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For decades, most research of high harmonic generation (HHG) considered matter as quantum but light as
classical. Recently, HHG driven by quantum states of light such as bright squeezed vacuum was predicted
to reach beyond the classical HHG cutoff. Moreover, in squeezed coherent illumination, it was shown that
the underlying dynamics are significantly modified by the photon statistics effective force. Here we show
that HHG driven by quantum light results in quantum high harmonics. We derive a formula for the quantum
state of the high harmonics, when driven by arbitrary quantum light states, and then explore specific cases of
experimental relevance. Specifically, for a moderately squeezed pump, HHG driven by squeezed coherent light
results in squeezed high harmonics. Harmonic squeezing is optimized by syncing ionization times with the
pump’s squeezing phase. Beyond this regime, as pump squeezing is increased, the harmonics initially acquire
squeezed thermal photon statistics, and then occupy an intricate quantum state which strongly depends on the
semiclassical nonlinear response function of the interacting system. Our results pave the way for generation
of squeezed extreme-ultraviolet ultrashort pulses, and more generally, quantum frequency conversion into
previously inaccessible spectral ranges, which may enable ultrasensitive attosecond metrology.
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I. INTRODUCTION

High harmonic generation [1,2] (HHG) occurs when in-
tense light drives gases [1,2], liquids [3], solids [4], or plasma
[5] to emit high-order harmonics of the driving field. Tempo-
rally, the HHG emission often consists of attosecond pulses
[6]. In the gas phase, HHG is understood in terms of the
three-step model [7–9]. An initially bound electron undergoes
laser-induced tunnel ionization, then accelerates in the con-
tinuum under the influence of the oscillating laser field, and
finally, it recombines with its parent ion, releasing its kinetic
and potential energy as a high-energy photon. Notably, HHG
played a critical role in the development of attosecond science
[10], which temporally resolves structure and dynamics of
matter with attosecond resolution by measuring optical emis-
sion and photoelectron spectra in various geometries [11–18].
Additionally, HHG is useful for a wide range of spectroscopic
applications, e.g., for probing topological phase transitions
[19], molecular chirality [20,21], ring currents [22], and sym-
metry breaking [23,24]. However, despite its wide range of
scientific and technological applications, it remains unclear if
HHG, like χ (2,3) nonlinearities, can be used for frequency-
converting quantum light without altering its quantum state,
a process known as quantum frequency conversion (QFC)
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[25,26]. While QFC based on low-order χ (2,3) nonlinearities
is successful, these nonlinearities generally do not support
extreme up conversion of light. Consequently, transferring
quantum correlations from the near-infrared (NIR) to the ex-
treme ultraviolet (XUV) spectral range or from midinfrared
(MIR) to ultraviolet (UV) remains inaccessible. HHG repre-
sents the natural next step in this context. Recently, quantum
optical aspects of both the outgoing pump and the emitted
high harmonics have been extensively researched [27–31].
Most attention was invested in the special case of a driving
field being initially a Glauber coherent state [32–40], i.e., a
classical drive. Indeed, until recently, HHG experiments were
only driven by coherent-state (i.e., “classical”) light fields
corresponding to the emission of a laser. This is because only
coherent-state light was accessible with high intensities and
ultrashort pulse durations. This situation is changing rapidly,
as ultrashort pulses of intense nonclassical light are now well-
established drivers of nonlinear optics [41,42] and are starting
to approach the regime of strong-field physics [41,43–48].
Indeed, recent work [49,50] suggested that HHG driven by
squeezed vacuum pulses is already be within reach by com-
bining the most efficient HHG geometries [51] with tabletop
squeezed vacuum beamlines [45]. These works predicted an
extended HHG cutoff generated by squeezed vacuum [49]
and novel control over electron trajectories [4,5] through an
effective photon statistics force.

