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The Mach-Zehnder interferometer is a powerful device for detecting small phase shifts between two light
beams. Simple input states, such as coherent states or single photons, can reach the standard quantum limit of
phase estimation, while more complex states can be used to reach Heisenberg scaling; the latter, however, require
challenging preparation and measurement strategies. The quest for highly sensitive phase estimation therefore
calls for interferometers with nonlinear devices which would make the preparation of these complex states more
efficient. Here, we show that the Heisenberg scaling can be recovered with simple input states (including Fock
and coherent states) when the linear mirrors in the interferometer are replaced with controlled-swap gates and
measurements on auxiliary qubits. These swap tests project the input Fock and coherent states onto NOON and
entangled coherent states, respectively, and allow optimal or near-optimal measurements, leading to improved
sensitivity to small phase shifts in one of the interferometer arms. We analyze auxiliary qubit errors in detail,
showing that biasing the qubit towards phase flips offers a great advantage, and perform thorough numerical
simulations of a possible implementation in circuit quantum electrodynamics with an auxiliary Kerr-cat qubit.
Our results thus present a viable approach to phase estimation approaching Heisenberg-limited sensitivity and
demonstrate potential advantages of using biased-noise qubits in quantum metrology.
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I. INTRODUCTION

Interferometry encompasses a broad range of devices and
techniques that use the wave nature of quantum systems to
estimate small phase shifts [1,2]. While various interferometer
topologies and architectures exist, their operational principle
remains the same: a probe beam is subject to a phase shift
which is estimated by analyzing interference with a reference
beam. Among the different interferometer designs, the Mach-
Zehnder interferometer [see Fig. 1(a)] is often used not only
for highly accurate estimation of unknown phases [3,4], but
has also found use in quantum computing applications [5–8].
Due to the linearity of the Mach-Zehnder interferometer, sen-
sitivity of phase estimation is limited by the standard quantum
limit for simple input states (such as single photons and co-
herent states), which scales as 1/

√
n, where n is the number of

photons used [9]. Improvements beyond the standard quantum
limit (going all the way to Heisenberg scaling 1/n [10,11])
are possible with more complex states, such as NOON states,
which are entangled states of the n-photon Fock state with the
vacuum (|n〉|0〉 ± |0〉|n〉)/

√
2 [12,13], and entangled coherent

states (|α1〉|α2〉 ± |α2〉|α1〉)/
√

N±, where α1,2 are two coher-
ent amplitudes and N± is a normalization constant [14–16].
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Preparation and measurement of these complex quantum
states is, however, far from trivial. While two-photon NOON
states can be prepared using Hong-Ou-Mandel interference,
in which putting one photon in each of the two input modes
results in photon bunching and both photons leaving through
the same output mode, creation of NOON states with higher
photon numbers requires complex operations with efficient
photodetection and feedforward [17] or building the target
state one excitation at a time [18]. In addition, efficient phase
estimation with NOON states often relies on photon-number
(or phonon-number) resolving detectors which are not avail-
able for standard optical or trapped-ion systems. Spatial [19]
or time multiplexing [20] is required for optical photons while
trapped-ion systems use complex control schemes [21–23]; in
all these approaches, the amount of resources needed scales
unfavorably with the size of the NOON state. Photon counting
can be achieved in circuit QED using dispersive interaction
of a microwave mode with an auxiliary qubit but this ap-
proach also requires complicated control schemes [24,25].
Alternatively, photon-number parity measurements can be
used to estimate phases with NOON states [26] but these
again typically require strong dispersive interaction. Finally,
spin ensembles allow detection techniques that do not require
single-particle resolution [27–30] but these strategies cannot
be easily extended to other physical systems.

The limits posed by standard linear Mach-Zehnder in-
terferometers can be overcome with the help of two-mode
squeezers replacing beam splitters [31–33] or nonlinear inter-
ferometry. In such a scenario, nonlinearity can be introduced
in one (or both) of the interferometer arms [34], instead of the
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FIG. 1. Swap-test interferometry. (a) Mach-Zehnder interferom-
eter for estimating an unknown phase ϕ. Two electromagnetic modes
in quantum states |ψ〉, |φ〉 are superimposed on linear beam splitters
(BS) sandwiching a phase shift ϕ on one of the fields. Subsequent
measurement of the output fields can be used to estimate this phase
shift. (b) Interferometry based on swap tests. Instead of linear beam
splitters, controlled-swap gates with an auxiliary qubit [initially in
the state |+〉 = (|0〉 + |1〉)/

√
2] are used; the detection of the fields

is replaced by measurement of the qubit in the X basis.

linear beam splitters that mix the two modes [35–39], or in
measurement of the output states [40]. While such strategies
provide advantages over linear interferometry, these tech-
niques often rely on strong nonlinearities which are difficult
to engineer or are applicable only to a specific type of quan-
tum system. In contrast, swap gates provide highly nonlinear
interactions and, although challenging, are available in a broad
range of experimental platforms [41–45] and thus ideally
suited for nonlinear interferometry. The controlled-swap gate
is a particularly attractive component as an essential ingredi-
ent of swap tests which are useful for measuring properties
of quantum states without full tomography [46], in partic-
ular state overlap and purity [47,48], and other verification
tasks [49]. In addition, swap tests conditionally project the in-
put states onto their symmetric or antisymmetric component,
allowing the preparation of NOON states from input Fock
states |n〉, |0〉 and of entangled coherent states from coherent
states |α1,2〉. Finally, the same principles allow swap tests
to be used for high-fidelity measurements of these complex
quantum states and for witnessing entanglement [47].

In this paper, we propose and analyze a nonlinear extension
of the Mach-Zehnder interferometer in which conventional
linear beam splitters have been replaced with swap tests; see
Fig. 1(b). The first swap test is used to conditionally prepare a
state that probes an unknown phase shift ϕ by projecting the
input states |ψ〉, |φ〉 onto their symmetric or antisymmetric
component. This step prepares a NOON state from the Fock
state |n〉 and the vacuum or an entangled coherent state from
two coherent states; we discuss the difference between these
scenarios caused by the finite overlap of the two coherent
states 〈α1|α2〉 �= 0. Unsurprisingly, a swap test can efficiently
prepare these important resource states for quantum sensing
in one step.

