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Kilonova light-curve interpolation with neural networks
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Kilonovae are the electromagnetic transients created by the radioactive decay of freshly synthesized elements
in the environment surrounding a neutron star merger. To study the fundamental physics in these complex
environments, kilonova modeling requires, in part, the use of radiative transfer simulations. The microphysics
involved in these simulations results in high computational cost, prompting the use of emulators for parameter
inference applications. Utilizing a training set of 22 248 high-fidelity simulations (composed of 412 unique
ejecta parameter combinations evaluated at 54 viewing angles), we use a neural network to efficiently train on
existing radiative transfer simulations and predict light curves for new parameters in a fast and computationally
efficient manner. Our neural network can generate millions of new light curves in under a minute. We discuss
our emulator’s degree of off-sample reliability and parameter inference of the AT2017gfo observational data.
Finally, we discuss tension introduced by multiband inference in the parameter inference results, particularly
with regard to the neural network’s recovery of viewing angle.
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I. INTRODUCTION

On August 18, 2017, prompt observations identified
gravitational wave emission (GW170817; [1,2]), shortly fol-
lowed by a gamma-ray burst (short-GRB GRB170817A [3]).
Extensive followup observations identified a long-duration
optical/near-infrared counterpart, AT2017gfo, later identified
as a “kilonova” [4–21]. A kilonova [22] is characterized
by thermal emission from rapidly expanding, radioactively
powered, heavy-element material ejected from the associated
progenitor merger. The detection of the joint gravitational-
and electromagnetic-wave emission from GW170817 and
AT2017gfo has initiated an era of precision kilonova
observations.

Most interpretations of kilonova observations, including
kilonova candidates contributing to excess optical/infrared
emission in GRB afterglows [23–29], have relied on broad-
band photometry. This reliance was in part owing to the
relative sparsity of available spectra for AT2017gfo (and
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lack of spectral observations of other kilonovae; although
see, e.g., [30–32]) [24–27,29,33–45]. A comprehensive re-
view of kilonova broadband photometry has recently been
compiled and presented in Ref. [46]. Many studies inter-
preted their observations of AT2017gfo shortly after detection
principally by comparison to simplified models for kilo-
novae [4–10,12,14–21,47,48] consisting of one or more
groups of nonaccelerating (homologous) expanding material.
Motivated by both binary merger simulations and the in-
ability to fit observations with one component [8], at least
two components are customarily employed [10,12,15–17,20],
with properties loosely associated with two expected fea-
tures of merger simulations: promptly ejected material (the
“dynamical” ejecta), associated with tidal tails or shocked
material at contact, and material driven out on longer
timescales by properties of the remnant system (the “wind”
ejecta) [49].

Radiative transfer models of two-component kilonovae,
while more physically accurate and informative, come with
a significantly higher computational cost compared to semi-
analytical or one-component models. As a result of this cost,
many groups have resorted to surrogate models, or emulators,
for the kilonova outflow, to reduce the computational impact
associated with inference using these more complex models
[50–59].

2643-1564/2024/6(3)/033078(14) 033078-1 Published by the American Physical Society

https://orcid.org/0000-0001-9438-7864
https://orcid.org/0000-0001-7042-4472
https://orcid.org/0000-0003-1087-2964
https://orcid.org/0000-0003-2624-0056
https://ror.org/022kthw22
https://ror.org/00v4yb702
https://ror.org/01e41cf67
https://ror.org/01e41cf67
https://ror.org/01e41cf67
https://ror.org/03m2x1q45
https://ror.org/05fs6jp91
https://ror.org/00y4zzh67
https://ror.org/01e41cf67
https://ror.org/03c3r2d17
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033078&domain=pdf&date_stamp=2024-07-17
https://doi.org/10.1103/PhysRevResearch.6.033078
https://creativecommons.org/licenses/by/4.0/


YINGLEI PENG et al. PHYSICAL REVIEW RESEARCH 6, 033078 (2024)

In this paper we use a neural network emulator for
light-curve interpolation and parameter inference. We train
on a previously generated library of ∼400 two-component
kilonova light-curve simulations. Our method can be easily
applied to any modestly sized archive of adaptively learned
astrophysical transient light-curve simulations. Like our pre-
vious study [52], our investigation is a concrete and novel
realization of a widely used strategy in many areas of physics:
training a surrogate model against reference simulations, then
using the surrogate for model parameter inference. In this
work, however, we perform a novel investigation to assess
the quality of our surrogate, to find surprising differences
relative to conclusions obtained with the previously described
surrogate [52]. Our results raise general questions about how
to appropriately characterize and propagate systematic uncer-
tainty in surrogate models, which will be of broad interest in
any area of physics where comparable surrogate approaches
are used.

This paper is organized as follows. In Sec. II we discuss
our simulation training library, the interpolation model and
its architecture, and the associated light-curve interpolation
methodology. In Sec. III we compare our emulator’s per-
formance with others employed in the literature and report
inference results for observations of AT2017gfo. In Sec. IV
we summarize our findings.