However, despite previous derivations of formulas for the
light-matter density matrix [49,50], the interplay between the
quantum state of the pump and material structure and their im-
pact on the quantum state of the HHG emission has remained

2643-1564/2024/6(3)/033079(8) 033079-1 Published by the American Physical Society

https://orcid.org/0000-0002-3777-6123
https://orcid.org/0000-0002-0122-2022
https://orcid.org/0000-0002-1592-6530
https://ror.org/03qryx823
https://ror.org/03qryx823
https://ror.org/03qryx823
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033079&domain=pdf&date_stamp=2024-07-17
https://doi.org/10.1103/PhysRevResearch.6.033079
https://creativecommons.org/licenses/by/4.0/


MATAN EVEN TZUR et al. PHYSICAL REVIEW RESEARCH 6, 033079 (2024)

convoluted. The individual roles of these factors in shaping the
emission’s quantum state were not explored. Thus, hitherto, it
was not known whether harnessing HHG for extending QFC
into the presently inaccessible XUV spectral range is feasible,
and under which conditions it is optimal.

Here we find the quantum state of high harmonics and
show that when driven by quantum light, the HHG emission
inherits quantum features from the pump. Our work applies
to any arbitrary quantum state of light, providing an analyt-
ical formula for the quantum state of the harmonics. After
laying out the general formalism, we focus on two specific
examples that are experimentally accessible. First, we con-
sider HHG in atomic gas driven by squeezed coherent light,
and show that the harmonics may exhibit squeezing when the
pump is squeezed, i.e., HHG may support QFC of squeezed
light. Absolute squeezing of high harmonics (i.e., beyond shot
noise) is achieved only for a limited range of pump squeezing,
because the contribution of the antisqueezed quadrature to
the nonlinear emission is mapped to both quadratures of the
harmonics. Our analysis reveals how the quantum state of
the emitted harmonics depends on the underlying electronic
trajectories, showing that harmonic squeezing is optimized
when their ionization time is synchronized with the squeezed
phase of the pump. In the second example, we consider HHG
driven by bright squeezed vacuum. We find that in this case,
the harmonics occupy an intricate quantum state. We explain
the key features of this state using an analogy to a winding trail
down a mountain. Our results pave the way towards the gener-
ation of squeezed ultrashort XUV light by means of extremely
nonlinear QFC, which may bring below-shot-noise metrology
to the attosecond timescale and x-ray spectral range.

II. QUASIPROBABILITY DISTRIBUTIONS OF THE HIGH
HARMONIC EMISSION

We begin by deriving the density matrix of the HHG emis-
sion due to interaction of an atom with light at frequency ω,
whose quantum state is specified through its positive P rep-
resentation Pω(α, β ) [52]. We note that such a decomposition
exists for any single mode quantum state, it is non-negative,
and it is normalized to 1. The density matrix is given by

ρ̂light(t = 0) =
∫

d2αd2βPω(α, β*)
|α〉〈β|
〈β|α〉

qcutoff⊗
q=2

|0qω〉〈0qω|,

(1)

where t = 0 is before the start of the interaction. Here,
|α〉 and |β〉 are Glauber coherent states at frequency ω,
and |0qω〉 are vacuum modes at frequencies qω where q
is an integer. Assuming that the material system initially
fully occupies the ground state of the atom |g〉, the ini-
tial condition for the joint light matter density matrix is
given by ρ̂(0) = ρ̂A(0) ⊗ ρ̂light (0) where ρ̂A(0) = |g〉〈g|. The
Schrödinger equation for ρ̂(t ) is governed by the Hamiltonian
Ĥ = ĤA − ed̂ · Ê(t ), where ĤA is the atomic Hamiltonian,
d̂ is the dipole moment expectation value, and Ê(t ) =
i
∑

k,σ

√
h̄ω

2V ε0
ε(âkσ e−iωt − â†

kσ
eiωt ) is the electric field oper-

ator. Using the linearity of the Schrödinger equation, we

decompose ρ̂(t ) as

ρ̂(t ) ≡
∫

d2αd2βPω(α, β∗)ρ̂αβ (t ), (2)

where ρ̂αβ (t ) is defined as the component of the density ma-
trix whose initial condition is ρ̂αβ (0) = ρ̂A(0) ⊗ |α〉〈β|

