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Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model
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We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model, which exhibits
first-order and second-order dissipative phase transitions upon varying the degree of anisotropy between the
coupling strengths of rotating and counter-rotating terms. Using both semiclassical and quantum approaches, we
find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation. First, there
exists a bistable phase where both the normal and superradiant phases are stable. Second, there are multicritical
points where the phase boundaries for the first- and second-order phase transitions meet. We show that a new
set of critical exponents governs the scaling of the multicritical points. Finally, we discuss the feasibility of
observing the multicritical transitions and bistability using a pair of trapped ions where the anisotropy can be
tuned by controlling the intensity of the Raman transitions. Our study enlarges the scope of critical phenomena
that may occur in finite-component quantum systems, which could be useful for applications in critical quantum
sensing.
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I. INTRODUCTION

The investigation of open quantum systems has gained
significant popularity due to its fundamental importance
and potential applications [1–6]. Phase transitions of the
nonequilibrium steady state, known as dissipative phase
transitions (DPTs), emerged as a highly important topic
within this field [7–18]. For example, the investigation
into the role of criticality on nonequilibrium thermody-
namics such as entropy production has gained significant
attention [19–24]. Recent experimental studies have suc-
cessfully observed DPTs in a variety of systems, such as
semiconductor microcavities [25–27], atomic Bose-Einstein
condensates (BECs) in optical lattices [28,29], waveguide
quantum electrodynamics setups [30], and superconducting
circuits [31,32]. The superradiant phase transition occurring
in the Dicke model, observed in systems such as an atomic
BEC trapped in an optical cavity [33–41], is an important
example of DPTs. By introducing various types of coherent
interactions among a few cavity modes and several BECs,
superradiant phase transitions with a wide range of critical
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phenomena have been predicted and experimentally observed.
Among them are multicritical phenomena induced by dissi-
pation and anisotropy [42–51], PT symmetry breaking phase
transition due to the nonreciprocal interaction [52,53], the
emergence of supersolid and spin-glass phase of the BECs
[54,55], and frustrated superradiant phase transitions in a
Dicke lattice model [56,57].

Phase transitions occurring in a system with a finite number
of components, far from the traditional thermodynamic limit
of infinite particles, have been recently discovered, which is
dubbed as finite-component system phase transition [58,59].
A prominent example is the quantum Rabi model (QRM)
where a single spin is coupled to a single harmonic oscillator
[58,60–62], in which the infinite ratio of the qubit transition
frequency � and the oscillator frequency ω0, i.e., �/ω0 →
∞, plays the role of thermodynamic limit. The subsequent
research [63] has shown that the open version of the QRM
exhibits a DPT, demonstrating the potential of the open QRM
as a promising framework for studying dissipative quantum
phase transitions. This approach is particularly promising, as
it enables the realization of DPTs in small-scale controlled
quantum systems, such as ion traps with only a few ions,
where a wide range of coherent interactions, external driv-
ings, and dissipative processes can be engineered [64–68].
The interplay among these factors may, in turn, give rise to
a variety of nonequilibrium critical phenomena associated
with DPTs. Moreover, it has been recently shown that the
finite-component system phase transitions occurring in both
closed and open systems could be a useful resource for critical
quantum sensing [69–72]. Therefore, it is an important task to
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discover and realize DPTs with various phenomenology and
universality classes, which could be utilized for developing
critical sensing protocols.

Motivated by these opportunities, in this paper we inves-
tigate a generalized version of the open QRM where the
anisotropy between coupling strength between the rotating
and counter-rotating terms are considered. The anisotropic
open QRM features two fundamentally different coherent
processes. The rotating term preserves the total number of
excitations of the qubit and the oscillator, while the counter-
rotating term does not preserve them. Therefore, the nature of
nonequilibrium steady state strongly depends on the degree
of anisotropy, when the oscillator is coupled to a Markovian
bath that constantly removes excitations from the system to
the bath. We first find that there are critical values for the
anisotropy, beyond and below which no DPTs occur. For
the intermediate values of the anisotropy, we find a criti-
cal coupling strength at which a second-order DPT occurs
that belongs to the same universality class with the isotropic
open QRM. Strikingly, upon further increasing the coupling
strength beyond the critical coupling, there occurs another
DPT of the first order where the normal phase (NP) reemerges
deep in the superradiant phase (SP). This leads to a bistable
phase where both the NP and the SP coexist.

The phase boundaries for the second-order and first-order
DPTs meet in two points, giving rise to multicritical points.
We find that the critical exponents governing these multicriti-
cal points are different from those of the second-order DPTs.
We note that a similar phase diagram, including the bistable
phase and multicritical points, was predicted and observed in
the atomic BEC in the cavity system [42–44]; however, the
critical scaling of the tricritical point in this system has not yet
been investigated. Here, we calculate the critical exponents of
the observed tricriticality in the cavity-BEC system and find
that the critical exponents are identical with ours, showing
that they belong to the same universality class. Finally, we
discuss how the multicritical DPT and bistability predicted in
the anisotropic open QRM could be realized using two trapped
ions.

The paper is organized as follows. In Sec. II, we intro-
duce the anisotropic open QRM. In Sec. III, we provide a
semiclassical analysis under the mean-field approximation.
The phase diagram is obtained after a stability analysis of the
mean-field solutions, and the nature of the DPTs is discussed
in Sec. IV. In Sec. V, we provide a full quantum solution for
the NP and the SP, respectively. In Sec. VI, the critical scal-
ing of the vanishing asymptotic decay rate and the diverging
oscillator excitation number are investigated. In Sec. VII, we
propose an experimental scheme for implementing our model
using a trapped ion pair. Finally, we draw a conclusion in
Sec. VIII.

II. MODEL

We consider an anisotropic open quantum Rabi model
where the rotating and counter-rotating terms have different
coupling strengths, whose dynamics is governed by a master
equation,

ρ̇ = −i[H, ρ] + κD[a]ρ. (1)

The coherent dynamics of the system is determined by the
Hamiltonian, which reads (h̄ = 1)

H = ω0a†a + �

2
σz − λr (aσ+ + a†σ−) − λcr (aσ− + a†σ+),

(2)
where a(a†) is the annihilation (creation) operator of the har-
monic oscillator (e.g., a cavity-photon field or a vibrational
mode of a trapped ion), and σz and σ± ≡ (σx ± iσy)/2 are
Pauli matrices for the two-level system (qubit or spin). The
oscillator frequency is ω0 and the transition frequency for the
qubit is �. The coupling strengths are denoted by λc and
λcr for the rotating and counter-rotating terms, respectively.
Following the approach taken in Ref. [63] for the open QRM,
we treat the environment for the harmonic oscillator as a local
Markovian bath; therefore, the dissipator of the system takes a
Lindblad form D[a]ρ ≡ 2aρa† − a†aρ − ρa†a with a damp-
ing rate κ . Despite the strong qubit-oscillator coupling, such a
local dissipator has been shown to be a correction description
in the large frequency-ratio limit [71].

