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Biomolecular condensates help organize the cell cytoplasm and nucleoplasm into spatial compartments with
different chemical compositions. A key feature of such compositional patterning is the local enrichment of
enzymatically active biomolecules which, after transient binding via molecular interactions, catalyze reactions
among their substrates. Thereby, biomolecular condensates provide a spatial template for nonuniform concen-
tration profiles of substrates. In turn, the concentration profiles of substrates, and their molecular interactions
with enzymes, drive enzyme fluxes which can enable novel nonequilibrium dynamics. To analyze this generic
class of systems, with a current focus on self-propelled droplet motion, we here develop a self-consistent sharp
interface theory. In our theory, we diverge from the usual bottom-up approach, which involves calculating the
dynamics of concentration profiles based on a given chemical potential gradient. Instead, reminiscent of control
theory, we take the reverse approach by deriving the chemical potential profile and enzyme fluxes required to
maintain a desired condensate form and dynamics. The chemical potential profile and currents of enzymes come
with a corresponding power dissipation rate, which allows us to derive a thermodynamic consistency criterion for
the passive part of the system (here, reciprocal enzyme-enzyme interactions). As a first-use case of our theory,
we study the role of reciprocal interactions, where the transport of substrates due to reactions and diffusion
is, in part, compensated by redistribution due to molecular interactions. More generally, our theory applies to
mass-conserved active matter systems with moving phase boundaries.

DOI: 10.1103/PhysRevResearch.6.033082

I. INTRODUCTION

Biomolecular condensates contribute to intracellular orga-
nization [1–7] by controlling the local chemical composition.
The underlying mechanism, where a liquid mixture phase
separates according to differences in the interactions among
its components, enables condensates to naturally buffer
molecules [8] and compartmentalize reactions [4]. Short-
ranged interactions give rise to an interfacial tension between
the different phases, which thereby gradually coarsen into a
single droplet through Ostwald ripening [9–12]. For systems
in thermal equilibrium, this coarsening process can only be
arrested through long-ranged reciprocal interactions, for ex-
ample, due to nonlocal elastic stresses in polymeric gels [13]
or electrostatic interactions in block copolymer melts [14] as
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well as charged droplets [15,16]. In contrast, cells combine
phase separation with a myriad of active processes which
consume chemical energy [17] to fuel important cellular tasks
such as gene transcription [18–21], splicing [22], ribosomal
subunit assembly [23], or midcell localization during cell di-
vision [24]. The underlying irreversible chemical reactions,
and resulting mass currents, enable “active droplets” to ex-
hibit a wealth of novel dynamics not encountered in thermal
equilibrium [3,6,25].

Previous studies demonstrated that continuous turnover
of condensate material via chemical reactions [25–35], and
the resulting material fluxes, enable multidroplet coexistence
[29,30,33–35] and droplet division [32]. These phenomena
can be explained by a formal mapping to a microphase sep-
arating system with long-ranged interactions [34,36]. Here,
building on our previous work [37], we study a different
class of systems which are constrained by mass conservation.
We consider enzymes that spontaneously phase separate, or
localize to an already existing condensate, and regulate chem-
ical reactions among other molecules. To that end, enzymes
transiently bind substrates and catalytically lower the acti-
vation barrier for converting these substrates into products.
For example, in the bacterium Myxococcus xanthus, a mobile
cluster of PomX and PomY proteins bound to the nucleoid
regulates the ATP-dependent cycling of PomZ between two
conformations [24,38–40]. As a second example, consider
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transcriptional condensates in the eukaryotic cell nucleus,
which enrich RNA Polymerase II, transcription factors, Me-
diator, and other proteins [18,20]. As RNA Polymerase II
assembles RNA from individual nucleotides, attractive elec-
trostatic interactions between the negatively charged RNA
and the positively charged transcription factors favor further
condensate growth. At high RNA concentrations, however,
repulsive interactions due to volume exclusion lead to con-
densate dissolution [21,41,42]. Such feedback mechanisms
between active reactions and passive phase separation are
ubiquitous in the complex intracellular environment, and in
membraneless organelles such as the nucleolus [23].

For this generic class of systems, the nonequilibrium chem-
ical reactions catalyzed by enzymes give rise to substrate
concentration gradients which, in turn, drive enzyme fluxes
via reciprocal interactions. As we have previously shown,
these two coupled mechanisms can lead to condensate self-
propulsion, positioning, interrupted coarsening, and division
[37]. Here, we significantly extend our understanding of such
systems by developing a theoretical framework to determine
the velocity of self-propelling droplets and phase bound-
aries in arbitrary dimensions. We achieve this by deriving a
self-consistent sharp interface theory, which proceeds in two
steps. At the outset, we determine the enzyme currents and
chemical potential profile necessary to maintain the droplet
in a nonequilibrium steady state with constant shape and
velocity. These currents, in the inferred chemical potential
landscape, define the rate of free-energy dissipation required
to induce droplet motion with a given velocity. This energy
is injected by active processes, which perform work on the
system by applying an active force field. Since the active
force field accounts for all sources and sinks of energy,
the chemical potential profile must correspond to reciprocal
enzyme-enzyme interactions. In this sense, the enzymes act as
a purely passive phase-separating component. Following this,
we derive a thermodynamic consistency relation grounded in
the fundamental principle that passive systems reach thermal
equilibrium by minimizing their free energy. We apply our
theoretical framework to a model where condensate motion is
driven by interactions between the various chemical species
in the bulk and does not require viscous hydrodynamic cou-
pling. This stands in contrast to previous studies, where liquid
droplets propelled through Marangoni flows in viscous flu-
ids [43–45], through active stresses on surfaces [46–51], or
by altering their wetting properties [52,53]. While we have
previously considered a scenario where enzyme-substrate and
enzyme-product interactions are weak, we here relax this as-
sumption. To that end, we explicitly account for the effect
of enzyme concentration gradients on the diffusion of sub-
strates and products, and study how this affects the motion
of phase boundaries. Our analysis further elucidates the range
of parameters in which droplet self-propulsion can occur, and
identifies a subcritical bifurcation as a function of the mobili-
ties of enzymes as well as substrates and products.

The outline of the present article is as follows. In
Sec. II, we discuss the theoretical framework of describing
a mass-conserving multicomponent mixture containing en-
zymes which phase-separate through attractive interactions
among themselves, and also interact with other molecular
species such as substrates and products. Moreover, we give

an account of nonequilibrium reactions that can give rise
to inhomogeneous concentration profiles of substrates and
products, thereby inducing an inhomogeneous driving force
on the enzymes. As the central contribution of our work,
in Sec. III we show how the core of the model can be re-
duced to an implicit description that is independent of the
specific details of the interactions and reactions that we have
introduced in the preceding discussion. In doing so, we de-
rive self-consistency relations that characterize the enzyme
currents, chemical potential profile, and the resulting droplet
velocity for an arbitrary inhomogeneous driving force. We test
our theory and demonstrate that liquidlike droplets are more
readily set in motion than solidlike condensates. In Sec. IV,
we discuss the impact of reciprocal interactions. To that end,
as discussed in detail in Appendix D, we first show how re-
ciprocal interactions can give rise to discontinuities and kinks
in the substrate and product concentration profiles, how the
reactants are redistributed, and how the resulting concentra-
tion profiles can be determined. With these tools in hand,
we derive the conditions to observe droplet self-propulsion
in the presence of weakly or strongly reciprocal interactions,
thereby complementing our previous work [37]. We find that
the absence or presence of reciprocal interactions determines
if the onset of self-propulsion is continuous or discontinuous.

II. ENZYME-ENRICHED CONDENSATES

A. Thermodynamic currents

Biomolecular condensates can consist of many interacting
components [6]. In this study, we investigate regular mixtures
of enzyme, substrate, and product molecules in solution. We
assume that the enzymes spontaneously phase separate in
thermal equilibrium and that they act as scaffolds which tran-
siently bind substrates and products. Hence, in the following,
the condensate is synonymous to regions where the enzyme
concentration c(x, t ) is high. Phase separation is driven by a
competition between enzyme insolubility and entropy, which
we encode into a Ginzburg-Landau expansion of the free-
energy density,

f0(c) = − r

2
(c − c̃)2 + u

4
(c − c̃)4 + κ

2
|∇c|2, (1)

near the critical point. The control parameter r > 0 indicates
attractive enzyme-enzyme interactions, which lead to phase
separation, and measures the distance from the critical point.
The parameter u > 0 is required to thermodynamically stabi-
lize the system, so that the free-energy density has the form of
a double-well potential. Finally, a positive stiffness parameter,
κ > 0, penalizes concentration gradients.

We are interested in a scenario where the concentrations
of substrates, s(x, t ), and products, p(x, t ), or the molec-
ular volumes ν of these particles, are small. In that case,
substrates and products are associated with the free-energy
density of an ideal mixture, fI(�) = kBT � log(� ν), where
� ∈ {s, p}, and kBT is the thermal energy. Finally, we pa-
rameterize enzyme-substrate and enzyme-product interactions
with Flory-Huggins (FH) parameters χs and χp, respectively.
Summing up all of these contributions, the thermodynamics
of the mixture are characterized by the effective free-energy
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FIG. 1. Sketch of the model. Gradients in chemical potential
correspond to thermodynamic forces which give rise to average drift
velocities and hence particle currents, as described by Eq. (3). For
enzymes, these currents are driven by purely passive enzyme-enzyme
interactions, as well as interactions with substrates and products. En-
ergy is injected into the system via reactions which generate substrate
and product concentration gradients and fluxes. This motif can give
rise to self-propelling states.

functional,

F =
∫

dd x [ f0(c) + fI(s) + fI(p) + χs c s + χp c p], (2)

where d refers to the number of spatial dimensions. Note
that, in general, the interaction between different species can
be more intricate than the current bilinear form, e.g., when
substrate and product concentrations are large enough for their
virial coefficients to become relevant [21].

When a particle of species � ∈ {s, p, c} is added or re-
moved at a specific location x, the system’s free energy
incurs thermodynamic costs given by the corresponding
chemical potential μ� = δF/δ�. In the framework of linear
nonequilibrium thermodynamics [54,55], gradients in chem-
ical potentials act as thermodynamic forces, corresponding
to conservative currents that drive particle exchange between
adjacent points in space. To linear order, one has (Fig. 1)⎡

⎣js

jp

jc

⎤
⎦ = −

⎡
⎣�(s) 0 0

0 �(p) 0
0 0 M(c)

⎤
⎦ ·

⎡
⎣∇μs

∇μp

∇μc

⎤
⎦, (3)

where we have disregarded any cross-terms and considered
the matrix of Onsager coefficients (mobilities) to be diagonal.
For simplicity, we assume that the mobilities �(s) for the
substrates and products share the same functional dependence,
which in general is distinct from the mobility M(c) for the
enzymes. The thermodynamic equilibrium state of the system,
defined by ∇μ� = 0 for each � ∈ {s, p, c}, is completely in-
dependent of the matrix of Onsager coefficients. Hence, at this
point, there are no constraints on the mobility functions yet.

In the following, we first study the dynamics of the
enzymes, which is characterized by the continuity equa-
tion ∂t c = −∇ · jc. With the above expression for the enzyme
current jc this takes the form of a generalized Cahn-Hilliard
(CH) model

∂t c(x, t ) = ∇ · [M(c) ∇(μ0(c) + χss + χp p)]. (4)

Here, the chemical potential due to enzyme-enzyme interac-
tions, μ0(c) = −r(c − c̃) + u(c − c̃)3 − κ∇2c, is identical to
the CH model [56,57]. For r > 0, the CH model shows phase
separation into enzyme-rich and enzyme-poor regions, with
concentrations c± = c̃ ± √

r/u. In the following, consistently
with our previous work [37], we choose c+ as unit of con-
centration, and ε0 := r c+ as unit of energy. In contrast to
the CH model, the enzyme currents in Eq. (4) are not only
driven by enzyme-enzyme interactions but also by concentra-
tion gradients in substrates and products. We will next discuss
mechanisms that can give rise to nonuniform substrate and
product concentration profiles.

B. Nonequilibrium reactions

In addition to the thermodynamic currents given by Eq. (3),
biological systems also contain active processes that break
detailed balance. As in our prior work [37], we consider a
specific form of activity, whereby the enzymes E catalyze a
chemical reaction that turns substrates S into products P via a
Michaelis-Menten-like kinetics,

E + S
k1� ES−−⇀↽ EP � E + P. (5)

For each step of this reaction kinetics, the framework of
nonequilibrium thermodynamics relates the ratio between the
forward and backward reaction rates to the change in free
energy [17,37]. To complete the description and determine
the relative reaction rates of the different steps, one needs
to invoke transition state theory and take into account the
corresponding potential barriers that have to be overcome
during a reaction [17,37]. Here, we focus on a simplified sce-
nario where the first step E + S � ES is rate-limiting (high
potential barrier), and has no thermodynamically preferred
direction (equal forward and backward rates). In contrast, we
assume that the non-rate-limiting second step ES−−⇀↽ EP is
strongly biased toward products which have lower internal
energy than substrates. The overall reaction then proceeds
with a net rate k1 c s proportional to the concentration c ≡ [E ]
of enzymes and the concentration s ≡ [S] of substrates (Fig.
1). In summary, the net reaction rate is determined by the
first reaction step, while free energy is released in the second
reaction step.