II. INTERPOLATION METHODOLOGY

A. Simulation description

Our two-component kilonova model consists of a
lanthanide-rich equatorial dynamical ejecta component and
a lanthanide-poor axial wind ejecta component as described
in [60,61] and motivated by numerical simulations [49,62].
Each component is homologously expanding and parameter-
ized by a mass and velocity such that Md, vd and Mw, vw

describe the dynamical and wind components’ masses and
averaged velocities, respectively. The morphology for the dy-
namical component is an equatorially centered torus, whereas
the wind component is represented by an axially centered
peanut component; Fig. 1 of [60] displays the torus peanut,
or “TP,” schematic corresponding to the morphologies em-
ployed in this work (see [61] for a detailed definition). The
lanthanide-rich dynamical ejecta is a result of the r-process
nucleosynthesis from a neutron-rich material with a low elec-
tron fraction (Ye ≡ np/(np + nn)) of Ye = 0.04 with elements
reaching the third r-process peak (A ∼ 195), while the wind
ejecta originates from higher Ye = 0.27 which encapsulates
elements between the first (A ∼ 80) and second (A ∼ 130)
r-process peaks. The detailed breakdown of the elements in
each component can be found in Table 2 of Ref. [60].

We use SuperNu [63], a Monte Carlo code for simu-
lation of time-dependent radiation transport with matter in
local thermodynamic equilibrium to create simulated kilonova
spectra Fλ,sim assuming the aforementioned two-component
model. Both components are assumed to have fixed compo-
sition and morphology for the duration of each simulation.
SuperNu uses radioactive power sources calculated from
decaying the r-process composition from the WinNet nu-
clear reaction network [64–67]. These radioactive heating

contributions are also weighted by thermalization efficien-
cies introduced in Ref. [68] (see Ref. [69] for a detailed
description of the adopted nuclear heating). We use detailed
opacity calculations via the tabulated, binned opacities gen-
erated with the Los Alamos suite of atomic physics codes
[70–72]. In the database that we use, the tabulated, binned
opacities are not calculated for all elements; therefore, we
produce opacities for representative proxy elements by com-
bining pure-element opacities of nuclei with similar atomic
properties [71]. Specifics of the representative elements for
our composition are given in Ref. [60].

The SuperNu outputs are observing-angle-dependent, sim-
ulated spectra Fλ,sim, postprocessed to a source distance of
10 pc, in units of erg s−1 cm−2 Å−1. The spectra are binned
into 1024 equally log-spaced wavelength bins spanning 0.1 �
λ � 12.8 microns.

For the purposes of this work, we consider the light curves
for the 2MASS grizy and Rubin Observatory JHK broad-
band filters. As we only consider anisotropic simulations in
this study, unless otherwise noted, we extract simulated light
curves using 54 angular bins, uniformly spaced in cos θ over
the range −1 � cos θ � 1, where the angle θ is taken between
the line of sight and the symmetry axis as defined in Eq. (2).
Specifically, simulations in our database cover all observing
angles with a resolution ranging from �θ = arcsin (2/54) �
2.1◦ at the equator, to �θ = arccos (1 − 2/54) � 15.6◦ near
the axes. This limiting angular resolution near the axes is
comparable to the angles inferred from long-term radio ob-
servations of the gamma ray burst jet afterglow [10,16,17,73–
75].

SuperNu Monte Carlo radiative transport results have
modest but nonzero Monte Carlo error. The impact of this
Monte Carlo error can be estimated both by resolution studies
as well as by simple smoothness diagnostics (e.g., versus
angle and time). For example, in a previous study [52] we per-
formed Gaussian process interpolation over this same training
set, inferring both an estimate of the light curve and a conser-
vative estimate of its variance. The Monte Carlo error inherent
in the underlying SuperNu simulations can be seen, for exam-
ple, in Fig. 6 of Ref. [52] as short-angular-scale roughness on
top of the overall smooth trend, with at most ∼3% deviation
at the 1σ level. Later, in Sec. III C, we describe a targeted
resolution study. Based on these investigations, we expect that
the statistical error of the underlying SuperNu simulations is
smaller than the systematic errors introduced by interpolating
between these simulations as described below.

B. Training data generation

Below we describe the approach taken to generate the sim-
ulation library in Ref. [52], hereafter R22. Our training library
of 22 248 kilonova light-curve simulations was constructed
using iterative simulation placement guided by Gaussian pro-
cess variance minimization. New simulations were placed
with parameter combinations that were identified as having
the largest bolometric luminosity variance by our Gaussian
process regression approach. In other words, we placed new
simulations in regions of parameter space where our bolomet-
ric luminosity interpolation root-mean-square uncertainty was
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largest. The Gaussian process variance s(�x)2 is defined as

s(�x)2 = k(�x, �x) − k(�x, �xa)k(�xa, �xa′ )−1
aa′k(�xa′ , �x) , (1)

where �x is the vector of input parameters, �xa is the training
data vector, the function k(�x, �x′) is the kernel of the Gaus-
sian process, and the indices a, a′ are used to calculate the
covariance between inputs �x and training data �xa, �xa′ such
that if a = a′, the variance is 0. In building the simulation
library, we considered only the four-dimensional space of
ejecta parameters �x = [Md, vd, Mw, vw]. Each ejecta parame-
ter combination yields simulations calculated for 54 equally
spaced viewing angles; as such, our training set of 22 248
light curves corresponds to a core set of 412 unique ejecta
parameter combinations.