The Hamiltonian in Eq. (2) possesses different symmetries
associated with the conservation of the total number of ex-
citation, Ntot = a†a + (σz + 1)/2, depending on the relative
strength of the coupling terms. For λcr = 0, it becomes the
Jaynes-Cummings (JC) Hamiltonian where Ntot is the con-
served quantity, giving rise to the U (1) symmetry. Note that
λr = 0 leads to an anti-JC Hamiltonian, which also possesses
the U (1) symmetry. For λcr, λr �= 0, the parity of the total
number of excitation P = eiπNtot is the conserved quantity,
leading to the Z2 symmetry. For both cases, the model ex-
hibits a quantum phase transition in the limit �/ω0 → ∞
[58,59,73]. For λcr = λr , the QRM undergoes a Z2 symmetry-
breaking superradiant phase transition [58]. For λcr (λr ) =
0, on the other hand, the JC (anti-JC) Hamiltonian under-
goes a U (1) symmetry-breaking phase transition where the
Goldstone mode emerges as an elementary excitation [59].
Between these two limits where the nonzero coupling strength
λcr and λr are not equal, the generalized QRM still possesses
Z2 symmetry, and therefore the nature of ground-state phase
transition including their critical exponents does not change
from that of the symmetric case (λcr = λr) [73], as one would
expect from the perspective of universality. The phase bound-
ary of the ground-state phase transition is simply determined
by λr + λcr = √

ω�.
In the presence of dissipation, Ref. [63] showed that the

steady state undergoes a DPT for the symmetric case (λr =
λcr) of Eq. (1). The DPT of the open QRM has a critical
point that is shifted by the dissipation,

√
ω0�

2

√
1 + κ2/ω2

0 ,
and the critical exponent for the diverging excitation number
of the oscillator changes from 1/2 of the closed QRM to 1
of the open QRM. On the other hand, it is straightforward
to anticipate the role of dissipation on the quantum phase
transition of the JC model, predicted for the κ = 0 case in
Ref. [59]. Namely, the open JC model with λcr = 0 and κ �= 0
does not go through a DPT, because the Hamiltonian has only
particle number conserving interactions while the dissipation
keeps removing excitations from the system until it becomes
a simple vacuum state. The fundamentally different role of
the dissipation on the steady-state diagram in these two limits
(λcr = λr and λcr = 0) suggests that the competition between
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the dissipation and the counter-rotating term may give rise to
a phase diagram that is strikingly different from the ground-
state phase diagram. Therefore, understanding the steady-state
phase diagram and their critical properties for the anisotropic
open QRM for varying λcr and λr is the goal of the present
paper. We note that in the experimental realization of the open
QRM using ion traps [63,64], it is straightforward to con-
trol the relative strength of the rotating and counter-rotating
terms by modulating the strength of the red and blue sideband
transitions, respectively (see the implementation in Sec. VII).
Moreover, the Lindblad master equation for the open QRM
with the local dissipator can be derived from the microscopic
models.

III. SEMICLASSICAL ANALYSIS

In this section, we find a mean-field solution for the steady
states by solving the semiclassical equation of motion, which
exactly captures the phase diagram of the system in the limit
�/ω0 → ∞. The nature of quantum fluctuations around the
mean-field solution will be discussed in the following sec-
tions. By neglecting the quantum fluctuations and factorizing
the expectation values of the operators, the mean-field equa-
tions of motion following Eq. (1) are given as follows:

˙〈a〉 = −i(ω0 − iκ )〈a〉 + i(λcr〈σ+〉 + λr〈σ−〉), (3)

˙〈σ+〉 = i�〈σ+〉 + i(λcr〈a〉 + λr〈a†〉)〈σz〉, (4)

˙〈σz〉 = i2(λr〈a〉 + λcr〈a†〉)〈σ+〉 + c.c., (5)

where, for example, ˙〈a〉 ≡ d
dt 〈a〉 and 〈a〉 ≡ Tr[ρa].

It is convenient to define several renormalized parame-
ters for our analysis. We define the dimensionless coupling
strength gr ≡ λr/

√
ω0� and gcr ≡ λcr/

√
ω0� and the di-

mensionless decay rate κ̄ ≡ κ/ω0. We denote the mean
value of the oscillator coherence as α ≡ x + iy ≡ 〈a〉, and
the renormalized one as ᾱ ≡ x̄ + iȳ ≡ √

ω0
�

〈a〉. Finally, for
spin expectation values, sx,y,z ≡ 〈σx,y,z〉 and s+ = (sx + isy)/2.
Then, the steady-state solution satisfies

0 = −(1 − iκ̄ )ᾱ + grs∗
+ + gcrs+, (6)

0 = s+ + (gr ᾱ
∗ + gcr ᾱ)sz, (7)

0 = (gr ᾱ + gcr ᾱ
∗)s+ − (gr ᾱ

∗ + gcr ᾱ)s∗
+. (8)

Note that Eq. (8) is trivially fulfilled when Eq. (7) is satis-
fied. Thus, from Eqs. (6) and (7), we obtain a system of four
linear equations, for the variables x̄, ȳ, sx, and sy, parametrized
by sz. That is,

Lcl · (x̄, ȳ, sx, sy)ᵀ = 0, (9)

with

Lcl=

⎛
⎜⎜⎝

1 κ̄ −g(1 + ε)/2 0
κ̄ −1 0 −g(1 − ε)/2

g(1 + ε)sz 0 1/2 0
0 −g(1 − ε)sz 0 1/2

⎞
⎟⎟⎠,

(10)

where we have used the definition

gr ≡ g, gcr ≡ εg. (11)

The parameter ε represents the asymmetry in the coupling
strength between the rotating and counter-rotating terms. Our
model returns to the Rabi model as ε = 1, and goes to the JC
model as ε = 0.

There is a trivial solution for Eq. (9),

x̄ = ȳ = sx = sy = 0, sz = ±1. (12)

In the following, we only consider the sz = −1 solution,
which we refer to as the NP solution, since sz = +1 corre-
sponds to infinitely energetic state in the limit of �/ω0 → ∞.

