
PHYSICAL REVIEW RESEARCH 6, 033077 (2024)

Eight-color chiral spin liquid in the S = 1 bilinear-biquadratic model with Kitaev interactions
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Multipolar spin systems provide a rich ground for the emergence of unexpected states of matter due to their
enlarged spin degree of freedom. In this study, with a specific emphasis on S = 1 magnets, we explore the
interplay between spin nematic states and spin liquids. Based on the foundations laid in the prior work [R. Pohle
et al., Phys. Rev. B 107, L140403 (2023)], we investigate the S = 1 Kitaev model with bilinear-biquadratic
interactions, which stabilizes, next to Kitaev spin liquid, spin nematic and triple-q phases, also an exotic chiral
spin liquid. Through a systematic reduction of the spin degree of freedom—from CP 2 to CP 1 and ultimately to
a discrete eight-color model—we provide an intuitive understanding of the nature and origin of this chiral spin
liquid. We find that the chiral spin liquid is characterized by an extensive ground-state degeneracy, bound by a
residual entropy, extremely short-ranged correlations, a nonzero scalar spin chirality marked by Z2 flux order,
and a gapped continuum of excitations. Our work contributes not only to the specific exploration of S = 1 Kitaev
magnets but also to the broader understanding of the importance of multipolar spin degree of freedom on the
ground state and excitation properties in quantum magnets.
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I. INTRODUCTION

Multipolar systems exhibit higher-order moments, such as
quadrupoles and octupoles, even in absence of monopoles and
dipoles. The inherent fluctuations and allowed higher-order
interactions in these systems provide a rich landscape of un-
conventional phases, evident from multipolar order observed
in quantum magnets [1–5], unconventional superconductors
[6–11], and topological insulators [12,13]. Particular exotic
examples, including multipolar quantum spin ice [14–16],
CP 2 skyrmion crystals [17–19], and unconventional orders
in the higher-spin Kondo lattice model [20,21], demonstrate
the diverse range of intriguing quantum phenomena present
in multipolar condensed matter.

Multipolar magnets made of S = 1 moments are partic-
ularly intriguing, as they strike a delicate balance with a
spin length that is “small enough” to exhibit strong quan-
tum effects, while simultaneously being “large enough” to
give rise to onsite quadrupole moments [22–25]. Quadrupoles
break spin-rotation symmetry by selecting an axis without
specifying a particular direction, closely resembling proper-
ties observed in classical liquid crystals [26–28]. This unique
characteristic makes them an ideal playground for exploring
topological defects [29,30], investigating out-of-equilibrium
effects [31,32], and drawing potential analogies to gravity
[33–35].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Despite being theoretically proposed almost 60 years ago
[36,37], the experimental exploration of S = 1 magnets has
faced substantial challenges, primarily since their quadrupolar
order remains hidden from conventional magnetic probes like
neutron scattering [38,39]. Fortunately, recent advancements
in experimental techniques such as Raman scattering [40,41],
resonant inelastic x-ray scattering (RIXS) [42–44], and the ex-
ploration of physical properties like the magnetocaloric effect
[45], combined with the development of powerful numerical
techniques [46–51], have expanded our capabilities to inter-
pret thermodynamic and dynamic properties of multipolar
magnets in real materials. The successful application of these
diverse methods has significantly advanced our understanding
of various S = 1 compounds, including NiGa2S4 [41,52,53],
FeI2 [54,55], and Ba2FeSi2O7 [56].

Recently, higher-spin Kitaev systems have attracted sub-
stantial attention [57–69], as they offer a new avenue for
studying quantum spin liquids with potentially multipolar
character [70,71] and fractionalized excitations carrying mul-
tipolar moments [66]. Theoretical proposals suggest that
magnets with strong Hund’s coupling and spin-orbit interac-
tions could pave the way for experimental realizations [72],
with promising candidate materials such as NaNi2BiO6−δ [73]
and KNiAsO4 [74]. Furthermore, S = 1 magnets naturally
allow for higher-order interactions, such as biquadratic in-
teractions, which effectively couple the quadrupole degree of
freedom between individual spins.

In this context, the recent work by the authors explored
the interplay between spin nematics and spin liquids in the
S = 1 Kitaev model with bilinear-biquadratic (BBQ) interac-
tions [75]. The richness of this model unfolds with a plethora
of phases, including spin nematic, and Kitaev spin liquid
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FIG. 1. Ground-state phase diagrams in the 2D equirectangular projection as function of θ and φ [see Eq. (2)]. We plot the second derivative
of the internal energy as contour color to make phase boundaries visible. (a) Solution of HA

BBQ-K [see Eq. (7)] in the spin space CP 2, which
accounts for all local degrees of freedom of an S = 1 moment, including dipolar and quadrupolar components. (b) Solution of HS

BBQ-K [see
Eq. (1)] in the spin space CP 1, which considers only dipolar degree of freedom of classical Heisenberg spins. (c) Solution of H8c

BBQ-K for the
discrete eight-color model [see Eq. (15)], where the dipolar degree of freedom is discretized and allowed to point only at the corners of a unit
cube (see definition of spin states in Table I). (d) Real-space configurations of selected phases. Ferromagnetic (FM), antiferromagnetic (AFM),
and triple-q chiral magnetic orders (FM 3Q chiral and AFM 3Q chiral), as well as the semiclassical analog of the Kitaev spin liquid (SL), are
stabilized in all three phase diagrams. Noncoplanar (NC), (quasi-)one-dimensional (q1D / 1D), canted planar (CPL), and twisted conical (TC)
phases are stabilized for the models with continuous degrees of freedom in (a) and (b), while ferroquadrupolar (FQ), and semiordered (SO)
phases are purely quadrupolar in nature and are only stabilized in (a). FM and AFM chiral spin liquid (CSL) states emerge as the ground state
along two singular lines in (b) and form a phase in (c). However, they do not appear in the ground state in (a), but instead become a stable phase
at finite temperatures (see discussion in Sec. III D). Results in (a) and (b) were obtained by variational energy minimization for a finite-size
cluster of NS = 28 800 spins under periodic boundary conditions, while (c) was solved analytically for the thermodynamic limit.

states, alongside triple-q order with nonzero scalar spin chi-
rality, ferro, antiferro, zigzag and stripy phases. Particularly
intriguing is the presence of exotic phases where dipole and
quadrupole moments compete. These include a quasi-one-
dimensional coplanar phase, a twisted conical phase, and a

noncoplanar ordered state. A comprehensive phase diagram
showcasing these diverse phases is shown in Fig. 1(a).

Even though the model primarily stabilizes ordered phases
in the ground state, it holds an intriguing surprise. In the
vicinity of the noncoplanar ordered state, the model hosts an
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TABLE I. Definition of spin directions in the eight-color model
of Eq. (15). For pedagogical reasons, we assign four colors to spins,
namely, “green,” “yellow,” “blue,” and “red,” and distinguish be-
tween their bright and dark contrast. Directions are explicitly shown
in (a) for bright and in (b) for dark spins.

bright dark

green σg = 1√
3
{−1,−1, −1} σ̄g = 1√

3
{+1, +1, +1}

yellow σy = 1√
3
{+1, +1, −1} σ̄y = 1√

3
{−1, −1, +1}

blue σb = 1√
3
{−1,+1, +1} σ̄b = 1√

3
{+1, −1, −1}

red σr = 1√
3
{+1, −1, +1} σ̄r = 1√

3
{−1,+1, −1}

unconventional classical chiral spin liquid (CSL). This CSL
exhibits an extensive degeneracy of states and retains the
Kitaev spin liquid (SL) feature of Z2 flux order, along with
a nonzero scalar spin chirality [75]. However, at a semiclas-
sical level, this CSL does not appear in the ground state, as
seen by its absence in Fig. 1(a). Instead, it is stabilized at
finite temperatures, resisting magnetic dipolar order solely
through thermal fluctuations, rather than quantum fluctuations
or quantum entanglement.

In this paper, we expand on the theory discussed in our
prior work, Ref. [75], with the goal of presenting a peda-
gogical explanation of the inherent nature of the CSL. To
achieve this, we start by representing local S = 1 magnetic
moments as SU(3) spin-coherent states in the spin space CP 2.
While this approach is semiclassical and does not include
entanglement between spins, it properly accounts for the on-
site quadrupole and dipole characteristics expected for S = 1
moments [47]. We proceed by systematically reducing the
degrees of freedom for local spins to the submanifold of SU(2)
spin-coherent states in the spin space CP 1. This represen-
tation treats spins as classical dipole vectors pointing to the
Bloch sphere, as done in conventional Monte Carlo (MC)
simulations for classical Heisenberg spins. Finally, we intro-
duce a minimal model, the eight-color model, in which dipolar
spins are restricted to eight discrete states, reminiscent of an
eight-states clock model. The corresponding phase diagrams
for each of these cases are depicted in Figs. 1(a)–1(c). The
eight-color model, inspired by insights from simulations using
the CP 1 and CP 2 models, effectively captures all physical
properties of the CSL and enables us to understand its charac-
teristics analytically. The simplicity of the eight-color model
allows us to identify local bond constraints that unequivocally
determine all observed properties of this CSL. It also allows us
to implement a hexagon cluster update, which connects differ-
ent states in the spin liquid manifold and dramatically reduces
correlation times in numerical simulations. We complement

our analysis with results for the dynamical structure factor,
unveiling a gapped continuum of excitations.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the S = 1 BBQ-Kitaev model on the
honeycomb lattice. We analyze the same model for different
local spin degrees of freedom, namely, SU(3) spin-coherent
states of CP 2 (the CP 2 model) which contain onsite dipole
and quadrupole moments, SU(2) spin-coherent states of CP 1

(the CP 1 model) which contain only onsite dipole mo-
ments, and the eight-color model which allows for only eight
discretized dipolar spin states. In Sec. III, we present ground-
state and finite-temperature results of the BBQ-Kitaev model.
In Sec. III A, we discuss the influence of the local spin degree
of freedom by explicitly comparing the ground-state phase
diagrams between the CP 2, the CP 1, and the eight-color
models. In Sec. III B, we discuss the eight-color model and
provide an analytical explanation for all fundamental prop-
erties of the observed CSL, substantiated by comparisons
to numerical simulations. In Sec. III C, we show numerical
results for the CP 1 model, and show that thermodynamic
properties of the eight-color CSL remain intact even for con-
tinuous degrees of freedom. In Sec. III D, we show numerical
results for the CP 2 model, demonstrating that the CSL be-
comes an entropy-driven spin liquid at finite temperature.
In Sec. III E, we present dynamical signatures of the CSL
in the CP 2 model, showing a largely gapped continuum of
excitations. We conclude our work in Sec. IV with a brief
summary and perspectives for possible future directions and
experimental realizations.

II. BBQ-KITAEV MODEL WITH DIFFERENT SPIN
DEGREES OF FREEDOM

We are interested in solving the bilinear-biquadratic (BBQ)
model under influence of Kitaev interactions for S = 1 mag-
netic moments on the honeycomb lattice. The Hamiltonian is
given by

HS
BBQ-K =

∑
〈i, j〉

[J1Si · S j + J2(Si · S j )
2]

+ K
∑

α=x,y,z

∑
〈i j〉α

Sα
i Sα

j , (1)

where J1, J2, and K respectively account for the Heisenberg
(bilinear), biquadratic, and Kitaev interaction strengths on
nearest-neighbor bonds. The index α = x, y, z selects the spin-
and bond-anisotropic Kitaev interactions on the honeycomb
lattice [76]. We normalize the total interaction strength as

(J1, J2, K ) = (sin θ cos φ, sin θ sin φ, cos θ ), (2)

and use the angles θ and φ as new model parameters. In
this form, HS

BBQ-K recovers the well-known limits of the
BBQ model for θ/π = 0.5 (K = 0), the AFM Kitaev model
at θ/π = 0 (K = 1, J1 = J2 = 0), the FM Kitaev model at
θ/π = 1 (K = −1, J1 = J2 = 0), and the Kitaev-Heisenberg
model for φ/π = 0 and 1 (J2 = 0).

An S = 1 moment contains three magnetic states with Sz =
{1, 0,−1}, which are mathematically described by the su(3)
algebra and contain magnetic dipole and quadrupole compo-
nents. To correctly describe all fluctuations of such an S = 1
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moment, we adopt the recently developed U(3) formalism
[47], an approach equivalent to the concept of SU(3) spin-
coherent states [22,46,48,49,77–79], and suitable to access not
only thermodynamic properties, but also dynamical properties
of S = 1 magnets at finite temperatures. By embedding the
underlying su(3) algebra into the larger u(3) algebra with
an additional spin-length constraint, this formalism becomes
capable of simultaneously evaluating dipole and quadrupole
fluctuations at each site, despite the drawback of losing quan-
tum entanglement across the lattice.

In the U(3) formalism, each localized S = 1 moment is
represented by a 3 × 3 Hermitian matrix

Aα
β = (dα )∗ dβ, (3)

which we shall call henceforth the A matrix. The A matrix
is formally a tensor, as defined in Ref. [47], where the super-
script α and subscript β denote the row and column of each
index, respectively. The A matrices can be written in terms of
complex vectors d

d =

⎛
⎜⎝

x1 + i x2

x3 + i x4

x5 + i x6

⎞
⎟⎠, (4)

also known as directors [23,24]. We implicitly respect the
spin-length constraint on the directors

d∗d = |d|2 = 1, (5)

by parametrizing its components as

x1 = θ
1/4
2 θ

1/2
1 sin φ1,

x2 = θ
1/4
2 θ

1/2
1 cos φ1,

x3 = θ
1/4
2 (1 − θ1)1/2 sin φ2, (6)

x4 = θ
1/4
2 (1 − θ1)1/2 cos φ2,

x5 = (1 − θ
1/2
2 )1/2 sin φ3,

x6 = (1 − θ
1/2
2 )1/2 cos φ3,

with 0 � θ1, θ2 � 1 and 0 � φ1, φ2, φ3 < 2π . To fix the un-
physical gauge we choose to make the z component of d
purely real by setting φ3 = π/2, providing in total four de-
grees of freedom with a restrained order-parameter space,
formally known as the complex projective plane CP 2. In this
formalism, Eq. (1) can be rewritten in a bilinear form as

HA
BBQ-K

=
∑
〈i j〉

[
J1Aα

iβA
β
jα + (J2 − J1)Aα

iβAα
jβ + J2Aα

iαA
β

jβ

]

− K
∑
〈i j〉α

ε
α γ

β ε
α η

δ Aβ
iγAδ

jη, (7)

where ε
α γ

β is the Levi-Civita symbol. Here and hereafter,
we adopt the Einstein convention of summing over repeated
indices. We shall refer to this form of the Hamiltonian in the
following as “CP 2 model.” The matrix Ai simultaneously in-
corporates the information of dipole and quadrupole moments

at site i, which can be extracted respectively with

Sα
i = −iεα γ

β Aβ
iγ , (8)

Qαβ
i = −Aα

iβ − Aβ
iα + 2

3δαβAγ
iγ , (9)

where δαβ is the Kronecker delta. Here, we express spin
quadrupoles in their symmetric and traceless rank-2 tensor
form.