For this work, we use the aforementioned light curves in
the original simulation library as our training set. The light
curves used in this work have the same parameters as those
used for our light-curve interpolation approach in R22. No
additional simulations were produced for the purposes of this
work; all training data came from the simulation library pre-
sented in R22.

The original training data library consists of 22 248 total
light-curve simulations calculated at 264 times and 54 angular
bins each. We do not perform any coordinate transformations,
but rather interpolate directly in our ejecta parameter space
and angle.

C. Data processing

The entirety of our 22 248 simulations is represented by a
tensor, Mabc, containing the AB magnitudes across the bands
described in Sec. II A, which correspond to a set of input
parameters �x. Mabc has dimensions of 412 × 264 × 54, cor-
responding to 412 simulations evaluated at 264 log-spaced
times between 0.125 and 37.24 days for 54 viewing angles
equally spaced in cos θ for θ ranging from 0 to 180◦. We
do not perform any normalization of our inputs or outputs,
with ejecta parameters ranging from −3 � log m/M� � −1
and 0.05 � v/c � 0.3 and light curves ranging from −18 to
8 AB magnitudes.

We split our four-dimensional ejecta parameter vector �x
into training, validation, and test sets. We use 60% of the
data for the training set, which contains information that the
neural network uses to learn. Of the remaining 40%, 20%
is used for the validation check, which tracks how well the
network generalizes to off-sample inputs during training, and
20% goes into the test set, which is used to evaluate the net-
work’s predictions compared to known simulation data. The
samples for each set are randomly drawn from �x according to
a uniform distribution. Neither the validation set nor the test
set data is used by the neural network for learning; therefore,
we use only ∼247 simulations for training, while the rest are
used in various steps of verifying generalization (i.e., avoiding
overfitting to the training data).

After splitting the data into training, validation, and test
sets, we incorporate viewing angle as a fifth input parameter.
As mentioned above, the viewing angles in our simulations
are equally spaced in cos θ space across 54 angular bins, as

presented in the following equation:

θ = arccos

(
1 − 2(i − 1)

54

)
for i in 1, 2, …, 54. (2)

Temporarily ignoring training, validation, or test sets, our
training library consists of a total of 22 248 × 5 inputs, as
illustrated in the following schematic matrix:

�xθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

md,1 vd,1 mw,1 vw,1 θ1

md,1 vd,1 mw,1 vw,1 θ2

md,1 vd,1 mw,1 vw,1 θ3
...

...
...

...
...

md,1 vd,1 mw,1 vw,1 θ54

md,2 vd,2 mw,2 vw,2 θ1

md,2 vd,2 mw,2 vw,2 θ2
...

...
...

...
...

md,412 vd,412 mw,412 vw,412 θ54.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D. Neural network architecture and training

We use a standard feed-forward neural network called
a multilayer perceptron (MLP). Figure 1 shows our MLP
architecture. The input data of dimension 5 (blue block)
is propagated through the hidden layers of the MLP (pink
blocks). These hidden layers apply a sequence of linear and
nonlinear transformations (black arrows) to progressively map
the input to a higher-dimensional space. The network has six
fully connected layers (pink blocks) of dimension 128, 256,
64, 256, 128, and 264, respectively, which are followed by
Rectified Linear Unit (ReLU) activation functions, except for
the middle two layers. The final layer reduces the dimension to
a 264 × 1 vector, which matches the length of our light curves.

For each observing band, we train a separate neural net-
work and compare its predictions with the simulation results.
During training, the neural network’s predictions for the in-
puts in the validation set are compared to the simulation data
for those same inputs. The residual, or difference, between the
two is evaluated by the mean squared error (MSE) loss func-
tion, which we use to measure the average squared difference
between simulation data and the neural network prediction.
We calculate the MSE according to

MSE = 1

264

264∑
i=1

(yi − ŷi )
2, (3)

where yi is the corresponding simulation data at time i and ŷi

is the predicted value from the MLP model at the same time.
We show the evolution of the training and validation losses in
Fig. 2 for the g-band network.

We train a separate neural network for each of the broad-
band filters described in Sec. II A. Each network is trained
for 1000 epochs, as this is enough time for the validation loss
to convincingly stabilize at a floor value without beginning
to increase, indicating overfitting. We use an Adam optimizer
and train each network in batches with a batch size of 32. Our
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FIG. 1. A visual representation of the neural network architecture. The blue block represents our five-dimensional inputs �xθ . The pink
blocks represent hidden layers, with labels under each block representing the input and output dimensions of each. Unlabeled right arrows
indicate a linear mapping between layers, while those labeled “ReLU” have a Rectified Linear Unit activation function applied to their outputs.
The orange block represents the neural network prediction in the form of a 264 × 1 vector matching the length of our broadband light curves.

initial learning rate is 2 × 10−4 with a decay rate of 5% every
10 epochs.

E. Neural network performance

Figure 2 indicates that our training loss undershoots the
validation loss starting at ∼100 epochs, but the nearly perfect
recovery of the test-set light curves shown in Fig. 3 shows
no indication of overfitting to the training data. For inference
applications, our neural networks can generate the outcomes
corresponding to five million five-dimensional inputs in about
one minute. Training each neural network takes 20 minutes
on a 2022 edition Macbook Pro with an M2 chip using the
CPU. Since all the bands are independent and can be trained
simultaneously in parallel, training all the emulators can be
completed in this same 20 minute interval. Our training time

FIG. 2. Training (red) and validation (blue) loss curves as a func-
tion of training epoch for the g band. The loss values reported here are
mean squared error (MSE) as defined in Eq. (3). Decreasing values
of loss indicate better agreement between the model and the training
data. Our training and validation loss decreases over the course of the
1000 epoch training period. The validation loss appears to converge
at around 500 epochs, although we continue to 1000 epochs as we do
not implement an explicit convergence criterion.

is half the value reported in Ref. [51], though it is unclear
whether their reported time assumes training in parallel or in
serial.