To maintain the dynamics and keep the system away from
thermodynamic equilibrium,1 the free energy released from
converting substrate into product needs to be resupplied by
exchanging product with substrate,

P + F
k2−−⇀↽ S + W , (6)

along a separate reaction path which consumes fuel F and
releases waste W . We assume that the forward reaction of
Eq. (6) is driven by an excessive abundance of (chemostatted)
fuel, while the backward reaction is limited by negligible con-
centrations of (chemostatted) waste. The mass action law then

1Alternatively, one could also consider a sufficiently large domain
in which substrates are abundant, so that the system does not reach
thermodynamic equilibrium on the timescales of interest.
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suggests a net reaction rate k2 p proportional to the concen-
tration p ≡ [P] of products (Fig. 1). The rate coefficient k2 is
spatially uniform if the fuel molecules are very small and thus
have a high diffusion coefficient, or if the large abundance of
fuel saturates the binding kinetics of product and fuel. Thus, as
further discussed in Appendix A, we consider a simplified sce-
nario where the reaction rate k2 is concentration-independent.

With the simplifications outlined above, the reaction-
diffusion dynamics of substrates and products are given by
(Fig. 1)

∂t s = ∇ · (D ∇s + � s χs∇c) − k1 c s + k2 p, (7a)

∂t p = ∇ · (D ∇p + � pχp∇c) + k1 c s − k2 p. (7b)

Here, to recover Fick’s law of linear diffusion starting from
the fluxes described by Eq. (3) and the free-energy Eq. (2),
we have assumed �(s) = � s and �(p) = � p for the mo-
bility functions, with constant mobility coefficient �. The
physical interpretation of this choice is that the chemical
potentials μ�, where � ∈ {s, p}, give rise to average drift ve-
locities v� = −�∇μ�. For thermal Brownian motion of the
particles, the diffusivity is set by the Einstein-Smoluchowsky
relation D = � kBT [58]. Here, we take the liberty of devi-
ating from this relation, as the system is considered to be
driven away from thermal equilibrium by active processes
that break detailed balance. The decay rate of products sets
a characteristic timescale for the reaction-diffusion dynamics,
τ0 := k−1

2 , while the corresponding diffusion length sets the
length scale, l0 := √

D/k2.
We have previously shown that the coupled system of

Eqs. (4) and (7) can give rise to self-propelling droplet states
[37]. The mechanism underlying this symmetry breaking is
a feedback loop whereby droplet motion leads to asym-
metric substrate and product concentration profiles, which
drive enzyme currents, which in turn sustain droplet mo-
tion if enzyme-substrate interactions are more favorable than
enzyme-product interactions. We have previously shown that
this nonequilibrium steady state can be accessed if the en-
zyme mobility is sufficiently high and if the reaction rates lie
within some optimal range. To better understand the under-
lying physics, in the present work, we focus on the analysis
of droplets that exhibit a traveling steady state which moves
with velocity v. These droplets are characterized by a traveling
enzyme concentration profile c(x − vt ), which will be the
focus of the next section. Thus, we substitute the traveling
wave ansatz s(x, t ) = s(x − vt ) and p(x, t ) = p(x − vt ) with
the Galilean coordinate transformation z := x − vt . In the cor-
responding comoving frame, the steady-state concentrations
of substrates and products are determined by

0 = ∇ · (v s + D ∇s + � s χs∇c) − k1 c s + k2 p, (8a)

0 = ∇ · (v p + D ∇p + � pχp∇c) + k1 c s − k2 p, (8b)

where the gradient ∇ is taken with respect to z.
Consider now a single round enzyme droplet characterized

by a domain D := {z : |z| < R} with high enzyme concentra-
tion c(z) = c+, which is surrounded by an enzyme-depleted
domain (|z| � R) with concentration c(z) = c−. Given such
an enzyme concentration profile, we solved Eq. (8) by us-
ing finite-element methods (FEM) implemented in FEniCSx
[59–63]. To emulate the infinitely large open space through

FIG. 2. Concentration profiles of substrates and products for a
3D enzyme droplet which has radius R (scale bar). We here assume
that the enzyme-rich region (with concentration c+) has a sharp
interface (black circle) with the enzyme-poor region (concentration
c−). We obtain the steady-state concentration profiles by solving
Eq. (8) numerically using FEM, for a scenario where the droplet
moves with a prescribed constant speed v = 4.14 l0/τ0 through an
open domain. Colored arrows illustrate reactive fluxes: Enzymes cat-
alyze the conversion of substrates into products with rate k1 c s, while
substrates are replenished from products with rate k2 p. Upper panel
(blue) shows product concentration profile relative to the far-field,
δp = p − p∞, while lower panel (red) shows substrate concentra-
tion profile relative to the far-field, δs = s − s∞, both in units of
the enzyme concentration c+ within the droplet. Vector field (thin
black arrows) indicates the excess diffusive currents of substrates
and products (a.u.) relative to the comoving frame. The remaining
parameter values are c− = 0.5c+, R = l0, k1 = 2k2/c+, � = 0, and
s + p = c+.

which the droplet moves, we imposed Dirichlet boundary
conditions at the boundary of the finite simulation domain.
For the corresponding values of the far-field concentrations,
we used the reactive equilibria s∞ = n/(1 + k1c∞/k2) and
p∞ = n − s∞, where n is the total average concentration
of substrates and products and c∞ := lim|z|→∞ c(z). In the
present manuscript, since our main focus is not on condensate
growth and dissolution, we neglect the supersaturation of the
enzymes and thus make the approximation c∞ ≈ c−.

The resulting concentration profiles and fluxes of sub-
strates and products are shown in Fig. 2. Inside the conden-
sate, where the enzyme concentration is high, substrates are
converted into products. Outside the condensate, products are
restored to substrates. These chemical reactions lead to con-
centration gradients which drive diffusive fluxes. As indicated
by the vector fields in Fig. 2, products are eliminated from
the droplet by diffusing out, while substrates are replenished
in the droplet by diffusing in. Taken together, these reactions
and diffusion form a closed cycle of currents which maintains
the nonequilibrium steady state. Finally, because the conden-
sate moves ballistically, all concentration fields are advected
rearwards in the droplet frame of reference. Due to this effect,
the extrema of the substrate and product concentration profiles
trail behind the centroid of the condensate. With increasing
droplet speed, the maximum of the product concentration
profile and the minimum of the substrate concentration profile
move closer to the trailing edge of the condensate. It is this
concentration gradient of substrates and products which drives
droplet motion.
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III. SELF-CONSISTENCY RELATION FOR DRIVEN
CONDENSATE MOTION

As a result of enzyme-mediated reactions, the concentra-
tion profiles of both substrates and products are in general
nonuniform. These nonuniform distributions result in enzyme
currents driven by enzyme-substrate and enzyme-product
interactions, as described by the generalized CH equa-
tion [Eq. (4)]. The associated thermodynamic force is given
by

f (x, t ) := −∇[χs s(x, t ) + χp p(x, t )]. (9)

While we are using this specific form here, the theory
presented in the following is independent of the specific
physical mechanism that generates the force field f (x, t ).
The theory applies equally to externally imposed driving
forces or to forces generated from active processes. Given
such an inhomogeneous forcing f (x, t ), this section out-
lines how the resulting droplet velocity v can be determined
self-consistently in arbitrary spatial dimensions. This is a
cornerstone of our work and generally applies to any system
exhibiting phase separation into well-defined droplets, irre-
spective of the underlying free-energy functional describing
the interactions causing phase separation.

A. Sharp interface limit

The central concept underlying our theoretical analysis
is a sharp interface limit, which assumes that the width
of the droplet interface w = √

2κ/r is small compared to
all other length scales relevant to the dynamics. While this
width diverges near the critical point (r = 0), it approaches
a molecular length scale given by the characteristic range
of protein-protein interactions when phase separation is suf-
ficiently strong. Therefore, we expect that a sharp interface
limit serves as a good approximation when the condensates
(droplets) are much larger in size than individual molecules.
Mathematically, we implement this limit by taking r → ∞
and u → ∞ while maintaining finite values for mesoscopic
quantities such as the equilibrium enzyme concentrations, and
the chemical potential for the enzymes. This chemical poten-
tial can be written in the form

μ0(c) = r

[
−(c − c̃) + 4


c2
(c − c̃)3 − 1

2
w2∇2c

]
, (10)

where 
c := c+ − c− is the difference in the equilibrium en-
zyme concentrations between the inside and the outside of the
droplet. For the chemical potential to remain finite and thus
physical in the asymptotic limit r → ∞, the expression in the
square brackets must vanish. This is precisely the same con-
dition as that of a CH theory, resulting in a tanh-profile with
width w, height 
c, and asymptotic values c± = c̃ ± √

r/u
[56,57]. In the sharp interface limit we are considering here,
this profile can be considered as piecewise constant.

If there were deviations δc around these equilibrium con-
centrations c±, they would quickly relax back to equilibrium
because the corresponding chemical potential,

μ0 = 2r δc − 1
2 r w2∇2δc + O(δc2), (11)

would exhibit large gradients. These chemical potential gra-
dients, with |∇μ0| � |χs∇s| + |χp∇p|, would transiently

dominate the dynamics and drive currents that promptly re-
store a piecewise constant enzyme concentration profile. As a
result, all variations in the concentration profile are localized
at the droplet boundary, where the competing terms in Eq. (10)
are all of the same order and much larger than the interaction
terms with substrates and products, r 
c � |χs s| + |χp p|.

B. Approximation of round droplet shape

Next, we discuss the geometric shape of the droplet, which
will determine the piecewise constant enzyme concentration
profile in the sharp interface limit. To do so, it is important to
note that the effective surface tension of a droplet in the CH
model is given by [12]

γ = 1
6 (
c)2

√
2κr = 1

6 (
c)2r w, (12)

with 
c = c+ − c− the density jump at the interface. Since
the interface width w is bounded from below by the molecule
diameter, the effective tension diverges in the limit r → ∞.
For this reason, we restrict ourselves to round droplets with a
constant interface curvature.

C. Sharp interface theory

As the above considerations show, Eq. (10) is no longer
a mathematically well-defined expression for the chemical
potential. Therefore, we take an alternative approach and con-
sider the chemical potential as an unknown. More specifically,
it is a Lagrange multiplier field that enforces the condition of
a piecewise constant concentration profile: c(x) = c+ within
the domain D of the droplet and c(x) = c− outside. The fol-
lowing analysis will describe how to obtain an equation that
determines the chemical potential.

1. Traveling wave solution

We first seek a traveling wave solution for the enzyme
dynamics by substituting the ansatz c(x, t ) = c(x − vt ) into
Eq. (4). One finds that the steady state of the enzyme concen-
tration profile (in the comoving frame) is given by a balance
condition between advective terms (left-hand side) and driv-
ing forces (right-hand side)

−v · ∇c(z) = ∇ · [M(c) (∇μ0(z) − f (z))]. (13)

As explained in the previous section, there is no explicit form
for the chemical potential μ0(z) in the sharp interface limit.
Instead, it serves as a Lagrange multiplier field that ensures
constant enzyme densities inside and outside the droplet. This
means that the enzyme concentration profile denoted c(z)
and the associated mobility function, M(c), are assumed to
be known. Furthermore, we temporarily assume knowledge
of the droplet velocity v and will later demonstrate how to
determine it self-consistently. Given the force field f (z), and
with appropriate boundary conditions which will be discussed
in the next section, one can now use FEM to determine the
chemical potential—the only unknown in the present scheme.

In the sharp interface limit, solving Eq. (13) requires a
careful analysis since gradients in the enzyme concentration
become singular at the interface. To address this, we rearrange
terms in Eq. (13) to express it as

∇ · J
 = 0, (14a)
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FIG. 3. Sharp interface theory for a moving 3D enzyme droplet. (a) Chemical potential profile in the reference frame of a moving droplet
(circle), obtained by solving Eq. (15). The streamplot shows the (mesoscopic) enzyme velocity (a.u.) relative to the comoving frame, J
/c,
as calculated from Eq. (14b). These currents are driven by a thermodynamic force, Eq. (9), due to interactions with substrates and products.
The droplet speed, reaction-diffusion dynamics, as well as substrate and product concentration profiles are taken from Fig. 2. Remaining
parameters: 
χ := χp − χs = 4r and M(c) = Mc with M = 10D/ε0. (b) Chemical potential imbalance 
μ0(v) as a function of the droplet
speed v with stable (filled circles) and unstable (open circles) steady states. The effective phase space flow of the droplet speed v driven by the
chemical potential imbalance is shown as arrows. For the indicated stable steady state, the corresponding enzyme chemical potential μ0 and
flow field are shown in panel (a), whereas the substrate and product concentration and flow fields are shown in Fig. 2.

with the current given by

J
 = M(c)(−∇μ0 + f ) − v (c − c∞). (14b)

Equation (14b) can be viewed as the integral of Eq. (13) and,
as explained in the following, interpreted as the divergence-
free current of the enzymes in the reference frame of the
droplet. The first term describes the currents that arise in the
laboratory frame due to gradients in the chemical potential
of the enzymes and the given force field f (x). The second
term is an apparent advective enzyme current, which an ob-
server in the comoving frame will see due to the motion
relative to the laboratory frame. To ensure this interpreta-
tion we added the integration constant v c∞ to Eq. (14b).
Then, the enzyme currents vanish far away from the droplet,
lim|z|→∞ J
(z) = 0, where the enzyme concentration has a
low value lim|z|→∞ c(z) = c∞ ≈ c−. To approximate these
far-field conditions in our numerical implementation, we use
a finite domain with a size much larger than the droplet radius,
and impose no-flux boundary conditions at the domain bound-
ary. This defines the boundary conditions for the calculation
of the chemical potential.