The second swap test is then used to estimate a phase
shift on one of the modes from the probability that an ini-
tial antisymmetric state will be projected onto the symmetric
subspace or vice versa. We evaluate the quantum and classical
Fisher information, showing that swap tests present an opti-
mal measurement strategy for NOON states and near-optimal
detection for entangled coherent states subject to small phase
shifts. Swap-test interferometry thus allows both preparation
and measurement to be performed with the same operation,
greatly reducing experimental complexity. Our strategy is thus
reminiscent of the Loschmidt echo [50] and presents another

example of the close connection between quantum comput-
ing and sensing [51]. In trapped-ion and superconducting
systems, where the controlled-swap gates are readily avail-
able [43,45,48], interferometry with NOON states becomes
much more straightforward: a NOON state can be both pre-
pared and measured in a single step irrespective of its size.
The only resource needed is then an input Fock state |n〉,
for which efficient preparation methods exist in both circuit
QED [52–54] and trapped-ion systems [55,56].

To provide a complete picture of swap-test interferome-
try in realistic conditions, we evaluate logical errors of the
auxiliary qubit, namely, phase and bit flips, and show that
the two types of error play fundamentally different roles.
Phase flips result in incorrect assignment of the measurement
results to projections of the field states onto the symmetric
and antisymmetric subspace, reducing the overall interference
contrast; owing to the nondemolition nature of the swap test,
repeated swap tests with the same qubit and cavity fields
can be used to correct for these errors. Bit flips during the
controlled-swap gate, on the other hand, lead to overrotation
and underrotation of the two-mode state during the swap.
Even though the measurement still projects the modes onto
their symmetric and antisymmetric components, the generated
states (and the corresponding probabilities) are different from
the ideal NOON and entangled coherent states. These errors,
which cannot be detected with repeated swap tests, therefore
limit the estimation sensitivity and prevent us from reaching
the Heisenberg limit.

Inspired by these results and motivated to overcome the
limitations posed by bit flips, we finally discuss a possible
implementation in circuit quantum electrodynamics. Here, the
swap operation between the two cavity modes is controlled
by a Kerr-cat qubit which exhibits strong noise bias [57–60].
In this type of qubit, photon loss (the dominant decoherence
mechanism) introduces phase flips while bit flips are exponen-
tially suppressed [58,61]. Suitable driving can then be used to
engineer a beam-splitter interaction between the two cavity
fields controlled by this auxiliary cat qubit [62]. This noise
bias has been shown to provide advantages for quantum error
correction [63–65]; we extend its benefits beyond quantum
computing to sensing. We perform detailed numerical simula-
tions of the whole protocol to (i) analyze the overlap witness
detecting nonclassical correlations between the two modes in
a realistic setting with losses and noise and (ii) confirm that
the standard quantum limit can be surpassed in these realis-
tic devices and the Heisenberg limit is attainable. Our work
thus presents an attractive target for experiments in quantum
enhanced phase estimation with available technology.

II. SWAP-TEST INTERFEROMETRY

A. Working principle

A swap test can be implemented using a controlled-swap
gate between two fields controlled by an auxiliary qubit. The
qubit is initially prepared in the state |+〉 = (|0〉 + |1〉)/

√
2

and its state is measured after the gate in the X basis. This
process projects the input state of the fields onto its sym-
metric (for measurement outcome |+〉) or antisymmetric [for
|−〉 = (|0〉 − |1〉)/

√
2] subspace, defined by the projectors
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�+ = 1
2 (I + S) (symmetric) and �− = 1

2 (I − S) (antisym-
metric), where I is the identity and S|ψ〉|φ〉 = |φ〉|ψ〉 is the
swap operator [47]. For two general, orthogonal quantum
states |ψ〉, |φ〉 (satisfying 〈ψ |φ〉 = 0), the swap test condi-
tionally prepares one of the two Bell states

|�±〉 = 1√
2

(|ψ〉|φ〉 ± |φ〉|ψ〉) (1)

with probability p± = 1
2 . If, on the other hand, one of the

Bell states |�±〉 is at the input of the swap test, only
one measurement outcome is possible: for the symmetric state
|�+〉, the qubit is always in the state |+〉 whereas for the
antisymmetric state |�−〉 it is always in the state |−〉.

The proposed swap-test interferometry uses two such swap
tests sandwiching a phase shift on one of the two modes as
shown in Fig. 1(b). With the fields starting in two Fock states
|n〉, |m〉, n �= m, the first swap test conditionally prepares one
of the Bell states

|�±〉 = 1√
2

(|n〉|m〉 ± |m〉|n〉). (2)

Focusing, for the moment, on the antisymmetric state |�−〉,
we obtain the following state after the phase shift on the first
mode:

|�−(ϕ)〉 = 1√
2

(e−inϕ |n〉|m〉 − e−imϕ |m〉|n〉). (3)

The second swap test is then used to determine the difference
of the probabilities p± of detecting the qubit in the states |±〉,

�(ϕ) = p+ − p− = − cos[(n − m)ϕ]. (4)

Since p− = 1 for an antisymmetric state |�−〉 = |�−(0)〉, the
quantity �(ϕ) serves as a witness of singletlike entanglement
in the fields [47].

With the choice m = 0, the first swap test conditionally
prepares the NOON state |�−〉 = (|n〉|0〉 − |0〉|n〉)/

√
2 and

the witness becomes

�(ϕ) = − cos(nϕ). (5)

The swap-test interferometer can thus be used for estimating
the phase ϕ with Heisenberg scaling with a simple input state
|n〉|0〉. A Mach-Zehnder interferometer, on the other hand,
would need a complicated superposition at the input for n > 2;
its precise form can be found by propagating the desired
NOON state backwards through the balanced linear beam
splitter [see Fig. 1(a)]. This advantage over the Mach-Zehnder
interferometer is enabled by the nonlinear transformation in
the swap test (in both state preparation and measurement)
which, however, can be efficiently implemented in circuit
QED [62] or with trapped ions [45].