The top left plot in Fig. 3 shows a histogram of the MSE
values when evaluating the simulation library parameters us-
ing the neural network. We evaluate only the 412 unique ejecta
parameter combinations, fixing the viewing angle to θ = 0◦
in each case. In containing simulations from the training,
validation, and test sets, this histogram represents the neural
network’s on- and off-sample fidelity. The light-curve plots
in Fig. 3 show random draws from the MSE histogram for
MSE < 0.01 (top right), 0.01 � MSE � 0.1 (bottom left),
and MSE > 0.1 (bottom right).

We note that, as with the emulators presented in Ref. [52],
predictions for inputs with low-mass (log(M ) ∼ −3) compo-
nents or viewing angles θ ∼ 90◦ may deviate substantially
from expectations. In Monte Carlo radiative transfer simu-
lations of a kilonova, the representation of very low-mass
components and viewing angles in the plane of the binary
present a significant challenge. In order to study the dynamics
of the energy distribution, a finite number of particles are
employed to represent photons escaping from the system,
forming “packets” of energy. It is well known that at low
Monte Carlo particle counts, tallies of escaping flux can even
have systematic error [76]. In our simulations we mitigate this
effect with implicit capture variance reduction and discrete
diffusion Monte Carlo [63]. However, given a fixed number of
source particles per time step, we use a metric for allocating
particles per spatial cell that is sublinearly proportional to
emissivity, so that the statistical quality of a spatial cell in
one ejecta component is affected by the other ejecta compo-
nent. Consequently, when dealing with extremely low-mass
components or viewing angles that look into the high-opacity
dynamical ejecta, the simulations become particularly sensi-
tive to Poisson noise due to reduced photon count. This effect,
particularly with respect to low-mass ejecta, likely arises from
our SuperNu simulations preferably sampling photon packets
from higher-energy regions of the ejecta. In future studies,
we hope to enhance the simulation interpretation under these
conditions by way of an increase in photon packet count.
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FIG. 3. Top left: A histogram of MSE values, averaged across all bands by the number of observations, which characterize the deviation
of the MLP’s predictions from the true simulation library light curves. For simplicity, we assume a fixed viewing angle of θ = 0◦ for each
light curve and evaluate the MSE only for the 412 unique ejecta parameter combinations. Top right: True (points) and predicted (lines) light
curves for a randomly drawn set of ejecta parameters (still assuming θ = 0◦) with MSE < 0.01. Bottom left: Same as top right, but for
0.01 � MSE � 0.1. Bottom right: Same as top right, but for MSE > 0.1.

III. BAYESIAN INFERENCES WITH THE NEURAL
INTERPOLATOR

A. Parameter inference methodology

As in R22, we infer the parameters of the kilonova
AT2017gfo using our interpolated light curves and the
AT2017gfo photometric data. The AT2017gfo data is origi-
nally presented in [4–18,20,21]. We use the RIFT framework
[77] to adaptively perform the Monte Carlo integral and gen-
erate samples using a reduced χ2 statistic. The parameter
priors are the same as in R22, with uniform ejecta parameter
priors of −3 � log m/M� � −1 and 0.05 � v/c � 0.3 and a
Gaussian angle prior with μ = 20 and σ = 5 degrees. Unlike
before, in this work we employ an adaptive volume Monte
Carlo integrator, following closely the approach outlined in
Ref. [78]. The adaptive volume integrator allows for more
efficient sampling given the higher-dimensional space being
explored in this work.

Each sample �xθ is evaluated by the MLP to produce a light-
curve prediction ŷ for every one of the grizy JHK broadband
filters. We calculate the residual between the MLP prediction
ŷ and the AT2017gfo observed data d for every band B by way

of the reduced-χ2 statistic

χ2 =
∑
B,i

(ŷi,B − di,B)2

σ 2
i + σ 2

sys

. (4)

In our χ2 residual calculation, we include observational
uncertainties from the AT2017gfo data σd , as well as sys-
tematic uncertainties σsys which we use as a catch-all term
to encompass all uncertainties, quantifiable or otherwise, as-
sociated with the neural network interpolation process. As
outlined above and as discussed in greater quantitative detail
in Sec. III C, we adopt a systematic modeling uncertainty, σsys,
of 0.5 magnitudes for our inference analysis.

For inference, we adopt a purely Gaussian likelihood based
on these residuals

lnL = −χ2

2
− 1

2
ln(2π )N

∑
k

(
σ 2

d + σ 2
sys

)
, (5)

where N is the number of observations. As our inference is
performed via adaptive Monte Carlo integration, the reliability
of our posterior can be expressed in terms of a number of
effective samples neff . (Several different conventions exist for
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FIG. 4. Posteriors derived from a single randomly generated
synthetic kilonova source are consistent with its assumed model
parameters. For this analysis, we have adopted the “zero noise”
realization, where the kilonova light curve is precisely equal to its
expected value.

this number; see the Appendix of [77] for discussion.) For this
study, we terminate our analyses when neff � 103.