On the other hand, the system has nontrivial solutions only
when the determinant of Eq. (10) is zero, i.e.,

det[Lcl ] = − 1
4

[
1 + κ̄2 + 2(ε2 + 1)g2sz + (ε2 − 1)2g4s2

z

]
= 0. (13)

This leads to a nontrivial solution for the sz,

sz = − (1 + ε2) −
√

4ε2 − κ̄2(1 − ε2)2

(1 − ε2)2g2
. (14)

We note that there is another solution of Eq. (13) which we de-
note as s+

z ≡ −[(1 + ε2) +
√

4ε2 − κ̄2(1 − ε2)2]/(1 − ε2)2g2

for ε �= 1, but it is not a stable solution, as we show in Ap-
pendix B; therefore, we neglect it here. Using the condition
of spin conservation s2

z + s2
x + s2

y = 1, we find corresponding
nontrivial solutions for the renormalized oscillator coherence
ᾱ = x̄ + iȳ where

x̄ = ±
√√√√ 1 − s2

z

4g2s2
z

[
(1 + ε)2 + κ̄2(1−ε)2

[1+g2(1−ε)2sz]2

] , (15)

and

ȳ = sign(x̄)

√√√√ 1 − s2
z

4g2s2
z

[
(1 − ε)2 + κ̄2(1+ε)2

[1+g2(1+ε)2sz]2

] . (16)

Therefore, we identify the nontrivial solution as the SP where
the Z2 symmetry of the system is spontaneously broken. In
SP, the spin also acquires a spontaneous polarization, which is
given by

sx = −2g(1 + ε)x̄sz and sy = 2g(1 − ε)ȳsz. (17)

Since sz must be a real number, there exists a range of
asymmetry parameter ε,

εmin(κ̄ ) � ε � εmax(κ̄ ), (18)

with

εmax, min(κ̄ ) = ±1 + √
1 + κ̄2

κ̄
, (19)

within which the SP solution exists. Furthermore, the critical
value of the coupling strength g at the phase boundary be-
tween the NP and the SP is determined by setting sz = −1 in
Eq. (13), which reads

g±
c (ε, κ̄ ) =

√
(1 + ε2) ±

√
4ε2 − κ̄2(1 − ε2)2

(1 − ε2)2
. (20)

It is interesting to note that, for a given asymmetry ε within
εmin(κ̄ ) � ε � εmax(κ̄ ), there are two critical points g±

c (ε, κ̄ ).
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FIG. 1. Phase diagram of the anisotropic open quantum Rabi
model. (a) The stable region for the NP (shaded in green). The blue
dotted and red dashed curves depict the critical coupling strength
g±

c (ε, κ̄ ), respectively. (b) The stable region (shaded in blue) for the
SP. The red dashed curve g−

c (ε, κ̄ ) is the same one in (a). The magenta
dotted line has the slope εmin (max)(κ̄ ). (c) The phase diagram. The
overlap region between the NP in (a) and the SP in (b) is a bistable
phase shaded in yellow. Two red dots, located at the intersection of
three phases, represent the tricritical points. The dashed line gcr =
0.05(gr − 0.5) + 0.5 and dotted line gcr = grεmin in (c) are used in
later discussions. Here, we set κ̄ = 0.5.

We will demonstrate below that g−
c (ε, κ̄ ) corresponds to a

second-order dissipative phase transition from the NP to the
SP. Strikingly, g+

c (ε, κ̄ ) corresponds to a point within the
SP, beyond which the NP become stable again, leading to a
bistable phase (see Fig. 1).

It is instructive to check that our SP solution recovers the
results obtained in the symmetric open QRM [63]. That is,

sz = − 1+κ̄2

(2g)2 and ᾱ = ± g
1−iκ̄

√
1 − (1+κ̄2 )2

(2g)4 as ε → 1, where the

critical coupling strength g = g−
c = √

1 + κ̄2/2. On the other
hand, g+

c diverges at ε = 1; it indicates that the bistability is
completely absent for the symmetric open QRM and that the
physics we discuss below is a unique feature of the anisotropic
open QRM.

IV. BISTABLE PHASE AND TRICRITICAL POINT

In order to determine the phase diagram for the steady
state, we examine the stability of the NP and SP solutions,
respectively. We find that the stability condition for the NP
reads (see Appendix A for details)

ANP = 1 + κ̄2 − 2(1 + ε2)g2 + (1 − ε2)2g4 > 0. (21)

From the above condition, we obtain the stable region of NP
(shaded in green) as shown in Fig. 1(a). For the phase diagram,
we take the decay rate κ̄ = 0.5. Note that the condition for the
NP boundary, ANP = 0, is the same as Eq. (13) for sz = −1,
consequently giving rise to the same expression for the critical
coupling strength g±

c (ε, κ̄ ) given in Eq. (20) and depicted in
Fig. 1(a) by the blue dotted and red dashed curves, which
act as the boundaries for the NP. The stability of the NP
exhibits striking features. First, for ε < εmin and ε > εmax,
the NP is always stable. The line for εmin(max) is shown in
Fig. 1(b). This shows that when the coupling strength of the
counter-rotating term gcr is much smaller than that of the
rotating term, or vice versa, the U (1) character of the steady
state persists; namely, the oscillator damping dominates over
the particle-number nonpreserving interactions and the steady
state remains a vacuum. Second, for εmin < ε < εmax, the NP
becomes unstable for g > g−

c (ε, κ̄ ); strikingly, however, as
one keeps increasing g there is another critical point g+

c (ε, κ̄ )
beyond which the NP becomes stable again. The recurrence of
the NP leads to a highly nonmonotonic phase boundary in the
gc − gcr phase diagram. The SP is stable when g > g−

c (ε, κ̄ )
for εmin < ε < εmax. The stable region (blue shade) for the
SP is depicted in Fig. 1(b). g−

c (ε, κ̄ ) is displayed by a red
dashed curve in the panel. The dotted line gcr = grεmin (max),
with the slope εmin (max), defines the phase boundary for the SP.
In addition, it is also worth noting that the trivial solution with
sz = +1 in Eq. (12) is found to be stable for any values of g,
ε, and κ̄ by examining the coefficient A in Appendix A, while
it is not shown in the phase diagram.

The resulting rich phase diagram of the anisotropic open
QRM is shown in Fig. 1(c). There are two notable features.
First, a bistable phase emerges where the NP and SP phases
coexist (shaded in yellow). In the symmetric case (gcr = gr),
the system exhibits a transition from the NP to the SP when the
coupling strength reaches the critical value (g−

c = √
1 + κ̄2/2)

and the NP remains unstable for any value of g > g−
c [63].

However, by introducing an asymmetry in the coupling terms,
the NP becomes stable again as one increases the coupling
strengths even further beyond the critical value g+

c (ε, κ̄ ), i.e.,
as g > g+

c (ε, κ̄ ), coexisting with the SP. Second, there is a
tricritical point (red dot) located at the intersection of the
three phases, where the phase boundary curve g−

c (ε, κ̄ ) (a
boundary of a second-order phase transition) meets the phase
boundary line gcr = grεmin (max) (a boundary of a first-order
phase transition).