To now apply FEM, we convert Eq. (14a) into an optimiza-
tion problem (the weak form) by multiplying by a test function
φ(z) and integrating over the entire domain. In doing so, the
singularity in the concentration profile can be lifted through
integration by parts. The numerical solution for the chemical
potential profile then satisfies∫

dd z [J
 · ∇φ] = 0. (15)

Solving this equation with the open-source FEM framework
FEniCSx [59–63], one obtains the Lagrange multiplier field
μ0(z) which best enforces incompressibility of the enzyme
currents [Eq. (14a)] and thus maintains the enzyme concentra-
tion profile. Finally, the corresponding enzyme currents can be

obtained by inserting the numerical solution for the chemical
potential into Eq. (14b). Figure 3(a) shows both the chemical
potential profile and the corresponding enzyme currents for a
droplet in a self-propelling steady state, where the force field
f (z) := −∇[χs s(z) + χp p(z)], cf. Eq. (9), is generated by
inhomogeneous substrate and product concentration profiles
as discussed in Sec. II B.

In summary, we have developed an implicit adiabatic elim-
ination scheme, which complements standard (that is, explicit)
methods. Explicit methods consider how a given chemical
potential profile [Eq. (10)] gradually drives the system to-
ward a state of phase separation. This requires a dynamical
resolution of the concentration profiles on the length scale
of the interface. In contrast, our approach starts with the
premise that the system undergoes phase separation and treats
the corresponding concentration profile as a fast degree of
freedom. This allows us to invert the logical flow, and instead
analyze the chemical potential profile which is required to
adiabatically maintain the concentration profile in the prede-
fined configuration. As a consequence of the reversal of the
logical flow, prompted by the assumption of a sharp inter-
face, explicit expressions for the chemical potential and the
corresponding free energy of enzyme-enzyme interactions are
abandoned in favor of an implicit description. This implicit
description [Eq. (15)] is linear as a function of the chemical
potential profile (now an unknown). It can therefore be solved
several orders of magnitude faster than explicitly calculating
the nonlinear dynamics of the concentration profiles in our full
FEM simulations.

Importantly, the details of the original explicit model are
not important for the reasoning underlying our model reduc-
tion scheme. Instead, the dynamics is universally determined
by the force field, the concentration (order parameter) profile,
and the profile velocity. We thus expect that our approach can
also be adapted to Flory-Huggins-like models in the presence
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of nonequilibrium processes or to fully nonequilibrium sys-
tems exhibiting moving fronts, such as population expansion
or reaction-diffusion dynamics.

2. Thermodynamic consistency relation for the chemical potential
profile yields the droplet velocity

So far we have regarded the droplet velocity as a given
quantity. We will now discuss how it can be determined
through a condition on the chemical potential profile required
by the thermodynamic consistency of the steady state.

The sharp interface theory outlined above predicts the
chemical potential field μ0(z) and the associated enzyme
currents in response to a specified force field f (z) for any
given velocity v. While the force field f (z) originates from
a nonequilibrium process or is imposed externally, gradients
in the chemical potential are thermodynamic driving forces.
Consequently, these gradients are linked to physical condi-
tions that could help in determining the droplet velocity v. To
characterize self-propelling and thus polar droplets, we define
the chemical potential imbalance as a function of the droplet
speed,


μ0(v) :=
∫
D

dd z (êv · ∇μ0). (16)

This definition is motivated by the fact that it gauges the over-
all thermodynamic driving force acting on a droplet: It gives
the average chemical potential gradient within the droplet
taking into account rotational symmetry about the direction of
motion (êv). The dependence of 
μ0(v) on the droplet speed
is shown in Fig. 3(b), where we use for specificity a force
field f (z) generated by inhomogeneous substrate and product
concentration profiles, as described in Sec. II B.

One may now interpret the function 
μ0(v) as an effective
force or its integral as an effective potential acting on the
droplet speed v, closely resembling the dynamics of a one-
component nonlinear system. This indicates that the droplet
speed at a steady state is determined by the condition that the
chemical potential imbalance must vanish:


μ0(v) = 0. (17)

In addition, the slope of the chemical potential disequilibrium
provides information about the stability of the steady state:
Positive values of 
μ0(v) indicate that an additional force
pointing from the leading to the trailing edge of the droplet
is required to maintain a given velocity. In the absence of this
force, the droplet tends to speed up. In contrast, for negative
values of 
μ0(v), the droplet tends to slow down. Hence,
a negative slope of 
μ0(v) indicates stability. The resulting
phase space flow is represented by the arrows in Fig. 3(b). In
the following section, the above heuristic considerations are
substantiated by detailed thermodynamic arguments.

D. Thermodynamically consistent chemical potential
is a consequence of energy conservation

We will now illustrate the physical meaning of the ther-
modynamic consistency criterion [Eq. (17)], by linking our
analysis to nonequilibrium thermodynamics.

1. Power dissipation

Using the sharp interface theory, we have determined the
chemical potential profile μ0(z) which is required to maintain
a preset enzyme concentration profile c(z), and a given droplet
velocity v. In turn, in the presence of such a nonuniform
chemical potential,2 variations in the concentration profile,
e.g., due to droplet motion, translate into changes in the free
energy F0[c] := ∫

dd x f0(c) associated with enzyme-enzyme
interactions,

δF0[c] =
∫

dd x μ0(x) δc(x). (18)

Thus, the chemical potential will dissipate free energy with a
rate

∂tF0[c] =
∫

dd x μ0(x) ∂t c(x, t ). (19)

One can rewrite this expression by substituting the traveling
wave ansatz, c(x, t ) = c(x − vt ), and by partial integration,
which yields

∂tF0[c] = v ·
∫

dd z c(z) ∇μ0(z). (20)

Note that this is simply minus the power dissipated by a flux
down a chemical potential gradient, which can also be derived
by using fundamental relations between power, work, and
force.3

Utilizing that the enzyme concentration profile c(z) is
piecewise constant, we partition the aforementioned integral
into two domains: D within the droplet and �\D outside of it,
where � denotes the whole domain. With c(z) = c+ ∀ z ∈ D
and c(z) = c− ∀ z /∈ D, one then has

∂tF0 = v ·
[

c+
∫
D

dd z ∇μ0 + c−
∫

�\D
dd z ∇μ0

]
. (21)

To reformulate the second term in the square brackets, we use
the Gauss theorem which implies that the integral of ∇μ0 over
the whole domain � vanishes:∫

�\D
dd z ∇μ0 +

∫
D

dd z ∇μ0 =
∮

∂�

dd−1S μ0 = 0. (22)

Note that the last equality holds because the chemical poten-
tial must be constant in the far field and because the integral
of the normal vector over a closed surface is always zero.

2For the Cahn-Hilliard model with a diffuse interface, the mech-
anisms giving rise to this chemical potential are encoded in the
free-energy density [Eq. (1)].

3The motion of particles, with net current j(z) = c(z) v(z), in the
presence of a force field f (z) will, over time, perform work with rate

∂tW =
∫

dd z j(z) · f (z).

This general relation between power dissipation and force is indepen-
dent of invoking thermodynamic arguments. One recovers Eq. (20)
by identifying −∇μ0 as a thermodynamic force which extracts the
work δW = −δF0 from the free-energy functional.
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Substituting Eq. (22) into Eq. (21), one has

∂tF0 = v 
c

[
êv ·

∫
D

dd z ∇μ0

]
, (23)

where we have used v = v êv and 
c = c+ − c−. By com-
paring this expression with the definition of the chemical
potential imbalance [Eq. (16)], one finds

∂tF0 = v 
c 
μ0(v). (24)

Therefore, the heuristically derived thermodynamic consis-
tency relation 
μ0(v) = 0 [Eq. (17)] equates to the minimiza-
tion of the free energy F0[c] associated with enzyme-enzyme
interactions. In other words, in steady state, the currents
along the chemical potential profile μ0(z), which models
enzyme-enzyme interactions, should cease to dissipate power.
In contrast, all of the power is dissipated by currents along the
force field f (z) := −∇[χs s(z) + χp p(z)], cf. Eq. (9), where
maintaining the substrate and product concentration profiles
requires fuel. In agreement with these arguments, we have
confirmed that the chemical potential imbalance indeed van-
ishes in our simulations [Fig. 12(c)].

Note that when the internal energy U of a system
component does not change over time because it is in a
(nonequilibrium) steady state, one can use the thermodynamic
relation F = U − T S to relate Eq. (24) to an entropy produc-
tion rate, ∂tS = −T −1∂tF . One can use these concepts to also
calculate the entropy production rate due to flows along the
force field f (z).

2. Thermodynamic housekeeping

To elucidate the significance of the above result, we start
with a scenario in which the force field is absent, f (z) = 0. Be-
cause there is no net driving force, thermodynamics requires
that the droplet can only be in a stable steady state when it
is at rest, v = v� = 0. This state is characterized by a van-
ishing chemical potential imbalance, 
μ0(v�) = 0, and by a
vanishing power dissipation. What are then the characteristics
of a hypothetical state with finite velocity? To answer this
question, we determined the chemical potential for a given
droplet velocity by solving Eq. (15); for an illustration see
Supplemental Material Video 1 [64]. This shows that for any
state with v 
= 0, the chemical potential at the trailing edge
of the droplet must be higher than at its leading edge, so that
v 
μ0(v) < 0, and the power dissipation −∂tF0 is positive
[Eq. (24)]. Hence, droplet motion would continuously siphon
energy from the enzyme-enzyme interactions. To then, in turn,
adiabatically maintain enzyme-enzyme interactions and the
enzyme concentration profile, one would need to inject energy
into the system. Taken together, energy conservation rules out
a self-propelling droplet state in the absence of an external
power supply.

To pursue these thermodynamic arguments further, we next
analyze how the power dissipation changes when the steady
state is perturbed. To that end, we first evaluate

∂

∂v
∂tF0

∣∣∣∣
v=v�

= v�
c ∂v
μ0(v�), (25)

which vanishes for v� = 0. Thus, the steady state is marginally
stable at the linear level and one needs the second derivative

to determine its stability:

∂2

∂v2
∂tF0

∣∣∣∣
v=v�=0

= 2
c ∂v
μ0(v�)

∣∣∣∣
v�=0

. (26)

Based on the arguments laid out in the previous paragraph,
the steady state, which has vanishing power dissipation, is
stable when the power dissipation −∂tF0 is minimal and
hence Eq. (26) is negative. This leads us to investigate the
implications of a local maximum in the power dissipation as a
function of the velocity.

To that end, we next consider a scenario in which a force
field is present. Specifically, we consider a system where
this force field is generated by the nonuniform concentration
profiles of substrates and products [Eq. (9)], which arise from
reactions, diffusion, and advection in the comoving frame of
the condensate [Eq. (8)]. As in the above analysis, we again
solve Eq. (15) for given droplet velocities and monitor the
chemical potential profile; see Supplemental Material Video 2
[64]. Importantly, since the force field depends on the droplet
velocity, the chemical potential imbalance becomes a non-
monotonic function of the droplet speed v; shown in Fig. 3(b)
for the setup discussed here. In particular, there are now sev-
eral values v� for the velocity at which the power dissipation
and the chemical potential imbalance vanish, 
μ0(v�) = 0.
As shown above in Eq. (24), the power dissipation −∂tF0 at
v� = 0 still vanishes but now corresponds to a local maxi-
mum as a function of the droplet velocity [cf. Fig. 3(b) and
Eq. (26)]. To maintain a state with a very small velocity, one
would thus need to take energy out of the system, lest the
condensate will spontaneously accelerate, which suggests that
v� = 0 is an unstable steady state. Next, we characterize the
steady states v� 
= 0 and, without loss of generality, consider
the case v > 0. The slope of the chemical potential imbalance
shown in Fig. 3(b) is negative, ∂v
μ0(v�) < 0. Together with
Eq. (25), this implies that a further increase in the velocity
would require constant energy injection. Conversely, a slight
decrease in the velocity would require constant energy elim-
ination. This is the signature of a stable steady state with
a finite velocity. These insights allow constructing a phase
portrait [cf. arrows in Fig. 3(b)] reminiscent of dynamical
systems theory [65].

E. Test of the sharp interface theory

To test our sharp interface theory, we compare its predic-
tions, in particular the thermodynamic consistency condition
[Eq. (17)], with numerical simulations of the full conden-
sate dynamics that take into account the diffuse interface
of the enzyme droplet as described by the generalized CH
equation [Eq. (4)]. In both approaches, the enzyme cur-
rents are driven by inhomogeneous substrate and product
concentration profiles. In the simulations of the full dynam-
ics, we determine these concentration profiles by solving
the time-dependent reaction-diffusion equations for substrates
and products, which are given in Sec. II B, in the laboratory
frame [Eq. (7)]. In our sharp interface theory, in the same way
as above, we use the steady-state profiles (Fig. 2) obtained by
solving the corresponding reaction-diffusion-advection equa-
tions for substrates and products in the comoving frame
[Eq. (8)].
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FIG. 4. Test of the sharp interface theory for moving enzyme condensates. We consider 2D and 3D droplets with two different concentra-
tions in the dilute phase, c− = 0.5 c+ and c− = 0.1 c+, as indicated in the graph. For each case, the first panel shows the predictions of the
self-consistent sharp interface theory, while the second panel shows the results of the full FEM simulations solving Eqs. (4) and (7). In the
third panel, we show a lineplot along the gray line indicated in the first two panels. The predictions of the sharp interface theory for the phase
boundary of the self-propulsion instability (solid lines) correctly mark the onset of droplet motion in the full FEM simulations, both for 2D
and 3D systems. Moreover, the theoretically predicted droplet velocities also agree quantitatively with the simulations. As parameters we used
χs = −0.05r, χp = −0.01r, � = 0, w = 0.1l0, R = l0, and s + p = c+. In 2D, we simulated the full dynamics in a circular domain having
radius L = 5l0 for c− = 0.5c+ and radius L = 7l0 for c− = 0.1c+. In 3D, we simulated the full dynamics in a cylindrical domain having radius
Lr = 3l0 and length Lz = 10l0 for c− = 0.5c+ and radius Lr = 4l0 and length Lz = 14l0 for c− = 0.1c+. The simulation data for c− = 0.1c+
are taken from our previous work, Ref. [37]. The exemplary set of parameters indicated by the star is further interrogated in Fig. 12.