To validate our inference strategy, we constructed random
synthetic sources, with kilonova model parameters drawn
from our prior (albeit adopting a uniform rather than Gaussian
angular prior) and using observational times and uncertainties
precisely matching the AT2017gfo cadence and instruments.
For our synthetic sources, the expected light curve is gen-
erated using our neural network. As demonstrated with one
example in Fig. 4, our inferences are always consistent
with the injected kilonova parameters. To demonstrate that
our implementation retains statistical purity, we also used
100 random synthetic sources to perform a conventional
probability-probability (PP) test, available in the Appendix.

While we employ the fixed σsys = 0.5 for most of our
studies, in order to validate our results we also perform a
few selected analyses with different choices, on the one hand
adopting different discrete choices and on the other treating
σsys as a continuous unknown model parameter.

The analysis in Fig. 4 demonstrates that, if the underlying
model is correct, comparison with AT2017gfo-like obser-
vations should very tightly constrain each of this model’s
parameters. This fiducial result thus has qualitatively different
behavior than our and others’ prior analyses of AT2017gfo,
where posterior inferences arrive at much broader posterior
intervals, as discussed below. That said, the posterior shown
above is consistent with the standard Fisher matrix estimate of
the inverse covariance matrix � = 	−1, derived, for example,
by taking (the expected value over noise realizations of) a
second-order Taylor series expansion of the log-likelihood
as lnL = lnLo − 2−1�ab(x − x∗)a(x − x∗)b where x∗ are the

FIG. 5. In black are shown the posterior distributions for the
ejecta parameters and viewing angle that most closely reconstruct the
AT2017gfo observational data using the MLP. In red, we overlay the
posterior distributions for the same parameters when using predic-
tions generated by the Gaussian process presented in R22. The values
at the top of each column represent the median posterior values for
the inference performed in this paper using the MLP.

true synthetic parameters:

�ab =
∑
B,i

1

σ 2
i + σ 2

sys

∂ ŷB

∂xa

∂ ŷB

∂xb x=x∗,t=ti

. (6)

In this expression, only first-order derivatives appear because
we assume that the model has no systematic bias such that
〈d〉 = ŷ; however, this simple estimate also arises inevitably
using the large-amplitude “linear signal approximation” [79].
This Fisher matrix can be estimated to order of magnitude
by replacing the derivatives ∂ ŷB/∂xa by the ratio �yB/�xa,
which for the mass parameters we approximate as 2/2 =
1, so the Fisher matrix is approximately � � N/σ 2

sys and
the posterior in each mass hyperparameter should have a
one-standard-deviation scale of order 1/

√
� � σsys/

√
N �

0.5/
√

333 � 0.027.

B. AT2017gfo parameter inference

The posterior distributions for our input parameters �xθ are
plotted in Fig. 5. The black posteriors represent the parameters
identified in this study. As a direct comparison to the results
of R22, we overplot the posterior distributions from that study
in red. Despite using the same training data and comparing to
the same observational data, the Gaussian process emulator
and the MLP emulator recover posterior distributions with
substantially different median values and distribution widths;
however, we note that in R22, each time step is fit individually,
whereas in this work we fit the entire light curve for a given set
of input parameters. The dynamical ejecta parameters log md
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FIG. 6. Light curves generated by the MLP for the median
parameters presented in Fig. 5 (lines with shaded regions) with
AT2017gfo observational data overplotted (scatter points). Despite
the different values recovered between this analysis and that of R22,
especially for the wind ejecta parameters and θ , the MLP prediction
is able to replicate the observations surprisingly well.

and vd are similar between the two emulators, but the wind
ejecta parameters log mw and vd , as well as the viewing an-
gle θ , are quite different, with two of the three parameters
inferred by the MLP residing outside of the GP inference 1σ

limits.
We verify the fidelity of the MLP inference results by

generating light curves corresponding to the parameter val-
ues identified at the top of each column in Fig. 5. These
light curves are shown in Fig. 6 and indicate that, assuming
a 0.5 magnitude systematic uncertainty, the inferred MLP
parameters do indeed replicate the AT2017gfo data to a rea-
sonable degree of accuracy. While the majority of data are
well replicated, the early time g and r bands and the late-time
j and H bands deviate slightly outside of our uncertainty
bands.

The recovery of θ ≈ 6◦ is surprising for several reasons.
First, the recovered angle was modestly offset from the
Gaussian adopted as our inclination prior. Although differ-
ent studies find a variety of viewing angles associated with
AT2017gfo [10,16,17,73–75,80], none indicate that the view-
ing angle is as low as our inference suggests. Second, and
more importantly, for angular binning described by Eq. (2),
the first angular bin encompasses all emitted photons for
viewing angles ∼0–16◦. Therefore, by recovering a narrowly
peaked posterior around θ ≈ 6◦, the MLP seems to indicate
that it can identify angular variations within a single angular
bin at a resolution much finer than what is provided by training
data. In other words, these inference results are either overly
constrained, or the MLP is able to identify fine angular vari-
ations in the light curves when trained on radiative transfer
simulations using a coarser angular grid.