To compute the averaged spin-dipole and spin-quadrupole
norms we respectively use

|S| = 1

NS

NS∑
i

|Si|, (10)

|Q| = 1

NS

NS∑
i

|Qi|, (11)

where vector components are expressed as

Si =

⎛
⎜⎝

Sx
i

Sy
i

Sz
i

⎞
⎟⎠ (12)

and

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

Qx2−y2

i

Q3z2−r2

i

Qxy
i

Qxz
i

Qyz
i

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

(
Qxx

i − Qyy
i

)
1√
3

(
Qzz

i − 1
2

(
Qxx

i + Qyy
i

))
Qxy

i

Qxz
i

Qyz
i

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

In Sec. III A, we find many nontrivial phases for the CP 2

case, especially when the interactions frustrate the model.
To gain a better intuition of the underlying physics in such
nontrivial phases, we investigate Eq. (1) also in the spin space
CP 1, by effectively excluding all quadrupole fluctuations
and allowing only for fluctuations of local dipole moments.
This simplification corresponds to the treatment of classical
Heisenberg spins, formally expressed as spin-coherent states
of SU(2), which are parametrized by a point on the Bloch
sphere

S =

⎛
⎜⎝

sin θ1 cos φ1

sin θ1 sin φ1

cos θ1

⎞
⎟⎠, (14)

with 0 � θ1 � 1 and 0 � φ1 < 2π , the two local degrees of
freedom for each spin on the lattice. In what follows, we refer
to this model as “CP 1 model.” In the CP 2 model, a CSL
phase is stabilized at finite temperatures (see Sec. III D), while
in the CP 1 model, the CSL phase appears along singular lines
in the ground state (see Sec. III C). In the CSL phase, we ob-
serve that spins align along well-defined, discrete directions,
pointing to the eight corners of a unit cube (see detailed dis-
cussion in Sec. III B). This observation motivated us to further
simplify Eq. (1) by discretizing spins to only point to these
eight corners. We call this model the “eight-color model,”
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whose Hamiltonian is given by

H8c
BBQ-K =

∑
〈i, j〉

[J1 σ i · σ j + J2 (σ i · σ j )
2]

+ K
∑

α=x,y,z

∑
〈i j〉α

σ α
i σα

j . (15)

As shown in Table I, we assign colors to the eight discrete,
noncoplanar dipole spins σ such as “green,” “yellow,” “blue,”
and “red,” and distinguish between “bright” spins, σg, σy, σb,
and σr, and “dark” spins, σ̄g, σ̄y, σ̄b, and σ̄r. This simplified
model is specifically designed to transparently understand the
nature of the exotic chiral ordered and disordered phases.

III. RESULTS

In our previous work in Ref. [75], we studied the ground
state and thermodynamic properties of HS

BBQ-K in Eq. (1), and
revealed the existence of a chiral spin liquid (CSL) at finite
temperatures. In the present study, we build up an intuition
for the microscopic origin and nature of this exotic CSL state
by systematically restricting the local spin degree of freedom.
We begin with the SU(3) representation of Eq. (1), the CP 2

model, given by HA
BBQ-K in Eq. (7), which captures all allowed

components of an S = 1 spin, namely, continuous dipolar
and quadrupolar moments described in the spin space CP 2.
Further, we solve the original model, HS

BBQ-K in Eq. (1), in

the spin space CP 1, which allows for dipole moments only
[see Eq. (14)]. Finally, we consider the discrete eight-color
model, given by H8c

BBQ-K in Eq. (15), where dipolar spin mo-
ments are allowed to point only along eight discrete directions
(see Table I). All three models include the same BBQ-Kitaev
interactions, however for different degrees of freedom in spin
space. While certain results have been previously presented in
our earlier work [75], we will include some of them here to
make the present paper self-contained.

A. Ground-state phase diagrams

In Figs. 1(a)–1(c), we respectively show the ground-state
phase diagrams of HA

BBQ-K, HS
BBQ-K, and H8c

BBQ-K, solved in

the spin space CP 2, CP 1, and for discrete eight-color spins.
To obtain Figs. 1(a) and 1(b), we performed variational en-
ergy minimization, using the gradient descent method based
on the machine learning library JAX [80,81] for sufficiently
large finite-size clusters of NS = 2L2 = 28 800 spins (linear
dimension L = 120) under periodic boundary conditions (see
Appendix A for further details). Figure 1(c) was obtained
in the thermodynamic limit from analytic comparison of lo-
cal bond energies. We plot the phase diagrams in their 2D
equirectangular projections parametrized by Eq. (2), and vi-
sualize phase boundaries by plotting ∂2E/∂θ2 + ∂2E/∂φ2,
the sum of the second-order derivatives of the internal
energy E with respect to θ and φ. The corresponding real-
space spin configurations of selected states are shown in
Fig. 1(d) with dipole moments depicted as arrows, and
quadrupole moments in form of “directors” with “doughnut-
shaped” spin-probability distributions [23,24]. It is worth
noting that the phase diagrams for CP 1 and eight-color mod-
els exhibit a self-duality around the high-symmetry points

(φ/π, θ/π ) = (0.5, 0.5) and (φ/π, θ/π ) = (1.5, 0.5). In
contrast, the phase diagram for CP 2 lacks this self-dual sym-
metry, due to the presence of quadrupole moments.

1. Phase diagram for CP 2 model

In Fig. 1(a), we show the ground-state phase diagram
of HA

BBQ-K in Eq. (7), by considering the full spin order-

parameter space CP 2. When the biquadratic interaction is
ferromagnetic, namely, J2 is negative (1.0 < φ/π < 2.0), the
model offers a combination of phases which have previously
been reported on the S = 1 Kitaev-Heisenberg model [61,72]
and the BBQ model [82]. These comprise dipolar orders, in
the form of ferromagnetic (FM), antiferromagnetic (AFM),
zigzag, and stripy phases, together with a ferroquadrupolar
(FQ) spin nematic phase.

In contrast, when J2 is positive (0.0 < φ/π < 1.0), the
model provides a number of unconventional phases which
emerge from the competition between frustrated interactions.
Adjacent to the zigzag and stripy phases, we find noncopla-
nar chiral ordered phases, also known as “tetrahedral” and
“cubic” states [83–85], in which spins point to the corners
of a unit cube [see Fig. 1(d)]. These chiral configurations are
represented by superpositions of three spiral states, and hence
called triple-q states. The FM 3Q chiral state is characterized
by an extended eight-site magnetic unit cell, where four out
of eight possible spin directions are selected and induce a
net scalar spin chirality of |κ|FM chiral = 8/(3

√
3) [see the

definition of κ in Eq. (B8) of Appendix B]. The AFM 3Q
chiral state is essentially a reflection of the FM 3Q chiral state,
achieved by inverting spins on one of the two sublattices on
the honeycomb lattice [see Fig. 1(d)], giving |κ|AFM chiral =
16/(3

√
3). We note that the stripy and FM 3Q chiral (zigzag

and AFM 3Q chiral) states are energetically degenerate at
φ/π = 0 (φ/π = 1) along the vertical line for 0.75 � θ/π <

1.0 (0.0 < θ/π � 0.25). However, this degeneracy is lifted by
thermal fluctuations, which select the stripy (zigzag) phase, as
confirmed by our MC simulations (not shown).

Between FM, AFM, and 3Q chiral ordered phases, dipole
and quadrupole moments mix in nontrivial ways, and produce
a range of exotic states. In the limit of the BBQ model (θ/π =
0.5), our semiclassical method realizes a semiordered (SO)
(or semidisordered) [22,86], purely quadrupolar state, con-
necting the two SU(3) points at φ/π = 0.25 and φ/π = 0.5
[87]. We note that this state is expected to be replaced by a
plaquette valence bond crystal when quantum entanglement
is fully taken into account [88]. Introducing nonzero Kitaev
interactions (θ/π �= 0.5) immediately induces the formation
of a nonzero dipole moment |S| �= 0. To minimize the domi-
nant BBQ interactions, dipolar components of the spins align
orthogonal to their nearest neighbors within the xy, yz, or zx
plane. In such a configuration, the Kitaev interaction energy
is minimized on two bonds, while leaving the third one to
be zero. Hence, dominant correlations prevail along zigzag
chains and stabilize coplanar, quasi-one-dimensional (q1D)
states in extended regions away from the BBQ limit. However,
the presence of small quadrupolar correlations will induce a
weak interchain coupling to form two-dimensional order.

Sandwiched between the q1D coplanar phases and the
AFM/FM ordered phases, HA

BBQ-K minimizes its energy by
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forming spin textures with noncoplanar (NC) orientation and
incommensurate twisted conical (TC) states. These ordered
states will give way to a finite-temperature chiral spin liquid
(CSL)—not shown in Fig. 1(a)—which shall be the major
focus of this study. We will discuss signatures of the CSL
state explicitly for HA

BBQ-K by including all allowed spin

fluctuations of CP 2 in Sec. III D, while building up an intu-
itive understanding of its microscopic origin by systematically
restricting the allowed spin space to CP 1 and further to dis-
cretized states in Secs. III C and III B, respectively.

2. Phase diagram for CP 1 model

Many phases in Fig. 1(a) show dominant dipolar or-
der mainly coming from the presence of bilinear Kitaev
and Heisenberg interactions. To build up an intuitive un-
derstanding of the microscopic origin of these phases, and
to quantitatively understand the influence of local quantum
fluctuations in our model, we are going to restrict the order
parameter space from CP 2 to CP 1, by expressing an S = 1
moment by a classical Heisenberg vector, as parametrized
with Eq. (14). In this way we only allow for purely dipolar
spin states and exclude onsite quadrupole moments.

In this framework, by minimizing the energy of HS
BBQ-K in

Eq. (1), we obtain the ground-state phase diagram in Fig. 1(b).
For negative J2 (1.0 < φ/π < 2.0) the model captures the
same dominant dipolar FM, AFM, zigzag, and stripy ordered
phases, as in the CP 2 case. However, due to the exclusion of
onsite quadrupolar degree of freedom, the FQ state is absent
and has been replaced by a singular point at φ/π = 1.5 and
θ/π = 0.5 where FM, AFM, zigzag, and stripy phases are
energetically degenerate.

In the region where J2 is positive (0.0 < φ/π < 1.0), the
model reproduces many phases as seen in Fig. 1(a), while the
phase boundaries are rather strongly modified. We find non-
coplanar FM and AFM 3Q chiral phases with same physical
properties as in the CP 2 case. Between AFM/FM ordered
phases and AFM/FM 3Q chiral phases the model stabilizes
NC phases and canted planar (CPL) phases with spin con-
figurations shown in Fig. 1(d). Here, the NC phases are
purely made of spin dipoles and exist in much wider regions
compared to the CP 2 case. At the phase boundary between
the NC and CPL phases (φ/π = 0.5), the model stabilizes
coplanar, truly 1D phases, made of decoupled zigzag chains
with a subextensive ground-state manifold [see Fig. 1(d)].
While these 1D phases appear on a singular line in the CP 1

model, the presence of quadrupole moments in the CP 2 case
stabilizes q1D phases (not truly 1D due to presence of small
but nonzero quadrupolar order), in much wider regions of the
phase diagram [see Fig. 1(a)].

Furthermore, the absence of quadrupole degrees of free-
dom allows the CSL state to exist in the ground state at the
singular lines

φ

π
= 1

π
arctan

(
3

2

)
≈ 0.312833, 0.0 <

θ

π
< 0.5, (16)

for the FM CSL and at

φ

π
= 1 − 1

π
arctan

(
3

2

)
≈ 0.687167, 0.5 <

θ

π
< 1.0,

(17)

for the AFM CSL, deep inside the NC phase. The analytic
derivation of these values is described in Appendix C.

In the CSL ground state, spin-dipole moments point ex-
actly to the eight discrete corners of the unit cube, similar
to the ordered AFM/FM 3Q chiral states [see Fig. 1(d)].
However, in strong contrast to the chiral ordered states, the
CSL does not break translational symmetries of the lattice,
and hence exhibits an extensive degeneracy of states. This
motivates us to further simplify the model by restricting the
continuous spin space of CP 1 to only eight discrete states
(eight-color model), where dipolar spins are allowed to point
only along the corners of a unit cube. We will explore this
model in detail in the following sections and discuss ground-
state and thermodynamic properties of the CSL explicitly for
the CP 1 model in Sec. III C.

3. Phase diagram for eight-color model

To understand the intriguing nature of this CSL, we analyze
the eight-color model described by H8c

BBQ-K in Eq. (15), which
enables us to extract its most essential properties analytically.
In this model we restrict the spin parameter space by allowing
for only eight discrete dipolar spin directions, pointing along
the corners of a unit cube, as defined in Table I.

As shown in the ground-state phase diagram in Fig. 1(c),
this model stabilizes trivial magnetically ordered states such
as FM and AFM states in the region where the biquadratic
interaction J2 is mostly negative (1.0 < φ/π < 2.0). For
predominantly positive J2 (0.0 < φ/π < 1.0), the model
stabilizes nontrivial chiral ordered, triple-q states, as also ob-
served in the CP 2 and CP 1 models in Figs. 1(a) and 1(b),
respectively. Since coplanar spin configurations are not al-
lowed in this model, zigzag, stripy, 1D, and other states with
canting angles away from the (111) axes are absent.