To determine the velocities where the thermodynamic con-
sistency condition [Eq. (17)] is fulfilled, different numerical
algorithms can be used. For instance, one could perform a
parametric sweep of the chemical potential imbalance for
different velocity values and directly identify the roots from
the resulting graph, as shown in Fig. 3(b). Here, as a numeri-
cally more efficient method, we use Newton iterations starting
from an initial guess for the velocity; specifically, we set
v = 10.0 l0/τ0. We find that the thermodynamic consistency
condition correctly predicts the onset of the self-propulsion
of spherical droplets (Fig. 4). Moreover, as further discussed
in Appendix B, the sharp interface theory reproduces the
droplet speed with reasonable quantitative accuracy. This
holds true even for droplets with weak phase separation
(
c � c+, Fig. 4) and for those that dissolve over time due
to enzyme-substrate and enzyme-product interactions (Sup-
plemental Material Movies 3 and 4 [64] and Appendix C).

F. Analytically solvable limiting case of the sharp
interface theory

The sharp interface analysis presented above typically
requires a multistep numerical evaluation, while closed ana-
lytical solutions exist only in special cases. To illustrate the
validity of our numerical approach beyond a comparison be-
tween simulation and theory, we will now discuss one such
special case where an analytic solution can be found. We con-
sider a scenario where the enzyme flux J
 vanishes outside
the condensate. This applies in three specific cases:

(i) For a one-dimensional (1D) system, where the enzyme
current must be spatially uniform due to Eq. (14a), the no-flux

far-field condition implies that the current must vanish in the
entire domain;

(ii) when the enzyme mobility vanishes in the low-
concentration phase, M(c−) = 0, it follows from Eq. (14b)
that there can be no flux;

(iii) when the enzymes are completely depleted in the low-
concentration phase, c− = 0, the lack of particles implies a
vanishing net current.

If at least one of these conditions holds, one can use an
approach similar to that described in our earlier work [37]. We
first integrate Eq. (14b) over the domain of the condensate:∫

D
dd z J
 = M(c+)

∫
D

dd z (−∇μ0 + f ) − V 
c v, (27)

where V := ∫
Ddd z is the volume of the droplet. We will now

show that the left-hand side of Eq. (27) is zero. To that end,
we manipulate the expression

∫
dV ∇ · (x ⊗ J
) to find

∫
dV J
 +

∫
dV x (∇ · J
) =

∮
dS · (x ⊗ J
), (28)

where we applied the product rule on the left-hand side
and the divergence theorem on the right-hand side. Taking
into account that the enzyme currents are divergence-free
[Eq. (14a)], and assuming that they vanish outside the conden-
sate and thus along its boundary ∂D, implies that the average
current in the droplet must vanish. This is intuitive, because
it simply means that the center of mass is stationary in the
comoving frame. Equation (27) can be further simplified by
using the thermodynamic consistency criterion for the chem-
ical potential, Eq. (17). By projecting Eq. (27) on the axis êv
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FIG. 5. Naive approach of calculating the droplet velocity by neglecting all enzyme currents. The left group of panels corresponds to
droplets with strong phase separation, c− = 0.1 c+, while the right group of panels indicates droplets with weak phase separation, c− = 0.5 c+.
Panels show droplet speed (color code) in the full FEM simulations; data and parameters are identical to Fig. 4. Solid lines indicate naive
theoretical prediction of the phase boundary of the self-propulsion instability, based on Eq. (29). The panels in the bottom row show a lineplot
along the gray lines indicated in the top row. This approximation gives acceptable results when phase separation is strong (c−/c+ ∼ 0, left
group of panels), but fails in geometries whose dimension is larger than one if the enzymes are only weakly depleted from the low-concentration
phase (c− ∼ c+, right group of panels).

and solving for the droplet speed v, one then finds

v = M(c+)

V 
c

∫
D

dd z êv · f (z). (29)

This is also what one would expect if every material point
of the condensate is uniformly transported with the same
velocity v. Then, the average driving force experienced by
each material point is balanced by its viscous friction with
the surrounding medium.

However, we stress that this relation, Eq. (29) ceases to be
valid when the enzyme currents are not uniform, such as in
systems with more that one spatial dimension. Specifically,
we expect the error in Eq. (29) to become larger when phase
separation is weak, 
c � c+. Figure 5 shows that naively us-
ing Eq. (29) to calculate the droplet velocity self-consistently
in response to the concentration profiles of substrates and
products, which themselves depend on the droplet velocity,
is accurate only under specific conditions. For instance, it is
applicable in scenarios like the 1D case discussed in Ref. [37],
or it can be a good approximation when the low concentration
phase is almost depleted (c−/c+ ≈ 0).

Interestingly, the simulations of the full dynamics show
that self-propulsion starts much earlier than would be pre-
dicted based on Eq. (29), which neglects the inhomogeneity
in the enzyme currents. Thus, liquidlike droplets can move
much faster than one would expect if each of their material
points were to be advected by a uniform velocity (that is,
faster than solidlike condensates). The reason for this is that
the net movement of the condensate in terms of its concen-
tration profile does not require any actual mass transport of

the molecules in the highly concentrated phase over the same
distance. This effect can be attributed to the divergence-free
circulation currents that transport enzymes in the comoving
frame of the condensate: In the high-concentration phase,
enzymes are transported from the leading edge of the droplet
to the trailing edge. The local outflow of enzymes causes
the trailing edge of the condensate to retract. Conversely,
due to mass conservation, these enzymes return in the low-
concentration phase from the trailing edge to the leading edge
[Fig. 3(a)]. This influx of enzymes causes the leading edge of
the condensate to expand.

IV. RECIPROCAL INTERACTIONS CONTROL TYPE
OF SELF-PROPULSION INSTABILITY

In our previous work [37], and in Figs. 2–5, we have
focused on the limiting case where interactions are weak
and therefore the Flory-Huggins parameters χs,p are small.
In this limit, the terms proportional to � in the diffusion-
reaction equations for the substrates and products, Eq. (7),
can be neglected, corresponding to a nonreciprocal limit. In
the following we will study the more general case � > 0
and the resulting consequences of the (partial) restoration of
reciprocity. To keep our analysis analytically tractable,4 we
again mostly return to a 1D system. As discussed in detail

4We carry out the analytic calculations with the computer algebra
system Mathematica [66] and provide the corresponding notebooks
in Ref. [67].
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FIG. 6. Stationary concentration profiles for enzymes (gray),
substrates (red), and products (blue) of a single droplet in a finite-
sized 1D domain [−L, L]. The total reactant (substrate and product)
mass is shaded in yellow. Dots correspond to FEM simulation re-
sults, while solid lines are analytical solutions for the substrate
and product concentration profiles in the sharp interface limit (gray
shading indicates droplet). Attractive enzyme-substrate and enzyme-
product interactions, χs = −0.05r, χp = −0.01r, in the presence
of reciprocal interactions, � = 20D/ε0, lead to a concentration
jump in substrates and products. The other parameters are given by
c− = 0.1c+, w = 0.1l0, R = l0, L = 5l0, M = 100D/ε0, k1 = k2/c+,
and 〈s + p〉 = c+.

in Appendix D, we solve Eq. (8) to obtain the steady-state
substrate and product concentration profiles in the comoving
frame of the droplet. An important feature of these concentra-
tion profiles is that reciprocal interactions, for � > 0, induce
a concentration jump at the droplet interface (Fig. 6):

�|in
�|out

= exp

[
− �χ� 
c

D

]
, (30)

where � ∈ {s, p}. This quantifies the meaning of “weak in-
teractions,” where the concentration jump is small, versus
“strong interactions,” where the concentration jump is large.

A. Reciprocal interactions can inhibit droplet self-propulsion

Substrates and products can be enriched inside of a droplet
simply through attractive interactions with enzymes [Eq. (30)
and Appendix D], without relying on nonequilibrium reac-
tions. As shown in Fig. 6, this can lead to a scenario where the
concentration of substrates is actually higher in the conden-
sate than in the surrounding solution, despite being consumed
by enzymatically catalyzed reactions. To illustrate what this
means for droplet self-propulsion, we consider an enzyme
condensate which moves (or is pulled) with a prescribed ve-
locity through an open domain. Moreover, to disentangle the
effects of reciprocal interactions from those of nonequilibrium
reactions, we compare the thermodynamic limit where reac-
tions are absent, k1 = k2 = 0 and � > 0, to the nonreciprocal
limit, k1,2 > 0 and � = 0, cf. Fig. 7. In the nonrecipro-
cal limit, as shown in our previous work [37], one finds
that products are accumulated and substrates are depleted
at the trailing edge of the droplet. When enzyme-substrate
attraction is stronger than enzyme-product attraction, this can
push the droplet toward its leading edge and thereby drive

FIG. 7. Concentration profiles for substrates (red), and products
(blue) for a single droplet (gray) which is moving at a prescribed
velocity through an open domain. The total reactant (substrate and
product) mass is shaded in yellow. In the nonreciprocal case, sub-
strates are depleted at the trailing edge of the condensate, while
products are enriched there. In contrast, in the thermodynamic limit,
substrates are enriched at the trailing edge while products are not
produced and are thereby absent from the system. Parameters un-
less specified otherwise: χs = −0.05r, χp = −0.01r, � = 4D/ε0,
c− = 0.1c+, R = l0, k1 = k2/c+, and 〈s + p〉 = c+.

self-propelled motion. In contrast, in the thermodynamic
limit, products are absent and attractive enzyme-substrate in-
teractions cause accumulation of substrates at the trailing edge
of the condensate. Thus, the droplet will be pulled back toward
its trailing edge, and condensate motion cannot be sustained.
Based on these competing mechanisms, we expect that re-
ciprocal interactions can potentially inhibit reaction-induced
droplet self-propulsion.

Having determined the substrate and product concentration
profiles, we now quantify the effect of reciprocal interactions
on the self-propulsion instability. As we consider a 1D system,
one could directly use Eq. (29) to obtain the droplet velocity
in response to any inhomogeneous distribution of substrates
and products, as we demonstrated recently [37],

v = − Mc+
2R
c

[χs 
s(v) + χp 
p(v)]. (31)

Here 
s(v) and 
p(v) are the substrate and product con-
centration differences, respectively, between the right and
the left boundary of the moving droplet. However, from this
approach it does not immediately become clear which of
the self-consistent solutions are the stable attractors for the
dynamics. To close this gap in understanding, we follow a
slightly different route by exploiting the framework presented
in Sec. III, which not only yields the fixed points but also
informs about their stability.

To that end, we compute the chemical potential imbalance

μ0(v), as defined by Eq. (16) and illustrated in Fig. 3(b) for
a 3D droplet. For a 1D droplet, as discussed in Sec. III F, our
theory simplifies considerably because the divergence-free en-
zyme currents must vanish in the far-field and thus in the entire
1D domain, J
 = 0. By projecting Eq. (27) on the axis êv ,
substituting the definition of the chemical potential imbalance
[Eq. (16)] and solving for the latter, one finds


μ0(v) =
∫
D

dz (êv · f ) − V 
c

M(c+)
v, (32)
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FIG. 8. Speed of a self-propelled 1D droplet as a function of the enzyme mobility M and the reaction rate k1. The first panel shows the
predicted droplet speed v� of the stable steady state (blue color scale), while the second panel shows the unstable branch v◦ (red color scale),
from the self-consistent sharp interface theory [Eqs. (33) and (17)]. The third panel shows the measured droplet speed vsim (blue color scale)
in the full FEM simulations [Eqs. (4) and (7)]. The fourth panel shows a lineplot along the horizontal gray lines, to compare the prediction
of our theory to the simulations. The fifth panel shows the percentile error of the prediction, 
 := (v� − vsim)/vsim (blue-orange color scale).
Parameters: χs = −0.05 r, χp = −0.01 r, � = 4D/ε0, c− = 0.1 c+, R = l0, and 〈s + p〉 = c+. The additional parameters required for the full
FEM simulations are given by w = 0.1 l0, and L = 30 l0.

where 
c = c+ − c− and V = 2R is the droplet volume. Fi-
nally, substituting the thermodynamic force field [Eq. (9)]
shows that the chemical potential imbalance for a 1D droplet
is given by


μ0(v) = −χs 
s(v) − χp 
p(v) − 2R
c

Mc+
v, (33)

where we have assumed M(c+) = Mc+ with constant M.
Note that Eqs. (33) and (31) are equivalent when the chem-
ical potential imbalance vanishes, which corresponds to the
fixed points of the dynamics. As discussed in Sec. III D,
unstable (stable) fixed points are characterized by a positive
(negative) slope of the chemical potential imbalance as a func-
tion of the velocity [Fig. 3(b)]. Thus, the chemical potential
imbalance contains all information necessary to analyze the
phase space flow.

B. Discussion and test of the sharp interface theory

One of the current limitations of the sharp-interface the-
ory, which can be addressed in future studies as discussed
in Appendix E, is that it cannot resolve the concentration
profiles inside the phase boundaries. Hence, it is crucial to
verify the predictions of the sharp interface theory against
full FEM simulations, which feature dynamic and smooth
concentration profiles of substrates and products [Eq. (7)] as
well as enzymes [Eq. (4)]. In this section, after quantitatively
comparing theory and simulations, we also discuss central
features of the bifurcation which leads to the onset of droplet
self-propulsion.