B. Qubit errors

An important issue that could easily quell any advantage
that swap-test interferometry can provide over conventional
Mach-Zehnder interferometers are errors of the auxiliary
qubits. First, phase flips result in systematic errors in assign-
ing the measurement outcome and associated projection onto
the symmetric or antisymmetric subspace. Since the gate is
transparent to phase-flip errors [which are described by the

Pauli Z operator; the gate is given by the unitary Ucswap =
1
2 (I − Z ) ⊗ S + 1

2 (I + Z ) ⊗ I and therefore commutes with
the error], we can consider only phase-flip errors that occur
after the gate and before the measurement. A phase flip (with
probability p1 � 1) during state preparation then results in
incorrectly assigning the opposite meaning to the measure-
ment result; for the outcome |+〉, the antisymmetric singlet
state |�−〉 = (|n〉|0〉 − |0〉|n〉)/

√
2 is prepared while the sym-

metric state |�+〉 = (|n〉|0〉 + |0〉|n〉)/
√

2 is prepared for the
outcome |−〉. Generally, the first swap test and postselection
on the |−〉 state of the qubit gives the mixed state

ρ = (1 − p1)|�−〉〈�−| + p1|�+〉〈�+|. (6)

After the phase shift ϕ, an ideal second swap test projects
the fields onto the symmetric or antisymmetric subspace with
probability (the calculation is straightforward but the expres-
sions for the resulting states cumbersome so we do not include
them here)

p± = 1

2
± 2p1 − 1

2
cos(nϕ). (7)

The witness we obtain from these probabilities is given by

�(ϕ) = −(1 − 2p1) cos(nϕ). (8)

For a phase flip with probability p2 � 1 during the second
swap test, the probabilities are modified according to

p+ → (1 − p2)p+ + p2 p−, p− → (1 − p2)p− + p2 p+;

(9)

with probability 1 − p2, no phase flip took place and the
probabilities are unaffected, while a phase flip occurred with
probability p2 and the probabilities are flipped as well. The
total witness thus becomes

�(ϕ) = −(1 − 2p1)(1 − 2p2) cos(nϕ). (10)

The phase flips therefore reduce the visibility of the inter-
ference fringes which can, however, be accounted for by
repeating the swap test on the same state and then taking a
majority vote. While such a scheme can improve the sensi-
tivity in principle (provided the phase-flip probability p < 1

2 ),
other effects (such as cavity losses or limited efficiency of the
qubit measurement) might limit its applicability.

Bit-flip errors, on the other hand, pose a more serious
threat: while they do not affect the protocol when they hap-
pen before or after the controlled-swap gate (since the initial
state is an eigenstate of the Pauli X operator and the final
measurement is performed in the X basis), a bit flip during
the controlled-swap gate results in imperfect swap, scram-
bling the output state. The specifics of such a process depend
on the precise implementation of the gate and the exact
timing of the error but will generally lead to an underrota-
tion or overrotation of the swap gate, giving rise to a more
general beam-splitter-like transformation of the cavity fields
with modified amplitude of the transmission and reflection
coefficients. Starting with Fock-state input, a general super-
position of different Fock states in the two modes will be
created instead of a NOON state, making Heisenberg scaling
unattainable.
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C. Overlap witness with general pure states

So far, we have assumed that the two states at the input
of the swap-test interferometer are orthogonal. While this is
the case for Fock states (with which the NOON states can
be created and the Heisenberg scaling reached), for other
important classes of states, such as coherent states, this is not
the case. Therefore, we now turn our attention to general pure
states at the input with a finite overlap 〈ψ |φ〉 = s ∈ C. As
we shall see, even coherent states allow sensitivity of phase
estimation at the Heisenberg limit [14]; linear interferometers,
on the other hand, are bounded by the standard quantum limit
with coherent-state input. This remarkable effect is enabled by
the fact that the controlled-swap gate turns the coherent states
into an entangled coherent state.

While the first swap test still projects the two modes onto
their symmetric or antisymmetric component, the respective
probability is modified due to the finite overlap between the
states |ψ〉, |φ〉. This results in different normalization for the
two Bell-type states,

|�±〉 = 1√
N±

(|ψ〉|φ〉 ± |φ〉|ψ〉) (11)

with the normalization factors given by N± = 2(1 ± |s|2).
This, in turn, results in different probabilities of preparing
these states p± = 1

2 (1 ± |s|2). This change in probabilities
is the main effect of the finite overlap between the input
states (note that the Bell-type states |�±〉 are orthogonal even
though the input states |ψ〉, |φ〉 are not). We can therefore use
either Bell-type state for phase estimation where Heisenberg-
limited sensitivity can be obtained for different input states
due to the nontrivial overlap between the input states |χ〉
(with χ = ψ, φ) and their phase-shifted variants |χ (ϕ)〉 =
e−iϕa†a|χ〉.

The Bell-type state (we work again with the singletlike
state |�−〉) acquires a phase shift ϕ on the first mode,

|�−(ϕ)〉 = 1√
N−

[|ψ (ϕ)〉|φ〉 − |φ(ϕ)〉|ψ〉]. (12)

Afterwards, we apply the second swap test to estimate the
overlap witness �(ϕ). The controlled-swap gate transforms
the state |�−(ϕ)〉 into

|�out〉 = 1

2

√
M+
N−

|+〉|�+(ϕ)〉 + 1

2

√
M−
N−

|−〉|�−(ϕ)〉, (13)

where we introduced the field states

|�±(ϕ)〉 = 1√
M±

[|ψ (ϕ)〉|φ〉 − |φ(ϕ)〉|ψ〉

± |φ〉|ψ (ϕ)〉 ∓ |ψ〉|φ(ϕ)〉] (14)

with the normalization constant

M± = 4(1 − |s|2) ± 2[|s(ϕ)|2 + |s(−ϕ)|2]

∓ 2[sψ (ϕ)sφ (−ϕ) + sψ (−ϕ)sφ (ϕ)]. (15)

The parameters in this expression are defined via the scalar
products

s(ϕ) = 〈φ|ψ (ϕ)〉 = 〈φ|e−iϕa†a|ψ〉,
sχ (ϕ) = 〈χ |χ (ϕ)〉 = 〈χ |e−iϕa†a|χ〉. (16)

FIG. 2. Schematic depiction of state overlap (top) and overlap
witness �(ϕ) (bottom) with coherent states. (a) Overlap witness for
coherent states with amplitudes α1 = −α2 = α. For large amplitudes
α � 1, significant overlap between the original and phase-shifted
states occurs only for ϕ ∼ kπ , with k ∈ Z, giving rise to a plateau
in-between. (b) Overlap witness for a coherent state |α〉 and the
vacuum. Only the coherent state |α〉 rotates under a phase shift with
the vacuum state |0〉 remaining in place; the interference pattern
between the superposed states |0〉, |α〉 (not shown in the schematic
depiction of the phase space at the top of the panel) gives rise to
fast oscillations of the overlap witness �(ϕ) for small phase shifts ϕ

before these decay to a plateau similar to the case shown in (a).