〈β|α〉 ⊗qcutoff
q=2

|0qω〉〈0qω|. Next, we use coherent shift operators to trans-
form the initial condition of each ρ̂αβ into parameters in
its equation of motion. Using D̂†(α), D̂(β ), we define
ρ̃αβ (t) = D̂†(α)ρ̂αβ (t )D̂(β ) which satisfies the initial condi-
tion 〈β|α〉ρ̃αβ (0) = ρ̂A(0) ⊗qcutoff

q=1 |0qω〉〈0qω| where the tensor
product now begins at q = 1 [in contrast to Eq. (1)]. Using
the Schrödinger equation, Eq. (2), and the equations above,
the time evolution of ρ̃αβ is given by

ih̄
∂ρ̃αβ

∂t
= Ĥαρ̃αβ − ρ̃αβĤβ − [d̂ · Ê, ρ̃αβ ],

Ĥα ≡ HA − d̂ · Eα(t ),

Ĥβ ≡ HA − d̂ · Eβ(t ), (3)

where Eα (t ) = 〈α|Ê|α〉, Eβ (t ) = 〈β|Ê|β〉, and we have
taken e = 1. We introduce the ansatz 〈β|α〉ρ̃αβ (t ) =
|φα (t )〉|χα (t )〉 ⊗ 〈φβ (t )|〈χβ (t )| where |φα,β〉 are electronic
wave functions, and |χα,β〉 are photonic wave functions which
span multiple modes of the electromagnetic field. Using this
ansatz, Eq. (3) is reformulated as

ih̄
∂|φα〉|χα〉

∂t
= Hα|φα〉|χα〉 − d̂ · Ê|φα〉|χα〉. (4)

Identical equations apply for |φβ〉|χβ〉. Equation (4) gives
physical meaning to the constituents of the ansatz |φα,β〉 and
|χα,β〉: they are the electronic and photonic parts of the solu-
tion of the joint light-matter Schrodinger equation for HHG
driven by a coherent state |α〉 (|β〉) of light. In this equa-
tion, the term Hα|φα〉|χα〉 expresses the classical driving field
Eα (t ) carried by the coherent state |α〉, and −d̂ · Ê|φα〉|χα〉
expresses the coupling of the classically driven electron to the
quantized modes of the electromagnetic field. Neglecting all
action of the quantized modes on the electron, its time depen-
dent state is given by the semiclassical Schrödinger equation
ih̄∂t |φα〉 = Hα|φα〉. Physically, this assumption means that
photon emission recoil is negligible, and that the interaction is
much faster than any spontaneous emission time of the atomic
system. Then, |χα〉 is given (up to a quantum phase factor
which we neglect) by [38]

|χα〉 = |αω + χω(α)〉
qcutoff⊗
q=2

|χqω(α)〉 (5)

in which |χq(α)〉 is a coherent state with displacement
χq(α) = −iN

√
qε (1)〈dα (qω)〉 [38]. Here, ε (1) = √

h̄ω/2ε0V ,
N is the number of phase-matched atoms, and 〈dα (qω)〉 =∫ ∞
−∞ dt〈φα (t )|d̂|φα (t )〉 eiqωt is the semiclassical dipole mo-

ment expectation value of the electronic wave packet driven
by the |α〉 coherent state |φα (t )〉. Hence, at time t , the density
matrix of the system is given by

ρ̂(t ) =
∫

d2αd2βPω(α, β∗)|φα (t )〉〈φβ (t )| ⊗ |χα〉〈χβ |
〈β|α〉 . (6)
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The final step to obtain the density matrix of light is to trace
out all electronic degrees of freedom. For this, we note that by
definition |φα〉|χα〉 is the solution of the complete light-matter
Schrödinger equation with initial condition |g〉|α〉 [Eq. (4)].
Thus, we have

〈χβ |χα〉TrE (|φα〉〈φβ

∣∣)
= TrE ,F (|φα〉|χα〉〈χβ |〈φβ |)
= TrE ,F (U †

AF (t, t ′)|g〉|α〉〈β|〈g|UAF (t, t ′)) = 〈β|α〉, (7)

where UAF (t, t ′) is the unitary time evolution operator of the
light matter system. Therefore, the density matrix of light after
the interaction is given by

ρlight =
∫

d2αd2βP(α, β∗)
|χα〉〈χβ |
〈χβ |χα〉 . (8)