Importantly, between trivial magnetically ordered and
triple-q states, the model stabilizes the CSL states in wide
regions of the phase diagram. The FM CSL phase exists for

1

π
arctan

(
3

4

)
<

φ

π
< 0.5, 0.0 <

θ

π
< 0.5, (18)

while the AFM CSL phase appears for

0.5 <
φ

π
< 1 − 1

π
arctan

(
3

4

)
, 0.5 <

θ

π
< 1.0 . (19)

The phase boundaries can be obtained analytically by simple
energy comparison, as described in Appendix C.

Both states are classical spin liquids with a nonzero
scalar spin chirality and residual entropy at zero temperature,
which is associated with their extensive number of degen-
erate ground states. We note that the phase boundary lines
between chiral order and disordered phases at φ/π = 0.5 and
θ/π = 0.5 also host classical spin liquids, which, however,
has different properties than the CSL discussed here.

By comparison between measured physical observables,
we argue that this CSL with all its properties survives in the
CP 1 and CP 2 models, while additional degrees of freedom in
spin space only weaken its stability in the phase diagram. For
pedagogical reasons, we will start our journey by investigating
the CSL on the eight-color model.
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B. Analysis of eight-color model

In Fig. 1(c), we see that the eight-color model stabilizes the
CSL ground state in wide regions of the phase diagram [see
Eqs. (18) and (19)]. In Sec. III B 1, we use the simplicity of
the eight-color model to analytically obtain bond-dependent
spin constraints which determine the ground-state properties
of this CSL. In Sec. III B 2, we validate our analytical results
by numerical MC simulations and compare thermodynamic
properties between the CSL and chiral ordered states.

1. Eight-color chiral spin liquid

The eight-color model given by H8c
BBQ-K in Eq. (15) allows

us to understand the nature of the CSL analytically from
simple comparison of local bond energies. In the following,
we consider the FM CSL for parameters outlined in Eq. (18),
where all couplings are positive, with 0 < J1 < 0.8, J2 > 0.6,
and K > 0. Since H8c

BBQ-K is symmetric in parameter space the
following conclusions will also hold for the AFM CSL after
inversion of the spin direction on one of the two sublattices on
the honeycomb lattice.

We first compare energies in absence of Kitaev interactions
at θ/π = 0.5. The nearest-neighbor energy levels, exempli-
fied for only “bright green” spins σg (see Table I), are given
as

(σg, σg) : E = J1 + J2, (20)

(σg, σ̄g) : E = −J1 + J2, (21)

(σg, σ̄r ), (σg, σ̄y), (σg, σ̄b) : E = 1
3 J1 + 1

9 J2, (22)

(σg, σr ), (σg, σy), (σg, σb) : E = − 1
3 J1 + 1

9 J2, (23)

where the lowest-energy configurations in Eq. (23) exclude
nearest neighbors of same color (e.g., “bright green”-“bright
green”) and different contrast (e.g., “bright green”-“dark
red”).

The degeneracy of the lowest-energy states can be lifted
by introducing the bond-dependent Kitaev interactions, giving
the ground state energy

EGS = − 1
3 J1 + 1

9 J2 − 1
3 K . (24)

Intriguingly, while K < 0 gives only one solution for Eq. (24)
inducing FM 3Q chiral order, the case of K > 0 allows for
multiple spin pairs (σg, σy) and (σg, σr ) on the x bonds,
(σg, σy) and (σg, σb) on the y bonds, and (σg, σb) and (σg, σr )
on the z bonds. Since the Kitaev interactions couple spin
components on each bond differently, the allowed color pairs
in the ground state will be bond dependent.

By doing the same energy analysis for the other “bright”
spins (σy, σb, σr), we obtain the complete set of constraints
on allowed color pairs on bonds:

(σg, σy), (σg, σr ), (σb, σy), (σb, σr ), (25)

on the x bonds,

(σg, σy), (σg, σb), (σr, σy), (σr, σb), (26)

on the y bonds, and

(σg, σb), (σg, σr ), (σy, σb), (σy, σr ), (27)

FIG. 2. Macroscopic degeneracy in the FM chiral spin liquid
(FM CSL). (a) Constraints on allowed color pairs on bonds for
“bright” spins and (b) a corresponding representative spin configura-
tion in the FM CSL ground-state manifold. Corresponding figures for
“dark” spins are shown in (c) and (d). The definitions of spin orien-
tations and colors are shown in the insets of (b) and (d) (see also
Table I).

on the z bonds. The same constraints apply for all “dark”
colored spins. We visualize these bond constraints for “bright”
and “dark” spins in Figs. 2(a) and 2(c), respectively.

Every spin in the CSL ground state adheres to these bond
constraints, as one can verify by examining Figs. 2(b) and
2(d), which depict representative spin configurations in the
FM CSL ground-state manifold within “bright” and “dark”
spin sectors, respectively. However, since every spin can
choose between two different colored spins as their neighbors,
the bond constraints are not strong enough to enforce long-
range order.

The resulting extensive ground state manifold induces a
nonzero residual entropy in the CSL, which can be understood
from the fact that two spin configurations at one hexagon can
always be transformed into each other by a local hexagon
cluster update:

Snew
p, j = Rα

j Sp, j, (28)

where Rα
j is the rotation matrix of angle π about the axis

α = x, y, z; α is the site-dependent label for the Kitaev bond
pointing outwards the hexagon p at site j = 0, . . . , 5 (see
definition on site labels and α at top left in Fig. 3). In Fig. 3,
we show all allowed spin configurations on a single hexagon
in the “bright” manifold of the FM CSL, which are related
by such a six-site hexagon update. Since the CSL allows
always for two spin configurations per hexagon, we obtain the
normalized residual entropy in the ground state

S(T → 0)

NS
= 1

NS
ln 2Nh = 1

2
ln 2, (29)
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FIG. 3. All allowed arrangements of “bright” spins on a single
hexagon in the FM CSL state, with definitions for colors given in
Table I. Configurations are arranged in pairs which are related to
each other by a six-site hexagon cluster update following Eq. (28).
Definitions of site indices and labels for the Kitaev bonds are shown
on the top left hexagon. Hexagons are shaded in light cyan, pink, and
white, indicating the value of scalar spin chirality κp = −8/(3

√
3),

16/(3
√

3), and 0, respectively. All states exhibit Wp = 1 for the
semiclassical analog of the Z2-flux operator. Definitions of κp and
Wp are given in Appendix B.

where Nh = NS/2 is the number of hexagons on the whole
lattice. This is 1/6 of the total entropy per site, ln 8.

Interestingly, the set of all possible states on a hexagon
in Fig. 3 homogeneously exhibits a nonzero value for the
octupole moment,

∑
i Sx

i Sy
i Sz

i , which induces broken time-
reversal symmetry. This time-reversal symmetry breaking
consequently generates a nonzero scalar spin chirality on each
hexagon, κp, as we defined in Eq. (B9) of Appendix B. The 64
states per hexagon form three groups with different values of
κp = −8/(3

√
3) (cyan), 16/(3

√
3) (pink), and 0 (white) for

32, 4, and 28 states, respectively, which results in the averaged
nonzero value of

κ = 1

64

∑
p

κp

= 1

64

(
− 8

3
√

3
× 32 + 16

3
√

3
× 4 + 0 × 28

)

= − 1√
3

≈ −0.577 . (30)

Furthermore, we find that the semiclassical analog of the Z2-
flux operator, Wp, defined in Eq. (B14), gives Wp = 1 for every
spin configuration in Fig. 3. We note that Wp = −1 for the
AFM CSL, offering a way to distinguish the two spin liquids
from each other.

Besides the residual entropy and nonzero scalar spin chi-
rality, the bond-dependent spin constraints in the CSL ground

state show extremely short-ranged spin correlations. As visu-
alized in Fig. 2, nearest-neighbor color pairs are always of
same contrast (“bright”-“bright” or “dark”-“dark”), but never
of the same color. By comparison of spin components, as
given in Table I, the correlations for all allowed nearest neigh-
bors (distance � = 1) in the ground-state are therefore always
exactly

D(� = 1) = σ i · σ j = − 1
3 . (31)

Yet again, by considering the same color constraints, one finds
that spin configurations for next-nearest neighbors and beyond
are all equally allowed and give on average

D(� > 1) = σ i · σk = 3 × (− 1
3

) + 1 × 1 = 0, (32)

where the contribution 1 × 1 comes from a pair of the same
color, which is forbidden for nearest neighbors, but allowed
for further neighbors. Interestingly, such extremely short-
range correlations coincide with analytical predictions for the
S = 1 Kitaev SL in Ref. [57].

2. Finite-temperature properties of eight-color model

In Fig. 4, we show finite-temperature results from classical
MC simulations of H8c

BBQ-K in Eq. (15), for chiral ordered
phases (FM 3Q chiral at φ/π = 0.2 and θ/π = 0.9, and
AFM 3Q chiral at φ/π = 0.8 and θ/π = 0.1), in the left
column, and chiral liquid phases (FM CSL at φ/π = 0.35 and
θ/π = 0.25, and AFM CSL at φ/π = 0.65 and θ/π = 0.75)
in the right column for finite-size systems of linear dimension
L = 12, 24, and 48. Since the Hamiltonian is symmetric in
parameter space, the FM and AFM states are related to each
other by inversion of the spins on one sublattice of the hon-
eycomb lattice. Therefore energy related observables, such as
the specific heat C [Eq. (B1)] and the entropy S [Eq. (B2)] are
identical for the FM and AFM states (here shown only once),
while magnetic observables, like the scalar spin chirality κ

[Eq. (B8)], the spin structure factor SS(q) [Eqs. (B3) and
(B7)], and the semiclassical analog of the Wp flux operator
[Eq. (B14)] are distinct.

The specific heat, C [Eq. (B1)], in the first row of Fig. 4,
exhibits a sharp singularity at (a) Tc = 0.186(5) and (b) Tc =
0.192(5) [89]. At these transition temperatures, the system
spontaneously breaks its chirality by selecting a configuration
where spins are either all bright or all dark in the FM 3Q
chiral ordered and FM CSL states [see Eq. (23) and discussion
in Sec. III B 1]. Due to the symmetry of the Hamiltonian in
parameter space, the AFM counterparts of these states simi-
larly break chirality. However, in the AFM versions, there is a
mixture of bright and dark spins due to the inversion of spins
on one sublattice of the honeycomb lattice. We confirmed
the transition into the CSL to be a second-order phase tran-
sition, following the Z2 Ising universality class. The selection
of either bright or dark spins generates a nonzero octupolar
moment,

∑
i Sx

i Sy
i Sz

i , which acts as an Ising order parameter.
This parameter is time-reversal odd, and consequently leads to
the development of a nonzero scalar spin chirality. We leave
more detailed analyses for future work.

Even though, the spontaneous breaking of chirality seems
identical, the left column of Fig. 4 shows a transition
into a magnetically ordered state, while the right column
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FIG. 4. Comparison of thermodynamic quantities between the FM 3Q chiral (φ/π = 0.2, θ/π = 0.9) and AFM 3Q chiral (φ/π = 0.8,
θ/π = 0.1) ordered phases (left column), and the FM CSL (φ/π = 0.35, θ/π = 0.25) and AFM CSL (φ/π = 0.65, θ/π = 0.75) phases (right
column) for the eight-color model given by H8c

BBQ-K in Eq. (15) [see the phase diagram in Fig. 1(c)]. Shown are the temperature dependencies
of [(a) and (b)] the specific heat per site, C/NS [Eq. (B1)], [(c) and (d)] the entropy per site, S/NS [Eq. (B2)], and [(e) and (f)] the absolute
value of the scalar spin chirality, |κ| [Eq. (B8)]. (g) shows the spin structure factor SS(Q) [Eqs. (B3) and (B7)] for the chiral ordered phases
at characteristic ordering vectors indicated in (i) and (k). (h) shows the semiclassical analog of the Z2-flux operator [Eq. (B14)] for the CSL
phases. The momentum resolved spin structure factors, SS(q), are shown for (i) the FM 3Q chiral ordered phase, (j) the FM CSL phase, (k) the
AFM 3Q chiral ordered phase, and (l) the AFM CSL phase, for three different temperatures indicated by black arrows in (a) and (b). Data were
obtained from classical MC simulations on clusters of size L = 12, 24, and 48 (NS = 288, 1152, and 4608). SS(q) are shown for L = 48,
except for (i) and (k) at T = 0.01, where L = 12.
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corresponds to a transition into the disordered CSL state.
This can be directly confirmed in the second row of Fig. 4,
which shows the entropy, S [see Eq. (B2)], as obtained from
numerical integration of the specific heat over the available
temperature range 10−2 � T � 10. The total entropy of the
system, ln 8, is released by passing through the phase transi-
tion at Tc, resulting in zero entropy S(T → 0)/NS = 0 in the
chiral ordered states as shown in Fig. 4(c). In contrast, the
CSLs in Fig. 4(d) show a residual entropy of

S(T → 0)

NS
= 0.347(1) ≈ 1

2
ln 2, (33)

which matches with the analytically predicted value in
Eq. (29), and is direct numerical evidence of a disordered
ground state with extensive degeneracy.

Furthermore, in Figs. 4(e) and 4(f), we show the absolute
value of the scalar spin chirality, |κ| [see Eq. (B8)], for the
ordered and disordered chiral states. In both cases, |κ| scales
to zero above Tc, and becomes nonzero below Tc. At low
temperatures, we measure for the FM and AFM 3Q chiral
ordered states the following values:

|κ|FM 3Q chiral = 1.5396(1) ≈ 8

3
√

3
, (34)

|κ|AFM 3Q chiral = 3.0792(1) ≈ 16

3
√

3
, (35)

and for the FM and AFM CSL states commonly

|κ|CSL = 0.5774(1) ≈ 1√
3

. (36)

Yet again, the result for the CSL matches very well with
our analytical estimate in Eq. (30). Furthermore, as shown
in Fig. 4(h), the semiclassical analog of the Z2-flux operator
reaches perfectly Wp = 1 in the FM CSL, and Wp = −1 in the
AFM CSL, as expected analytically.