In order to demonstrate the first-order and second-order
DPT of the system, we plot in Fig. 2 the renormalized order
parameter ᾱ as g (namely, gr) traverses the normal and super-
radiant phases along the blue dashed line in Fig. 1(c). When g
goes from the NP to the SP, the absolute value of ᾱ presents a
second-order phase transition at the critical coupling strength
g−

c ≈ 0.61. For convenience, we denote the value of g at
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FIG. 2. First- and second-order DPT and hysteresis due to bista-
bility. The absolute value of the order parameter ᾱ as a function of g
(namely, gr) is depicted as one moves along the blue dashed line in
Fig. 1(c).

the phase boundary line gcr = grεmin (max) as gεmin (max) . When
crossing the phase boundary line at g = gεmin ≈ 2.55, the order
parameter ᾱ turns to zero abruptly, leading to a discontinuity
of the order parameter and the first-order phase transition on
the boundary line. We also note that there are two values of
|ᾱ| in the range of the bistable phase from the critical coupling
strength g+

c ≈ 1.51 to the phase boundary line at gεmin ≈ 2.55.
Interestingly, due to the presence of the bistable phase, a hys-
teresis effect could be observed at the boundary between the
normal and superradiant phases when g crosses the bistable
phase forward and backward [48]. A similar hysteresis be-
tween the NP and SP has been experimentally observed using
a driven BEC in a cavity system [43].

In Figs. 1 and 2 we have chosen κ̄ = 0.5. As one decreases
κ̄ , the tricritical points approach the gcr and gr axes; therefore,
the area of the NP shrinks. At the same time, the first-order
phase transition boundary, given by εmin (max)(κ̄ ), comes closer
to the gc and gcr axis, leading to the widening of the SP. As
one increases κ̄ , the trend is reversed.

Here, let us compare the phase diagram of the anisotropic
open QRM in Fig. 1 with that of the anisotropic open Dicke
model [42,44,74]. The mean-field equations of motion of
the latter (e.g., Eq. (9) in Ref. [74]) can be rescaled to re-
move the dependence on the number of spins, which then
become exactly the same equations as Eqs. (3)–(5). Interest-
ingly, however, the two models exhibit qualitatively different
phase diagrams. In the anisotropic open Dicke model, there
emerge nonstationary steady states featuring limit-cycles and
chaos for ε > 1 (gcr > gr ), a feature that is absent in Fig. 1.
The difference, in fact, comes from the number of dynamical
variables. In the open QRM, on the one hand, we consider
the limit of �/ω0 → ∞, where the spin instantly follows the
cavity dynamics and can be adiabatically eliminated. There-
fore, the cavity field becomes the only dynamical variable
and the steady state is determined by a nonlinear equation of
motion of a single oscillator, which cannot exhibit any chaotic
behavior. See Appendix C for more details. In the open Dicke
model, on the other hand, the thermodynamic limit is achieved
by the infinite number of spins and the relative ratio of fre-
quencies remain finite. In this case, both the spin and the

cavity are dynamical variables, whose coupled equations of
motion feature nonstationary steady states [74]. It is interest-
ing to note the different roles played by anisotropy for the
quantum phase transition and DPT. In closed systems, the
quantum phase transition of the QRM and the Dicke model
belong to the same universality class for any values of ε

[58,73]. In open systems, however, the DPT of the open QRM
and the open Dicke model belongs to the same universality
class only when the counter-rotating term is smaller than the
rotating terms (gcr < gr ); for (gcr > gr ), they exhibit com-
pletely different phases.

V. QUANTUM FLUCTUATIONS

Having established the mean-field phase diagram of the
anisotropic open QRM, in this section we will provide a full
quantum solution for the NP and the SP. First, we derive an
effective master equation in the �/ω0 → ∞ limit, character-
ized by a quadratic form involving the oscillator operator a.
Utilizing this quadratic effective master equation, we study the
critical scaling of quantum fluctuation and asymptotic decay
rate near the phase boundaries and the tricritical point. In addi-
tion, we complement the quantum fluctuations analysis in the
thermodynamic limit presented in this section with numerical
simulation of the master equation (1) for finite frequency ratio
η ≡ �/ω0 and present the results in Appendix D.

A. Normal phase

By performing the Schrieffer-Wolff (SW) transformation
to the Hamiltonian (2) and projecting it to the spin-down
subspace [58,63], we obtain an effective Hamiltonian for the
NP, which reads

Hnp = ω0a†a − ω0
[
g2

ra†a + g2
craa† + grgcr (a†2 + a2)

]
.

(22)

Note that the higher-order terms whose coefficients become
zero in the �/ω0 → ∞ limit are neglected [58,63]. Corre-
spondingly, the effective master equation becomes

ρ̇np = −i[Hnp, ρnp] + κD[a]ρnp, (23)

where the density matrix ρnp = 〈↓|e−SρeS|↓〉 and the gen-
erator for the SW transformation is given by S = λr

�
(aσ+ −

a†σ−) − λcr
�

(aσ− − a†σ+). Then, the equation of motion for
the first moment of the oscillator operators, a = (〈a〉, 〈a†〉)ᵀ,
reads

ȧ = Lnpa, (24)

where

Lnp =
(

iω0
(
g2

r + g2
cr − 1

) − κ i2ω0grgcr

−i2ω0grgcr iω0
(
1 − g2

r − g2
cr

) − κ

)
.

(25)

The eigenvalue lnp of Lnp/ω0 reads

l±
np = −κ̄ ±

√
2g2(1 + ε2) − g4(1 − ε2)2 − 1. (26)
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FIG. 3. ADR for the NP and the SP. (a) The eigenvalues of
dynamical matrices l+

np (sp) as a function of g are presented as one
moves along the blue dashed line in Fig. 1(c). The real (imaginary)
part of l+

np and l+
sp is given by the green solid (red dotted) curve and

blue dashed (orange dash-dotted) curve, respectively. (b) The real
and imaginary parts of l+

np as one moves along the red dotted line in
Fig. 1(c), which is the phase boundary line gcr = grεmin. The scaling
of ADR near the critical coupling strengths g±

c and gεmin is presented
in each panel. Here, κ̄ = 0.5.

The NP is stable as long as the real parts of the eigenvalues are
negative. This condition agrees with the stable region of NP
shown in Fig. 1(a). Since Re[l−

np] is always negative, we only
need to examine l+

np. In Fig. 3(a), we plot the real part (green
solid curve) and the imaginary part (red dotted curve) of l+

np
for the case g going along the blue dashed line in Fig. 1(c).
For small g far away from the critical point [g � g−

c (ε, κ̄ )],
the square root term is purely imaginary. In this case, the
dynamics of the system is underdamped and the decay rate is
κ̄ . As g approaches the critical point, the dynamics becomes
overdamped with a zero imaginary part. The effective decay
rate in this overdamped region is called as an asymptotic
decay rate (ADR), which tends to zero as g approaches its
critical values. This behavior coincides with the closing of the
Liouvillian gap near the critical point [12,31,63].