One conceivable explanation for the narrow posterior dis-
tribution seen in Fig. 5 is an underestimate of the underlying
systematic error. To investigate this possibility, Fig. 7 shows
the results of inferences performed when adopting dfferent
choices for the white-noise systematic error parameter σsys,
adopting both discrete and continuously distributed choices
for this parameter. In all scenarios, we infer similar ejecta
parameters for AT2017gfo, even though we allow for several
magnitudes of potential systematic uncertainty. Conversely,

FIG. 7. Top panel: Posterior distributions using successively
larger values of σsys during inference. Recovery of angles closer
to the angle prior of 20◦ begins with σsys = 2, suggesting underes-
timation of systematic error. Bottom panel: Posterior distributions
inferred if σsys is treated as an unknown parameter, a priori uniformly
distributed.

this direct comparison between our models and the data di-
rectly infers a value for our systematic uncertainty parameter
consistent with our fiducial choice. As such, we conclude
that our inference about the ejecta parameters remains robust
for all analyses, with the viewing angle inference susceptible
to systematic uncertainty assumptions. However, we approxi-
mate the light curves to deviate by ∼0.35 magnitudes between
0◦ and 45◦ viewing angles [81]. This deviation for the bolo-
metric light curve still falls below our assumed systematic
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FIG. 8. Plots of SuperNu y-band light curves for a simulation
like the ones described in Sec. II A (θ54), a simulation like θ54, but
with one-quarter as many photon packets (n1/4), and a simulation
like θ54, but with four times greater angular resolution (θ216). The
top panel indicates that, on a macroscopic scale, the simulations are
identical. The bottom plot indicates that deviations do exist, likely
attributed to statistical noise from the increase in angular bins, or
matching reduction in packet count. The ejecta parameters used to
create these simulations are those presented in Fig. 5.

uncertainty using broadband light curves, and thus remains
consistent with the baseline analysis.

C. Investigating MLP predictions near inferred
AT2017gfo parameters

The extremely narrow posterior distribution in kilonova
parameters and angle motivates a focused investigation of our
training simulations and MLP model in the neighborhood of
that posterior. As a first step, we performed followup SuperNu
simulations at the inferred parameters using a higher angu-
lar resolution. Specifically, we increased the resolution by a
factor of four to get a total of 216 angular bins. By reducing
the number of photon packets in each angular bin by a factor
of four, we also increase statistical noise by a factor of two.
To ensure that our finer angular resolution analysis is not
affected by this increase in statistical noise, we compare three
separate simulations in Fig. 8. The blue curve, labeled θ54,
shows a SuperNu simulation using the parameters from Fig. 5,
hereafter xMLP and a standard 54-bin angular grid, as used in
the training data simulations. The orange curve, labeled n1/4,
shows a SuperNu simulation with the same exact parameters
as θ54, except it uses one-quarter as many photon packets in
the simulation. If the statistical noise described above were
significant, the noise in n1/4 should be much more pronounced
than in θ54. Finally, the green curve, labeled θ216, shows a
SuperNu simulation using the same parameters as θ54, but
with a 216-bin angular grid, representing a factor of four
increase in resolution. All three light curves show AB mag-
nitude in the y band as a function of time in days. As seen in
Fig. 8, our followup simulations agree with one another, with
small Monte Carlo error comparable to our initial estimate

FIG. 9. Deviations in y-band AB magnitude (�MAB) between
a SuperNu simulation with four times the usual angular resolution
(ysim) and the MLP prediction for the parameters reported in Fig. 5
(yMLP) as a function of time t and angle θ . Notably, this compar-
ison between our MLP (trained at low angular resolution) and the
followup simulation (performed at high angular resolution) does
not exhibit strong small-scale variation along the θ direction (i.e.,
between adjacent angular bins in the original training set and outside
the original training resolution), suggesting that the MLP correctly
interpolates to smaller angular scales.

and small compared to our adopted systematic uncertainty
(σsys = 0.5).

We then compare our high angular resolution simulation
θ216 to the predictions of the MLP, computing the difference
between model and prediction at all times and simulation
angles. Figure 9 shows the residual �MAB in the y band
when we take the absolute difference between ŷMLP and
ysim, capped at a maximum difference of 1 magnitude. The
residual values �MAB are initially evaluated for the 216 dis-
crete angular bins; for visual clarity and diagnostic power,
we linearly interpolate �MAB across time t and angle θ

using the RegularGridInterpolator function from the
scipy.interpolate library [82]. Figure 9 exhibits both ex-
pected and unexpected behaviors. The large mismatch at early
times when photon count is low, particularly as θ approaches
90◦ where the higher opacity dynamical ejecta further reduces
photon count, is to be expected. The MLP is not fitting the
light curves in this region well as there are too few photons
available in the training data. However, the low mismatch
(i.e., good fitting) dark blue regions in the plot indicate some
sort of structure in the MLP’s underlying ability to reproduce
light curves at different times and angles. While we include
only the plot of �MAB for the y band in Fig. 9, it is worth
noting that the same behavior can be observed in these plots
for all bands; predictable, low photon count systematics are
identified in expected regions, but other, unexpected regions
of increased systematic error manifest in different regions of
the parameter space. Overall, however, the systematic uncer-
tainties illustrated here are consistent with our expectations
from the reported validation loss: a conservative systematic
error of

√
MSEval � 0.5 reflects our overall uncertainty. For

this reason, we adopted this systematic uncertainty in our
parameter inferences above. This systematic uncertainty is
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FIG. 10. Two separate parameter inference runs, with the first (in
blue) using data from only the griz bands and the second (in red)
using data from only the yJHK bands. The red posteriors match the
R22 posteriors (in black) much more closely. Parameter values at the
top of each column represent the median yJHK posterior values.

substantially more conservative than the uncertainties adopted
in R22.