We can now obtain the overlap witness as the difference of the
probabilities of finding the qubit in the |+〉 and |−〉 states:

�(ϕ) = p+ − p− = M+ − M−
4N−

= |s(ϕ)|2 + |s(−ϕ)|2 − sψ (ϕ)sφ (−ϕ) − sψ (−ϕ)sφ (ϕ)

2(1 − |s|2)
.

(17)

Note that by virtue of the definitions (16), we have s∗
χ (ϕ) =

sχ (−ϕ) and the overlap witness (17) is always real as
expected.

The more generic interference pattern possible with the
overlap witness (17) gives rise to a plethora of possible phase-
estimation scenarios with high sensitivity for simple input
states. As a concrete example, we now consider two coherent
states |α1,2〉 with the scalar product

s = 〈α1|α2〉 = exp
( − 1

2 |α1|2 − 1
2 |α2|2 + α∗

1α2
)
. (18)

The expression for the overlap witness with two general
coherent states at the input is cumbersome and offers little
insight so we focus on two specific regimes: two states with
equal but opposite amplitudes, α1 = −α2 = α, and a coherent
state with a vacuum, α1 = α, α2 = 0. In both cases, we take
α ∈ R without loss of generality.

For two opposite-amplitude coherent states, a straightfor-
ward calculation gives the overlap witness

�(ϕ) = − sinh(2α2 cos ϕ)

sinh(2α2)
, (19)

whose interference pattern is shown in Fig. 2(a). The over-
lap witness satisfies �(ϕ) = −1 for ϕ = 2kπ and �(ϕ) = 1
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for ϕ = (2k + 1)π , where k ∈ Z. The speed with which the
overlap witness drops to zero depends on the amplitude α

as can be seen from the following argument: The witness
effectively measures the overlap between the initial coherent
states | ± α〉 and their phase-shifted variant | ± αe−iϕ〉. As the
amplitude α increases, the range of phases for which these
states significantly overlap decreases [see top of Fig. 2(a)].
When the original and phase-shifted states have negligible
overlap, projections on the symmetric and antisymmetric sub-
spaces are equally likely and we have �(ϕ) = 0.

For a coherent state and the vacuum, the overlap witness
takes the form

�(ϕ) = −1 − exp(α2 cos ϕ) cos(α2 sin ϕ)

1 − exp(α2)
, (20)

which shows fast oscillatory pattern for large amplitudes α

around ϕ = 2kπ [see Fig. 2(b)]. The main difference from
the previous case responsible for this behavior is the different
rotation axis. With α2 = −α1, phase rotation corresponds to
a rotation of the whole state around its center, whereas for
α2 = 0, the rotation axis is located at the center of the coherent
state |α2〉 = |0〉 in phase space. For large amplitudes, there
are now two main contributions to the overlap between the
initial and phase-shifted states. The first is, again, the overlap
between the coherent state |α〉 and its phase-shifted variant
|αe−iϕ〉 which gives an envelope of the overlap witness. The
oscillations under this envelope are caused by the rapidly
changing overlap in the interference pattern between the states
|α1〉 = |α〉, |α2〉 = |0〉. For large coherent amplitudes, even a
small phase shift easily turns the troughs in this interference
region into ridges and vice versa, resulting in approximately
orthogonal states with �(ϕ) → 1 (red dotted-dashed line).

For both Fock and coherent states, we assumed
that the antisymmetric, singletlike state |�−〉 = (|ψ〉|φ〉 −
|φ〉|ψ〉)/

√
N− was prepared in the first swap test but the analy-

sis can be repeated for the symmetric state |�+〉 = (|ψ〉|φ〉 +
|φ〉|ψ〉)/

√
N+. Irrespective of the input states, these symmet-

ric and antisymmetric superpositions differ only by a relative
phase that can be taken into account when evaluating the
overlap witness �(ϕ). As long as one keeps a record of both
measurement outcomes, and evaluates the overlap witness
for symmetric and antisymmetric correlations separately, the
symmetric and antisymmetric states can be jointly used to
estimate the unknown phase ϕ.

D. Fisher information

To gain more insight into the sensitivity of the swap-test
interferometer, we now evaluate the classical and quantum
Fisher information for the different types of input states dis-
cussed above. The quantum Fisher information FQ of a general
quantum state |ψ〉 sets the phase sensitivity via the quantum
Cramér-Rao bound [4,66] and so in essence quantifies the
sensitivity of the state to phase shifts. In the following, we
calculate the quantum Fisher information of the state of the
cavity modes after the phase shift, so either

|�−(ϕ)〉 = 1√
2

(e−inϕ |n〉|0〉 − |0〉|n〉) (21)

FIG. 3. Quantum Fisher information in swap-test interferometry.
(a) Scaling of the quantum Fisher information with the total photon
number at the input for NOON states (F NOON

Q , solid blue line), entan-
gled coherent states with α1 = −α2 (Fα,−α

Q , dashed orange line), and
entangled coherent states with α2 = 0 (Fα,0

Q , dotted green line). The
total photon number for entangled coherent states is n = α2

1 + α2
2 .

(b) Quantum Fisher information for entangled coherent states with
the total photon number n = 5 for different partitions of the total
energy between the two modes. We assume two real coherent-state
amplitudes α1 = √

n1, α2 = −√
n − n1.

for NOON states, or

|�−(ϕ)〉 = 1√
N−

(|α1e−iϕ〉|α2〉 − |α2e−iϕ〉|α1〉) (22)

for entangled coherent states. Whether the Cramér-Rao bound
can be reached is determined by evaluating the classical Fisher
information of the measurement, FC � FQ, which establishes
how much of the phase information encoded in the probe
state can be recovered; if the quantum and classical Fisher
information are equal, FC = FQ, the measurement represents
an optimal detection strategy [4,66].

For NOON states, a straightforward calculation gives (see
Appendix A)

F NOON
Q = F NOON

C = n2. (23)

The quantum Fisher information F NOON
Q has the expected

quadratic scaling with the photon number as is typical for
Heisenberg scaling. Crucially, the classical Fisher information
F NOON

C is equal to the quantum Fisher information, confirm-
ing that a swap test is an optimal measurement strategy for
phase estimation with NOON states and obviating the need
for photon-number measurements.