For g > g−
c , Re[l+

np] becomes positive, so that the NP be-
comes unstable. We note, however, that the inner square root
part of l+

np has an inverted parabolic shape with respect to g2

when ε �= 1.Therefore, upon further increasing g with ε �= 1,
the real part of l+

np becomes negative again for g > g+
c (ε, κ̄ )

[see the light solid curve in Fig. 3(a)]. The recurrence of the
NP therefore occurs due to the competition between the bare
oscillator decay rate κ̄ and the asymmetry ε, which results
in a nonmonotonic behavior of the ADR in the overdamped
dynamics.

We also examine fluctuations of the oscillator excita-
tion in the NP. The dynamics of the second moments s =
(〈a†a〉, 〈a2〉, 〈a†2〉)ᵀ of the oscillator is governed by

ṡ = Mnps + Ynp, (27)

where

Mnp = ω0

⎛
⎜⎝

−2κ̄ −i2grgcr i2grgcr

i4grgcr i2
(
g2

r + g2
cr − 1

) − 2κ̄ 0

−i4grgcr 0 i2
(
1 − g2

r − g2
cr

) − 2κ̄

⎞
⎟⎠ (28)

and Ynp = ω0(0, i2grgcr,−i2grgcr )ᵀ. The solution for the
steady state is given by

ss = −M−1
np Ynp. (29)

Explicitly, the excitation number of the oscillator for the
steady state reads

〈a†a〉s = 2g4ε2

g4(1 − ε2)2 − 2g2(1 + ε2) + κ̄2 + 1
. (30)

The number of excitations diverges at the boundary of the
NP, and the divergence exhibits a power law, whose critical
exponents are examined in the next section.

B. Superradiant phase

Let us now examine the quantum dynamics and fluctua-
tions in the SP. Following the method in Ref. [63], we derive
an effective master equation in the SP by applying a displace-
ment unitary transformation D[α] = exp[αa† − α∗a] to the

master equation (1), followed by the SW transformation. See
details in Appendix E. The effective master equation for the
SP becomes

ρ̇sp = −i[Hq, ρsp] + κD[a]ρsp, (31)

where the quadratic effective Hamiltonian Hq reads

Hq = Pa†a + Qaa + Q∗a†a†. (32)

The expressions for the coefficients P and Q are quite involved
and they are given in Eqs. (E17) and (E18) in Appendix E.

The dynamics of the mean value of the oscillator operator
is determined by ȧ = Lspa with

Lsp =
(

−iP − κ −i2Q∗

i2Q iP − κ

)
. (33)

The eigenvalues lsp of Lsp/ω0 are given by

l±
sp = −κ̄ ± 1

ω0

√
4|Q|2 − P2. (34)
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FIG. 4. Critical scaling of the oscillator population. The oscilla-
tor population for the NP (green solid) and the SP (blue dashed) as a
function of g is plotted as one moves (a) along the blue dashed line
and (b) along the red dotted line in Fig. 1(c). The latter represents
the critical behavior across the tricritical point. The scaling exponent
near the critical coupling strength is presented in each panel. Here,
κ̄ = 0.5.

The stability condition of the SP, Re[l±
sp] < 0, agrees well with

the stable area for the SP as shown in Fig. 1(b). The real part
(blue dashed curve) and imaginary part (orange dash-dotted
curve) of l+

sp are shown in Fig. 3(a), where g goes along the
blue dashed line in Fig. 1(c). Similar to the NP, the real part
of l+

sp approaches zero at phase boundaries of the SP, leading
to a vanishing ADR. In Fig. 3(a), we observe a range of g,
1.51 � g � 2.55, where the real part of both l+

sp and l+
np are

negative, which indicates the emergence of the bistable phase.
By solving the equation of motion of the second moments,

we find that the excitation number of the oscillator in the SP
is given by

〈a†a〉s = 2|Q|2
P2 − 4|Q|2 + κ2

. (35)

As shown in Fig. 4(a), the excitation number diverges in the
SP at the phase boundaries.

VI. UNIVERSALITY OF THE TRICRITICAL POINT

Using the quantum solutions derived in the previous sec-
tion, we now examine the universality for the DPTs in the
anisotropic open QRM. The closing of the Liouvillian gap,
thus the vanishing ADR, and the diverging oscillator excita-
tion number are the characteristic features of a second-order
DPT driven by a Markovian bath [63,75]. These features can
be clearly seen in Figs. 3(a) and 4(a).

First, let us focus on the critical curve g−
c (εmin < ε <

εmax, κ̄ ) at which a second-order phase transition occurs. On

both sides of the critical curve, the ADR vanishes as

κADR = Re[l+
np (sp)] ∝ |g − g−

c (ε, κ̄ )|νADR , (36)

with νADR = 1, and the oscillator excitation number diverges
as

〈a†a〉s ∝ |g − g−
c (ε, κ̄ )|−νx , (37)

with the exponent νx = 1. Therefore, the second-order DPT
along the critical curve g−

c belongs to the same universality
class as the symmetric open QRM [63] and open Dicke model
[75].

Second, we have two additional critical curves g+
c (ε, κ̄ )

where a first-order phase transition occurs due to the bista-
bility. In equilibrium, correlation functions and fluctuations
typically do not diverge at the first-order phase transition [76].
In stark contrast, in our nonequilibrium model, the number
of oscillator excitations (a fluctuation of the order parameter)
diverges with a power law at the first-order phase transition.
The exponents at the first-order phase boundary of the NP,
g+

c (ε, κ ), are the same as those of the second-order phase
transition, namely, νADR = νx = 1. At the first-order boundary
of the SP, on the other hand, we find a new set of exponents
νADR = νx = 1/2 [see Figs. 3(a) and 4(a)]. Our finding shows
that the nonequilibrium first-order DPTs driven by a Marko-
vian bath could show drastically different critical properties
from its equilibrium counterpart [76]. We note that the de-
nominator of the excitation number in Eq. (30) has the same
roots [i.e., g±

c (ε, κ̄ )] as the eigenvalue of l+
np in Eq. (26). The

same holds for the SP case, as seen in Eqs. (35) and (34).
Therefore, the ADR vanishes at the critical coupling strengths
g±

c and gεmin with the same critical exponent that governs the
divergence of excitation number [see Figs. 3(a) and 4(a)].