Characteristic magnetic signatures, which clearly distin-
guish ordered from disordered states, can be found in the
dipolar equal-time structure factor SS(q) [see Eqs. (B3) and
(B7)]. We show the SS(q) at three different temperatures in-
dicated by black arrows in Fig. 4(a), for the FM and AFM
3Q chiral ordered phases in Figs. 4(i) and 4(k), respectively.
By reducing the temperature, the spectral weight accumulates
around the M points in the Brillouin zone. Below Tc, Bragg
peaks develop at the M1, M2, and M3 points in the AFM
3Q chiral state. Additionally, Bragg peaks appear at the M ′

1,
M ′

2, and M ′
3 points in the FM 3Q chiral state. These clearly

identify both phases as triple-q ordered states. The intensities
of selected Bragg peaks are explicitly shown as functions of
temperature in Fig. 4(g).

Meanwhile, the SS(q) for the CSL phases behave very dif-
ferently. In Figs. 4(j) and 4(l), we show the SS(q) for the FM
and AFM CSL states, respectively, at three different tempera-
tures indicated by black arrows in Fig. 4(b). The signal is very
diffuse and does not show any qualitative difference below
and above Tc. In fact, the scattering function is reminiscent
of the SS(q) for the Kitaev SL [90], showing very diffuse
scattering around the Brillouin zone edge in the FM CSL, and
accumulation of intensity around the � point in the AFM CSL.
This diffuse scattering signature and the absence of any Bragg

FIG. 5. Semilogarithmic plot of spin-spin correlations |D(�)|
[see Eq. (37)] for the FM CSL case at five different temperatures.
Correlations show an exponential decay above the critical tem-
perature Tc = 0.192(5) [peak in Fig. 4(b)]. Below Tc, correlations
show a large value for nearest-neighbor contributions, |D(� = 1)| =
0.3333(1), and a negligibly small value beyond nearest neighbors,
|D(� > 1)| � 10−4. Data were obtained from classical MC simula-
tions of the eight-color model given by H8c

BBQ-K in Eq. (15), at model
parameters φ/π = 0.35 and θ/π = 0.25, for a cluster of size L = 48
(NS = 4608). Correlations are shown as function of the Manhatten
distance �, and were obtained after averaging over symmetrically
equivalent paths along zigzag chains on the honeycomb lattice.

peaks are the direct evidence of a magnetically disordered
state below Tc.

Since momentum-resolved spin-spin correlations of the
CSL seem very similar to those in the Kitaev SL, we inves-
tigate correlations also in real space. Figure 5 shows the MC
data of the spin-spin correlations

D(�) = 〈σ0 · σ�〉, (37)

in the FM CSL at φ/π = 0.35 and θ/π = 0.25 measured
at five different temperatures. The correlations are averaged
over symmetrically equivalent paths and are plotted semilog-
arithmically, where � corresponds to the Manhatten distance
along zigzag chains on the honeycomb lattice. For tem-
peratures above Tc, correlations decay exponentially, with
increasing correlation length upon reduction of T . Below
Tc, the behavior changes dramatically and exhibits strong
nearest-neighbor correlations with |D(� = 1)| = 0.3333(1) at
the lowest measured temperatures T = 0.01, while correla-
tions beyond the nearest neighbors become negligibly small
with |D(� > 1)| � 10−4. These results confirm our analytical
prediction in Eqs. (31) and (32) of extremely short-range
correlations in the CSL.

In short summary of this section, our investigation fo-
cused on a simplified model, the eight-color model, H8c

BBQ-K
in Eq. (15), with the aim of unraveling the unique nature and
nontrivial characteristics of the eight-color CSL. We discov-
ered that the CSL is characterized by bond-dependent spin
constraints, as visualized in Fig. 2, giving rise to exotic prop-
erties such as residual entropy, nonzero scalar spin chirality,
nonzero Z2-flux order parameter, and extremely short-range
spin correlations. We have successfully verified the exis-
tence of all these properties through unbiased numerical MC
simulations.
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C. Analysis of CP 1 model

In the previous section, we investigated the eight-color
model, as a simplification of the original BBQ-Kitaev model,
HS

BBQ-K in Eq. (1), by discretizing the continuous spin space
of an S = 1 moment to only eight allowed, noncoplanar states.
This helped us to transparently understand the nature and
origin of the exotic CSL phase in a simple analytical way.

In this section, we are going to partially relax this
constraint, and allow dipolar spin components to take con-
tinuous values, namely being a classical Heisenberg vector
described in the order parameter space CP 1. Compared to
the eight-color model, the CP 1 model, with its enlarged spin
space, offers a variety of additional and nontrivial phases.
Understanding these phases will help us in bridging our com-
prehension from the simplified eight-color model to the more
complex CP 2 model.

1. Ground-state properties of CP 1 model

In Fig. 6(a), we show a zoom-in of the ground-state phase
diagram in Fig. 1(b) for positive J2 (0.0 < φ/π < 1.0), where
the model is mostly frustrated. Between FM/AFM ordered
and FM/AFM 3Q chiral phases the model stabilizes NC
phases, and canted planar (CPL) phases over a wide range of
model parameters. The canting angle of spins in those phases
depends on the model parameters. Notably, specific choices
of φ allow us to stabilize disordered CSLs and dimensionally
reduced 1D phases in the ground state, as indicated by the
black dotted lines in Fig. 6(a).

To see these phase competitions in more detail, in Fig. 6(b),
we concentrate on the lower part of the phase diagram at
θ/π = 0.06 [red line in Fig. 6(a)], and explicitly show the nor-
malized energy, E/NS, and its derivative, ∂ (E/NS)/∂φ (top),
together with the SS(q) [Eqs. (B3) and (B7)] at relevant order-
ing vectors K′, M1, M2, M3, and M ′

3 (bottom). The transition
from CPL-1 to AFM 3Q chiral phase at φ/π ≈ 0.611 is of
first order (solid black line), while transitions from AFM to
NC-1 at φ/π ≈ 0.148 and NC-1 to CPL-1 at φ/π = 0.5 are
of second order (dashed black lines), as seen by a jump and
kinks in ∂ (E/NS)/∂φ, respectively. The Bragg peaks at the K′
points monotonically reduce their intensity in the NC-1 phase
as φ increases, while additional ordering vectors at the M2 and
M ′

3 points increase. In the CPL-1 phase, intensities at the M3

and M1 points become also nonzero, while the AFM 3Q chiral
state shows an equal weight at the M1, M2, and M3 points,
forming the triple-q order, as also obtained in the eight-color
model in Fig. 4(k).

In Fig. 6(c), we show the energy difference �E/NS be-
tween the FM CSL (yellow circles) and the 1D-1 state (blue
circles) relative to the ground state for θ/π = 0.06. The lower
insets illustrate the spin configurations within each ordered
phase, while the upper insets represent metastable states of
the FM CSL. Upon increasing φ/π above ≈0.148, spins in
the ground state start to cant away from the collinear AFM
arrangement to establish the NC-1 order, with a four-site mag-
netic unit cell [see Fig. 1(d)]. The canting angle of spins in the
NC-1 phase is φ dependent, and the spontaneous selection of
a particular direction for this canting angle induces a single-q
order with Bragg peaks at the M2 points in the first Brillouin

FIG. 6. Competing phases of HS
BBQ-K in Eq. (1) for classical

Heisenberg spins (CP 1 model), obtained by variational energy min-
imization for a finite-size cluster of linear dimension L = 120 (NS =
28 800 spins) under periodic boundary conditions. (a) Zoom-in
of the ground-state phase diagram in Fig. 1(b) to the region for
0.0 � φ/π � 1.0. (b) Normalized energy and its derivative, E/NS

and ∂ (E/NS)/∂φ, (top), and the structure factor for dipole moments,
SS(q) [Eqs. (B3) and (B7)], at high-symmetry momenta (bottom) at
θ/π = 0.06 [red line in (a)]. The solid and dashed lines represent
first- and second-order phase transitions, respectively. (c) Energy
difference, �E/NS, measured from the ground state to the metastable
FM CSL and 1D-1 phases at θ/π = 0.06. The lower insets show spin
configurations in each ordered phase, while the upper ones represent
metastable states of the FM CSL.

zone, supplemented by other peaks in the extended Brillouin
zone [see Fig. 6(b)].

Upon tuning the model to φ/π = (1/π ) arctan(3/2) [see
Eq. (16)], the spins achieve isotropic alignment across the lat-
tice, by pointing precisely towards the corners of a unit cube.
At this critical point, the system allows an extensive number of
spin configurations to form the CSL ground state, character-
ized by all properties as discussed on the eight-color model in
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Sec. III B 1. In the vicinity of this critical point, we find a CSL
like state as a metastable state. Spins in this metastable CSL
are slightly canted away from the (111) directions as shown
in the insets of Fig. 6(c), while still retaining the underlying
nature of the CSL with macroscopic degeneracy.

Upon further increasing φ, spins in the NC-1 ground state
continue to cant until they achieve complete coplanarity, pre-
cisely at the boundary between the NC-1 and CPL-1 phases,
at φ/π = 0.5. At this specific point, nearest-neighbor spins
are mutually orthogonal to each other, and effectively cancel
nearest-neighbor bilinear and biquadratic interactions. Copla-
nar spins globally select either the xy, yz, or zx plane [the inset
of Fig. 6(c) shows the case of the xy plane], by setting one
of their spin components to zero. Therefore the dominating
Kitaev interactions for one particular bond-type will be zero,
and effectively decouple individual zigzag chains throughout
the whole lattice. The system effectively forms a dimension-
ally reduced 1D phase. Increasing φ beyond this point will
again impose canting of spins, but this time with an enlarged
eight-site magnetic unit cell forming the magnetic order of the
CPL-1 state [see Fig. 1(d)].

2. Finite-temperature properties of CP 1 model

Let us now turn to the thermodynamic properties of the
CSL in the CP 1 model. In Fig. 7, we show results from
classical MC simulations of HS

BBQ-K in Eq (1), at model pa-
rameters θ/π = 0.06 and φ/π = (1/π ) arctan(3/2), which
stabilize the FM CSL in the ground state [see Eq. (16)].

In Figs. 7(a)–7(c), we respectively show the specific heat
C/NS [Eq. (B1)], the scalar spin chirality |κ| [Eq. (B8)],
and the semiclassical analog of the Z2-flux operator, Wp

[Eq. (B14)], over a wide range of temperatures. C/NS shows a
clear singularity at Tc = 0.0193(6), which scales weakly with
system size, and has a shape which looks somewhat similar to
the observed singularity in the eight-color model in Fig. 4(b).

For T → 0, we observe C/NS → 1, as expected for classi-
cal Heisenberg spins in the absence of soft mode excitations.
We note that the acceptance ratio for single-spin flip updates
at such low temperatures becomes strongly suppressed (see
Appendix D), suggesting that continuous local spin motion
is not able to adiabatically connect different ground-state
configurations. However, where the single-spin flip fails, the
hexagon update becomes successful, demonstrating that in
the CSL phase decorrelation primarily occurs through cluster
updates [see Eq. (28)].

The scalar spin chirality |κ| scales to zero in the paramag-
netic regime, and takes nonzero values below Tc, as observed
in the eight-color model in Fig. 4(f). However, in comparison,
|κ| does not rapidly saturate, but rather monotonically reaches
a value slightly smaller than in the eight-color model [see
Eq. (36)]. We note that the asymptotic value of |κ| becomes
θ dependent (not shown here). However, variational energy
minimization confirms that at T = 0, spins precisely align
along the (111) direction, as also illustrated in the lower insets
of Fig. 6(c). This seemingly contradictory observation implies
that different configurations of the CSL ground state mani-
fold in Fig. 3 are selected with varying weights in the CP 1

model, resulting in a reduction of κ at finite T . At the lowest

FIG. 7. Finite-temperature properties of the FM CSL phase
for the CP 1 model given by HS

BBQ-K in Eq. (1) at φ/π =
(1/π ) arctan(3/2) and θ/π = 0.06. Shown are temperature depen-
dencies of (a) the specific heat per site, C/NS [Eq. (B1)], (b) the
absolute value of the scalar spin chirality |κ| [Eq. (B8)], and (c) the
semiclassical analog of the Z2-flux operator, Wp [Eq. (B14)]. MC
simulations were performed for L = 6, 12, 24, and 48 (NS =
72, 288, 1152, and 4608). (d) shows the spin structure factor SS(q)
[Eqs. (B3) and (B7)] at temperatures indicated by black arrows in
(a) for L = 24.

temperatures, the Z2-flux operator takes a value Wp ≈ 1, as
observed in the eight-color model.

In Fig. 7(d), we show the spin structure factor SS(q) at three
different temperatures indicated by black arrows in Fig. 7(a).
The signal is diffuse across the entire range of temperatures
and closely resembles the spin structure factor of the eight-
color FM CSL [see Fig. 4(j)] with an enlarged concentration
of intensity around the K ′ points [see inset in Fig. 6(b)] and,
almost invisible, some additional weak intensity accumulation
around the M points in the first Brillouin zone at T = 0.022.

Thermodynamic properties for the CSL in both the eight-
color model and the CP 1 model match remarkably well. This
alignment provides strong evidence that the eight-color CSL,
with all of its physical properties analyzed in Sec. III B 1,
remains preserved even after relaxing the spin degree of free-
dom to CP 1. Given that the CSL persists as a metastable
state in the vicinity of its optimal model parameters given
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by Eq. (16) [see Fig. 6(c)], we anticipate its survival for an
enlarged region of model parameters at finite temperatures
due to the substantial entropy associated with its macroscopic
degeneracy.

D. Analysis of CP 2 model

The original BBQ-Kitaev model allows for both dipole and
quadrupole components of S = 1 magnetic moments, which
are correctly described in the spin space CP 2. In the last
two sections, we simplified this model by restricting the spin
degree of freedom to extract the essential properties of the
CSL state. In the present section, we come back to the original
model by reintroducing all allowed degrees of freedom for
S = 1 moments. We will not only see that the CSL survives at
finite temperatures even in the presence of quadrupolar degree
of freedom, but also quantitatively examine the impact of
local quantum fluctuations on the ground-state phase diagram.
Some results in this section have already been presented in our
earlier work in Ref. [75], but we include them here to make
the discussion and comparison to CP 1 and eight-color models
self-contained.