For entangled coherent states, the general formula for the
quantum Fisher information Fα1,α2

Q is more involved. For the
two special cases analyzed in Sec. II C, we obtain (see Ap-
pendix A)

Fα,−α
Q = 2α2csch2(2α2)[sinh(4α2) − 2α2], (24a)

Fα,0
Q = α2eα2(

1 − eα2
)2

[
eα2

(2 + α2) − 2(1 + α2)
]
. (24b)

The quantum Fisher information for these different types of
probe states is plotted in Fig. 3. In Fig. 3(a), we plot the quan-
tum Fisher information for the three sensing scenarios (i.e.,
NOON states and entangled coherent states with α2 = −α1 or
α2 = 0) against the total (mean) photon number at the input
of the interferometer. Only two of the analyzed situations
can give rise to Heisenberg scaling; using two coherent states
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FIG. 4. Classical Fisher information in swap-test interferometry
with entangled coherent states. Phase dependence of the classi-
cal Fisher information for entangled coherent states with (a) α1 =
−α2 = 5 and (b) α1 = 5, α2 = 0. Classical Fisher information in the
limit ϕ → 0 as a function of the total photon number n = α2

1 + α2
2 for

(c) α1 = −α2 and (d) α2 = 0 (n = α2
1). In all plots, we compare the

classical Fisher information (solid blue line) to the quantum Fisher
information (dashed orange line).

with equal but opposite amplitudes becomes Fα,−α
Q � 2n in

the limit of large photon numbers, corresponding to the stan-
dard quantum limit. Remarkably, despite this less favorable
scaling, this strategy still provides a higher quantum Fisher
information than NOON states for small photon numbers.
The largest values of the quantum Fisher information are
obtained with Fα,0

Q [14] which outperforms NOON states for
small photon numbers and then asymptotically approaches
the Heisenberg scaling n2 from above. This behavior can be
understood from the next-to-leading-order terms in the limit
of large photon number which give

Fα,0
Q ≈ e2n

e2n − 2en
(n2 + 2n) → n2 (25)

which holds well for n � 3. In the opposite limit n → 0, we
have Fα,−α

Q = Fα,0
Q = 1 which is, however, accompanied by

vanishing probability of preparing the singlet state in this
limit.

We further investigate the phase sensitivity with entan-
gled coherent states in Fig. 3(b) where we plot the quantum
Fisher information Fα1,α2

Q with fixed total energy n = α2
1 + α2

2
(α1,2 ∈ R) as a function of the mean photon number in the
first mode n1 = α2

1 . The highest quantum Fisher information
(and therefore highest phase sensitivity) is achieved in the two
limiting cases n1 = 0, n1 = n which correspond to the whole
energy being concentrated in one of the modes (with either
α1 = √

n, α2 = 0, or α1 = 0, α2 = −√
n); the minimum is

reached for n1 = 1
2 n, corresponding to α1 = −α2.

To see how well the swap test performs when estimating
the phase, we now calculate the classical Fisher information
for entangled coherent states. We plot the classical Fisher
information for the cases α1 = −α2 and α2 = 0 in Fig. 4
(see Appendix A for derivation and expressions). Unlike the
quantum Fisher information, the classical Fisher information

FIG. 5. Fisher information with qubit phase-flip errors. (a) Clas-
sical Fisher information for NOON states with n = 4 (solid blue
line), n = 5 (dashed orange line), and n = 6 (dotted green line)
with phase-flip probability of 5%. (b) Overlap witness for coherent
states with α1 = α = 5, α2 = 0 in the ideal case (p = 0, solid blue
line), and with phase flips (probability p = 0.05, dashed orange line).
(c) Classical Fisher information for the overlap witness shown in (b).
(d) The maximum classical Fisher information (for coherent states
with α2 = 0, optimized over the phase ϕ) as a function of the photon
number n = α2; the quantum Fisher information is plotted as well
(dotted green line).

is generally phase dependent which reflects the negligible
overlap between the states in a broad range of phases for large
amplitudes (providing no information about the phase shift ϕ,
cf. Fig. 2). The classical Fisher information is maximal close
to ϕ = 0; in the limit ϕ → 0, the classical Fisher information
becomes

Fα,−α
C = 2α2 coth(2α2), (26a)

Fα,0
C = eα2

(α2 + α4)

−1 + eα2 . (26b)

The former (Fα,−α
C ) remains smaller than the correspond-

ing quantum Fisher information; in the large-n limit, it is
smaller by a factor of 2, Fα,−α

C � n (cf. Fα,−α
Q = 2n). The

latter (Fα,0
C ) is asymptotically close to the quantum Fisher

information with Fα,0
C � Fα,0

Q � n2 for large photon numbers,
showing that the swap test is a near-optimal measurement
strategy in this situation. Unlike with NOON states, however,
this high sensitivity is achievable only for a narrow range of
phases in the vicinity of ϕ = 0. The possibility of approaching
Heisenberg scaling is, however, remarkable given the fully
classical input of the swap-test interferometer, effectively im-
plementing the sensing strategy described in Ref. [14].

Finally, we analyze the effect of phase-flip errors on the
classical Fisher information in Fig. 5. As we describe in Ap-
pendix A, the Fisher information with NOON states can be
shown to be

F NOON
C (ϕ) = (1 − 2p1)2(1 − 2p2)2n2 sin2(nϕ)

1 − (1 − 2p1)2(1 − 2p2)2 cos2(nϕ)
, (27)

which is plotted in Fig. 5(a) for n = 4, 5, 6 and phase-
flip probability p = 0.05. Unlike the ideal case, the Fisher
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FIG. 6. Schematic representation of a circuit QED system for
swap-test interferometry. Two cavities (annihilation operators a, b)
are mutually coupled by a SNAIL (annihilation operator c). The
SNAIL houses a Kerr-cat qubit (Wigner function shown below the
chip); a combination of a controlled-phase beam splitter and a de-
terministic beam splitter (described in the main text) results in a
swap of the two cavity fields for one logical state and identity for the
other (left).

information is now phase dependent with maximum reached
for ϕ = (2k + 1)π/2n with k ∈ Z, corresponding to the re-
gion where the overlap witness �(ϕ) can be approximated by
a linear function of the phase. This maximum is given by

F NOON
C = (1 − 2p1)2(1 − 2p2)2n2, (28)

preserving the Heisenberg scaling, albeit with a prefactor (1 −
2p1)2(1 − 2p2)2 that reduces the overall sensitivity.