D. Inference using broadband data subsets

The investigations in Sec. III C have introduced a surprise.
On the one hand, our neural network reliably reproduces
its training and validation data, including followup off-
sample simulations performed at higher resolution. Though
not shown here, we have also confirmed that the neural net-
work agrees well with the surrogate provided in R22, using a
small sample of randomly selected ejecta parameters. On the
other hand, the inferences obtained in Sec. III C by comparing
all AT2017gfo kilonova observations to our MLP produce
strikingly different results than R22. However, as noted in
R22 and other works, most investigations have some tension
between their models and the data, particularly in the bluer
bands. In this section, motivated by this discrepancy, we also
examine the effects on our AT2017gfo parameter inference
when we use only specific subsets of the observational data.
We perform two additional parameter inference runs using
two categories of broadband data subsets: blue bands repre-
sented by the griz data and red bands represented by the yJHK
data. The posteriors in Fig. 10 show how these band-limited
results compare with each other, the results of R22, and the
all-band analysis presented in Sec. III C. The most apparent
result is that the angle prior is recovered in both sets of
posteriors, and both cases match the R22 results well. The
other interesting feature is that the red yJHK posterior matches
the R22 results much more closely than the blue posterior.
Even when using a smaller subset of the observational data,

the blue posteriors remain narrowly peaked in the parameter
space, while the red posteriors become broader. The narrow-
ness of the blue posteriors indicates that the blue broadband
data determines the overall shape of the posteriors in the full
broadband data inference.

The seemingly disproportionate effect of the blue broad-
band data on the posteriors could be attributed to the rapid
evolution of the bluer bands compared to the red bands. As can
be seen in Fig. 6, the evolution of the griz light curves is more
rapid than the yJHK bands, with the griz light curves dimming
by ∼4 magnitudes compared to the yJHK bands dimming by
two magnitudes during the first 10 days of observations. As
such, the griz light curves will be more restrictive regarding
which model parameters fit the data, which is evident from
the Fig. 10 posteriors.

E. Discussion

To summarize, following R22 we fit the same simulations
and performed comparable inference of AT2017gfo. After as-
sessing our training data and fit systematics, we adopted more
conservative systematic uncertainties than R22. We nonethe-
less find dramatically narrower posteriors than R22, with
inferred light curves consistent with observational predictions.

Several possible reasons for the qualitative discrepancies
arise, primarily pertaining to our systematic uncertainty es-
timate. In R22, the Gaussian process interpolation provided
a pointwise and parameter-dependent error estimate, which
we qualitatively verified across the parameter space. Also, the
fitting strategy adopted in R22 independently fit each time
step. As a result, we expect that R22’s models are unlikely
to have correlated systematics in time, angle, and wavelength.
For example, the R22 light curves occasionally have small but
notable random discontinuities, consistent with their reported
fitting uncertainty. By contrast, in this work, we fit all times
and angles together within the same training set to generate a
vector prediction. Our approach does not presently provide a
pointwise error estimate. Therefore, for the method adopted in
this work, we expect correlated errors in time and angle, but
lack a method to characterize them versus those parameters
or even the intrinsic kilonova parameters. Our MLP’s vector
light-curve prediction necessitates fitting the entire light curve
for a certain band given a single set of parameters. In addition,
as mentioned in Sec. III D, the blue bands are particularly
constraining due to their more significant evolution over the
observation period. Combining both of these effects results
in only an extremely narrow region of the parameter space
fitting all broadband data consistently. We did not encounter
such narrow posteriors in R22 as each prediction was made
for a specific time point; as such, many samples could reason-
ably fit an observation at any given time, resulting in broader
posteriors when all times were stitched together to form the
light curve.

We use the validation loss value to roughly estimate the
systematic fitting error associated with our neural network
outcomes: the validation curve in Fig. 2 suggests that differ-
ences of order

√
MSE � √

0.2 magnitudes should occur in
our predictions. In practice, as illustrated in Fig. 7, we find
that the average squared systematic error suggests a larger
value than the validation MSE. We therefore anticipate that
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our naive estimate of σsys = 0.5, though well motivated by
our detailed followup study, may still understate the system-
atic uncertainty inherent in our fitting approach, resulting in
narrow posterior distributions. We also emphasize that the
differences are not simply a matter of scale: the investigations
performed in Fig. 7 suggest that larger white-noise systematic
error cannot reconcile differences between our current analy-
sis and previous results.

We note that we have experienced similar systematic un-
certainty associated with observations in blue bands in R22
and an associated inference using simulations of spectra [56].
The systematics in those works were related to our inability to
reproduce the observed blue flux at times past ∼2 days using
our best-fit simulations. The systematics in this work, though
similar in their connection to blue observations, introduce
slightly different effects in our resultant inference. As we
solve the bigger problem of matching our simulations to late-
time blue observations, we anticipate that a more sophisticated
treatment of our emulator systematics will allow us to better
understand the effects of blue-band data on our inferences.