1. Ground-state properties of CP 2 model

In Fig. 8(a), we show the spin-dipole norm, |S| [see
Eq. (10)], in the frustrated region of the phase diagram in
Fig. 1(a). In most of the phases, the spin norm is |S| �= 1, in-
dicating the presence of nonzero onsite quadrupole moments.
The onsite dipole and quadrupole moments mix in nontrivial
ways to alleviate frustration, leading to quantitative changes
in phases and their boundaries, in contrast to the CP 1 model
shown in Fig. 6(a).

The purely quadrupolar SO phase at θ/π = 0.5 [see
Fig. 1(d)], immediately changes into a q1D ordered state in
presence of finite Kitaev interactions. For both θ/π > 0.5 and
θ/π < 0.5, the length of dipolar spin moments monotonically
increases and behaves essentially the same as described for
the 1D phase in the CP 1 model in Sec. III C 1, where spins
form dominant correlations along isolated 1D zigzag chains.
The key distinction from the CP 1 model lies in the presence
of quadrupole correlations, which introduce weak interactions
between the chains at very low temperatures. This leads to the
formation of a 2D ordered state exhibiting one-dimensional
character over a wide region at low and intermediate temper-
atures. This characteristic is the reason why we refer to the
state as a quasi-1D state. Remarkably, quadrupole correlations
stabilize the q1D phases in a wide region within the phase di-
agram, which is in stark contrast to the CP 1 model, where the
1D phases remain stable only along a singular line. However,
to this expense, the NC phases are notably suppressed, along
with the neighboring TC phases.

In Fig. 8(b), we focus along the line at θ/π = 0.06 [red
line in Fig. 8(a)], and plot E/NS and ∂ (E/NS)/∂φ (top panel),
the spin dipole norm |S| [see Eq. (10)] and quadrupole norm
|Q| [see Eq. (11)] (middle panel), and the structure factors
for dipoles, SS(q) [Eqs. (B3) and (B4)], and for quadrupoles,
SQ(q) [Eqs. (B3) and (B5)], at relevant ordering vectors (bot-
tom panel). We identify first-order phase transitions (solid
lines) from NC-1 to TC-1 at φ/π = 0.3085(5), and from
q1D-1 to AFM 3Q chiral at φ/π = 0.4015(1). Additionally,

FIG. 8. Competing phases of HA
BBQ-K in Eq. (7) for S = 1

magnetic moments (CP 2 model), obtained by variational energy
minimization for a finite-size cluster of linear dimension L = 120
(NS = 28 800 spins) under periodic boundary conditions. (a) Aver-
aged spin norm |S| [see Eq. (10)] in the region 0.2 � φ/π � 0.5. The
solid and dashed lines represent first- and second-order phase transi-
tions, respectively. (b) The normalized energy E/NS and its derivative
d (E/NS)/dφ (top), norms for dipole moment |S|, and quadrupole
moment |Q| [see Eq. (11)] (middle), and the structure factors for
dipole moments, SS(q) [Eqs. (B3) and (B4)], and quadrupole mo-
ments, SQ(q) [Eqs. (B3) and (B5)] (bottom), along θ/π = 0.06 [red
line in (a)]. (c) Energy difference �E/NS, measured from the NC-1
state. The lower insets show spin configurations in each ordered
phase, while the upper ones resemble metastable states of the FM
CSL.
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we find second-order transitions (dashed lines) from AFM to
NC-1 at φ/π = 0.250(1), and from TC-1 to q1D-1 at φ/π =
0.3305(5). Notably, our measurements reveal a reduction in
the spin dipole norm |S| < 1 within the NC-1, TC-1, and
q1D-1 phases. It is worth noting that the reduction of |S|
is θ dependent; however, in this parameter region near the
Kitaev limit, it is relatively small, with less than 1%. This
highlights the significance of dipole moments and justifies our
comparison to the simplified CP 1 model for dominant Kitaev
interactions, as done in Sec. III C.

In Fig. 8(c), we present the energy difference between the
metastable FM CSL and TC-1 states to the NC-1 ordered state.
The presence of local quadrupole moments induces a small,
yet finite energy difference to the FM CSL bounded by

�E

NS
= 0.000393(4), (38)

for φ/π = 0.305(1). Consequently, the CSL becomes an
excited state rather than the ground state, with spin con-
figurations no longer perfectly aligned with the corners of
the unit cube, but still retaining the essential properties of
the CSL as a metastable state. In fact, we find that the FM
CSL is a metastable state with small energy gap in a wide
region of the phase diagram, and smoothly merges with the
AFM Kitaev SL for θ → 0 (see Supplemental Material in
Ref. [75]). The evolution of spin canting angles, illustrated
in the bottom insets, closely resembles the general behavior
discussed in the CP 1 model [see Fig. 6(c)]. We note, however,
a noticeable difference: At φ/π = 0.3085(5), the TC-1 state
[see spin configurations in lower inset of Fig. 8(c)] becomes
the ground state, a scenario which seems absent in the CP 1

model. Furthermore, the q1D-1 state maintains its status as
the ground state for φ/π > 0.3305(5), in contrast to the CP 1

model where it remains the ground state only along a singular
line.

2. Finite-temperature properties of CP 2 model

The extensive degeneracy in the FM CSL and the small but
finite energy gap to the ground state suggest that the system
undergoes an entropy-driven phase transition from NC-1 order
to the FM CSL at finite temperature. To confirm this, we show
finite-temperature MC simulations for HA

BBQ-K [Eq. (7)] in
Fig. 9, for model parameters where the FM CSL shows the
smallest energy difference to the ground state (θ/π = 0.06
and φ/π = 0.305). Figures 9(a)–9(d) are basically the same
as those in Ref. [75], but we additionally show the static
structure factors for quadrupoles SQ(q) in Fig. 9(e).

The specific heat C/NS [Eq. (B1)] in Fig. 9(a) shows
two singularities at Tc1 = 0.0055(2) and Tc2 = 0.0017(2),
which scale weakly with system size. For T → 0, we ob-
serve C/NS → 2, as expected for S = 1 magnetic moments
described within the spin space of CP 2 in the absence of
soft-mode fluctuations [47]. Below Tc2, characteristic Bragg
peaks emerge in the structure factors at the momentum points,
corresponding to the NC-1 order. Therefore we associate Tc2

with a symmetry-breaking transition into the NC-1 ordered
phase [75].

The intermediate phase between Tc1 and Tc2 shows all
properties of the FM CSL discussed in the previous sections,

FIG. 9. MC simulations of HA
BBQ-K in Eq. (7), for the CP 2 model

at φ/π = 0.305 and θ/π = 0.06 reveal the presence of the FM CSL
at finite temperatures. Shown are temperature dependencies of (a) the
specific heat per site, C/NS [Eq. (B1)], (b) the absolute value of the
scaler spin chirality |κ| [Eq. (B8)], and (c) the semiclassical analog
of the Z2-flux operator, Wp [Eq. (B14)]. Simulations were done for
L = 6, 12, 24, and 48 (NS = 72, 288, 1152, and 4608). (d) and (e)
show the spin structure factor for dipoles, SS(q), and quadrupoles
SQ(q) [Eqs. (B3)–(B5)], respectively, at temperatures indicated by
black arrows in (a) for L = 24 at T = 0.01 and T = 0.003, while for
L = 12 at T = 0.001. The green path in the left panel of (d) corre-
sponds to the path used for the dynamical structure factor in Fig. 10.

namely a nonzero, size-independent scalar spin chirality |κ|
[Eq. (B8)], a value of Wp [Eq. (B14)] which is almost +1,
and a very diffuse structure factor for spin dipoles, SS(q). The
values of both quantities, |κ| and Wp, are somewhat reduced
compared to the ideal eight-color CSL discussed in Sec. III B.
This reduction stems from the decrease in spin lengths |S|
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FIG. 10. Dynamical structure factors [see Eqs. (B15)–(B17)] for spin-dipole moments, S̃S(q, ω) (top panels), and spin-quadrupole
moments, S̃Q(q, ω) (bottom panels) of HA

BBQ-K in Eq. (7), for the CP 2 model, at φ/π = 0.305 and θ/π = 0.06. Results are shown for [(a) and
(d)] the NC-1 ordered phase at T = 0.001, [(b) and (e)] the FM CSL at T = 0.003, and [(c) and (f)] the semiclassical analog of the AFM Kitaev
SL at T = 0.01. Temperatures are indicated by black arrows in Fig. 9(a). Data were obtained from molecular dynamics simulations (details in
Appendix A) for finite-size clusters of L = 48 (N = 4608). Results are plotted along the green path in momentum space, as indicated in the
left panel of Fig. 9(d).

caused by the presence of small, but finite, quadrupole mo-
ments [see Fig. 8(b)] and temperature fluctuations.

The diffuse SS(q) is comparable to the structure factors
found in the eight-color and CP 1 models [see Figs. 4(j)
and 7(d), respectively], albeit some additional weak intensity
features around the M points in the first Brillouin zone. The
quadrupole structure factor, SQ(q), also suggests the absence
of quadrupolar order, with scattering patterns closely resem-
bling those for dipoles. This similarity arises because spin
moments are primarily dipolar in nature, and dipole character-
istics are implicitly reflected in the quadrupole components.
Taken these observations, we associate Tc1 with a discrete
chiral symmetry breaking into the FM CSL, as observed in the
eight-color model and CP 1 model cases [see Figs. 4(b) and
7(a), respectively]. It is worth noting that the intermediate-
temperature CSL persists over an extended region around
φ/π ≈ 0.3 and θ/π ≈ 0.2, as shown in Supplemental Mate-
rial of Ref. [75].

The scattering in SS(q) at T = 0.01, above Tc1, exhibits
characteristics reminiscent of the semiclassical AFM Kitaev
SL, as our chosen model parameters contain strong Kitaev in-
teractions. The intensity exhibits diffuse accumulation around
the Brillouin zone edge, similar to the results for the “pure”
Kitaev model in Appendix E 1, however, with a stronger accu-
mulation of diffuse intensity around the K ′ points. Meanwhile,
the structure factor SQ(q) shows a more uniform intensity
distribution with dominant scattering intensity around the K
and K ′ points.

All physical observables characterizing the CSL in the
CP 2 model closely resemble those measured in the eight-
color model (Sec. III B) and the CP 1 model (Sec. III C). This
remarkable consistency strongly suggests that the dominant
properties of the CSL, as discussed in Sec. III B 1, remains
robust even after considering all allowed local degrees of free-
dom for an S = 1 moment in the spin space CP 2. However,

it is important to emphasize that the CSL no longer represents
the ground state but emerges as an entropically driven state at
finite temperature.

E. Dynamical properties of the chiral spin liquid

In this section, we analyze dynamical properties of the CSL
in the CP 2 model. We show that the excitations corresponding
to the CSL, in fact, are gapped, consistent with our observa-
tion of extreme short-range correlations in Fig. 5.

1. Excitation spectrum

In Fig. 10, we show the dynamical structure factors
for spin-dipole moments S̃S(q, ω) (top panels) and spin-
quadrupole moments S̃Q(q, ω) (bottom panels), which are
obtained from molecular dynamics simulations (see details
in Appendix A) at the same model parameters as chosen in
Fig. 9. We show the spectrum along the path in momentum
space, as indicated by green lines in the left panel of Fig. 9(d)
and compare dynamics between the NC-1 ordered phase at
T = 0.001, the FM CSL at T = 0.003, and the semiclassical
analog of the AFM Kitaev SL at T = 0.01. Their correspond-
ing equal-time structure factors are plotted in Figs. 9(d) and
9(e).

Figures 10(a) and 10(d) show the dynamical structure
factors for the NC-1 ordered phase. For model parameters
used here, the energy cost of a single-spin flip is primarily
controlled by the Kitaev bond energies, limiting the band-
width of excitations to ω/J ≈ 2. Given the magnetic order
in this phase, well-defined spin waves and quadrupole waves
emerge in the dipole and quadrupole channels, respectively.
The signal reveals a nontrivial dispersion, which can be sep-
arated into three energy regimes. In the low-energy regime
for ω/J � 0.5, linearly dispersing Goldstone modes exist at
the magnetic ordering vectors �, M2, and K ′ (M ′

3 is not
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shown here), in accordance to the Bragg-peaks seen in the
left column of Figs. 9(d) and 9(e). Moving to higher energy
between 0.6 � ω/J � 1.9, two well-defined gapped bands ex-
ist, equally present in spin-dipole as well as spin-quadrupole
channels. At the energy maximum, the spectrum features an
almost flat band, corresponding to quadrupole excitations cap-
tured by strong intensity in S̃Q(q, ω). The band is almost flat,
as the biquadratic interactions J2 are small compared to the
dominant Kitaev interactions K . A weak-intensity “shadow”
of this excitation is visible in the dipole channel, coming
from mixing between dipole and quadrupole excitations due
to spin-anisotropic interactions.

When the system turns into the FM CSL by increasing
the temperature above Tc2, noticeable changes occur in the
dynamical signatures, as shown in Figs. 10(b) and 10(e). The
once well-defined spin waves at higher energy in the NC-1
ordered phase form a broad continuum of diffuse excitations
with a gap of approximately 1.2J and a band maximum of
around 1.9J . We associate this continuum with the gapped
excitations of the FM CSL. Considering the simplified eight-
color model in Sec. III B, an elementary excitation out of the
CSL ground-state manifold is comprised of a single-spin flip,
violating the ground-state constraints in Fig. 2. However, such
a single-spin flip will violate the ground-state constraints not
only on one but on two bonds, with an energy cost on each
bond of 2

3 K [see Eq. (24)]. By using K = cos (0.06π ), for
the model parameters used in this calculation (see Fig. 9), we
estimate a minimum excitation energy of

�ωCSL
min = 2 × 2

3 K ≈ 1.31J . (39)

This estimate aligns well with the energy gap observed in
Fig. 10(b). Above this energy region, quadrupole excitations
do not form a continuum but instead exhibit well-defined
quadrupole waves, with a remnant of one of the two branches
seen in the NC-1 phase in Fig. 10(d). This is rather intrigu-
ing, since the energy-integrated correlations in Figs. 9(d) and
9(e) show a diffuse structure which is very similar for both
SS(q) and SQ(q). This suggests that excitations in the CSL
continuum induce coherent quadrupole dynamics at finite
frequencies.