For entangled coherent states (limiting ourselves only to
the case of α1 = α, α2 = 0), we first need to evaluate the
probabilities in the second swap test (see Appendix A). We
plot the corresponding overlap witness in Fig. 5(b), which
shows that entangled coherent states suffer from a reduction
of visibility that is quantitatively similar to NOON states. The
corresponding Fisher information is plotted in Fig. 5(c) for the
ideal case (without phase flips, p = 0) and with phase-flip er-
ror probability of 5%. Similar to the case of NOON states, the
Fisher information becomes zero for ϕ = 0 when phase-flip
errors are present. The maximum Fisher information (opti-
mized over the phase ϕ) is further investigated in Fig. 5(d). As
expected, phase-flip errors reduce the Fisher information but
this effect is rather small, especially for large photon numbers;
in this limit, the classical Fisher information is approximately
equal to (1 − 2p1)2(1 − 2p2

2)n2, which is the same limit as for
NOON states.

III. IMPLEMENTATION IN CIRCUIT QED

A. Controlled-phase beam splitter

The proposed swap-test interferometer can be imple-
mented in circuit QED using the apparatus shown schemat-
ically in Fig. 6. It consists of two three-dimensional (3D)
microwave cavities (two microwave modes with annihilation
operators a, b) both coupled to a superconducting nonlinear
asymmetric inductive element (SNAIL, annihilation opera-
tor c) [67]. The SNAIL is a device exhibiting both third-
and fourth-order nonlinearity which are both necessary for
a controlled-phase beam splitter (CPBS) gate with a cat-
based qubit with suitable noise bias [62]. Three-wave mixing

(enabled by the third-order nonlinearity) is used for two-
photon driving of the device which, together with the
fourth-order Kerr nonlinearity, creates and stabilizes the cat
qubit [57,58]. Four-wave mixing (enabled by the Kerr nonlin-
earity) is then used to implement a cat-state-dependent beam
splitter between the two fields which can be used to engineer
a controlled-swap gate [62].

The ideal CPBS interaction between the two cavity fields
controlled by the Kerr cat can be described by the effective
Hamiltonian [62]

Heff = −Kc†2c2 + εc†2 + ε∗c2 + iζ1(a†bc† − ab†c). (29)

The first term describes the Kerr nonlinearity of the cat which,
together with the two-photon driving (the second and third
term), creates two degenerate ground states | ± β〉, where
β = √

ε/K [58]. Identifying these two coherent states as the
logical qubit states (with |0L〉 = | + β〉, |1L〉 = | − β〉), the
last term in the Hamiltonian (29) describes (in a mean-field
approximation where 〈c〉 = ±β) a beam-splitter interaction
between the microwave cavity modes a, b with a phase that
depends on the logical state of the Kerr-cat qubit at a rate
ζ1|β|; however, we do not use the mean-field approxima-
tion for numerical simulations but work instead with the full
Hilbert space of the Kerr-cat qubit [62]. Because the energy
relaxation time of the Kerr-cat qubit is shorter than that of
the two high-quality microwave cavities, the dominant error
is energy damping in the Kerr cat (note that cat states with up
to 250 average photons have been prepared experimentally in
circuit QED [68]). Such errors result predominantly in phase
flips of the logical qubit state, while bit flips are suppressed
exponentially in the cat size β2 [58–61]. Finally, measurement
of the Kerr-cat qubit in the X basis can be achieved by a series
of qubit rotations followed by a conditional displacement of
a readout resonator and homodyne detection [58,63]. This
measurement projects the qubit onto one of the cat states
|±L〉 ∝ |β〉 ± | − β〉 which are the eigenstates of the logical
X operator [69,70].

The beam-splitter operations corresponding to the two
states of the cat qubit are inverses of each other. We can there-
fore combine a 50:50 controlled-phase beam splitter with an
unconditional balanced beam splitter to engineer a controlled-
beam splitter (CBS) gate [62]: for the logical state |0L〉, the
two operations exactly cancel each other, while for the qubit
in the state |1L〉 they add up to a full swap of the two fields.
The only difference from an ideal controlled-swap gate is a
conditional phase of π that one of the fields acquires with each
photon that is swapped. For even-numbered NOON states,
this phase is irrelevant as the total phase shift is always a
multiple of 2π ; for odd-numbered NOON states, the second
swap test becomes insensitive to the relative phase between
the two modes, resulting in probability p± = 1

2 independent
of the input state. Finally, for coherent states, this conditional
phase shift modifies the overlap witness, leading to a reduced
phase sensitivity compared to using a controlled-swap gate
(see Appendix B); crucially, this approach preserves the
quadratic scaling of the classical Fisher information with the
photon number, albeit with a smaller prefactor. At the same
time, this approach allows for a simplified experimental setup
as the deterministic beam splitters need not be implemented
as they transform coherent states into coherent states.
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TABLE I. System parameters for numerical simulations.

Parameter Symbol Value

Kerr nonlinearity K/2π 6.7 MHz
Two-photon driving ε/2π 20.1 MHz
Kerr-cat amplitude β = √

ε/K
√

3
Cross-Kerr coupling χ/2π 603 kHz
CPBS rate ζ1/2π 120 kHz
BS rate ζ2/2π = ζ1β/2π 210 kHz
Cavity decay rate κ/2π 402 Hz
SNAIL relaxation κ1/2π 1.35 kHz
Thermal occupation Nt 0.06
Two-photon loss κ2/2π 135 kHz
CPBS gate time τ 600 ns
Phase-flip probability p = κ1β

2τ 1.5%

B. Numerical simulations for NOON states

We simulate the swap-test interferometer using the full
CBS Hamiltonian derived in Ref. [62]:

H = H0 + HCPBS + HBS, (30a)

H0 = −Kc†2c2 + εc†2 + ε∗c2

−χ (a†a + b†b − N )(c†c − |β|2), (30b)

HCPBS = −ζ1(t )a†bc† − ζ ∗
1 (t )ab†c, (30c)

HBS = ζ2(t )a†b + ζ ∗
2 (t )ab†, (30d)

where H0 describes the Kerr-cat qubit and the cross-Kerr inter-
actions between the Kerr cat and the microwave modes (with
a mean-field correction), HCPBS gives the CPBS coupling, and
HBS is the deterministic beam splitter (BS) coupling. The
CPBS and BS interactions are switched on and off sequen-
tially (the CPBS is applied first) and the duration of each
interaction is chosen to give rise to a balanced (50:50) split-
ting ratio. To decrease qubit errors during the swap tests, we
measure its state after the CPBS and before the BS interaction.