The critical exponents of the tricritical point are typically
different from those of second-order phase transition [76];
therefore, it is interesting to examine the criticality of the
tricritical point g−

c (εmin (max), κ̄ ). We find that the critical ex-
ponents depend on the angle at which one crosses the critical
point. The critical behaviors along the line gcr = grεmin are
presented in Figs. 3(b) and 4(b), which show that the critical
exponents are given as νADR = νx = 2. We note that gcr =
grεmin is actually the tangent line of the NP boundary at the
tricritical point. Along this line, both sides of the tricritical
point are the NP and there is no phase transition. In fact, if
one moves along any line that is tangent to the phase boundary
of the NP, we find the identical critical behaviors shown in
Figs. 3(b) and 4(b). To understand this set of higher critical
exponents, one can see the real part of l+

np shown in Fig. 3(b).
Near the critical value gc ≈ 1.1, the top of the parabolic-like
curve (Re[l+

np]) touches 0, therefore presenting the critical
exponent νADR = 2. But if Re[l+

np] becomes greater than zero,
indicating that g goes across the critical point gc and the
system goes though a phase transition, the critical exponent
will turn to νADR = 1 as in the case shown in Fig. 3(a). This
showcases the peculiarity of the tangent line along the convex
boundary of the NP, which leads to a set of higher scaling
exponents νADR = νx = 2. Furthermore, we verify that this
property is also applicable for the generalized open Dicke
model [42]. Our analysis demonstrates that the nonmono-
tonic phase boundary due to the competition between the
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dissipation and the coherent interaction gives rise to various
ways of crossing the critical points with different critical ex-
ponents. It would be interesting to investigate whether these
critical scalings could be used to improve the critical sensing
schemes based on the open QRM [71,72].

VII. IMPLEMENTATION

Reference [63] proposed to use a trapped-ion setup involv-
ing two ions to implement the open QRM. Here, we briefly
review the proposal and discuss how the same setup could be
used to realize the anisotropic open QRM.

Consider a mixed species ion pair, 9Be+ − 24Mg+ [77,78],
in a linear Paul trap. The common center-of-mass mode can
be used as the oscillator realizing the open QRM, while
all other vibration modes are significantly detuned. The hy-
perfine states of the 9Be+ ion, specifically, |F = 2, mF = 0〉
and |F = 1, mF = 1〉, form a qubit that can be coupled
to the motional mode through coherent stimulated Raman
transitions [79]. By applying two lasers to the 9Be+ ion,
with detunings δ1 and δ2, we drive the red- and blue-
sideband transitions. The intensity of the two lasers can be
controlled independently to realize different Rabi frequen-
cies �d

1 and �d
2 . In the interaction picture with respect

to the bare qubit and oscillator dynamics, followed by a
rotating wave approximation, the interaction Hamiltonian be-
tween the oscillator and the qubit in the Lamb-Dicke limit
can be expressed as HI = −ηLD�d

1/2(σ+a†eiδ1t + H.c.) −
ηLD�d

2/2(σ+aeiδ2t + H.c.), where ηLD represents the Lamb-
Dicke parameter. Moving to the rotating frame of Hrot =
σz(δ1 + δ2)/4 + a†a(δ1 − δ2)/2, the interaction Hamiltonian
HI turns into the form of our Rabi Hamiltonian (2). In this
frame, the parameters of the Rabi Hamiltonian are given
by ω0 = (δ1 − δ2)/2, � = (δ1 + δ2)/2, λcr = ηLD�d

1/2, and
λr = ηLD�d

2/2 [80,81]. Therefore, simply by controlling the
relative intensities of the Raman lasers driving blue- and red-
sideband transitions, one could realize the anisotropic Rabi
model. The dissipation to the oscillator can be achieved by
using the sympathetic cooling [77,78] of the center-of-mass
mode with the second ion, 24Mg+. Previous experimental
studies have successfully demonstrated the sympathetic cool-
ing for the in-phase mode using 24Mg+ ions [77,78].
Moreover, it has been experimentally demonstrated that co-
herent bosonic states with a large number of excitations can be
generated for the motional modes in ion traps using sideband
transitions and dissipation [68,82,83].

VIII. CONCLUSION

In conclusion, we have investigated a rich steady-state
phase diagram of the anisotropic open QRM. It features a
number of interesting critical phenomena resulting from the
competition between the anisotropic interaction and the dis-
sipation. First, there are two critical ratios, εmin and εmax,

between the interaction strengths of the counter-rotating term
and the rotating term, beyond and below which no DPT oc-
curs. In such cases, the Markovian bath brings the system to a
trivial steady state, regardless of the strength of the coherent
interaction. Second, in between these critical ratios, a second-
order DPT occurs where the NP becomes unstable and the SP
with a broken symmetry emerges. Strikingly, upon increasing
further the coherent interaction strength beyond the second-
order DPT, the NP becomes stable again, leading a bistable
phase of the NP and the SP. The boundaries of the bistable
phase are characterized by a first-order DPT. Moreover, a
tricritical point appears where the critical lines for the second-
order and the first-order DPTs meet. Third, the tricritical point
features a different set of critical exponents. It is an interesting
question to see whether the different scaling behavior of the
tricritical point could be harnessed for the critical quantum
sensing protocol based on the open QRM [71,72]. Our work
demonstrates that interesting nonequilibrium critical phenom-
ena such as multicriticality and bistability can be explored in
a finite-component system with a controlled coherent interac-
tion and damping, realized by two trapped ions.
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APPENDIX A: STABILITY ANALYSIS

Here, we provide a stability analysis for the mean-field
solutions. To this end, we consider small deviations from
the mean-field solutions given in Eqs. (3)–(5): 〈a〉 �→ α + δα,
〈σ+〉 �→ s+ + δs+, and 〈σz〉 �→ sz + δsz. Considering only the
first-order terms for the fluctuation, we obtain that

d

dt
δα = −i(ω0 − iκ )δα + i(λrδs− + λcrδs+), (A1)

d

dt
δs+ = i�δs+ + i(λrδα

∗ + λcrδα)sz + i(λrα
∗ + λcrα)δsz,

(A2)
d

dt
δsz = −4Im[(λrα + λcrα

∗)δs+ + (λrδα + λcrδα
∗)s+].

(A3)

By introducing δα ≡ δx + iδy and δs+ ≡ (δsx + iδsy)/2, and
using the condition for the spin conservation s2

x + s2
y + s2

z = 1,
the dynamical equation becomes

d

dt

⎛
⎜⎜⎝

δx
δy
δsx

δsy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−κ ω0 0 λ(1 − ε)/2
−ω0 −κ λ(1 + ε)/2 0

0 2λ(1 − ε)sz −2λ(1 − ε)y sx
sz

−(
2λ(1 − ε)y sy

sz
+ �

)
2λ(1 + ε)sz 0 −(

2λ(1 + ε)x sx
sz

− �
) −2λ(1 + ε)x sy

sz

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

δx
δy
δsx

δsy

⎞
⎟⎟⎠. (A4)
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The eigenvalues μ of the above matrix determine the sta-
bility of the mean-value solutions. Considering the limit of
�/ω0 → ∞, we find the characteristic equation up to the
leading-order term of �/ω0, which reads Aω0

2 + 2κ̄Bω0μ +
Bμ2 = 0, where

A = 1 + κ̄2 + 4g2(1 + κ̄2)[(−1 + ε)2ȳ2 + (1 + ε)2x̄2]

+ 2g2(1 + ε2)sz + g4(−1 + ε2)2
[
s2

z + 4sz(x̄2 + ȳ2)
]
,

(A5)

B = 1 + 4g2[(−1 + ε)2ȳ2 + (1 + ε)2x̄2]. (A6)

Note that we have used the expressions of sx and sy

given in Eq. (17) and the renormalized parameters to
rewrite the coefficients given above. Finally, we obtain the
eigenvalue

μ/ω0 = −κ̄ ±
√

κ̄2 − A/B. (A7)

The stability condition Re(μ) < 0 reduces to A > 0, because
B is always positive.