Furthermore, we observe that the well-defined Goldstone
modes, corresponding to the NC-1 order change into a strong
zero-energy flat band and a diffuse continuum of excitations
with a small energy gap of ∼0.1J and bandwidth of ∼0.5J .
As the zero-energy mode is challenging to distinguish from
the diffuse low-energy continuum, we provide the dynamics
for the FM CSL in the CP 1 model in Appendix E 2. Here, dy-
namics exhibit more pronounced and sharper bands, allowing
us to validate their genuine physical presence and ensuring
that they are not artifacts of the simulations.

In Figs. 10(c) and 10(f), we show results above Tc1 in
the semiclassical analog of the AFM Kitaev SL. It appears
that the three energy regimes observed in the FM CSL phase
merge to form a spin structure factor that spans the full energy
range up to ω/J ≈ 2, with strong intensity below ∼0.5J .
The quadrupole channel is dominated by an almost flat band
at ω/J ≈ 2, which corresponds to the same excitations of
quadrupolar origin as discussed in Figs. 10(d) and 10(e).
The observed dynamical correlations in this finite-temperature
phase strongly resemble the dynamics of the semiclassical

FIG. 11. Energy cross sections of the dynamical structure factors
[see Eqs. (B15)–(B17)] for the FM CSL phase in the CP 2 model
of HA

BBQ-K [see Eq. (7)], as shown in Figs. 10(b) and 10(e). Re-
sults are shown in (a)–(c) for dipoles, S̃S(q, ω), while in (d)–(f) for
quadrupoles, S̃Q(q, ω).

Kitaev SL, as shown in the comparison in Appendix E 1.
This similarity supports our interpretation of a phase transition
from the semiclassical Kitaev SL to the CSL state, since cho-
sen model parameters ensure that Kitaev interactions strongly
favor Kitaev SL physics above Tc1.

2. Energy cross sections

In the following, we examine the dynamical signatures in
the FM CSL, shown in Figs. 10(b) and 10(e), at T = 0.003,
in more detail by analyzing energy cross sections. In Fig. 11,
we show dynamical structure factors [see Eqs. (B15)–(B17)]
for spin-dipole moments, S̃S(q, ω) (top panels) and spin-
quadrupole moments, S̃Q(q, ω) (bottom panels) at particular
energy values. The cross section at low energy, ω/J = 0.02,
in Figs. 11(a) and 11(d) shows a characteristic high-intensity,
diffuse scattering signal with dominant weight around the K ′
points and some accumulation of weak spectral weight around
the M points. These signals are almost completely captured
by the equal-time structure factors SS(q) and SQ(q), shown in
Figs. 9(d) and 9(e) (middle column).

At small, but finite energies, the spectrum shows a dif-
fuse signal extending up to ω/J ≈ 0.5. An energy cross
section within this energy range at ω/J = 0.26 reveals com-
plicated scattering features with finite intensity across the
entire Brillouin zone. We observe dominant weight around the
edge of the extended Brillouin zone for dipoles in Fig. 11(b),
and predominant scattering within the first Brillouin zone for
quadrupoles in Fig. 11(e).

The energy cross section within the diffuse and almost
featureless continuum for spin dipoles at ω/J = 1.4 reveals
an almost uniform distribution of intensity over the entire
Brillouin zone in Fig. 11(c). Within this energy range, where
dipoles exhibit a continuum, quadrupole excitations display

033077-16



EIGHT-COLOR CHIRAL SPIN LIQUID IN THE S = 1 … PHYSICAL REVIEW RESEARCH 6, 033077 (2024)

well-defined energy bands, as visible in Fig. 10(e). Shown in
Fig. 11(f), these bands manifest as rings around the K ′ points
in momentum space.

In Appendix E 2, we explicitly compare the dynamical
properties of the CSL in the CP 2 model with the results
obtained for the CP 1 model. Our findings reveal a qualita-
tive agreement between the two models, providing additional
support for our interpretation that the spin liquid physics of
the CSL is primarily governed by spin dipoles.

IV. SUMMARY AND PERSPECTIVES

In this paper, we explored the S = 1 Kitaev model with
bilinear-biquadratic (BBQ) interactions on the honeycomb
lattice for SU(3) spin-coherent states in the spin space CP 2,
a model which hosts a diversity of exotic phases, including
multiple-q states with nonzero scalar spin chirality, quasi-
one-dimensional coplanar phases, twisted conical phases, and
noncoplanar ordered states. Building upon the theory pre-
sented in our prior work, Ref. [75], our goal was to provide
a pedagogical explanation of the nature and unique properties
of a finite-temperature chiral spin liquid (CSL), apparent in
this model. To achieve this, we utilized variational energy
minimization and classical Monte Carlo (MC) with molecu-
lar dynamics simulations, using the recently developed U(3)
formalism specifically designed for simulating S = 1 magnets
[47].

By progressively restricting the spin degree of freedom
from CP 2 to CP 1 and eventually to a discrete eight-color
model, we unveiled the significant impact of the local Hilbert
space dimension on the ground state and its excitation prop-
erties. The eight-color model, designed to capture the most
intriguing aspects of the CSL, offered an intuitive and analyt-
ical understanding of its physical properties. This model not
only uncovered the origin of the extensive degeneracy in the
CSL, but also clarified the reasons behind the nonzero scalar
spin chirality, extreme short-ranged correlations, and the pres-
ence of a Kitaev spin liquid (SL) feature of Z2-flux order. We
derived bond-dependent spin constraints that unequivocally
determine the nature of this eight-color CSL and validated
our findings through unbiased classical MC simulations. Our
results convincingly demonstrated that the dominant proper-
ties of the eight-color CSL persist even in the more complex
CP 1 and CP 2 model cases. Importantly, the enlarged spin
degree of freedom does not alter the fundamental properties
of the CSL but rather restricts its stability in the ground
state. Consequently, the CSL survives as an entropy-driven,
robust phase at finite temperatures in the original CP 2 model.
This stability in the more complex CP 2 model enabled us to
simulate the dynamical structure factor, which revealed a non-
trivial excitation spectrum characterized by a high-intensity
zero-energy mode with a diffuse continuum of excitations
in the low-frequency region. At higher frequencies, a broad
continuum of excitations was observed, which we attributed
to the excitations of the discrete eight-color CSL.

CSLs represent a well-established branch of SLs, wherein
the SL state persists even after the spontaneous break-
ing of time-reversal symmetry [91,92]. While examples
of CSLs with exactly known quantum-ground states exist
[93–96], studies across various models have indicated that the

spontaneous breaking of discrete time-reversal symmetry
typically occurs at finite temperatures [97–101]. The CSL
investigated in our present study is a classical spin liquid that
also spontaneously breaks time-reversal symmetry at finite
temperature. We confirmed that this transition is of second
order, following the Z2 Ising universality class. Remarkably,
the correlations above and below this phase transition are
strikingly similar [see Figs. 4(j) and 4(l)], suggesting a po-
tential deeper connection to correlations seen in Kitaev SLs
[90]. It would be intriguing to explore whether the nature
of the phase transition in the CP 1 and CP 2 models exhibits
similarities to the phase transition observed in the eight-color
model, and whether such behavior could also be found in other
lattice models which host classical CSLs [102]. Furthermore,
the defining bond-dependent spin constraints, as illustrated in
Fig. 2, can be expressed in terms of a suitable lattice gauge
theory [103]. This directly leads to the intriguing question of
whether the CSL can also exist on other three-coordinated lat-
tices with different geometries and whether there is a potential
relevance to compass models [104]. We leave these intriguing
questions for future work.

We strongly advocate for simulating systems with higher-
order interactions within their corresponding local Hilbert
space dimension. While it may be theoretically straightfor-
ward to formulate and solve models with any type of spin
interactions, it is crucial to ensure that the local Hilbert space
respects the underlying Lie algebra, which physically allows
for such interactions [49,105]. For instance, biquadratic in-
teractions, J2, are absent for spin moments described by Pauli
matrices in the su(2) Lie algebra. To address such interactions
in a physically realistic setting, it is necessary to formulate
the problem in SU(3), with generators in form of Gell-Mann
matrices. To illustrate the profound impact of changing the
local spin degree of freedom, our results in Fig. 1 provide
a compelling demonstration using a specific example. Also
other examples, such as the BBQ model on the triangular
lattice, reveal very different properties for spins living in CP 1

(classical Heisenberg spins) [106,107], compared to spins in
CP 2 [24,39,47]. In particular, realistic Mott insulators, in
their effective low-energy description, can accommodate hy-
bridized multipole moments, which can be efficiently studied
within their corresponding SU(N) representation [50,108].

The U(3) formalism [47] has been used in the present
paper as a semiclassical approximation that neglects quantum
entanglement between different sites. A very promising and
important direction for future studies would involve the treat-
ment of the same model with methods which can account for
long-range entanglement. In such a case, we expect that quan-
tum fluctuations will broaden the Kitaev SL phases, which,
in our semiclassical simulations, are confined to the singular
Kitaev points located at the north and south poles of the phase
diagram in Fig. 1. In fact, this expectation has already been re-
alized by recent iPEPS studies in Ref. [109], which examined
the unfrustrated regime of the S = 1 BBQ-Kitaev model for
1 < φ/π < 2 [cf. Fig. 1(a)]. Moreover, recent work utilizing
DMRG techniques on the S = 1 Kitaev model has identified
the emergence of chiral ordered phases in the presence of
symmetric off-diagonal interactions [110] and vortex states
in the presence of single-ion anisotropy [111]. These findings
provide intriguing results that underscore the richness of the
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quantum problem, offering promising avenues for further ex-
ploration. Furthermore, given that the CSL phases in the CP 2

model persist at finite temperatures in close proximity to the
Kitaev points, it might be possible that quantum fluctuations
will stabilize the CSL phases even in the ground state. This
raises the possibility of an intriguing connection to Schwinger
boson mean-field theory, which proposes the existence of
a gapped chiral QSL [112]. Additionally, it is known that
the SO phase in the BBQ model will transform into a pla-
quette valence bond solid (pVBS), as observed from iPEPS
simulations [88]. It would be interesting to investiagte how
far the pVBS extends in the presence of Kitaev interactions
and whether the one-dimensional phase (1D/q1D) survives
in this scenario or not. If such a phase persists in a quan-
tum simulation, it could potentially stabilize exotic phases
like the Haldane phase [113], quantum loop states [114], or
other phases with dimensionally reduced characteristics, as
observed in anisotropic S = 1/2 Kitaev models [115,116].

The S = 1 Kitaev model with BBQ interactions offers a
diverse range of interesting and exotic phases. In the Kitaev
limit we recovered the semiclassical analog of the S = 1
Kitaev SL, as suggested for honeycomb materials with Ni2+

ions [72]. However, when considering the experimental re-
alization of higher-S Kitaev materials, it becomes apparent
that achieving ideal interactions poses significant challenges.
S = 1 magnets naturally introduce higher-order biquadratic
interactions, placing potential candidate materials likely in
the vicinity of the Kitaev limit, but with finite J1 and J2

interactions. In such cases, the surrounding phases become
relevant for characterizing and classifying synthesized ma-
terials. A ferroquadrupolar spin nematic state is expected
for negative biquadratic interactions, J2, which can be ex-
pected in materials with spin-phonon coupling [117]. States,
such as triple-q, q1D, and CSL states appear for positive
biquadratic interactions J2, which are expected in materials
with orbital degeneracy [118–120]. Phases with scalar spin
chirality, such as the FM/AFM CSL or triple-q ordered states
found in this study, are of particular interest, as they may
lead to unconventional phenomena, such as the magnon Hall
effect [121–123]. In fact, triple-q states were also found in
the Kitaev-Heisenberg model under magnetic field [124] and
play a crucial role in understanding the physics of materials
such as the honeycomb cobaltites Na2Co2TeO6 [125,126] and
Na3Co2SbO6 [127]. Despite the presence of non-Kitaev in-
teractions, the CSL presented in our study is stable at finite
temperatures in the vicinity of the Kitaev limit. This observa-
tion suggests the intriguing possibility of stabilizing a similar
state in real materials, potentially leading to the emergence of
a novel Kitaev-like SL that breaks time-reversal symmetry.
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APPENDIX A: DETAILS OF METHODS

In this Appendix, we describe the numerical methods used
in this study. Simulations are performed for different spin
degrees of freedom, namely, SU(3) spin-coherent states on the
complex-projective plane CP 2, SU(2) spin-coherent states on
CP 1, and discretized spins in the eight-color model. Energies
in each case are evaluated at the level of classical approxi-
mations on local bonds, and hence do not allow us to treat
long-range quantum entanglement beyond a single site.

1. Variational energy minimization

To determine the ground-state phase diagrams, as shown in
Fig. 1, we perform large-scale variational energy minimiza-
tion using the machine learning library JAX [80]. In Fig. 1(a),
we minimize HA

BBQ-K in Eq. (7) by optimizing θ1, θ2, φ1, φ2

and φ3 in Eq. (6) as independent variational parameters at
each site on the lattice. Similarly, in Fig. 1(b), we minimize
HS

BBQ-K in Eq. (1) using local variational parameters θ1 and
φ1 in Eq. (14). We employ the gradient processing and op-
timization library “Optax” with the optimizer “Adam” [81].
The initial conditions considered include relevant ordered and
disordered states, as depicted in Fig. 1(d), as well as random
initial states. The optimization process involves 5000–10 000
steps per model parameter.