To predict the speed of the biomolecular condensates with
the sharp interface theory, we proceed as outlined in Sec. III E
for the nonreciprocal case. First, we determine the chemical
potential imbalance 
μ0(v) [Eq. (33)] as a function of the
droplet velocity. Then, we select the maximal droplet velocity
v� which satisfies the thermodynamic consistency criterion

μ0(v�) = 0 [Eq. (17)]. For larger droplet velocities, the
chemical potential imbalance is a monotonically decreasing

and strictly negative function [Eq. (33)],


μ0(v) ≈ −2R
c

Mc+
(v − v�). (34)

This implies ∂v
μ0(v�) < 0 and, following the discussion in
Sec. III D, that higher droplet velocities v > v� would require
additional energy input −∂tF0 > 0 [Eq. (24)]. Therefore, we
conclude that the velocity v� must correspond to a stable
steady state. A more detailed discussion of the bifurcation
diagram is deferred to a later point of this section.

As shown in Fig. 8, we find good agreement of the veloc-
ities and shape of the phase diagram predicted by the sharp
interface theory with our full FEM simulations. As in the
nonreciprocal case, see Appendix B, the predictions become
less accurate for large reaction rates, possibly because the
diffusion length l± = √

D/(k1c± + k2) becomes shorter com-
pared to the width of the interface. This parameter regime
conflicts with the sharp interface limit, which requires that the
interface width is small compared to all other relevant length
scales.

Strikingly, unlike in the nonreciprocal case (� = 0), in
which the droplet velocity increased continuously from v = 0
upon reaching a critical enzyme mobility or reaction rate
(Fig. 4), a sudden jump in the droplet speed from v = 0 to
a finite value is observed for � > 0 (Fig. 8). This points
toward a subcritical bifurcation. The bifurcation diagram of
a subcritical transition is characterized by the stable branch
v = v�, the trivial branch v = 0, which can change its stability
depending on the parameters, and an unstable branch v = v◦
with 0 � v◦ � v�. The binodal phase boundary is defined by
the appearance of the stable branch v = v�, which is shown
in the first panel of Fig. 8. In contrast, the spinodal phase
boundary is characterized by the disappearance of the unstable
branch v = v◦ at the intersection v◦ = 0. This unstable branch
is present within the parameter space examined in Fig. 8, as
shown in the second panel, i.e., we are in the binodal regime.
To then observe droplet self-propulsion in this bistable regime
between the binodal and the spinodal line, one needs to
provide a sufficiently large perturbation. To provide such a
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FIG. 9. Droplet speed v� (blue color scale) predicted by the sharp
interface theory, as a function of the enzyme mobility M and the
mobility � of substrates and products in response to a gradient
in enzymes. Bifurcation diagrams on the right correspond to slices
along the dashed arrows in the left panel, for several selected values
of �. Highlighted panel corresponds to slice along the dashed arrow
in Fig. 8. Solid lines indicate stable branches, whereas dashed lines
indicate branches of unstable fixed points. Parameters: χs = −0.05 r,
χp = −0.01 r, c− = 0.1c+, R = l0, k1 = k2/c+, and 〈s + p〉 = c+.

perturbation in our simulations, we initialized the concentra-
tion profiles of substrates and products with added noise.

In the previous paragraph, we mapped out and discussed
the phase diagram of the droplet velocity as a function of the
enzyme mobility and reaction rates. Next, we aim to better un-
derstand the role of the mobilities of substrates and products,
�(s) = �s and �(p) = �p. To that end, we now keep the
reaction rates fixed while varying the enzyme mobility M and
the reciprocity parameter �. For cross-reference, a slice along
the dashed arrows in the first two panels of Fig. 8 corresponds
to the bifurcation diagram depicted in the highlighted panel in
Fig. 9.

First, we observe that the transition to self-propulsion is
supercritical (continuous) for small substrate and product mo-
bilities � = 0, as shown in the first panel on the right side of
Fig. 9. For general � > 0, condensate self-propulsion sets in
through a subcritical, imperfect pitchfork bifurcation. More-
over, consistent with our arguments in the previous section, we
observe that an increase in � reduces the size of the parameter
region where droplet self-propulsion can be observed. Specifi-
cally, our findings indicate the existence of an upper bound for
�, below which droplets display self-propulsion. By using the
Einstein-Smoluchowsky relation D = � kBT to relate the mo-
bility of substrates and products to their diffusion coefficient
in the case of thermal Brownian motion [58], the vertical axis
in Fig. 9 can be read as �ε0/D = ε0/(kBT ). This suggests
that for the parameters used in Fig. 9, the energy scale for
the enzyme-substrate and enzyme-product interactions must
be no more than 5kBT to observe droplet self-propulsion. The
results in Fig. 9 also show that the mobility of substrates and
products must be small compared to the mobility of enzymes.

Given these observations, what are necessary conditions to
observe droplet self-propulsion for large substrate and product
mobilities � and for strong enzyme-substrate and enzyme-
product interactions? To answer this question, in the following
we use the sharp interface theory to further elucidate
how � affects droplet self-propulsion and, moreover, when

the transition is subcritical (discontinuous) or supercritical
(continuous).

C. Analysis of the role of reciprocity

Before we continue with our analysis, we first summarize
a few key results that will be used in the following. In our
previous work [37] we established the mobility of the en-
zymes M as a key control parameter for observing droplet
self-propulsion. We have found that in the absence of recip-
rocal interactions (� = 0), self-propulsion always sets in if
the mobility is sufficiently large, cf. Figs. 4 and 9. This can be
understood from Eq. (33), which we rewrite as


μ0(v) = 
μ�
0(v) − 2R
c

Mc+
v. (35)

This chemical potential imbalance has an upper bound given
by the limit M → ∞, defining the maximal chemical potential
imbalance


μ�
0(v) := lim

M→∞

μ0(v) = −χs
s(v) − χp
p(v). (36)

As discussed in Sec. III D, steady states of the condensate
dynamics are defined by the roots of Eq. (35). Moreover, the
thermodynamic housekeeping analysis in Sec. III D showed
that stable steady states are characterized by a negative
slope ∂v
μ0(v�) < 0, whereas unstable states have a posi-
tive slope ∂v
μ0(v�) > 0. Geometrically, this means that—in
stable steady states—the curve 
μ�

0(v) intersects the line
(2R
c)/(Mc+) v from above. Finally, as discussed in the pre-
vious section, the largest root of Eq. (35) must correspond to a
stable steady state. Therefore, one can map out the bifurcation
diagram simply by determining the roots.

The above criteria to observe condensate self-propulsion
can only be fulfilled if the maximal chemical potential im-
balance 
μ�

0(v) [Eq. (36)] has a band of positive (negative)
values for positive (negative) velocities. In that case, as men-
tioned at the beginning of this section, Eq. (35) is guaranteed
to have nontrivial roots for v 
= 0 if the enzyme mobility is
sufficiently high,

M >
2R
c

c+
min

v

v


μ�
0(v)

> 0. (37)

In the following, we exploit these simple rules to improve
our understanding of the onset of condensate self-propulsion.
Because the system does not have a preferred spatial direc-
tion, without loss of generality, we focus on positive droplet
velocities v � 0.

1. Weakly reciprocal droplets

First, we consider a scenario where the reciprocity param-
eter � is small. To that end, we expand the maximal chemical
potential imbalance to first order in �χs,p
c/D,


μ�
0(v) ≈ 
μ�

0(v)
∣∣
�=0 + ∂�
μ�

0(v)
∣∣
�=0 �, (38)

which implicitly assumes weak enzyme-substrate and
enzyme-product interactions. Based on the discussion in the
previous section, droplet self-propulsion is only possible if the
maximal chemical potential imbalance 
μ�

0(v) has a band of
positive values for v > 0. To gain a clearer understanding of
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FIG. 10. Maximal chemical potential imbalance 
μ�
0(v)

[Eq. (36)] as a function of the droplet speed v, for different values
of the parameter �. In the limiting case M → ∞, steady states are
defined by the roots of the maximal chemical potential imbalance.
Arrows indicate how the chemical potential imbalance affects the
droplet speed v. Stable (filled circles) and unstable (open circles)
steady states are indicated for � = 4D/ε0. Color code of curves are
the same as in Figs. 8 and 9. The dashed red line shows how the
maximal chemical potential imbalance is affected by the parameter
�. Parameters: χs = −0.05 r, χp = −0.01 r, c− = 0.1 c+, R = l0,
k1 = k2/c+, and 〈s + p〉 = c+.

when this condition holds, we will next discuss the charac-
teristic features of the two leading-order contributions to the
series expansion in Eq. (38).

2. Leading order: Nonreciprocal limit

The first term in Eq. (38), 
μ�
0(v)|�=0, recapitulates the

limit of nonreciprocal droplets (black curve in Fig. 10), which
we have discussed in our previous work [37]. In this limit, an
example of the substrate and product concentration profiles,
s(z)|�=0 and p(z)|�=0, is depicted in the left panel of Fig. 7.
As these concentration profiles show, reactions and diffusion
lead to depletion of substrates and enrichment of products at
the trailing edge of the moving condensate, in comparison
to its leading edge. Thus, considering Eq. (36), 
μ�

0(v)|�=0

must be strictly positive for v > 0 when enzyme-substrate
attraction dominates over enzyme-product interactions. As we
discussed in the previous section, the existence of a band of
positive values 
μ�

0(v)|�=0 > 0 for v > 0 fulfills the nec-
essary condition for droplet motion. Moreover, the positive
slope of the curve 
μ�

0(v)|�=0 > 0 at the fixed point v = 0
is indicative of an unstable state. Hence, we conclude that
the leading-order term in the series expansion of Eq. (38)
promotes droplet self-propulsion.

It is important to note that this leading-order term is bound
from above for positive droplet velocities. This can be de-
duced from the fact that 
μ�

0(v)|�=0 must vanish in the
following two limiting cases. For v = 0, the chemical po-
tential imbalance vanishes because the system is symmetric
under parity transformations. In the limit v → ∞, the sub-
strate and product concentration profiles remain flat, as the
time required to traverse one droplet diameter, 2R/v, is much
shorter than the timescales of reactions, τ0, and diffusion,
R2/D, so that the densities equilibrate and become uniform.
Since the leading-order term 
μ�

0(v)|�=0 is strictly positive

for positive velocities v > 0, it follows that it must have a
maximum for some finite value v > 0 (black curve in Fig. 10).
As a consequence, the correction term in the series expansion
of Eq. (38) can exceed this zeroth-order contribution.

3. Reciprocal correction

The second term in Eq. (38), ∂�
μ�
0(v)|�=0, is a cor-

rection that accounts for weak reciprocity (dashed red curve
in Fig. 10). The corresponding changes in the substrate and
product5 concentration profiles can be understood from the
right panel of Fig. 7: Their attractive interactions with en-
zymes, χs,p < 0, will favor influx at the leading edge but
hinder outflux of substrates and products at the trailing edge of
the droplet. Hence, substrates and products will accumulate at
the trailing edge of the condensate which acts as a moving
potential barrier.6 These concentration profiles, considering
Eq. (36), lead to ∂�
μ�

0(v)|�=0 being strictly negative and
decreasing monotonically with increasing droplet speed, as
more substrates and products accumulate at the trailing edge
of the condensate. Therefore, with increasing �, the correc-
tion term can cause the maximal chemical potential imbalance
[Eq. (38)] to become strictly negative for v > 0, leaving only
a single stable fixed point v = 0 (solid red curve in Fig. 10).
In that case, droplet self-propulsion is completely suppressed.

4. Bistability and criticality

In Sec. IV B, we discussed that for � > 0, self-propulsion
typically sets in through a subcritical bifurcation when vary-
ing the enzyme mobility M, and that there is a bistable region.
In the following, we use our framework to further elucidate
these phenomena. Recall that the condition for a stable steady
state is that the curve 
μ�

0(v) cuts the line (2R
c)/(Mc+) v

from above. To observe a supercritical bifurcation when vary-
ing the enzyme mobility M, the fixed point v = 0 must lose its
stability concomitantly with the emergence of a new branch
of stable fixed points for v � 0. An important feature of a
supercritical transition is that the velocity does not suddenly
jump to a finite value when varying the enzyme mobility M
for example, but instead continuously increases from v = 0.
Geometrically, this is only possible if the maximal chemi-
cal potential imbalance 
μ�

0(v) grows but curves downward,
∂2
v 
μ�

0(v)|v=0 � 0, when the velocity is increased starting
from the fixed point v = 0. Using Mathematica, we found that
the leading order term in the series expansion in Eq. (38) al-
ways has vanishing curvature, ∂2

v 
μ�
0(v)|�=0,v=0 = 0. While

we were not able to completely map out the correction term,
we found that it curves upward as a function of the droplet
velocity, for small droplet radii R and for the parameters
studied in Fig. 11. This further supports the conclusion that for
� > 0, in a wide range of parameters, the onset of condensate
self-propulsion is subcritical.

For sufficiently high enzyme mobility M, a subcritical
bifurcation occurs when the fixed point v = 0 becomes

5Note that in the equilibrium scenario depicted in Fig. 7, only
substrates are present in the system.