Equation (8) is a central result of the paper. It gives the
complete state of light in HHG driven by quantum light. It
shows how the quantum state of the driver Pω(α, β∗) mixes
with the semiclassical nonlinear response function of the
system χ (α) which may be calculated by solving the semi-
classical time dependent Schrodinger equation [53] or by
employing the strong-field approximation theory [8]. Notably,
Eq. (8) leads to the formulas for the positive P, Glauber-
Sudarshan and Husimi distribution of harmonic qω:

Pqω(χqω ) = J (χqω )Pω(α(χq)),

Qqω(χq) = J2(χqω )Qω(α(χq)),

J (χq) =
∣∣∣∣ ∂ (αx, αy)

∂ (χqx, χqy)

∣∣∣∣ = ∣∣∂χx αx∂χyαy − ∂χyαx∂χx αy

∣∣. (9)

Here, Pqω (χqω ) is the Glauber-Sudarshan representation
of the harmonic (see SI section I for an explicit formula for
the positive P representation of harmonic qω and a detailed
derivation). The function α(χq) is the inverse function of
χq(α) and the J (χq) is the Jacobian of the transformation α →
χq. Equation (9) expresses explicitly the quantum state of the
frequency component qω, and is therefore another central re-
sult of the paper. It shows that the quantum state of the driving
field is mapped to the quantum state of emitted harmonic
through the classical nonlinear response function χq(αω ). For
example, Fig. 1(b) shows the x and y quadratures of the 15th
harmonic, calculated using the strong-field approximation,
assuming an atomic system with a single structureless bound
state.

Before proceeding to examine specific cases, we briefly
revisit and sum up the approximations leading to Eq. (9). First,
in writing Eq. (5), we have neglected a quantum phase pref-
actor e−iζ (α) which in principle should be included in the state
|χα〉. This assumption is justified as long as ζ (α) − ζ (β ) is
flat within the sampled phase-space area of Pω(α, β∗), i.e., that
the term linear in Pω(α, β ) does not contribute significantly to
the emission if |α−β| � 1. This assumption is reasonable in
most cases as indicated by the relation between the positive
P and Husimi representations of an arbitrary quantum state
P(α, β∗) = 1

4π
exp(−|α−β|2

4 )Q( α+β

2 ). Additionally, we have
assumed that HHG maps a coherent driver state to a coherent
harmonic state. While this approximation is widely used in the
literature [31,32,35], it is important to emphasize that it was

FIG. 1. Quantum state transfer between spectral ranges using
high harmonic generation. (a) Illustration of HHG driven by ampli-
tude squeezed light. (b) Husimi distribution of the pump at frequency
ω (left) and the 15th harmonic at frequency 15ω (right), calculated
using Eq. (9) and the strong-field approximation.

not yet tested experimentally and may not always hold, for
example, when the emitters are correlated [27,54]. In general,
one may obtain coherent state emission by neglecting the
backaction of the quantized modes on the electronic dynamics
in the single atom response, as we have done in the transition
from Eq. (4) to Eq. (5) by plugging in ih̄∂t |φα〉 = Hα|φα〉.
Alternatively, coherent state emission may be obtained from
a macroscopic ensemble of uncorrelated quantum emitters,
each emitting quantum radiation independently [40]. When
coherent state emission cannot be assumed for a coherent state
pump [27,54,55], Eq. (9) is invalid but Eqs. (4) and (8) remain
valid. The only difference is that |χα,β〉 no longer represents
coherent states.