The full dynamics during a swap test is described by the
master equation

ρ̇ = −i[H, ρ] + κD[a]ρ + κD[b]ρ

+ κ1(1 + Nt )D[c]ρ + κ1NtD[c†]ρ + κ2D[c2]ρ, (31)

where D[o]ρ = oρo† − 1
2 o†oρ − 1

2ρo†o is the Lindblad su-
peroperator, κ is the decay rate for the two cavity modes
(assumed equal), κ1 and κ2 are the single- and two-photon
dissipation rates of the SNAIL, and Nt is the thermal popu-
lation of the Kerr-cat mode. The two-photon dissipation term
κ2D[c2]ρ is added to help stabilize the Kerr cat within the
qubit subspace [62]. The parameters for simulations are sim-
ilar to the recent experimental demonstration of a stabilized
Kerr-cat qubit [58,62] and are summarized in Table I.

The overlap witness for the NOON states |�−〉 = (|n〉|0〉 −
|0〉|n〉)/

√
2 with n = 2, 4, 6 is shown in Fig. 7. For all three

photon numbers, the results of the numerical simulation (blue
dots) are very close to the simple phase-flip model (thick or-
ange line), �(ϕ) = −(1 − 2p)2 cos(nϕ), where p = κ1β

2τ �
1.5% is the probability of a qubit phase-flip error for single-
photon-loss rate κ1 and CPBS gate time τ ; the observed
interference visibility only weakly depends on the photon
number [see Fig. 7(d) which shows the interference contrast

FIG. 7. Numerical simulations of swap-test interferometry using
NOON states with n = 2 (a), n = 4 (b), and n = 6 (c). In all panels,
we compare the results of numerical simulations (blue dots) with
the ideal witness �(ϕ) = − cos(nϕ) (thin black line) and overlap
witness with only phase-flip errors included (thick orange line),
�(ϕ) = −(1 − 2p)2 cos(nϕ), where p = κ1β

2τ is the probability of
a qubit phase-flip error during the swap test. We also plot the overlap
witness for a qubit model including bit flips only [γz = 0 in the qubit
model of Eq. (32)] at the same rate (γx = κ1β

2, dotted-dashed green
line) and at a rate 10 times higher (γx = 10κ1β

2, dotted red line).
(d) Interference contrast as a function of the NOON-state size for full
simulations (blue dots), phase flips only (γz = κ1β

2, γx = 0, orange
stars), bit flips (γz = 0, γx = κ1β

2, green diagonal crosses), bit flips
for symmetric NOON states |�+〉 = (|n0〉 + |0n〉)/

√
2 (red crosses),

and phase flips with majority vote (MV, purple squares). The hor-
izontal lines show analytical estimates of the contrast, (1 − 2p)2

and (1 − 2p2)2 for phase flips and majority vote, respectively, with
p = κ1β

2τ . Note that numerical simulations run only up to n = 12
due to the large Hilbert space dimensions needed.

as a function of the NOON-state size up to n = 12 photons].
This result implies that the classical Fisher information of
this realistic device is also close to the Fisher information
with phase flips with the maximum F NOON

C = (1 − 2p)4n2,
guaranteeing Heisenberg scaling.

Additionally, we compare these results to a simple qubit
model with bit flips to estimate the effect of this type of error.
This is achieved by replacing the (generally multilevel) Kerr
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FIG. 8. Comparison of swap-test interferometry (ST) with
photon-number measurements (PNM). (a) Interference contrast plot-
ted as a function of cavity decay for swap-test interferometry (solid)
and photon-number measurements (dashed) for NOON-state sizes
n = 2, 4, 6. (b) Contrast versus ratio of the phase accumulation time
to the beam-splitter gate time for κ/K = 10−3.

cat with an ideal two-level system with phase-flip-error rate γz

and bit-flip-error rate γx,

ρ̇ = −i[HCPBS + HBS, ρ] + κD[a]ρ + κD[b]ρ

+ γzD[Z]ρ + γxD[X ]ρ, (32)

where HCPBS = −ζ1β(a†b − ab†)Z is the CPBS Hamiltonian
in the two-level approximation. Phase-flip errors give an over-
all reduction of contrast that is in good agreement with the
analytical estimate of the witness, C = (1 − 2p)2, indepen-
dent of the size of the NOON state. On the other hand, the
contrast reduction with bit-flip errors is generally state-size
dependent. Moreover, we get asymmetric interference fringes
[the minimum increases faster than the maximum decreases,
see Figs. 7(a)–7(c)] and different contrast for the symmetric
and antisymmetric NOON states |�±〉 = (|n0〉 ± |0n〉)/

√
2

[Fig. 7(d)]. Although the contrast remains higher with bit-flip
errors than phase-flip errors, the latter can be improved by
majority voting as shown in Fig. 7(d); repeating each swap
test three times and taking the majority result reduces the
probability of logical errors from p to p2.

To gain a better insight into the effects of cavity losses on
the quality of swap-test interferometry, we compare the attain-
able interference contrast with conventional photon-number
measurements in Fig. 8. We assume that an ideal NOON state
is prepared with unit fidelity and decoherence only affects
the phase accumulation (during which the cavity fields decay)
and the final measurement. For swap-test interferometry, this
consists of the CPBS gate followed by qubit measurement,
while for photon-number measurement, a regular balanced
beam splitter (BBS) is followed by the measurement of
photon number in each cavity; crucially, we assume that
the CPBS and BBS gate time is equal for fair comparison.
When the cavity decay is slow, photon-number measurements
achieve better performance since the CPBS gate is limited
by qubit decoherence [see Fig. 8(a)]. However, swap-test
interferometry performs better with fast cavity decay with
the crossover point between the two regimes shifting to
slower cavity decay as the size of the NOON state increases.

Swap-test interferometry is particularly advantageous for
short phase accumulation [Fig. 8(b)] which suggests that the
swap test is less sensitive to photon losses than an ordinary
beam splitter followed by photon-number measurement. The
better performance of photon-number measurement for the
n = 2 NOON state is again due to the strong decoherence of
the qubit which becomes less relevant as the size of the NOON
state increases. Note also that we assumed an ideal photon-
number measurement which would be extremely challenging,
especially for high photon numbers, whereas Kerr-cat qubit
measurements can be performed with high fidelity [58] and
their complexity does not scale with the NOON-state size.

