F mx,ρ
xc F mx,mx

xc F
mx,my

xc F mx,mz
xc

F
my,ρ

xc F
my,mx

xc F
my,my

xc F
my,mz

xc

F mz,ρ
xc F mz,mx

xc F
mz,my

xc F mz,mz
xc

⎞
⎟⎟⎟⎟⎟⎠.

With this compact notation we can rewrite sums as matrix-
vector products and obtain Eq. (6):

〈ψi|dVHxc

dfi
· σ̃|ψi〉 =

∫
dr dr′ni(r)FHxc(r, r′)

dρ(r′)
dfi

, (A4)

which makes transparent that the NC case can be recast in the
same form of a collinear problem for four-vector densities and
a four-by-four matrix for the xc kernel.

Now we derive a noncollinear Dyson equation for the
four-density; the first step is to explicitly calculate the total
derivative:

dρ(r)

dfi
= ni(r) +

∫
dr′ ∑

j

f j

∑
α

δn j (r)

δVKS,α (r′)
dVKS,α (r′)

dfi

= ni(r) +
∫

dr′ ∑
α

δρ(r)

δVKS,α (r′)
dVKS,α (r′)

dfi

= ni(r) +
∫

dr′χ0(r, r′)
dVHxc(r′)

dfi
, (A5)

where we use that only the Hartree and xc part of the total KS
potential depend on occupancies and introduce the response
function as a four-by-four matrix:

χ0(r, r′) =

⎛
⎜⎜⎜⎜⎜⎝

χ
ρ,ρ
0 χ

ρ,mx
0 χ

ρ,my

0 χ
ρ,mz

0

χ
mx,ρ
0 χ

mx,mx
0 χ

mx,my

0 χ
mx,mz
0

χ
my,ρ

0 χ
my,mx

0 χ
my,my

0 χ
my,mz

0

χ
mz,ρ

0 χ
mz,mx

0 χ
mz,my

0 χ
mz,mz

0

⎞
⎟⎟⎟⎟⎟⎠. (A6)

If we use Eq. (A4), then Eq. (A5) becomes a Dyson equa-
tion for the change in the density:

dρ(r)

dfi
= ni(r) +

∫
dr′χ0(r, r′)

∫
dr′′FHxc(r′, r′′)

dρ(r′′)
dfi

.

(A7)

Its iterative solution can be recast in a compact form by
introducing the interacting response function

χ(r, r′) = χ0(r, r′) +
∫

dr′′χ0(r, r′′)
∫

dr′′′FHxc(r′′, r′′′)

× χ(r′′′, r′), (A8)

which allows writing Eq. (A7) as in Eq. (7):

dρ(r)

dfi
= ni(r) +

∫
dr′χ(r, r′)

∫
dr′′FHxc(r′, r′′)ni(r′′).

(A9)

Finally, we obtain the second-order noncollinear Koopmans-
compliant functional:

�
(2)rKI
i = 1

2
fi(1 − fi )

∫
dr dr′ni(r)FHxc(r, r′)

(
ni(r′)

+
∫

dr′′χ(r′, r′′)
∫

dr′′′FHxc(r′′, r′′′)ni(r′′′)

)

(A10)

= 1

2
fi(1 − fi )

∫
dr dr′ni(r)FHxc(r, r′)ni(r′),

(A11)

where we define the screened Hartree and xc kernel as in
Eq. (10):

FHxc(r, r′) = FHxc(r, r′) +
∫

dr′′FHxc(r, r′′)
∫

dr′′′

× χ(r′′, r′′′)FHxc(r′′′, r′). (A12)

APPENDIX B: NONCOLLINEAR KOOPMANS-WANNIER
HAMILTONIAN

As discussed in Sec. III B, we use WFs as a proxy for
localized variational orbitals. Here, we provide a detailed
derivation of the matrix elements of the Koopmans-Wannier
Hamiltonian given in Eqs. (13)–(15). We work with unrelaxed
quantities as the screening effects are accounted for with the
screening coefficients {α} (see Sec. III C). Let us start from
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the matrix elements in real space:

	HuKI(2)
i j (R) =

∑
α

∫
dr 〈wi(r + R)|σα|w j (r)〉VKI(2)

0 j,α (r)

=
∑

α

∫
dr nαR

i j (r)VKI(2)
0 j,α (r)

=
∫

dr nR
i j (r)VKI(2)

0 j (r), (B1)

where the KI potential VKI(2)
0 j (r) is defined in Eq. (11) and,

expanded on Pauli matrices, we define

nR
i j (r) = 1

Nk

∑
k

eik·R 1

Nq

∑
q

eiq·rni j
k,k+q(r), (B2)

with

ni j
k,k+q(r) = [

ni j,ρ
k,k+q(r), ni j,mx

k,k+q(r), n
i j,my

k,k+q(r), ni j,mz

k,k+q(r)
]

(B3)

and

ni j,α
k,k+q(r) = 〈

uW
i,k(r)

∣∣σα

∣∣uW
j,k+q(r)

〉
. (B4)

In the expression above, uW
ik (r) is the periodic part of Bloch

state in the Wannier gauge. Using the definition of the
monochromatic decomposition of the unscreened perturbing
potential Vpert,q in Eq. (19) allows us to rewrite the KI poten-
tial as a purely scalar term plus an r-dependent contribution,
which can be written as well as a sum of monochromatic
perturbations:

VuKI(2)
0 j (r) = −1

2
	

KI(2)
0j + (1 − fi )

∑
q

eiq·rV0 j
pert,q · σ̃. (B5)

The first term reads

	
uKI(2)
0j =

∫
dr dr′ n0 j (r)FHxc(r, r′)n0 j (r′)

= 1

Nq

∑
q

∫
dr n0 j

q (r)V0 j
pert,q. (B6)

So the matrix elements of the Koopmans-Wannier Hamilto-
nian are

	HuKI(2)
i j (R) = − 1

2	
uKI(2)
0j δR,0δi, j + 	HuKI(2)

i j,r (R), (B7)

where the second term comes from the r-dependent part of the
potential and reads

	HuKI(2)
i j,r (R) = (1 − fi )

∫
dr

∑
q

eiq·rV0 j
pert,q

1

Nk

∑
k

eik·R 1

Nq′

∑
q′

eiq′ ·rni j
k,k+q′

= (1 − fi )
1

Nk

∑
k

eik·R 1

N2
q

∑
qq′

∫
dr ei(q+q′ )·rV0 j

pert,q · ni j
k,k+q′

= (1 − fi )
1

Nk

∑
k

eik·R 1

N2
q

∑
qq′

∑
GG′

∫
dr ei(q+q′ )·rei(G+G′ )·rV0 j

pert,q(G) · ni j
k,k+q′ (G′)

= (1 − fi )
1

Nk

∑
k

eik·R 1

Nq

∑
q

∑
G

V0 j
pert,q(G)ni j

k,k−q(−G)

= (1 − fi )
1

Nk

∑
k

eik·R 1

Nq

∑
q

∑
G

V0 j
pert,q(G)

[
n ji

k−q,k(G)
]∗

. (B8)

In the last line we use the following:

ni j
k,k−q(−G) =

∫
dr ni j

k,k−q(r)e−iG·r

=
{∫

dr
[
ni j

k,k−q(r)
]∗

eiG·r
}∗

=
{∫

dr
〈
uW

k−q, j (r)
∣∣σ̃∣∣uW

k,i(r)
〉
eiG·r

}∗

= [
n ji

k−q,k(G)
]∗

. (B9)