6Repulsive attractions would instead cause accumulation at the
leading edge.
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FIG. 11. Phase diagram illustrating how droplet self-propulsion
depends on the condensate radius R and on the mobility of substrates
and products in response to a gradient in enzymes, �(s) = �s and
�(p) = �p, in the sharp interface approximation. The light blue
region shows the parameter regime where droplet self-propulsion
is bistable [Eq. (40)]. The corresponding phase boundary can be
crudely approximated by Eq. (41), as shown by the black dotted line.
The dark blue region shows the spinodal parameter regime where
only self-propelling condensate states are stable [Eq. (39)]. For sim-
plicity, we consider the limit M → ∞. Parameters: χs = −0.05 r,
χp = −0.01 r, c− = 0.1 c+, k1 = k2/c+, and 〈s + p〉 = c+.

unstable. This is only possible if the maximal chemical poten-
tial imbalance 
μ�

0(v) has a positive slope at the fixed point
v = 0. Using the series expansion in Eq. (38), this leads to

� < − ∂v
μ�
0(v)|�=0,v=0

∂v∂�
μ�
0(v)|�=0,v=0

, (39)

where we have used the fact that ∂�
μ�
0(v) � 0. In Fig. 11,

the dark blue region shows when this criterion is fulfilled
for different values of the reciprocity parameter � and the
condensate radius R. Even if the slope criterion Eq. (39) is
not fulfilled, the system can still be bistable as we explain
next. More specifically, to permit condensate self-propulsion
for sufficiently high enzyme mobility, it suffices if the
maximal chemical potential imbalance 
μ�

0(v) has a positive
maximum (cf. light blue curve in Fig. 10),

max
v>0


μ�
0(v) > 0, (40)

for positive velocities. In Fig. 11, the light blue region shows
when criterion Eq. (40) is fulfilled for different values of the
reciprocity parameter � and the condensate radius R. The in-
equality (40) is automatically satisfied when the maximum of
the leading-order term in Eq. (38) is larger than the saturation
value of the correction, which leads to the weaker constraint

� � − maxv 
μ�
0(v)|�=0

limv→∞ ∂�
μ�
0(v)|�=0

. (41)

Here, we have used the fact that ∂�
μ�
0(v) � 0. This approx-

imation gives a lower bound for the critical value of � below
which self-propulsion is possible (black dotted line in Fig. 11).

In summary, we have explored how the magnitude of the
reciprocal interactions, quantified by �, controls the onset of
condensate self-propulsion. In the bistable region, it requires

a sufficiently large perturbation of the system to excite the
condensates into a self-propelling state. Importantly, all of
our results so far suggest that the reciprocity parameter �,
and hence enzyme-substrate and enzyme-product interactions,
must be weak to observe condensate motion. How can we
relax this constraint?

5. Droplets in the strongly reciprocal regime

So far, we have shown that droplet self-propulsion can
be inhibited if the reciprocity parameter � is sufficiently
large. Then, is it possible at all to observe droplet self-
propulsion when �ε0/D → ∞? This would correspond to a
limit at which enzyme-substrate and enzyme-product interac-
tions are strong, so that the effects due to reciprocity become
very important. To understand the particular significance of
this case, we again use the Einstein-Smoluchowsky relation
D = � kBT to relate the mobility of substrates and products
to their diffusion coefficient in the case of thermal Brownian
motion [58]. The horizontal axis in Fig. 9 can then be in-
terpreted as Mε0/D = (M/�) ε0/(kBT ) and the vertical axis
as �ε0/D = ε0/(kBT ). Thus, for the parameters discussed so
far, weak enzyme-substrate and enzyme-product interactions,
with energy scale ε0 ∼ kBT , would necessitate a large ratio of
mobilities (M/�) to induce droplet self-propulsion. This can
be the case, for example, if the enzymes correspond to small
proteins (such as transcription factors and components of the
transcription machinery) and the products correspond to large
RNA molecules.7,8

To explore if droplet self-propulsion is possible for a small
ratio of mobilities (M/�), we will now study the extreme limit
�ε0/D → ∞. So far, we have focused on a scenario where
both substrates and products show attractive interactions with
enzymes, with χs < χp < 0. As shown in Appendix F, and
in agreement with our results in Secs. IV B and IV C 1,
in this case the state v = 0 will always remain stable in
the limit �ε0/D → ∞. Hence, we will now modify the
above assumptions, keeping the enzyme-substrate interactions
attractive, χs < 0, but now assuming that enzyme-product
interactions are repulsive, χp > 0; both are assumed to be
weaker than enzyme-enzyme interactions so that the sharp
interface approximation remains valid. Moreover, we consider
condensates where the concentration of enzymes is enriched
inside the droplet, 
c > 0. With these assumptions, one can
determine the concentration jumps for substrates and products

7To treat this scenario, one would need to relax the assumption
of substrates and products having equal diffusion coefficients. More
specifically, the produced RNA polymer would have much smaller
diffusion coefficient than the substrate nucleotides. In addition to this
leading-order effect, at sufficiently high concentrations, the dynamics
of substrates and products will cease to resemble the behavior of an
ideal solution. In that case, one will also need to take into account
the different polymerization factors by using Flory-Huggins theory.

8If the enzymes are proteins that cleave RNA polymers, then the
products would have higher diffusion coefficient than the substrates.
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at the droplet interface, Eq. (30), in the limit �ε0/D → ∞:
s|in
s|out

= exp

[
− �χs 
c

D

]
→ ∞, (42a)

p|in
p|out

= exp

[
− �χp 
c

D

]
→ 0. (42b)

This limit implies p|in = 0 and s|out = 0, which considerably
simplifies the further analysis. Next, similar as in Sec. IV C 1,
we study the stability of the fixed point at v = 0. A nonmoving
droplet state, v = 0, is unstable when the slope of the chemical
potential imbalance is positive,

∂v
μ0(v)|v=0 = ∂v
μ�
0(v)|v=0 − 2R
c

Mc+
> 0, (43)

where the first equality follows from Eq. (35). We solve for
the substrate and product concentration profiles, as discussed
in Appendix D but now with the simplified boundary condi-
tions Eq. (42). After substituting these profiles in the maximal
chemical potential imbalance Eq. (36), one has9

∂v
μ�
0(v)|v=0 = 2R n∞χs

D
(
l2
0 − l2+

) [
l−l+ coth(R/l+) + l2

+ − l2
0

]
,

(44)

where l± = √
D/(k1c± + k2) are the diffusion lengths in-

side and outside the condensate, respectively. For inequality
(43) to be fulfilled, the maximal chemical potential imbal-
ance must have a positive slope [Eq. (44)]. Note that, since
l± < l0 = √

D/k2 and χs < 0, the factor in front of the square
brackets in Eq. (44) is always negative. Therefore, a first nec-
essary criterion for the emergence of droplet self-propulsion
follows by requiring that the expression in the square brackets
in Eq. (44) is also negative, so that the maximal chemical
potential imbalance has a positive slope. This suggests that
droplets can exhibit self-propulsion if the droplet size R is suf-
ficiently large. Because coth(R/l+) > 1 and χs < 0, Eq. (44)
has the following bound:

∂v
μ�
0(v)|v=0 � 2R n∞χs

D
(
l2
0 − l2+

) [
l−l+ + l2

+ − l2
0

]
, (45)

leading to the additional criterion l2
0 > l−l+ + l2

+. This condi-
tion can be rewritten by substituting the expressions for the
diffusion lengths l± = √

D/(k1c± + k2), leading to(
k1c+

k2

)2

>
1 + k1c+/k2

1 + k1c−/k2
� 1 + k1c+

k2
, (46)

where the last inequality approximately becomes an equality
in the limit of strong phase separation, c−/c+ ≈ 0. In this
limit, one can solve the quadratic inequality (46) exactly,
leading to the criterion k1c+/k2 > (

√
5 + 1)/2 for the reaction

rates. Thus, the turnover rate of substrates must be sufficiently
fast for droplets to show self-propulsion.

Finally, substituting Eq. (44) into the inequality (43) and
solving for the enzyme mobility leads to a lower enzyme

9We carried out the analytic calculations with the computer algebra
system Mathematica [66] and provide the corresponding notebooks
in Ref. [67].

mobility bound,

M

�
� − kBT

χsn∞


c

c+

[
1 − l−l+ coth(R/l+)

l2
0 − l2+

]−1

, (47)

above which condensates will begin to self-propel; note
that we have again used the Einstein-Smoluchowsky relation
D = � kBT . Thus, the critical ratio between the mobility of
enzymes and the mobility of substrates and products can
be lowered by decreasing the enzyme’s propensity to phase
separate, 
c, or by increasing the interaction strength, χs.
Importantly, the critical mobility ratio M/� ∝ −kBT/(χsn∞)
can become very small in the limit of strong enzyme-substrate
interactions χs � −kBT/n∞. To summarize this section, we
have found that, in general, droplet self-propulsion requires
sufficiently fast reaction rates, sufficiently large condensates,
and sufficiently large enzyme mobility.

V. DISCUSSION

We have studied the nonequilibrium dynamics of
biomolecular condensates (droplets) containing a high con-
centration of enzymes. Through their catalytic role in
biochemical reactions, these enzymes establish a spatial
framework that governs the arrangement of substrates and
products. In turn, the resulting substrate and product con-
centration profiles drive the enzyme flows through molecular
interactions. This interplay between nonequilibrium reactions
and reciprocal biomolecular interactions can give rise to novel
phenomena, such as droplet self-propulsion, which we have
here studied in depth.

We have identified the criteria for droplet self-propulsion
in the two opposing limits of weak or strong enzyme-substrate
and enzyme-product interactions. These limits correspond to
small or large values of the reciprocity parameter �, which
represents the magnitude of the Onsager coefficient (mobility)
defining the extent of the currents induced by gradients in the
chemical potentials of substrates and products. In the limit of
weak interactions, our first analysis indicated that droplet self-
propulsion requires a very small ratio of mobilities �/M � 1
(Fig. 9), where M is the mobility of enzymes. This could, for
example, apply to experiments where self-propelling droplets
leave a long low-pH trail by producing acid molecules [68].
However, there is also experimental evidence for the collec-
tive migration of urease-containing droplets [69,70] which
seem to disobey the above restriction. Motivated by these
experiments, we used our theory to investigate a scenario
where the reciprocity parameter � is large or, in other words,
enzyme-substrate and enzyme-product interactions are strong.
Our analysis revealed that, in this case droplet self-propulsion
is possible for repulsive enzyme-product interactions, χp > 0,
if the reaction rates are sufficiently fast and the condensate
is sufficiently large. These results qualitatively agree with
Ref. [70], where motion was only observed for droplets whose
radius exceeded 20 µm.

Interestingly, we have found that liquidlike droplets gen-
erally move faster than solidlike condensates. The reason for
this finding is that droplets can translocate simply by increas-
ing solubility at one interface and decreasing solubility at
the opposing interface [71]. Using differences in solubility to
dissolve one side (inward motion) and grow the opposing side
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(outward motion) of the condensate will cause droplet motion
without a net transport of mass. In contrast, the motion of
a solidlike condensate implies a transport of its entire mass,
and will hence be limited by the mobility of its molecular
components.

A. Adiabatic elimination scheme

To gain these insights, we have developed a self-consistent
sharp-interface theory that describes the dynamics of active
phase-separated systems. Using an implicit adiabatic elimina-
tion scheme—based on the assumption that the concentration
profile of the enzymes is always maintained adiabatically in a
steady state—we inferred the chemical potential and currents
of the enzymes necessary to maintain a state with a given
droplet shape and velocity. Finally, we determined which
value of the droplet speed is thermodynamically consistent,
by calculating the rate of power dissipation. The power dissi-
pation reveals if a given droplet state can be realized without
supplying additional energy or removing excess energy from
the system. This thermodynamic housekeeping analysis sug-
gests that increasing the droplet speed |v| compared to a stable
steady state would require energy influx, whereas decreasing
the droplet speed |v| would require energy outflux.

B. Droplet shape

We restricted our analysis to a scenario where the con-
densates remain in a round shape. This is generally a good
approximation near the onset of rotational symmetry break-
ing and self-propulsion, or if the surface tension of the
condensates is large; the latter case is realized for strong
enzyme-enzyme interactions. However, the approximation
of a round droplet shape will need to be relaxed if the
enzyme-enzyme interactions are sufficiently weak compared
to the enzyme-substrate and enzyme-product interactions.
To then ensure that the droplet surface tension remains a
finite-valued material parameter, the interface stiffness of the
droplet will need to be inversely proportional to the strength
of enzyme-enzyme interactions. Then, droplets could deform
into nonspherical shapes with nonuniform interface curvature,
thereby leading to Laplace pressure variations that affect the
enzyme currents. Such a generalization would require the
derivation of conditions for the droplet shape, which will be
addressed in future studies. This would aid future studies in
investigating changes and instabilities in droplet shape [32].

C. Analogy to fluid mechanics

At the heart of our theoretical analysis, we studied enzyme
droplets in a moving steady state by taking a sharp interface
limit. To ensure stationarity of the concentration profiles in
the comoving frame, we constructed a chemical potential such
that the enzyme currents were forced to be divergence-free.
This closely resembles the strategy used for incompressible
fluids, where an implicitly defined finite pressure field en-
forces the fluid incompressibility condition. To make this
analogy more explicit, we will now compare the overdamped
dynamics of the enzyme currents [shown as stream plot in
Fig. 3(a)] to the inviscid hydrodynamics described by Euler’s
equations [72]. For an inviscid fluid with zero shear viscosity,

the fluid velocity u is determined by a balance between inertial
forces and local driving by applying an external force g, with
a pressure field p enforcing fluid incompressibility:

∂t (ρ u) = −∇p + g, (48a)

∇ · u = 0, (48b)

where ρ is the fluid density and fluid convection is neglected.
In analogy, on the right-hand side of Eq. (14b), the chemical
potential μ0 plays the role of an effective pressure field that
enforces incompressibility as described by Eq. (14a), while
the remaining terms are analogous to an applied force. In
contrast to Euler’s equations, however, the current on the left-
hand side of Eq. (14b), when divided by the enzyme mobility,
corresponds to drag friction forces instead of inertial forces,
and is therefore irreversible.

Finally, we note that the description of our model in terms
of currents can naturally incorporate hydrodynamic interac-
tions. We expect that our self-consistent sharp interface theory
can be readily applied to such a scenario. By choosing the
mobility function M(c) to model a solid where only the dense
phase is mobile, and the force field f to model interactions
with a neutral or charged solute, for example, one could com-
pare the diffusiophoresis [73] of solid colloids to that of liquid
droplets. Even in the absence of hydrodynamic interactions,
our results already suggest that liquidlike condensates can
be transported much faster than solid particles, because such
a transport only requires moving the concentration profile
instead of every molecule contained in the condensate.