III. HIGH HARMONIC GENERATION
DRIVEN BY SQUEEZED COHERENT LIGHT

In this section, we consider the experimentally feasible
example of HHG driven by squeezed coherent light. To visu-
alize the squeezed coherent pump, it is instructive to consider
one possible way of its generation, by using a beam splitter
to superimpose a bright coherent state with a dim squeezed
vacuum field [56]. By varying the relative phase between the
bright coherent state and the squeezed vacuum beams, one
may continuously transition between phase-squeezed light
(with a certain phase but uncertain amplitude) and amplitude
squeezed light (with a certain amplitude yet uncertain phase).
The squeezed coherent state of the pump is denoted by |γ , r〉
where γ and r are its dimensionless coherent state and squeez-
ing parameters, respectively. The Husimi distribution of this
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FIG. 2. High harmonic quadrature variances for squeezed coherent light. We evaluate Eq. (11) using the parameters θ =
0 and 4ε (1)4N2q〈dγ x (qω)〉 = 5 × 10−6 a.u. (a) Amplitude squeezed pump (Eγx = 0.0756 a.u., Eγy = 0). (b) Phase squeezed pump
(Eγy = 0.0756 a.u., Eγx = 0). For high pump squeezing, none of the harmonics exhibit squeezing because the antisqueezed quadratures of the
pump are mapped to both quadratures of the harmonics. For low pump squeezing, harmonic squeezing occurs when the pump’s fluctuations
are squeezed during the ionization time.

state is given by [52]

Q(SC)
ω (α) = 1

π cosh (r)
exp

[
−2(αy − γy)2

1 + e2r
− 2(αx − γx )2

1 + e−2r

]
.

(10)

Each value of α = αx + iαy in the distribution Q(SC)
ω (α)

corresponds to a coherent state carrying a classical elec-
tromagnetic field Eα (t ) = 2ε (1)[αx sin(ωt ) + αy cos(ωt )], αx,y

are the quadrature amplitudes of the coherent state, and ε (1) ≈
100 V/cm in typical focusing parameters is the amplitude of
electric field vacuum fluctuations [57]. To calculate the quan-
tum state of the emitted harmonics, we solve for χ (q)(α) using
the strong-field approximation theory [8]. Then, using the ob-
tained χ (q)(α) and Eqs. (9) and (10), we construct the Husimi
distribution of each harmonic. Figure 1(b) shows the result of
this construction for harmonic 15 driven by squeezed coherent
light. While the harmonic is squeezed, it does not preserve
the squeezing phase of the pump or the pump’s degree of
squeezing. Additionally, the degree and phase of squeezing
exhibit dispersion with harmonic order [see Fig. 1(a) for an
illustration].

To explore this further, we derive an analytical formula for
the quadrature variance �X 2

θ for harmonic qω generated by
a squeezed coherent state |γ , r〉 using the Glauber-Sudarshan
Pω(α) representation version of Eq. (9). We outline below
the key steps and approximations of the derivation (see
Sec. III of the SI for detailed derivation). The quadrature X̂θ

of the qω harmonic is defined by X̂θ = X̂ cos(θ ) + P̂ sin(θ )
where X̂ = âqω + â†

qω, P̂ = −i(âqω − â†
qω ), and âqω is an

annihilation operator for the qω mode. For the X̂ quadrature
(θ = 0), Eq. (9) shows 〈X̂ 2〉 = 1 + 4

∫
Pω(α)χ2

x (α)d2α

where χx = Re{χ}. Using the strong-field approximation,
neglecting long trajectories, and setting Ip = 0 (SI, Sec. II),

we approximate χx(α) ≈ χqx(γ ) cos(σqω ) − χqy(γ )sin(σqω )
where σqω = Aqω(αx − γx ) + Bqω(αy − γy) is a real valued
parameter. Here, χqx,y(γ ) are quadrature amplitudes of
the qω state generated by a coherent state |γ 〉. The
coefficients A, Bqω are given in explicit form in the SI
Sec. II, and are functions of canonical momentum p,
ionization time t0, and recombination time t of harmonic
qω. Approximating σ 
 1 in the phase space area covered
by Pω(α), we obtain (to lowest order in ε (1)) �X̂ 2 = 1 +
4(

√
Nε (1) )

4
q〈dγ x (qω)〉2(A2

qω(e−2r − 1) + B2
qω(e2r − 1)) in

which 〈dγ x(qω)〉 is the real part of the semiclassical dipole
moment 〈dγ (qω)〉. Through similar derivations of �P̂2 and
〈XP + PX 〉−2〈X 〉〈P〉, we arrive at the final expression for
�Xθ (to leading order in ε (1)):

�X̂ 2
θ = 1 + 4ε (1)4

N2q[〈dγ x(qω)〉 cos(θ )