APPENDIX C: DERIVATION OF THE CORRECTIONS
BEYOND THE SECOND-ORDER APPROXIMATION

We give here additional details about the correction be-
yond the second-order expansion introduced in Sec. III D.
Without loss of generality, and to keep the notation sim-
ple, we neglect the spin degrees of freedom. The final and

general results reported in the main text can be obtained
by upgrading the single-component objects (orbitals, orbital
densities, and charge densities) of the following derivation to
the corresponding four-components and the scalar Hxc kernel
FHxc(r, r′) to a four-by-four matrix. As discussed in the main
text, the renormalization of the screening coefficient is given
in terms of the correction 	u

i = �uKI
i − �

(2)uKI
i :

	αi = 	u
i

�
(2)uKI
i

. (C1)

This term depends on the occupation of the orbital at hand and
it is ill defined at integer occupations as both the numerator
and the denominator are exactly zero (this is because both
�uKI

i and �
(2)uKI
i are exactly zero in this limit). For the case

of occupied states, we avoid this ambiguity by evaluating this
term in the limit of the occupation tending to one from the left
(for empty states the derivation requires one to take the limit
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for the occupation tending to zero from the right):

	αi = lim
δ→0

[
�uKI

i (δ) − �
(2)uKI
i (δ)

]
�

(2)uKI
i (δ)

, (C2)

where we define δ = 1 − fi. In this limit the full �uKI
i correc-

tion reads

�uKI
i (δ) = −[

E (N−1+ fi )
i − E (N−1)

] + fi
[
E (N ) − E (N−1)

i

]
= E (N−1)

i − E (N−δ)
i + (1 − δ)

[
E (N ) − E (N−1)

i

]
= E (N ) − E (N−δ)

i − δ
[
E (N ) − E (N−1)

i

]
= δλi − 1

2δ2ki + o(δ3) − δ
(
λi − 1

2 ki + 	̃u
i

)
= 1

2δ(1 − δ)ki − δ	̃u
i + o(δ3)

= �
(2)uKI
i − δ	̃u

i + o(δ3), (C3)

where λi = ∂EDFT

∂δ
|0 = 〈φi|ĤDFT|φi〉, ki = ∂2EDFT

∂δ2 |0 =
〈ni|FHxc|ni〉, and 	̃u

i = E (N ) − E (N−1)
i − λi + 1

2 ki. In the
expression above it is understood that all the DFT
total energies E (M )

i at different numbers of particles M
are computed in the frozen orbital approximation. The
renormalization of the screening coefficient becomes

	αi = lim
δ→0

[
�uKI

i (δ) − �
(2)uKI
i (δ)

]
�

(2)uKI
i (δ)

= lim
δ→0

−δ	̃u
i

1
2δ(1 − δ)ki

= −2	̃u
i

〈ni|FHxc|ni〉 , (C4)

which is the final result reported in the main text.

Equivalently, from the generalized piecewise linearity con-
dition of KI we want the KI Hamiltonian to be such that

〈φi|ĤKI
i |φi〉 = dEKI

dfi
= E (N ) − E (N−1)

i . (C5)

Assuming we can recast the screened KI Hamiltonian as the
product of a screening coefficient α̃i times the unscreened
second-order approximation, the equation above reads

λi + α̃i〈φi|VuKI(2)
i |φi〉 = λi − 1

2 ki + 	̃r
i . (C6)

Using the fact that 〈φi|VuKI(2)
i |φi〉 = −〈ni|FHxc|ni〉/2 =

−ku
i /2, the effective screening coefficient α̃i becomes

α̃i = kr
i − 	̃r

i

ku
i

. (C7)

Replacing the fully relaxed correction beyond second order
	̃r

i with its unscreened counterpart 	̃u
i leads to

α̃i � kr
i − 	̃u

i

ku
i

= αi − 2	̃u
i

〈ni|FHxc|ni〉 (C8)

and to the final result

	αu
i = −2	̃u

i

〈ni|FHxc|ni〉 . (C9)

This shows that neglecting 	̃i reduces to the linear response
screening coefficients [49,58]. The additional contribution ac-
counts for the deviation of the second-order Taylor expansion
from the 	SCF DFT energy E (N ) − E (N−1)

i .
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