APPENDIX B: STABILITY OF THE NONTRIVIAL
SOLUTION WITH s+

z

Here, we check the stability of the nontrivial so-
lution sz = s+

z ≡ −[(1 + ε2) +
√

4ε2 − κ̄2(1 − ε2)2]/(1 −
ε2)2g2 for Eq. (13). By substituting s+

z , x [Eq. (15)], and y
[Eq. (16)] into the coefficient A given in Eq. (A5), we find that
the stability condition A > 0 is equivalent to

g <

√
(1 + ε2) +

√
4ε2 − κ̄2(1 − ε2)2

(1 − ε2)2
. (B1)

We notice that the right-hand side of the inequality is the same
as the value of g+

c (ε, κ̄ ) given in Eq. (20). The critical coupling
strength g+

c (ε, κ̄ ) is shown by the blue dotted curves in Fig. 5.
The solution for the sz is meaningful only when −1 < s+

z < 1.
We plot the region −1 < s+

z < 1 in gray in Fig. 5. In this re-
gion, the condition (B1) is not satisfied, therefore, the physical
solution of the s+

z is unstable.

APPENDIX C: ADIABATIC ELIMINATION AND
NUMERICAL SIMULATIONS FOR THE SEMICLASSICAL

EQUATIONS OF MOTION

We rewrite the mean-field equations of motion Eqs. (3)–(5)
using a rescaled time t̄ ≡ ω0t as

dᾱ

dt̄
= −i(1 − iκ̄ )ᾱ + i(grs− + gcrs+), (C1)

1

η

ds+
dt̄

= is+ + i(gr ᾱ
∗ + gcr ᾱ)sz, (C2)

1

η

dsz

dt̄
= i(gr ᾱ + gcr ᾱ

∗)s+ − i(gr ᾱ
∗ + gcr ᾱ)s−, (C3)

where η is the frequency ratio �/ω0 [84]. In the thermody-
namic limit η → ∞, the left-hand side of Eqs. (C2) and (C3)
vanish, giving rise to

s+ = −(gcr ᾱ + gr ᾱ
∗)sz, (C4)

FIG. 5. Physical region for the nontrivial solution with s+
z . The

blue dotted curves represent the critical coupling strength g+
c (ε, κ̄ ).

The gray area shows the physical allowed region with −1 < s+
z < 1.

Here, we set κ̄ = 0.5.

sz = ± 1√
1 + 4|gcr ᾱ + gr ᾱ∗|2 . (C5)

Namely, the spin dynamics instantaneously follows the
changes of the cavity dynamics in this limit. By putting
Eqs. (C4) and (C5) back to Eq. (C1), we obtain a nonlinear
equation of motion for the cavity field,

dᾱ

dt̄
= −i(1 − iκ̄ )ᾱ ∓ i

(
g2

r + g2
cr

)
ᾱ + 2grgcr ᾱ

∗√
1 + 4|gcr ᾱ + gr ᾱ∗|2 . (C6)

The stability analysis of Eq. (C6) exactly reproduces the phase
diagram depicted in Fig. 1(c).

Furthermore, we numerically solve the mean-field equa-
tion of motion, Eq. (C6), for various initial conditions to
corroborate the absence of the nonstationary steady-state so-
lutions that are reported for the open Dicke model in Ref. [74].
In Fig. 6, we illustrate the trajectory of the spin on the Bloch
sphere for various initial state with sz < 0. In the NP, the
spin evolves into the normal steady state with sz = −1 [see
Fig. 6(a)]. In the SP, on the other hand, the system evolves into
the superradiant steady state with −1 < sz < 0 [see Fig. 6(b)].
In the bistable phase, the system evolves either to the normal
or superradiant steady state, depending on the initial states
[see Figs. 6(c) and 6(d), respectively]. Our numerical results
suggest that there are basins of attraction in the Bloch sphere
for both NP and SP solutions in the bistability phase, whose
detailed characterization is left for future study. Note that
for the initial states with sz > 0, the system always evolves
into the state with sz = +1 (not shown). The initial condition
sz = 0 corresponds to ᾱ → ∞, which is not a physically
meaningful initial state.

APPENDIX D: NUMERICAL SIMULATIONS FOR FINITE
FREQUENCY RATIO

In the main text, we have provided an exact solution for
the master equation (1) in the thermodynamic limit η → ∞
using the mean-field analysis and the Schrieffer-Wolff trans-
formation [58,63]. Away from the thermodynamic limit, there
must be a unique steady-state solution. In this section, we
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FIG. 6. Trajectories of the spin on the Bloch sphere. Here,
we set κ̄ = 0.5. (a) Normal phase. For gr = 0.3, gcr = 2, and the
initial state with ᾱ = 0.3 + 0.3i that corresponds to {sx, sy, sz} ≈
{0.69, 0.51, −0.50}, the spin evolves to the normal steady state.
(b) Superradiant phase. For the case with gr = 1, gcr = 1.5, and the
initial state with ᾱ = 0.05 − 0.05i that corresponds to {sx, sy, sz} ≈
{0.24, −0.05, −0.97}, the spin evolves to the superradiant steady
state. (c and d) Bistable phase. We set gr = 1, gcr = 2.1. The ini-
tial state with ᾱ = 0.05 − 0.05i that corresponds to {sx, sy, sz} ≈
{0.29, −0.10, −0.95} evolves to the normal steady state, while the
initial state with ᾱ = 0.1 − 0.05i that corresponds to {sx, sy, sz} ≈
{0.52, −0.09, −0.85} evolves to the superradiant steady state.

show how the phase diagram featuring the bistable phase in
the thermodynamic limit would manifest itself in this unique
steady state using the numerical simulation of the quantum
master equation (1) for finite η using QUTIP [85,86]. In Figs. 7
and 8, we show the Wigner function of the cavity field by
projecting the steady state to the spin-down subspace. In the
NP, the cavity field is a squeezed state centered at the origin
[see Fig. 7(a)]. In the SP, the finite-η induces tunneling be-
tween two superradiant solutions with opposite amplitudes,
resulting in a superposition of two displaced squeezed states
[see Fig. 7(b)], referred to as a squeezed cat state. In the
bistable phase, the tunneling between the normal and super-
radiant states for finite-η leads to a trimodal steady state [see
Figs. 7(c) and 7(d)], which has also been observed in different
open quantum systems showing bistability [15,16,18,48].