+ 〈dγ y(qω)〉 sin(θ )]2]

× (
A2

qω(e−2r − 1) + B2
qω(e2r − 1)

)
, (11)

in which θ is quadrature angle, N is the number of interact-
ing atoms, q is the harmonic order, ε (1) is the single photon
amplitude at frequency ω, 〈dγ x,y(qω)〉 are the real and imag-
inary parts of the semiclassical dipole moment 〈dγ (qω)〉 of
the harmonic qω generated by a coherent state |γ 〉 (semi-
classical), A, Bqω are functions of [p, t0, t1]qω, and r is a
dimensionless squeezing parameter. Equation (11) is another
central result of the paper.

Figures 2(a) and 2(b) depict the quadrature variances cal-
culated with Eq. (11), plotted against the pump squeezing
parameter r for amplitude and phase squeezed pumps re-
spectively, with intensity 2 × 1014 W/cm2, and for short
trajectories only. Notably, we observe that absolute squeezing
(i.e., squeezing beyond the level of vacuum fluctuations) is
limited to a finite range of r [this can be seen by taking the
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FIG. 3. Quantum state of HHG driven by squeezed vacuum. (a) Illustration of high harmonic generation driven by squeezed vacuum.
(b) The Husimi distribution Q[α(χ )] of harmonic 23, calculated using χ (23)(α) [see (d)] and Eq. (12). (c) A semiclassical HHG spectrum
calculated analytically from a truncated quadratic potential with the ionization potential and ponderomotive energy being Ip = 11h̄ω and
Up = 9h̄ω, respectively. (d) The scaling of harmonic 23 ∝ |χ (23)(α)|2 as a function of Up ∝ |Eα|2 ∝ |α|2.

limit r → ∞ in Eq. (11)]. Beyond this range, we find that the
harmonics exhibit thermal statistics. From a physical stand-
point, the “thermalization” of harmonics occurs because the
antisqueezing of the pump is mapped to both quadratures of
the emitted harmonics, eventually spoiling absolute squeezing
altogether. For low pump squeezing, Fig. 2(a) shows that for
an amplitude-squeezed pump (Eγx = 0.0756 a.u., Eγy = 0),
the lowest harmonics do not exhibit squeezing and their
quadrature variances exceed 1. Higher harmonics do exhibit
absolute squeezing (quadrature variance <1) which increases
with harmonic order. To shed light on this pattern, it is in-
structive to consider that for an amplitude squeezed pump, the
photon fluctuations are squeezed at the peak of the field, where
the ionization time window is located, and gradually become
antisqueezed at later times. Additionally, we note that for short
trajectories, the highest harmonics correspond to ionization
times closest to the peak of the field, where the pump’s fluctu-
ations are minimal. Consequently, electrons that emit higher
harmonics experience the least noise during their tunneling
step, which eventually leads to squeezed high harmonics. This
reasoning is also consistent with Fig. 2(b) which shows the
harmonic quadrature variances for a phase squeezed pump.
Here, field fluctuations are antisqueezed within the ioniza-

tion window and consequently none of the harmonics exhibit
squeezing. The highest harmonics exhibit the highest quadra-
ture variance, corresponding to their ionization time closest to
the peak of the field, where the pump maximally fluctuates.

IV. HIGH HARMONIC GENERATION DRIVEN
BY BRIGHT SQUEEZED VACUUM

As discussed in the Introduction, bright squeezed vacuum
(BSV) is the state of light generated by degenerate sponta-
neous parametric down conversion [45]. In this section, we
show that unlike the case of squeezed coherent light, the
quantum state of HHG driven by BSV does not resemble the
quantum state of the pump whatsoever. Nonetheless, the struc-
ture it takes is intuitive, and can be potentially engineered,
choosing appropriate material and beam parameters.