A thorough investigation of suitable fit systematics for
this neural network is well beyond the scope of our study.
In the meantime, the neural network is suitable for inves-
tigations such as the one presented in Fig. 10, where we
can examine our models’ ability to fit certain subsets of
the data. In the griz case, we see that our models require
over 0.1 M� of slow-moving dynamical ejecta to fit the blue
data. But we expect dynamical ejecta to be less massive
and faster, thus potentially suggesting a missing modeling
component.

IV. CONCLUSIONS

We present a neural network architecture that is useful for
the interpolation of kilonova light curves. We report on the
network’s training and validation loss as a metric of successful
training, as well as present examples of off-sample light-curve
recovery. We use the neural network to infer the parameters of
the AT2017gfo kilonova and compare to previous inference
performed in Ref. [52]. We find that the inference results are
quite different from those previously obtained, but the light
curves generated by the recovered parameters align well with
the observational data. In particular, we investigate the neural
network’s ability to seemingly infer narrow regions of the an-
gle space despite being trained on light-curve data that should
not allow for such specific inference. Given a detailed analysis
of the mismatch between the neural network’s predictions and
a simulation with higher-resolution angular data, we find that
the network’s pointwise systematic errors are consistent with
our error estimate. However, our investigations also suggest
that the systematic errors are correlated, not independent, in
time and angle, in a way that is not captured by our model for
systematic uncertainties. In other words, we have discovered
that the neural network’s goodness-of-fit varies appreciably
across the time-angle space. While some of these variations
are expected, others form interesting features that we cannot
readily explain. We leave the analysis of the interpretability of
these features for a future investigation.

We also show that the systematic uncertainty may be more
complex than assumed in our simple uncorrelated (white

FIG. 11. Probability-probability plot to validate recovery of syn-
thetic kilonova light curves, following [77]. Points show the PP plot
data, with each simulation parameter indicated as in the legend. The
dotted curves show the expected value and estimated 90% credible
binomial interval.

noise) error model. This was not the case in R22 due to
the interpolation uncertainty, which naturally stemmed from
the Gaussian process methodology. In recovering different
parameters for AT2017gfo using two emulators trained on the
same library of simulations, we highlight the importance of
quantifiable uncertainty analysis in using emulators for robust
inference. As we do not present a way to handle correlated
uncertainties in this work, a detailed uncertainty analysis,
along with the resultant effects on parameter inference, will
be necessary in future work.

ACKNOWLEDGMENTS

R.O.S. and M.R. acknowledge support from NSF AST
1909534 and AST 2206321. A.K. also acknowledges support
from NSF AST 2206321. V.A.V. acknowledges support by
the NSF through grant AST-2108676. The work by C.L.F.,
C.J.F., M.R.M., O.K., and R.T.W. was supported by the
US Department of Energy through the Los Alamos Na-
tional Laboratory (LANL). M.R.M. acknowledges support
from the Directed Asymmetric Network Graphs for Research
(DANGR) initiative at LANL. This research used resources
provided by LANL through the institutional computing pro-
gram. Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security
Administration of US Department of Energy (Contract No.
89233218CNA000001).

APPENDIX: VALIDATING INFERENCE METHOD

To validate the statistical purity of our brute-force infer-
ence technique and our understanding of the noise model, we
constructed a standard probability-probability (PP) plot test
[83,84]. Our description follows the notation and narrative
used in Ref. [77]. For each source k, with true parameters
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λk , we calculate the fraction of its posterior distribution with
parameter λα below the true source value λk,α [P̂k,α (< λk,α )].
After reindexing the sources so that P̂k,α (λk,α ) increases with
k for some fixed α, a plot of k/N versus P̂k (λk,α ) can be
compared with the expected diagonal result (P(< p) = p) and
binomial uncertainty interval. Figure 11 shows the PP plot
derived using kilonova light curves generated with our neural
network interpolator. In these analyses, we adopt precisely the
same observation cadence and uncertainties as AT2017gfo.
As in our fiducial analysis of AT2017gfo, we adopt σsys =
0.5. Each synthetic observation incorporates both observa-
tional and (white noise) systematic uncertainty, added in
quadrature consistent with our assumed likelihood. The PP
plot in Fig. 11, being sufficiently consistent with the bino-
mial credible interval, suggests that the brute-force Monte
Carlo inference strategy adopted in this work suffices for our

purposes: in short, that the qualitative extent and character
of the posteriors shown in our figures are reasonably correct,
such that the considerable tension between our analysis and
previous inferences accurately reflects the posterior. We have
specifically chosen to present results from a brute-force in-
ference technique to circumvent debates about our choice of
implementation or our method of assessing convergence. With
AT2017gfo, we have confirmed that the choice of integra-
tor also doesn’t qualitatively change our answer: alternative
brute-force Monte Carlo integrator implementations produce
similar results. That said, the PP plot above is clearly not as
diagonal as would expected for a well-developed and cali-
brated Bayesian inference algorithm applied to this problem:
its S-shape features suggests either modest overdispersion in
our synthetic error model or modest underdispersion in our
posterior distributions.
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