2. Monte Carlo simulation

To obtain thermodynamic properties we perform classical
MC simulations where spins are locally updated at every
site on the physical lattice of size NS. In the CP 2 spin
space, we sample A matrices by choosing parameters 0 �
θ1, θ2 � 1 and 0 � φ1, φ2 < 2π in Eq. (6) at random, while
in the CP 1 spin space we sample classical vector spins with
−1 � cos θ1 � 1 and 0 � φ1 < 2π in Eq. (14). For a spin
flip in the eight-color model we randomly select, with equal
weight, one out of all eight possible spin states, as defined
in Table I. Following the standard single-spin flip Metropo-
lis algorithm [128], we accept or reject a new spin state at
site i, after evaluating the local bond energies. In the actual
calculations, a single MC step consists of NS local spin-flip
attempts on randomly chosen sites. Simulations are carried
out in parallel for replicas at different temperatures, using the
replica-exchange method, initiated by the parallel tempering
algorithm [129–131] every 100 MC steps. Results for ther-
modynamic quantities are averaged over 5 × 105 statistically
independent samples, after initial 5 × 105 MC steps for slowly
heating from the ground state, as obtained by the variational
energy minimization and further 5 × 105 MC steps for ther-
malization. Error bars are estimated by averaging over 10
independent simulation runs.

MC simulations in the frustrated parameter region, where
the eight-color CSL appears, suffer from severe slowing
down, due to the failure of single-spin flip updates. As
explained in Sec III B 1, the CSL is expected to have an ex-
tensive number of degenerate states, which are connected via
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simultaneous flips of a group of spins covering at least one
hexagon (see Fig. 3). To efficiently sample over an extensive
manifold of states, we combine single-spin flip updates with
an additional cluster update of six spins. For the eight-color
model and the CP 1 model we adopt Eq. (28), while for the
CP 2 model, where spins are represented by 3 × 3 Hermitian
A-matrices [see Eqs. (3)–(6)], we transform Eq. (28) into the
matrix form

Anew
p, j = (

Rα
j

)−1Ap, j Rα
j . (A1)

By comparing energies before and after the cluster update, we
accept or reject the new state following the Metropolis argu-
ment [128]. Within one MC step, we implement Nh = NS/2
cluster-update attempts for randomly chosen hexagons on the
whole lattice. The efficiency of this update within the CSL
phase strongly depends on the degrees of freedom of spins.
As discussed for the acceptance ratio in Appendix D, this
cluster update becomes rejection free in the eight-color model,
while showing a reduced efficiency for CP 1 and CP 2 model
calculations.

3. Molecular dynamics simulation

Dynamics are present in models with continuous spin de-
gree of freedom, here in our case for the CP 2 and CP 1

models. The equations of motion for spins respecting the
spin space CP 2 [spin coherent states of SU(3)] are expressed
within our formalism in terms of A matrices (see Sec. II). This
allows us to rewrite the original BBQ-Kitaev Hamiltonian in
Eq. (1) into the bilinear form of Eq. (7),

HA
BBQ-K = HA

BBQ + HA
K[x] + HA

K[y] + HA
K[z] (A2)

with

HA
BBQ =

∑
〈i j〉

[
J1Aα

iβA
β
jα + (J2 − J1)Aα

iβAα
jβ + J2Aα

iαA
β

jβ

]
,

(A3)

HA
K[x] = −Kx

∑
〈i j〉x

(
Ay

iz − Az
iy

)(
Ay

jz − Az
jy

)
, (A4)

HA
K[y] = −Ky

∑
〈i j〉y

(
Ax

iz − Az
ix

)(
Ax

jz − Az
jx

)
, (A5)

HA
K[z] = −Kz

∑
〈i j〉z

(
Ax

iy − Ay
ix

)(
Ax

jy − Ay
jx

)
, (A6)

where A matrices respect the commutation relations [47]:[
Aα

iβ,Aγ
iη

] = δ
γ

βAα
iη − δα

ηA
γ

iβ,
[
Aα

iβ,Aγ
jη

] = 0 . (A7)

By using Eq. (A7), one can solve the Heisenberg equations of
motion, written in terms of A matrices
d

dt
Aα

iβ = d

dt
Aα

iβ

∣∣∣
BBQ

+ d

dt
Aα

iβ

∣∣∣
K[x]

+ d

dt
Aα

iβ

∣∣∣
K[y]

+ d

dt
Aα

iβ

∣∣∣
K[z]

,

(A8)
which can be explicitly solved for contributions from the BBQ
interactions

d

dt
Aα

iβ

∣∣∣
BBQ

= − i
[
Aα

iβ,HA
BBQ

]
= − i

∑
δ

[
J1

(
Aα

iγA
γ

i+δ,β − Aγ

iβAα
i+δ,γ

)
+ (J2 − J1)

(
Aα

iγA
β

i+δ,γ − Aγ

iβA
γ

i+δ,α

)]
, (A9)

where
∑

δ sums over the nearest neighbors of site i. For the
bond-dependent Kitaev interactions, e.g., on the x bond, we
obtain

d

dt
Aα

iβ

∣∣∣
K[x]

= −i
[
Aα

iβ,HA
K[x]

]
= iKx

[
Aα

iβ,
(
Ay

iz − Az
iy

)](
Ay

i+x,z − Az
i+x,y

)
= iKx

(
δ

y
βAα

iz − δα
z A

y
iβ − δz

βAα
iy + δα

y Az
iβ

)
× (

Ay
i+x,z − Az

i+x,y

)
(A10)

which explicitly gives

d
dt Aα

iy

∣∣∣
K[x]

= Aα
iz

d
dt Aα

iz

∣∣∣
K[x]

= −Aα
iy

d
dt A

y
iβ

∣∣∣
K[x]

= Az
iβ

d
dt A

z
iβ

∣∣∣
K[x]

= −Ay
iβ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

× iKx
(
Ay

i+x,z − Az
i+x,y

)
. (A11)

Contributions on the y and z bonds can be obtained by cyclic
permutations.

The equations of motion for spins respecting the spin space
CP 1 [spin coherent states of SU(2)] are formulated in terms
of classical Heisenberg spins, see Eq. (14). We obtain from
Eq. (1) the equations of motion

d

dt
Sα

i = − i
[
Sα

i ,HS
BBQ

]
= − iJ1

∑
〈i j〉

[
Sα

i , (Si · Sj)
]

− 2iJ2

∑
〈i j〉

[
Sα

i ,
(
Si · S j

)]
(Si · S j )

− i
∑
〈i j〉γ

Kγ

[
Sα

i , Sγ

i Sγ

j

]
, (A12)

which explicitly gives

d

dt
Si = Si ×

∑
δ

{
[J1 + 2J2(Si · Si+δ )]Si+δ + KδSδ

i+δ

}
,

(A13)
where “×” corresponds to the cross product between vector
spins on the left and the local exchange field on the right.
Throughout this paper, we choose isotropic Kitaev interac-
tions with Kx = Ky = Kz = K .

After sufficient thermalization at a specific temperature
with MC simulations we evolve 1000 statistically independent
A-matrix (S vector) configurations in time by numerically
integrating the equations of motion using a fourth-order
Runge-Kutta (RK-4) algorithm [132,133]. By using a time
interval of δt ≈ 0.03, we obtain a time series of A matrices,
{Aα

iβ (t )}, and classical vectors, {Si(t )}, which conserve the
total energy of the system with a controlled error of O(δt5),
as expected from the RK-4 method.
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APPENDIX B: MEASUREMENT OF OBSERVABLES

1. Specific heat and entropy

During the MC measurement, we compute the specific heat

C = 1

kBT 2
[〈H2〉 − 〈H〉2], (B1)

where kB = 1 throughout this paper and 〈. . .〉 represents an av-
erage over measurements of statistically independent replica.
In the discretized eight-color model we obtain the thermo-
dynamic entropy, by integrating the specific heat over the
temperature

S(T ) = S(T∞) −
∫ T∞

T

C(T ′)
T ′ dT ′, (B2)

with T∞ the highest temperature available.

2. Correlations in momentum space

Correlations between magnetic moments in momentum
space are accessible from the equal-time structure factor

Sλ(q) =
〈∑

αβ

∣∣mλ
α
β (q)

∣∣2

〉
, (B3)

where the index λ denotes the channel for A matrices,
dipoles, or quadrupoles as λ = A, S, and Q, respectively.
Here, mλ

α
β (q) is defined by

mS
α
α (q) = −i

∑
β,γ

ε
α γ

β mA
β
γ (q), (B4)

mQ
α
β (q) = −mA

α
β (q) − mA

β
α (q) + 2

3
δα
β

∑
γ

mA
γ
γ (q) ,

(B5)

where the Fourier transform of the A matrices is given as

mA
α
β (q) = 1√

NS

NS∑
i

eiq·riAα
iβ . (B6)

For simulations in the CP 1 model and the eight-color model,
we evaluate dipole correlations directly

mS
α
α (q) = 1√

NS

NS∑
i

eiq·ri Sα
i , (B7)

from spin components sampled via Eq. (14).

3. Scalar spin chirality and semiclassical Z2-flux operator

We define the scalar spin chirality on the honeycomb lattice
with

κ = 2

NS

∑
p

κp, (B8)

where the sum is taken over all hexagons p. As shown
in Fig. 12(a), we divide a single hexagon into four trian-
gles which contribute to the total scalar chirality of the full
hexagon with

κp = κA
p + κB

p + κC
p + κD

p , (B9)

FIG. 12. (a) Definition of the scalar spin chirality on an individ-
ual hexagon, see Eqs. (B9)–(B13). (b) The semiclassical analog of
the Z2-flux operator, as defined in Eq. (B14).

where

κA
p = Sp0 · (Sp1 × Sp5), (B10)

κB
p = Sp1 · (Sp2 × Sp3), (B11)

κC
p = Sp3 · (Sp4 × Sp5), (B12)

κD
p = Sp1 · (Sp3 × Sp5). (B13)

We further define the S = 1 semiclassical analog of the
“Z2-flux” operator Wp, as

Wp =
∏
j∈p

√
3Sα

j , (B14)

where α denotes the site-dependent label for the Kitaev bond
pointing outwards from the hexagon p at site j = 0, . . . , 5.
Figure 12(b) visually represents Eq. (B14), which, in MC
simulations, is computed as the spatial average over all pla-
quettes on the lattice. We emphasize that Wp differs from the
conserved flux operator in the quantum S = 1 Kitaev model
[57,76].

4. Dynamical structure factor

To obtain the dynamical structure factors for dipole and
quadrupole channels, we take the Fourier transform of the
time-series of A matrices {Aα

iβ (t )} (classical vectors {Si(t )}),
as obtained from from molecular dynamics simulations (see
Appendix A 3), from real-space into the momentum-space and
frequency domain

Sλ(q, ω) =
〈∑

αβ

∣∣mλ
α
β (q, ω)

∣∣2

〉
, (B15)

with λ = A, S, and Q. The Fourier transform

mA
α
β (q, ω) = 1√

Nt

Nt∑
n

eiωtn mA
α
β (q, tn), (B16)

for A matrices is obtained by the fast Fourier transform (FFT)
[134], after convoluting with a Gaussian envelope to avoid nu-
merical artifacts like the Gibbs phenomenon [135]. Equivalent
equations for dipole moments, mS

α
α (q, ω), and quadrupole

moments, mQ
α
β (q, ω), are defined in analogy to Eqs. (B4) and

(B5), respectively.
In Figs. 10, 11, and Appendix E 2, we set the total number

of time steps Nt = 500 for a maximal frequency of ωmax =
10J , while in Appendix E 1, we set ωmax = 6J . Data are
sampled over 1000 statistically independent time series.
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The Heisenberg equations of motion [see Eqs. (A8)–(A10)
and (A13)] are derived using bosonic commutation relations
[cf. Eq. (A7)], resulting in a dispersion relation analogous to
those found in flavor-wave theory [47]. However, the molec-
ular dynamics simulations described above are performed
for a thermal ensemble of classical states, evolving in time
while adhering to the bosonic commutation relations. This
effectively leads to dynamics of a “mixed ensemble,” encom-
passing classical and bosonic statistics.

To obtain a dynamical structure factor that adheres strictly
to quantum statistics, it is necessary to introduce a prefactor
ω/T , which allows to “correct” the intensity distribution via

S̃λ(q, ω) = ω

T
Sλ(q, ω), (B17)

as discussed in great detail in Sec. VII of Ref. [47], and the
Supplemental Material of Ref. [136]. Throughout the present
paper, all dynamical structure factors are presented in their
“corrected” form, S̃λ(q, ω).

APPENDIX C: ANALYTIC SOLUTIONS OF PHASE
BOUNDARIES FOR CSL

In this Appendix, we provide an analytical derivation for
the phase boundaries of the FM CSL in the ground state of
the eight-color model, and in the CP 1 model, as discussed in
Sec. III A.

1. CSL phase at singular line in the CP 1 model

In the following, we derive the singular line in the phase
diagram where the FM CSL becomes the ground state in the
CP 1 model, HS

BBQ-K in Eq. (1), see Fig. 1(b). Without loss
of generality, we consider one possible arrangement of spins
in the FM CSL ground state with nearest-neighbors (Sg, Sr)
on the x bond, (Sg, Sb) on the y bond, and (Sg, Sr) on the z
bond, which all respect the bond-dependent spin constraints
of Fig. 2. We hereby follow the convention of spin states as
defined in Table I for the eight-color states.

We first consider the energy contribution from bilinear
interactions, J1, and biquadratic interactions, J2. These are
bond independent, which is why we consider energies only
on the x bond for simplicity. By parametrizing spins on the
Bloch sphere [see Eq. (14)], with, e.g., θg and φg, the polar
and azimuthal angles of a “green” spin, we write

Sg · Sr = sin θg sin θr cos (φg − φr ) + cos θg cos θr = − 1
3
(C1)

and

(Sg · Sr )
2 = [sin θg sin θr cos (φg − φr )]

2 + [cos θg cos θr]
2

+ sin θg sin θr cos θg cos θr cos (φg − φr )

= 1

9
.