We note that the phase boundary of the NP and SP and
the resulting bistability phase is expected to be modified by
the finite-frequency effects. Moreover, the trivial and stable
solution with sz = +1 can no longer be ignored when the spin
frequency is finite [84]. The fact that the sz = +1 solution is
stable for any g and ε, however, is an artifact of introducing
only the cavity damping to the master equation in Eq. (1),
while neglecting spin damping. Therefore, when the finite
spin frequency is considered, the spin damping should also be
considered, which would further change the phase boundary.

FIG. 7. Wigner functions of the cavity field of the steady state
for various gr and gcr . (a) Normal phase; gr = 0.43 and gcr = 0.7.
(b) Superradiant phase; gr = 0.5 and gcr = 0.8. (c and d) Bistable
phase; gr = 1.7, gcr = 0.55 for (c) and gr = 0.55, gcr = 1.7 for (d).
Here, we set η = 200, the dimension of Fock space is 300, and
κ̄ = 0.5.

To demonstrate that the spin damping would modify the phase
boundaries away from the thermodynamic limit, we compare
a steady state in the absence and presence of spin damping in
Fig. 8. We choose gr = 0.35 and gcr = 1.7, where the steady
state is a Gaussian state centered at the origin (NP) in the
absence of damping [see Fig. 8(a)]. When spin damping is
added, however, the steady state features a trimodal distribu-
tion which suggests the bistable phase [see Fig. 8(b)]. A more
in-depth investigation into the role of spin damping on the
phase diagram of the anisotropic open QRM is an interesting
topic for future studies.

APPENDIX E: EFFECTIVE HAMILTONIAN FOR THE
SUPERRADIANT PHASE

In this section, we derive an effective Hamiltonian for the
SP. First, we apply a displacement unitary transformation to
the original master equation (1), with the displacement op-
erator D[αs] = exp[αsa† − α∗

s a]. Setting that αs equals the
mean-field amplitude of the oscillator in the superradiant

FIG. 8. The role of spin damping on the phase boundaries.
Wigner function of the photon part of the steady state for gr = 0.35
and gcr = 1.7, corresponding to the NP shown in Fig. 1(c). (a) In
the absence of spin damping, the steady state is a Gaussian state
centered at the origin. (b) In the presence of spin damping whose
strength is �/� = 0.15, the trimodal distribution appears, indicating
the bistability induced by the spin damping. Here, we set η = 200,
the dimension of Fock space is 300, and κ̄ = 0.5.
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state, namely, αs = α ≡ 〈a〉, the master equation becomes

˙̃ρ = −i[H̃ (α), ρ̃] + κ (2aρ̃a† − a†aρ̃ − ρ̃a†a), (E1)

where ρ̃ ≡ D†[αs]ρD[αs] and the effective unitary Hamilto-
nian H̃ (α) is given by

H̃ (α) = D†[α]HD[α] + iκ (α∗a − αa†)

= Hs − V + Hf , (E2)

with the terms

Hs = �

2
σz − σ+(λrα + λcrα

∗) − σ−(λrα
∗ + λcrα), (E3)

V = λr (aσ+ + a†σ−) + λcr (aσ− + a†σ+), (E4)

Hf = ω0[a†a + a†α(1 − iκ̄ ) + aα∗(1 + iκ̄ ) + |α|2]. (E5)

We note that the spin part of the Hs term can be diagonal-
ized in terms of U †HsU = �

2

√
ξσz by the unitary operator

U = 1√
2
√

ξ + √
ξ

(
1 + √

ξ 2(gr ᾱ + gcr ᾱ
∗)

−2(gr ᾱ
∗ + gcr ᾱ) 1 + √

ξ

)
,

(E6)
where we have used the abbreviation ξ ≡ 1 + 4|gr ᾱ

∗ +
gcr ᾱ|2 = 1/s2

z . Correspondingly, the V term becomes

U †VU = (aσ+u∗ + a†σ−u) + (aσ−v + a†σ+v∗)

− (aw + a†w∗)σz, (E7)

where we have defined u ≡ √
�ω0ū, v ≡ √

�ω0v̄, and w ≡√
�ω0w̄, and ū, v̄, and w̄ are given as follows:

ū = 1

2

[
gr

(
1 + 1√

ξ

)
− gcr

(gr ᾱ
∗ + gcr ᾱ)2

ξ + √
ξ

]
, (E8)

v̄ = 1

2

[
gcr

(
1 + 1√

ξ

)
− gr

(gr ᾱ
∗ + gcr ᾱ)2

ξ + √
ξ

]
, (E9)

w̄ = 1√
ξ

[gr (gr ᾱ
∗ + gcr ᾱ) + gcr (gr ᾱ + gcr ᾱ

∗)]. (E10)

Now, the effective unitary Hamiltonian H̃ (α) can be separated
into diagonal and off-diagonal parts in the new spin basis

H̃ (α) = Hd − Hod , (E11)

with

Hd = ω0a†a + �

2

√
ξσz + ω0|α|2 + Hl , (E12)

Hod = (aσ+u∗ + a†σ−u) + (aσ−v + a†σ+v∗). (E13)

In the diagonal part, there is a term Hl which is linear
in a (a†): Hl = a†[ω0α(1 − iκ̄ ) + w∗σz] + a[ω0α

∗(1 + iκ̄ ) +
wσz]. We neglect this term in the following SW transfor-
mation, because it simply vanishes upon projection to the
spin-down subspace.

Then, we perform the SW transformation to the Hamilto-
nian (E11) with the generator

S′ � 1

�
√

ξ
(u∗aσ+ − ua†σ−) + 1

�
√

ξ
(v∗a†σ+ − vaσ−),

(E14)
where the approximation 1/(�

√
ξ ± ω0) � 1/�

√
ξ is taken.

By projecting it to the spin-down subspace, we finally obtain
a diagonalized effective Hamiltonian for the SP,

H̃sp = Hq + Esp, (E15)

where Esp = ω0|α|2 − �
2|sz | − ω0|sz||v̄|2 is the ground energy,

and Hq has a quadratic from:

Hq = Pa†a + Qaa + Q∗a†a†, (E16)

with the coefficients P and Q given as

P = ω0[1 − |sz|(|ū|2 + |v̄|2)], (E17)

Q = − ω0|sz|ū∗v̄. (E18)

In addition, the expressions for ū and v̄ given in Eqs. (E8)
and (E9) can be further simplified by substituting the explicit
expressions of x̄ and ȳ in Eqs. (15) and (16):

ū = g

2

[
1 + |sz| − 1

2
(1 − |sz|)

√
4ε2 − κ̄2(1 − ε2)2

]

+ i
g

4
(1 − |sz|)|1 − ε2|κ̄, (E19)

v̄ = g

2

[
ε(1 + |sz|) − 1

2ε
(1 − |sz|)

√
4ε2 − κ̄2(1 − ε2)2

]

+ i
g

4ε
(1 − |sz|)|1 − ε2|κ̄ . (E20)
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