D. Reciprocal interactions

Using the theoretical framework developed here, we have
re-examined the phenomenon of self-propulsion of droplets,
which was studied in our previous work [37] in the nonrecip-
rocal limit (� = 0), for cases where reciprocity is restored.
We found that for � > 0 interactions with enzymes generally
lead to discontinuities in the substrate and product concen-
tration profiles. As reciprocity moves the system closer to
thermodynamic equilibrium, additional conditions must be
met to observe the self-propulsion of the droplets:

(i) For weak enzyme-substrate and enzyme-product inter-
actions, the reciprocity parameter must lie below a certain
threshold, Eq. (41), to observe self-propulsion. In general, the
onset of self-propulsion will then be discontinuous (supercrit-
ical) as one varies, for example, the enzyme mobility M. A
second, lower threshold determines if the system is bistable
(binodal regime), or if the onset of self-propulsion is sponta-
neous (spinodal regime). The onset of droplet self-propulsion
only becomes continuous (supercritical) in the nonreciprocal
limit (� = 0).

(ii) In principle, droplet self-propulsion is also possible
for large reciprocity parameters, � → ∞, if enzyme-product
interactions are repulsive, χp > 0. However, the size of the
droplet must then be considerable, and the nonequilibrium
reaction rates must be sufficiently fast.

Similar to the nonreciprocal limit in Ref. [37], as briefly
discussed in Appendix G, in the reciprocal case one can also
observe droplet positioning, elongation, and division.
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E. Fisher waves and other model systems

The theory of moving droplet interfaces developed here
was in part inspired by the analysis of Fisher waves [74],
which model the expansion of growing populations. However,
in contrast to the model studied in the present work, which was
derived based on thermodynamic arguments and incorporated
phase separation a priori, population dynamics are arguably
far from thermal equilibrium and described by phenomeno-
logical models. It would therefore be interesting to test if the
ideas underlying the framework presented in this work can
be adapted to front propagation in such far-from-equilibrium
systems. If that is the case, then the derivation of balance con-
ditions for the arising pseudo-chemical potentials could pave
the way to borrow powerful tools from nonequilibrium ther-
modynamics for gaining new insights into ecological systems.
However, we also note that a central aspect of our analy-
sis was the conservation law for the total mass of enzymes,
while population dynamics models lack such conservation
laws. Therefore, we expect that the present framework can
be more readily adopted for the analysis of nonreciprocal
mass-conserved models [75,76] or mass-conserved reaction-
diffusion systems with advection [77].

VI. CONCLUSION AND OUTLOOK

The interplay of reciprocal biomolecular interactions that
cause phase separation, coupled with out-of-equilibrium
chemical reactions, is a widespread organizational motif in
living cells. By developing a versatile sharp interface theory
we have gained insight into the specific conditions under
which this motif can lead to the self-propulsion of conden-
sates. The mechanism underlying condensate motion can be
understood as a gradient in solubility which leads to transloca-
tion of droplets [70]. More specifically, attractive interactions
with substrates in the surrounding solution and repulsion with
products in the condensate, locally increase the solubility of
the enzymes (that is, how much the enzymes are driven toward
the surrounding solution). This leads to the dissolution of
the trailing edge of the droplet, which is enriched in prod-
ucts and depleted in substrates, and growth of the leading
edge of the droplet. In addition, the net gradient of substrates
across the entire droplet attracts enzymes toward the leading
edge of the condensate, where the substrate concentration is
higher.

The ability of biomolecular condensates to migrate along
concentration gradients, which was recently recognized theo-
retically [37,71,78] and demonstrated experimentally for pH
[68–70] or salt [79] gradients, is reminiscent of the diffu-
siophoresis of colloids [73]. For colloidal diffusiophoresis,
however, hydrodynamic shear stresses play an essential role
because interactions between the colloidal surface and the
inhomogeneously distributed solute lead to an effective sur-
face tension gradient [73]. While we have here neglected
fluid viscosity, its consideration in future studies would make
it possible to further elucidate the parallels and differences
between droplet and colloid motion. Moreover, accounting for
fluid mechanics would provide a more accurate description
of experimental systems in which condensates move due to
chemical gradients such as salt or pH variations.

The response to an applied gradient in concentration, or
mechanical (that is, viscoelastic) properties of the surrounding
medium is a unifying theme among soft and living matter.
In addition to chemical gradients which drive diffusiophore-
sis and cellular chemotaxis, for example, it was shown that
droplets [80,81] and cells [82] can also migrate along stiffness
gradients. Given the success of phase field models in describ-
ing cell migration [83–88], we hypothesize that some of the
ideas developed in the present manuscript could also apply to
cellular dynamics.
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APPENDIX A: EFFECT OF INTERACTIONS ON
REACTION RATES

The rate constant k2 of the reaction path

P + F
k2−→ S + W (A1)

depends on the height of the corresponding potential barrier
[17,37]. This potential barrier depends on the energy of the
transition state of the reaction and could therefore be affected
by enzyme-substrate and enzyme-product interactions. In that
case, the reaction rate would also depend on the local concen-
tration of enzymes, even though they do not partake in this
reaction. Hence, one needs to specify how the molecules in
the transition state (from product to substrate) interact with
the enzymes. We here assume that the molecules in the tran-
sition state still resemble products, so that the corresponding
interaction energy, at the maximum of the potential barrier,
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FIG. 12. (a) Relative error between the predictions of the sharp
interface theory and the full FEM simulations shown in Fig. 4.
(b) Comparison between predicted and measured droplet speed for
the parameter combination indicated by the star in Fig. 4 and in panel
(a). Larger interface widths show larger deviation of the steady-state
droplet velocity (late times) in our FEM simulations from theoret-
ical prediction (black line). (c) In all cases, the chemical potential
imbalance vanishes, as posited by our theory.

is the same as when product and fuel are still separated.10

Thus, the height of the free-energy barrier is set by the dif-
ference in the internal energy of the molecules, an intensive
quantity that can be taken constant, so that k2 is concentration-
independent.

APPENDIX B: RELATIVE ERROR

Because the droplet speed drops to zero at the phase
boundary of the self-propulsion instability, the absolute error
vtheory − vsimulation is not necessarily a good measure of the
fidelity of our predictions. Instead, we use the relative error
vtheory/vsimulation − 1, as shown in Fig. 12. Note that the rel-
ative error can become very large for small velocities, even
when the absolute error is small. The relative error typically
grows for large reaction rates because the corresponding diffu-
sion lengths, l± = √

D/(k1c± + k2), can become comparable
to the droplet interface width in the simulations. This is likely
the case because the sharp interface approximation, where
the interface width is taken to zero, can be invalidated when
l± → 0. In particular, in this case, the concentration profile of
enzymes in the vicinity of the droplet interface will be per-
turbed by the local concentration gradients of substrates and
products. In agreement with these arguments, when we reduce
the interface width in our FEM simulations, we observe that
the droplet speed increases and thus the error of our theoretical
prediction decreases. However, note that only decreasing the
interface width as control parameter (that is, decreasing the

10For instance, this scenario holds when products do not interact
with enzymes and the chemical potential of the transition state re-
mains constant [37].

interfacial stiffness κ) will also reduce the surface tension
of the condensate [Eq. (12)]. If the surface tension is very
small, then we cannot assume the geometry of the droplet to
remain spherical. These limitations notwithstanding, the sharp
interface theory reproduces the droplet speed with reasonable
quantitative accuracy.

APPENDIX C: INITIAL CONDITIONS AND DISSOLUTION

In our sharp-interface theory, we assumed the concentra-
tion in the enzyme-rich droplets to be c+ and the concentration
in the enzyme-poor surroundings to be c−. In our full FEM
simulations, however, there are two mechanisms that lead
to a slight change in these concentration values. The first
correction arises from the Laplace pressure due to the surface
tension of the droplet interface [12],

γ = 1
6 (
c)2r w. (C1)

The second correction arises from the interactions between
enzymes and substrates as well as products. For very large
droplets, and in the nonreciprocal limit � = 0, one can ap-
proximate the enzyme and substrate concentration profiles as
piecewise constant, with their local reactive equilibria set by

s�(c) = n

1 + k1c/k2
, (C2a)

p�(c) = n − s�(c). (C2b)

The total chemical potential of enzymes is then locally given
by

μ̄(c) = r

[
−(c − c̃) + 4


c2
(c − c̃)3

]
+ χss

�(c) + χp p�(c).

(C3)

The last two terms in Eq. (C3) signify that interactions with
substrates and products modify the chemical potential of en-
zymes. This, in turn, affects the chemical potential balance
and the osmotic pressure balance conditions at the interface
of the condensate, as will be specified next. More specifically,
the enzyme concentration inside the condensate, cin, and the
enzyme concentration outside the condensate, cout, must sat-
isfy the following Maxwell construction [12],

μ(cin) = μ(cout), (C4a)∫ cin

cout

dc μ(c) + (d − 1)γ

R
= cinμ(cin) − coutμ(cout), (C4b)

where the first equation represents a balance of chemical
potentials and the second equation represents a balance of os-
motic pressures. These two conditions give, for large droplets,
the binodal region which sets the range of average enzyme
concentrations, 1

V

∫
dd x c(x) ∈ [cout, cin], for which a phase-

separated state is thermodynamically stable. Note that when
χs,p ≈ 0 and the interface tension γ is sufficiently small or
the droplet is sufficiently large, one can well approximate
cin ≈ c+ and cout ≈ c−.

In general, attractive interactions between enzymes and
substrates, which are depleted in the condensate, will
drive enzyme currents toward the enzyme-poor region. If
the enzyme-substrate attraction is sufficiently strong com-
pared to enzyme-product interactions, χs < χp, which is
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also a necessary condition for droplet self-propulsion,
then one expects that the binodal region should shrink
due to these interactions. This is a conceptually very
similar mechanism to the one proposed in Ref. [70],
where condensates swim toward regions where their dis-
solution is favored. To ensure that the average en-
zyme concentration in the simulation domain lies within
the binodal region, in our full 2D and 3D FEM simulations
we chose the initial enzyme concentration values to be cin

inside the condensate and cout outside. If one instead chooses
c+ and c− for the initial enzyme concentration values, then for
sufficiently large domains the average enzyme concentration
will approach c− and thus leave the binodal region. Then,
droplets will dissolve after an initial period of transient motion
(Supplemental Material Video 3 [64]).

APPENDIX D: SUBSTRATE AND PRODUCT
CONCENTRATION PROFILES

1. Reciprocal interactions induce concentration jumps

A defining feature of taking the sharp interface limit is that
the enzyme concentration profile becomes piecewise constant.
This means that, in Eq. (8) for the steady-state substrate
and product concentration profiles in the comoving frame,
the enzyme concentration gradient is singular at the droplet
interface,

∇c = −
c δ(r − R) ê⊥, (D1)

where ê⊥ is the local unit normal vector. Everywhere else
in the domain, the enzyme concentration profile is approxi-
mately flat. Hence, the terms proportional to the reciprocity
parameter � only play a role at the droplet interface. Moreo-
ever, the reaction rates k1 c(x) ≡ k1 c± become uniform inside
and outside the droplet, respectively. This leads to two simpler
problems on the domains inside and outside the droplet,

0 = ∇ · (v s + D ∇s) − k1 c± s + k2 p, (D2a)

0 = ∇ · (v p + D ∇p) + k1 c± s − k2 p, (D2b)

which, as will be discussed next, need to be connected by
appropriate boundary conditions across the droplet interface.

To ensure particle number conservation of each species, the
respective particle fluxes must be continuous at the droplet
interface. Akin to the domain wall theory used in studies of
the totally asymmetric simple exclusion process [89,90], this
amounts to a balance between changes in diffusion and mass
flux:

D[∇s|in − ∇s|out] · ê⊥ = −v · ê⊥ [s|in − s|out], (D3a)

D[∇p|in − ∇p|out] · ê⊥ = −v · ê⊥ [p|in − p|out], (D3b)

where ê⊥ denotes the unit vector normal to the droplet inter-
face. This relation can also be formally derived by integrating
Eq. (8) over an infinitesimal line segment which crosses the
sharp droplet interface. Here |in and |out indicate the inner
and outer side of the droplet interface, respectively. Thus, the
substrate and product concentration gradients on both sides
of the droplet interface will match when the droplet is at rest
(v = 0) or when the concentration profiles are continuous at
the interface. However, as we show next, reciprocal interac-

tions (� > 0) will in general induce concentration jumps at
the interface.

The currents of substrates and products11 in Eq. (8),

Js = −D ∇s − � s χs∇c − v (s − s∞), (D4a)

Jp = −D ∇p − � pχp∇c − v (p − p∞), (D4b)

must not only be continuous to conserve mass but also be
finite-valued at the droplet interface. This is not automatically
guaranteed, because the concentration gradient ∇c is singular
at the interface. To enforce boundedness for the currents and
mesoscopic velocities, we now integrate Js/s and Jp/p [cf.
Eq. (D4)] over an infinitesimal line segment which crosses
the sharp droplet interface. After calculating this integral and
taking the length of the line segment to zero, all except the
first two terms on the right-hand side of Eq. (D4) vanish. This
leads to the boundary conditions

s|in
s|out

= exp

[
− �χs 
c

D

]
, (D5a)

p|in
p|out

= exp

[
− �χp 
c

D

]
. (D5b)

Thus, for finite �, the substrate and product concentration
profiles in general exhibit a jump at the droplet interface.