We consider a model atom based on a truncated harmonic
oscillator potential, for which the HHG emission driven by a
coherent state, (〈dα (qω)〉 and χ (q)(α)), is known analytically
and was derived in Eq. (22) of Ref. [8]. The potential is given
by V (|x| <

√
2β/α2) = αx2

2 − β and V (|x| >
√

2β/α2) = 0,
resulting in an ionization potential −Ip = −β + 3α

2 . An
exemplary HHG spectrum is plotted in Fig. 3(c), with the
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parameters Ip = 11h̄ω, β = 50h̄ω, and the ponderomotive
energy of the pump is Up = 9h̄ω (h̄ω is the laser photon
energy). Figure 3(d) shows the scaling of harmonic 23,
|〈dα (23ω)〉|2 ∝ |χ (23)(α)|2 with the ponderomotive energy
Up ∝ |Eα|2 ∝ |α|2, where Eα and α are the electric field
amplitude and coherent state parameter of the driving
coherent state field, respectively. In conjunction with Eq. (9),
the semiclassical nonlinear response function presented in
Fig. 3(d) can be used to calculate the quantum state of the
harmonics, when driven by BSV. We consider a squeezed vac-
uum field characterized by the quasiprobability distribution

Q(SV )
ω (α) = 1

π cosh (r)
exp

[
− 2αy

2

1 + e2r
− 2αx

2

1 + e−2r

]
. (12)

The intensity of the beam is denoted by Ivac =
ch̄ω sinh2(r)/V ≡ 1

2ε0c|Evac|2, where r is the dimensionless
squeezing parameter, V is the quantization volume, ω =
0.057 a.u. is the driving frequency (800 nm wavelength), and
|Evac| = 0.189 a.u. is the electric field amplitude of an equally
intense coherent state (1.25 × 1015 W/cm2 intensity ). The
Husimi distribution Q(α(χ )) is plotted in Fig. 3(b), showing
an intricate structure, significantly deviating from the Gaus-
sian shape of the pump. Most prominently, it exhibits a sharp,
narrow peak centered around χx = χy = 0. This is because the
majority of coherent state components in Q(SV )

ω (α) do not gen-
erate high harmonics, as their electric field amplitude is too
weak [Fig. 3(d)]. The rest of the quasiprobability distribution
follows a structure similar to a trail winding down a mountain,
which peaks at χx,y = 0. The trail winds because of the circu-
lar motion of χ in the complex plane as |α| is increased. We
can also observe that the trail consistently moves down and
away from the peak of the mountain. The trail moves away
with an exponential rate, since |χ | increases exponentially
with |α| [Fig. 3(d)]. The trail moves down because the Husimi
distribution Q(SV )

ω (α) of the squeezed vacuum decreases with
|α| [Eq. (12)]. Finally, the width of the trail is linear in the |αx|
of Q(SV )

ω (α).

V. CONCLUSION

To summarize, we have explored the quantum state of the
emitted light in high harmonic generation in atomic gases,

considering the quantum state of the driving field and the
semiclassical nonlinear response function of the interacting
system. We have shown that the quantum state of the driv-
ing field is mapped to the harmonics through the classical
nonlinear response function of the system and its Jacobian.
We then studied in detail the specific cases of high harmonic
generation driven by squeezed coherent light and by squeezed
vacuum light, which were recently observed in solids [58,59].
For the case of gaseous HHG driven by squeezed coherent
light, we derived an explicit equation for the quadrature vari-
ance of the harmonics, which reveals that the high harmonics
inherit squeezing from the pump up to a finite value of pump
squeezing. Above this finite value, absolute squeezing of the
harmonics does not occur due to the large fluctuations in the
antisqueezed quadrature of the pump. These fluctuations are
mapped to fluctuations in both quadratures of the harmonics
while the relative quadrature squeezing is always maintained.
However, at moderate pump squeezing, transferring squeezing
from the pump to the harmonics should be possible. For the
case of squeezed vacuum, we have found the quantum state
of the emission to be significantly different from the quantum
state of the pump. Looking forward, our formalism may also
be used to describe the quantum state of high harmonics in the
recently reported experiments on HHG driven by squeezed
light from solids [58,59]. Potentially, our results pave the
way towards squeezed high harmonic light, which may bring
below-shot-noise metrology to the ultrafast timescale and to
the x-ray spectral range. Therefore, we believe our results will
have a large impact on HHG, attosecond metrology, quantum
optics, and more.
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