(C2)
Considering the spin S̃g, after allowing for a small perturba-
tion in θg by δ  1, gives

S̃g · Sr = Sg · Sr − δ sin θg cos θr

= Sg · Sr −
√

2

3
δ. (C3)

Equivalently we obtain

(S̃g · Sr )
2 = (Sg · Sr − δ sin θg cos θr )

2

= (Sg · Sr )
2 − 2(Sg · Sr )δ sin θg cos θr + O(δ2)

= (Sg · Sr )
2 + 2

3

√
2

3
δ, (C4)

where we neglect terms of higher order O(δ2).
The energies from bond-dependent Kitaev interactions

contribute on the x bond:

S̃g · Sr = Sg · Sr − δ cos θg cos φg sin θr cos φr

= Sg · Sr + δ

2

√
2

3
, (C5)

on the y bond:

S̃g · Sb = Sg · Sb + δ cos θg sin φg sin θb sin φb

= Sg · Sb + δ

2

√
2

3
, (C6)

and on the z bond:

S̃g · Sr = Sg · Sr − δ sin θg cos θr

= Sg · Sr − δ

√
2

3
. (C7)

The energy difference, �E , between the CSL ground state
and a state with small perturbation, using Eqs. (C3)–(C7), is

�E =
√

2

3
δ

(
−J1 + 2

3
J2

)
+ Kδ

(
1

2

√
2

3
+ 1

2

√
2

3
−

√
2

3

)
.

(C8)
Thus the CSL ground state is realized when �E = 0, which
occurs for

J1 = 2

3
J2 . (C9)

This condition corresponds to the model parameters, defined
in Eq. (2)

φ/π = 1

π
arctan

(
3

2

)
≈ 0.312833, (C10)

as found from numerics in Fig. 1(b), and stated in Eq. (16).
Since the contributions from Kitaev energies perfectly cancel
out, the CSL phase forms a singular straight line in the phase
diagram. A similar energy comparison can be applied to the
AFM CSL phase, leading to Eq. (17).

2. Phase boundaries of CSL in the eight-color model

The phase boundaries of the FM CSL phase in the eight-
color model, H8c

BBQ-K in Eq. (15), can also be calculated
analytically. The FM CSL is surrounded by the AFM and
AFM 3Q chiral ordered phases [see Fig. 1(c)]. Without loss
of generality, we consider the local-bond energy for only one
bond in the lattice, here the x bond.

In the FM CSL, by respecting the bond-dependent spin
constraints in Fig. 2, one obtains for allowed nearest-
neighbors, e.g., “bright green” and “bright red,” the local bond
energy σg · σr = −1/3. On the other side, the AFM phase
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gives for states in the ground state, e.g., “bright green” and
“dark green”, σg · σ̄g = −1. To obtain the phase boundary
between AFM and FM CSL in terms of model parameters φ

and θ [see Eq. (2)], we set their energies equal and obtain the
condition

− cos φ + sin φ = − 1
3 cos φ + 1

9 sin φ, (C11)

which is independent of θ and therefore results in a straight
line as seen in the phase diagram of Fig. 1(c). Solving
Eq. (C11) results in

φ

π
= 1

π
arctan

(
3

4

)
≈ 0.205. (C12)

In the AFM 3Q chiral ordered phase, the bond energy
gives, e.g., for “bright green” and “dark blue”, σg · σ̄b = 1/3.
We do the same comparison for the phase boundary between
the FM CSL and the AFM 3Q chiral phases and obtain the
condition

cos φ sin θ = − cos φ sin θ, (C13)

which is only fulfilled for

cos φ sin θ = 0. (C14)

Equation (C14) is satisfied for θ = 0 or π , which corresponds
to the pure Kitaev model, and for

φ

π
= 1

2
, (C15)

where the second solution φ/π = 3/2 is physically irrelevant.
The phase boundaries described by Eqs. (C12) and (C15),

are well visible in Fig. 1(c). The calculations for phase
boundaries in the AFM CSL are straightforward, and give
the symmetric solutions from the self-duality of H8c

BBQ-K, as
written in Eq. (19).

APPENDIX D: ACCEPTANCE RATIO FOR SINGLE-SPIN
FLIP AND HEXAGON CLUSTER UPDATES

Single-spin flip MC simulations within the CSL phase
suffer from severe slowing down, making it impossible to
decorrelate the MC samples using local spin updates. To over-
come this issue, we combine single-spin flip updates with a
hexagon cluster update as physically motivated from the na-
ture of the eight-color CSL ground state manifold (see Fig. 3).
Technical details of the implementation of the cluster update
are given in Sec. III B 1 and Appendix A 2

In Figs. 13(a)–13(c), we show the temperature dependence
of the acceptance ratio for single-spin flip and hexagon cluster
updates in the eight-color model, the CP 1 model, and the
CP 2 model, respectively. Model parameters are chosen to sta-
bilize the FM CSL at low temperatures, as depicted in Figs. 4
(right column), 7, and 9. As expected from conventional MC
simulations, the efficiency of the single-spin flip update mono-
tonically decreases by reducing the temperature, showing a
basically vanishing acceptance ratio below the transition into
the CSL. We note that the value of 1/8 in Fig. 13(a) comes
from the fact that we accept a new state even when we sample
over the same old state.

The hexagon update follows the same trend in the high-
temperature regime. However, below the phase transition Tc

FIG. 13. Temperature dependence of the acceptance ratio in the
FM CSL as obtained in (a) the eight-color model, (b) the CP 1 model,
and (c) the CP 2 model. Acceptance ratios for single-spin flip updates
are depicted with blue circles, while results for hexagon updates are
shown with red circles. Model parameters are the same as used in
Figs. 4 (right column), 7, and 9. Simulations were performed for
finite-size clusters of L = 48 (NS = 4608).

in Figs. 13(a) and 13(b) and Tc1 in Fig. 13(c), the accep-
tance ratio for the hexagon update increases and shows finite
values. In fact, the hexagon update becomes rejection free
in the eight-color model, while reaching up to ≈25% in the
CP 1 model. The efficiency of the cluster update in the CP 2

model is strongly suppressed (� 1.5%), as shown in the inset
of Fig. 13(c), but is still sufficient to decorrelate the finite-
temperature FM CSL phase.

APPENDIX E: ADDITIONAL DYNAMICS SIMULATIONS

In this Appendix, we provide additional results of non-
trivial dynamical structure factors for the semiclassical S = 1
AFM and FM Kitaev SL and the FM chiral spin liquid (CSL),
as discussed in Sec. III E,

1. Semiclassical dynamics of the S = 1 Kitaev spin liquid

In Fig. 14, we present thermodynamic properties of the
semiclassical S = 1 AFM and FM Kitaev models at θ/π = 0
and θ/π = 1 of HA

BBQ-K in Eq. (7). The specific heat C/NS in
Fig. 14(a) remains identical for AFM and FM Kitaev mod-
els, showing a crossover from a high-temperature paramagnet
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FIG. 14. The semiclassical S = 1 Kitaev SL in the CP 2 model,
respectively at θ/π = 0 and 1 of HA

BBQ-K in Eq. (7). The specific heat
C/NS [Eq. (B1)] in (a) shows a crossover from a high-temperature
paramagnet (PM) into the semiclassical analog of the Kitaev spin
liquid (SL). The spin structure factors for dipoles, SS(q), and
quadrupoles, SQ(q), [see Eqs. (B3)–(B5)] are shown respectively for
the AFM Kitaev SL in (b) and (d), and for the FM Kitaev SL in
(c) and (e). Simulations were performed at T = 0.01 [black arrow in
(a)] for finite-size clusters of L = 48 (N = 4608).

into a low-temperature cooperative paramagnet. Here, and
throughout the main text, we refer to this cooperative para-
magnetic phase as the semiclassical analog of the Kitaev SL.
We numerically estimate a specific heat value in the limit of
T → 0, as

1

NS
C(T → 0) = 1.712(2), (E1)

which is smaller than 2, providing direct evidence of
zero-energy modes in the semiclassical ground state. The
zero-energy modes are evident in the dynamical structure
factors, as illustrated in Fig. 15.

We further present the equal-time structure factors of
dipoles, S̃S(q), and quadrupoles, S̃Q(q), respectively for the
AFM Kitaev SL in Figs. 14(b) and 14(d), and for the FM
Kitaev SL in Figs. 14(c) and 14(e), at T = 0.01. The struc-
ture factors in both liquids are very diffuse and show in the
dipole channel a strong similarity with the S = 1/2 Kitaev
spin liquid [90,137,138]. Correlations for quadrupoles show
quantitatively the same structure for both the AFM and the

FM Kitaev SL states with high intensity at the Brillouin zone
center and some weak structure reaching out to the Brillouin
zone corners.

In Fig. 15, we present the dynamical structure factors [see
Eqs. (B15)–(B17)] for the AFM and FM Kitaev SL phases at
T = 0.01, for the same model parameters as used in Fig. 14.
The structure factors for dipoles in Figs. 15(a) and 15(b)
and their energy cross sections in Figs. 15(d)–15(g) show
a strong resemblance to results for the S = 1/2 case [90],
indicating that correlations are dominated by spin dipoles.
Additionally, in Fig. 15(c), we show the quadrupole structure
factor, which is equivalent between the AFM and FM Kitaev
SL states, revealing a high-intensity zero-energy mode, con-
sistently with the reduced specific heat value in Eq. (E1), and a
flat band at ω/J ≈ 2. While the ground state is primarily dipo-
lar, dipole characteristics implicitly influence the quadrupole
components and lead to dominant zero-energy modes also in
the SQ(q). The flat band, solely associated with quadrupole
excitations, is determined by the interaction strength J2. Since
J2 = 0 in the “pure” Kitaev model, this quadrupole mode
becomes dispersionless. The energy cross section in Fig. 15(h)
captures the dominant quadrupole correlations at small ω,
as it reproduces the pattern in the static structure factors of
Figs. 14(d) and 14(e). A cross section through the flat band in
Fig. 15(i) reveals a perfectly constant and featureless intensity,
indicating the presence of localized excitations.

2. Dynamics of the FM CSL—comparison between CP 2

and CP 1 models

The eight-color model describes a system where the spin
degree of freedom is discretized, and consequently lacks dy-
namics. Fortunately, as discussed in Secs. III C and III D, the
CSL is stabilized in models with continuous spin degree of
freedom, which allows us to simulate its dynamical properties
(see technical details in Appendix A 3). Here, we compare
the dynamical structure factors of the FM CSL between the
CP 2 model and the CP 1 model, and demonstrate that their
qualitative signatures are essentially the same.

In Fig. 16, we show the dynamical structure factors for
spin-dipole moments, S̃S(q, ω) [see Eqs. (B15) and (B17)],
in the FM CSL phase for both the CP 2 model and the CP 1

model, at the same model parameters of θ/π = 0.06 and
φ/π = 0.305. The top row shows the spectrum along the path
in momentum space as indicated by green lines in the left
panel of Fig. 9(d). The bottom row depicts frequency cuts at
the explicit momentum points � and K ′.

For better comparison we replot in Fig. 16(a) the result
from the CP 2 model, as previously shown in Fig. 10(b). The
spectrum exhibits three energy regimes: a zero-energy flat
band, a slightly gapped diffuse band, and a largely gapped
and diffuse continuum with broad bandwidth at higher ener-
gies. Additionally, a flat, weak intensity band around ω/J ≈
2 is observed, arising from the mixing between dipole and
quadrupole excitations due to spin anisotropy. These energy
regimes are quantified in the bottom row.

In Fig. 16(b), qualitatively similar features are visible in
the dispersion obtained from CP 1 model simulations, per-
formed at nearly the same temperature. Here, the diffuse
band at intermediate energies exhibits a larger bandwidth
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FIG. 15. Dynamical structure factors [see Eqs. (B15)–(B17)] for the semiclassical analog of the S = 1 AFM and FM Kitaev SL in the CP 2

model, respectively at θ/π = 0 and 1 of HA
BBQ-K in Eq. (7). (a) and (b) show dynamical structure factors of dipoles, S̃S(q, ω), respectively in the

AFM and FM Kitaev SL states, with their energy cross sections in (d)–(g). Excitations are very similar to known results for the S = 1/2 Kitaev
model, see Ref. [90]. (c) shows dynamical structure factors of quadrupoles, S̃Q(q, ω), with energy cross sections in (h)–(i). The signals for AFM
and FM Kitaev SL are equivalent [see Figs. 14(d) and 14(e)], and therefore shown only once. Data were obtained from molecular dynamics
simulations (details in Appendix A 3) for finite-size clusters of L = 48 (N = 4608), at temperatures T = 0.01 [black arrow in Fig. 14(a)].
(a)–(c) are plotted along the green path in momentum space, as indicated in the left panel of Fig. 9(d).

while clearly showing an energy gap to the high-intensity
zero-energy mode. The broad continuum is slightly shifted to
higher energies compared to the CP 2 case but demonstrates
almost the same intensity distribution. The nearly flat band
around ω/J ≈ 2 is absent in the CP 1 case, as quadrupoles are
strictly excluded in these simulations.

In Fig. 16(c), we additionally present the spectrum for the
CP 1 model at T = 0.001, a temperature that is not accessible
in the CP 2 model, as the FM CSL transitions into the NC-1

ordered state before reaching such low temperatures (see ther-
modynamics in Sec. III D 2). Since thermal fluctuations are
reduced, the spectrum becomes slightly sharper, especially the
gap of the diffuse intermediate band to the zero-energy mode
becomes more pronounced. However, importantly, qualitative
features between CP 1 and CP 2 model simulations remain the
same.

This comparison confirms our intuition that dominant
properties of the CSL are still captured in the CP 1

FIG. 16. Dynamical structure factors for spin-dipole moments, S̃S(q, ω) [see Eq. (B17)], in the FM CSL phase. Results in the top row are
shown along the path indicated by green lines in the left panel of Fig. 9(d), while the bottom row shows frequency-line cuts at the � and K′

momentum points. All results are presented for the same model parameters: θ/π = 0.06 and φ/π = 0.305 [see Eq. (2)], and are compared
between CP 2 model [Eqs. (7) and (A8)] and CP 1 model [Eqs. (1) and (A13)] calculations. (a) Results for the CP 2 model at T = 0.003 [cf.
Fig. 10(b)]. (b) Results for the CP 1 model at a comparable temperature, T = 0.004, exhibiting essentially the same features as observed for
the CP 2 model in (a). (c) Results in the CP 1 model at very low temperatures, T = 0.001. Data were obtained from molecular dynamics
simulations (details in Appendix A 3) for finite-size clusters of L = 48 (N = 4608).
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model, which includes only dipole spin degree of freedom.
Additionally, simulation results for the dynamics in both
the CP 1 and CP 2 models reveal a very diffuse and

gapped continuum, associated with the excitations of
the FM CSL, as discussed in the eight-color model in
Sec. III B.
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