When the interactions between enzymes, substrates, and
products are sufficiently weak (|�χs,p 
c/D| � 1), the sys-
tem reverts to the nonreciprocal limit discussed in our
previous work [37]. In this limit, the concentration profiles
of substrates and products at the droplet interface become
continuous. In contrast, strong attractive enzyme-substrate
and enzyme-product interactions (χs,p � 0) will lead to an
exponential enrichment of both substrates and products inside
of the condensate. We expect droplet motion to cease once
the redistribution of substrates and products driven by these
reciprocal interactions outweighs the redistribution caused by
reactions and diffusion, i.e., when the system is close enough
to thermodynamic equilibrium.

Taken together, conservation of mass dictates that the net
flows of substrates and products at the droplet interface are
continuous and finite, and amounts to Robin boundary condi-
tions specified in Eqs. (D3) and (D5). This allows us to revisit
our previous analysis [37] for the more general case of � � 0.

To that end, one could directly solve Eq. (D2) in each
subdomain (inside and outside the condensate), connect these
solutions at the droplet interface by using Eqs. (D3) and (D5),
and impose no-flux conditions in the far field. However, one
must also ensure that the solution conserves the total mass n∞
of substrates and products:

n∞ = 〈s + p〉 = 1

|�|
∫

�

dd z [s(z) + p(z)], (D6)

where |�| is the total volume of the integration domain. For
an open domain, where |�| → ∞, this implies that

lim
|z|→±∞

[s(z) + p(z)] = n∞, (D7)

11In analogy to the enzyme currents [Eq. (14b)], we added integra-
tion constants to ensure that the substrate and product currents vanish
far away from the droplet.
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far away from the droplet. At first glance, this additional
constraint may seem trivial because the total concentration
of substrates and products, n(x) := s(x) + p(x), is spatially
uniform12 for � = 0. However, this is in general not the case
for � > 0 and thus requires separate consideration. Specifi-
cally, as we will show next, a moving droplet can spatially
redistribute reactant mass n(x, t ) in the laboratory frame. Such
mass redistribution is a key feature and control process of
biochemical pattern-forming systems [91–93].

2. Redistribution of total reactant mass by moving droplets

To analyze the profile of the total concentration of sub-
strates and products, we add Eqs. (D2a) and (D2b), which
gives

0 = ∇ · (n v + D ∇n). (D8)

Because of mass conservation, the reaction terms have can-
celed out implying that, in the comoving frame, the sum of
the advective and diffusive mass fluxes of the total amount
of reactants is divergence-free. Moreover, far away from the
droplet, the total reactant concentration approaches the far-
field value, lim|z|→∞ n(z) = n∞, and becomes homogeneous,
lim|z|→∞ ∇n(z) = 0. Finally, note that Eq. (D8) is valid both
inside and outside of the condensate, but not at the droplet
interface where c(z) is singular. Thus, each of these domains
need to be analyzed separately and then connected by the
Robin boundary conditions derived previously. If the substrate
and product concentration fields are smooth and continuous
(� = 0), then Eq. (D8) has only n(z) = n∞ as solution. In
general, however, the substrate and product concentration
fields are neither smooth nor continuous (� > 0). Since this
complicates the analysis considerably, we focus on 1D sys-
tems in the following.

In a 1D geometry, the two droplet interfaces define the
boundaries between three spatial subdomains that we label
with indices i ∈ {−, 0,+}, which represent the solvent to the
left of the droplet (–), the droplet (0), and the solvent to the
right of the droplet (+). Solving Eq. (D8), gives for the total
concentration of substrates and products in each subdomain

n(z) = Ci + 
Ci exp(−vz/D), (D9)

where Ci and 
Ci are integration constants. To determine
these constants, we will now and in the following, without
loss of generality, assume that v � 0. Because the concen-
tration profiles must remain finite in the far field z → ±∞,
one has 
C− = 0 for the solvent domain left to the droplet.
Furthermore, the far-field conditions [Eq. (D7)] imply that
C± = n∞. By summing Eqs. (D3a) and (D3b), one finds
Robin boundary conditions for the total reactant concentration
at the two droplet interfaces at z = ±R, which lead to the
conclusion: C0 = C± = n∞. Taken together, the total reactant
concentration is given by

n(z) = n∞ + exp(−vz/D) ×
⎧⎨
⎩

0, z < −R,


C0, |z| � R,


C+, z > R.

(D10)

12Note that for � = 0, the total concentration follows a diffusion
equation.

The remaining integration constants, 
C0 and 
C+, cannot
be determined without taking into account the concentration
jumps of the substrates and products, Eq. (D5). Thus, they
require resolving the corresponding concentration profiles, as
will be discussed in the following.

3. Inhomogeneous Helmholtz equation determines
concentration profiles

Using mass conservation, n(z) = s(z) + p(z), to eliminate
the concentration of products from Eq. (D2), we arrive at
an inhomogeneous Helmholtz equation with advection which
describes the concentration profile of substrates in each sub-
domain,

0 = ∂z(v s + D ∂zs) − (k1 c± + k2) s + k2 n. (D11)

Recall that c± refer to the enzyme concentrations inside
and outside the droplet, respectively. Also note that the total
reactant concentration n(z) is spatially inhomogeneous, as
specified by Eq. (D10). The boundary conditions for the sub-
strate profiles at the droplet interfaces are given by Eq. (D3a)
and Eq. (D5a). These allow us to determine the distribution
of substrates s(z) and the total reactant concentration profile
n(z) up to two constants 
C0 and 
C+. To now constrain
these two constants, we turn to the distribution of products,
p(z) = n(z) − s(z). In particular, the product concentration
jumps at the two droplet interfaces, defined by Eq. (D5b),
specify the remaining two constants 
C0 and 
C+. By solv-
ing13 Eq. (D11), we determined the concentration profiles for
substrates and products when the droplet was either moving
(v > 0) or stationary (v = 0).

Our theoretical results for the concentration profiles align
closely with our simulations, as shown in Fig. 6 for a sta-
tionary droplet consisting of enzymes. As we discussed in
Sec. II B, near the center of the droplet, enzyme-catalyzed
reactions increase the concentration of products at the ex-
pense of substrates. These reaction-induced concentration
gradients correspond to particle fluxes which bring sub-
strates toward the condensate and transport products away.
In addition, attractive enzyme-substrate and enzyme-product
interactions increase the concentration of both substrates
and products by a discontinunous concentration jump at the
droplet interface [Eq. (D5)]. In Secs. IV A–IV C, we explore
the implications of these concentration profiles on droplet
self-propulsion.

APPENDIX E: EVALUATING THE CONCENTRATION
DIFFERENCES OF SUBSTRATES AND PRODUCTS

Note that there is a subtlety when evaluating the concen-
tration differences of the substrates 
s(v) and the products

p(v) between the two droplet interfaces. Since we are in the

13Specifically, we used the computer algebra system Mathematica
[66] to solve Eq. (D11) within each subdomain; the full expressions
can be found in Ref. [67].
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sharp interface limit, it is not entirely clear when evaluating
the integrals


s(v) :=
∫
D

dz ∂zs(z), (E1a)


p(v) :=
∫
D

dz ∂z p(z), (E1b)

which value we should choose for the lower and upper limits.
These could be the values at the inner or outer bound-
aries or an interpolation between the two. The difference
between these choices arises from the discontinuities in the
concentration profiles which, taking the substrate concen-
trations at the right droplet interface as an example, imply
limε→0 s(R − ε) 
= limε→0 s(R + ε). Currently, we cannot re-
solve which is the correct choice solely based on theoretical
arguments. Hence, we proceeded heuristically and compared
the various choices with simulation data for the droplet speed
as a function of the enzyme mobility and the reaction rates.
It turned out that these simulation data are only compatible
with choosing a droplet domain that excludes its boundary,
D = {z : |z| < R}, which for the enzyme concentration profile
implies c(z) = c+ ∀ |z| < R else c−. In this case, one takes the
concentration values at the inner sides of the droplet interfaces
when evaluating Eq. (E1). This ambiguity could be resolved
in future studies by using an enzyme concentration profile
with a smooth interface, or by using a kinked (i.e., with a
discontinuity in the gradient) enzyme concentration profile
[94]. Notwithstanding these limitations of the sharp interface
approximation, as we show in Fig. 8, it quantitatively predicts
the droplet velocity in agreement with our simulation results.

APPENDIX F: RECIPROCITY SUPPRESSES DROPLET
SELF-PROPULSION FOR ATTRACTIVE

ENZYME-SUBSTRATE AND ENZYME-PRODUCT
INTERACTIONS

In the following, we repeat the calculation performed in
Sec. IV C 5, but now for the case χs < χp < 0. The concentra-
tion jumps for substrates and products at the droplet interface,
Eq. (D5), in the limit �ε0/D → ∞, are then determined by

s|in
s|out

= exp

[
− �χs 
c

D

]
≡ �s → ∞, (F1a)

p|in
p|out

= exp

[
− �χp 
c

D

]
≡ �p → ∞. (F1b)

In this case, the slope of the maximal chemical potential
imbalance at v = 0 has the modified [cf. Eq. (44)] asymptotic
form

∂v
μ0(v)|v=0 = �p
2Rn∞

D

l2
+(χp − χs) − l2

0 χp

l2+ − l2
0

. (F2)

Since χs < χp < 0 and l± < l0, it follows that
∂v
μ0(v)|v=0 → −∞, and thus that the state v = 0 is
stable. The system could still be in the bi-stable regime, but
further analytic calculations are unfeasible.

APPENDIX G: POSITIONING AND COEXISTENCE

As we have shown in the present work, the presence of re-
ciprocal interactions (� > 0) further constrains the parameter

regime in which droplet self-propulsion can be observed. This
raises the question about condensate positioning, coexistence,
and divisions, which we have reported previously [37]. As
shown in Supplemental Material Video 5 [64], condensates
position themselves to the center of their confinement, which
leads to a system configuration with maximal symmetry. Simi-
larly, droplets can also show coexistence or even elongate and
divide (Supplemental Material Videos 6 and 7 [64]). Thus,
the presence of reciprocal interactions does not qualitatively
change these dynamics.

APPENDIX H: SUPPLEMENTAL MATERIAL VIDEOS

Supplemental Material Video 1 [64]. Chemical potential
profile and enzyme currents under the condition that the 3D
condensate moves with a defined speed, which is varied in the
movie. In this video there is no nonequilibrium driving force.
Stable fixed point is indicated by a filled circle. Parameters:
c− = 0.5c+, R = l0, k1 = 0k2/c+, � = 0, and s + p = c+,

χ := χp − χs = 0r and M(c) = Mc with M = 10D/ε0.

Supplemental Material Video 2 [64]. Chemical potential
profile and enzyme currents under the condition that the 3D
condensate moves with a defined speed, which is varied in
the movie. In this video, the condensate experiences a driving
force due to its interactions with the nonuniformly distributed
substrates and products. Stable fixed points are indicated by
filled circles. Parameters: c− = 0.5c+, R = l0, k1 = 2k2/c+,
� = 0, s + p = c+, 
χ := χp − χs = 4r and M(c) = Mc
with M = 10D/ε0.

Supplemental Material Video 3 [64]. Example where a
self-propelling 2D condensate is only metastable. After an
initial transient period of self-propulsion, the condensate
dissolves. Compared to the initial conditions discussed in
Appendix C, the low-concentration phase was further diluted
by 9.1%. Parameters: c− = 0.1c+, k1 = k2/c+, χs = −0.05r,
χp = −0.01r, � = 0, w = 0.1l0, R = l0, s + p = c+, and
M(c) = Mc with M = 1000D/ε0. The circular domain has
radius L = 7l0.

Supplemental Material Video 4 [64]. Example where a
self-propelling 2D condensate is stable. The condensate does
not dissolve. Compared to the initial conditions discussed in
Appendix C, the low-concentration phase was not diluted any
further. Parameters: c− = 0.1c+, k1 = k2/c+, χs = −0.05r,
χp = −0.01r, � = 0, w = 0.1l0, R = l0, s + p = c+, and
M(c) = Mc with M = 1000D/ε0. The circular domain has
radius L = 7l0.

Supplemental Material Video 5 [64]. Examples of 1D
condensates which self-propel, position themselves in a
container, and control their size even in the presence of re-
ciprocal interactions. Parameters: c− = 0.1c+, k1 = k2/c+,
χs = −0.05r, χp = −0.01r, w = 0.1l0, R = l0, s + p = c+,
and M(c) = Mc. For the simulation showing self-propulsion:
M = 5000D/ε0 and � = 4D/ε0. For the simulation showing
positioning and coexistence: M = 100D/ε0 and � = 20D/ε0.
The linear domain has size L = 30l0 for the self-propulsion
example, L = 3l0 for the positioning example, or L = 5l0 for
the coexistence example.

Supplemental Material Video 6 [64]. Example of a
condensate, for weak reciprocity parameter � = 0.1D/ε0,
which divides upon switching the catalysis rate from
k1 = 100 k2/c+, for which the droplet is stable, to
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k1 = 1 k2/c+. The two smaller droplets remain stable when
the catalysis rate is increased again. Simulations were
performed in a 3D cylindrical domain (radius Lr = 1.5l0 and
half-height Lz = 4l0). Parameters: M = 10D/ε0, χs = −0.5r,
w = 0.05l0.

Supplemental Material Video 7 [64]. Example of a conden-
sate, for reciprocity parameter � = 1.0D/ε0, which elongates

upon switching the catalysis rate from k1 = 100 k2/c+, for
which the droplet is stable, to k1 = 1 k2/c+. The elon-
gated droplet then divides into two smaller droplets once
the catalysis rate is increased again. Simulations were per-
formed in a 3D cylindrical domain (radius Lr = 1.5l0 and
half-height Lz = 4l0). Parameters: M = 10D/ε0, χs = −0.5r,
w = 0.05l0.
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