IV. DISCUSSION

Apart from circuit QED, swap gates and swap tests have
also been implemented with trapped ions [45,48] and so
these two platforms provide ideal settings for swap-test in-
terferometry. In addition, circuit quantum acoustodynamics
(QAD) uses the toolbox of circuit QED to control mechanical
vibrations [71,72] and can thus benefit from the same noise-
biased gates as circuit QED platforms. Mechanical degrees
of freedom (available in circuit QAD and with trapped ions)
readily interact with a broad range of physical systems and are
therefore ideal for sensing weak forces and fields; swap-test
interferometry provides a new approach to detecting these
forces with Heisenberg scaling.

In summary, we have presented an approach to nonlinear
interferometry based on swap tests. Replacing linear beam
splitters in a Mach-Zehnder interferometer by controlled-
swap gates and measurement on auxiliary qubits makes
Heisenberg scaling attainable with simple input states: Fock
and coherent states. Remarkably, Heisenberg scaling is attain-
able using the same operation for preparing the probe state
and estimating the unknown phase, reducing experimental
complexity compared to standard NOON-state interferome-
try, which requires complex state preparation schemes and
photon-number-resolving detection. In addition, the unique-
ness of our strategy is underlined by the fact that Heisenberg
scaling can be reached with a measurement which returns
a single bit of classical information. Finally, we presented a
detailed analysis of auxiliary qubit errors and established a
crucial difference between phase- and bit-flip errors: While
the former reduce interference visibility and can, in principle,
be corrected with repeated swap tests, the latter lead to im-
perfect swap operations, modifying the resulting interference
pattern of the overlap witness and making the Heisenberg
scaling unattainable.

This disparity between different types of qubit errors high-
lights the importance of qubits with biased noise. These qubits
recently attracted attention in the context of quantum comput-
ing where they offer a range of advantages in the design of
quantum gates [64] and in quantum error correction [63,65].
Building on these results, we proposed and analyzed a possi-
ble implementation of swap-test interferometry with auxiliary
qubits based on Kerr cats which are strongly biased to-
wards phase flips and thus fulfill the error requirements for
approaching Heisenberg-limited phase sensitivity. In this con-
text, the proposed scheme can also be used to benchmark the
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performance of controlled-swap gates with auxiliary qubits
exhibiting biased noise [62].
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APPENDIX A: FISHER INFORMATION CALCULATIONS

For a pure quantum state |ψ〉, the quantum Fisher informa-
tion can be calculated as [73]

FQ = 4

(〈
∂

∂ϕ
ψ

∣∣∣∣ ∂

∂ϕ
ψ

〉
−

∣∣∣∣
〈

∂

∂ϕ
ψ

∣∣∣∣ψ
〉∣∣∣∣

2
)

, (A1)

where |∂ψ/∂ϕ〉 denotes differentiation of the state |ψ〉 with
respect to ϕ. For NOON states, we have∣∣∣∣ ∂

∂ϕ
ψ

〉
= − in√

2
e−inϕ |n〉|0〉; (A2)

a straightforward calculation then gives F NOON
Q = n2. For en-

tangled coherent states, we express the coherent states in the
Fock basis to obtain∣∣∣∣ ∂

∂ϕ
αe−iϕ

〉
= −i exp

(
−|α|2

2

) ∞∑
n=0

nαne−inϕ

√
n!

|n〉. (A3)

With this expression, we can evaluate scalar products of the
form 〈∂αe−iϕ/∂ϕ|β〉 and 〈∂αe−iϕ/∂ϕ|∂βe−iϕ/∂ϕ〉 and get the
general expression for the quantum Fisher information with
general real amplitudes α1,2 ∈ R:

Fα1,α2
Q = 2

α2
1 + α4

1 + α2
2 + α4

2 − 2e−(α1−α2 )2
α1α2(1 + α1α2)

1 − e−(α1−α2 )2

− (α2
1 + α2

2 − 2e−(α1−α2 )2
α1α2)2(

1 − e−(α1−α2 )2
)2 . (A4)

For the two choices α1 = α = −α2 and α1 = α, α2 = 0, this
expression simplifies to Eqs. (24).

The classical Fisher information can be found from the
probability of detecting the auxiliary qubit in the second swap
test in the state |±〉 using [4]

FC = p+

(
∂

∂ϕ
ln p+

)2

+ p−

(
∂

∂ϕ
ln p−

)2

, (A5)

where both probabilities p± implicitly depend on the phase ϕ.
For NOON states, the probabilities are p± = 1

2 [1 ± cos(nϕ)],
which give the classical Fisher information

F NOON
C = n2 = F NOON

Q . (A6)

For coherent states, the probabilities are given by p± =
M±/(4N−), where M± are given in Eq. (15). The classical
Fisher information is, unlike the quantum Fisher information,
phase dependent but the general expression is too complicated
to be reproduced here; for the two cases discussed above, we
obtain

Fα,−α
C (ϕ) = 4e4α2

[1 + exp(4α2 cos ϕ)]2α4 sin2 ϕ

−e4α2 + exp(4α2 cos ϕ) + exp[4α2(2 + cos ϕ)] − exp[4α2(1 + 2 cos ϕ)]
, (A7a)

Fα,0
C (ϕ) = exp(2α2 cos ϕ)α4 sin2(ϕ + α2 sin ϕ)[

eα2 − exp(α2 cos ϕ) cos(α2 sin ϕ)
][ − 2 + eα2 + exp(α2 cos ϕ) cos(α2 sin ϕ)

] . (A7b)

Finally, to analyze the effect of phase-flip errors on the
estimation sensitivity, we evaluate the classical Fisher infor-
mation in the presence of phase-flip errors. Using Eqs. (7)
and (9), we can directly evaluate the classical Fisher infor-
mation for NOON states,

F NOON
C (ϕ) = (1 − 2p1)2(1 − 2p2)2n2 sin2(nϕ)

1 − (1 − 2p1)2(1 − 2p2)2 cos2(nϕ)
. (A8)

It is then straightforward to show that the minimum is
reached for ϕmin = kπ/n, where k ∈ Z; we then have F NOON

C
(ϕmin)=0. The maximum is achieved for ϕmax =
(2k + 1)π/2n with k ∈ Z and is given by

F NOON
C (ϕmax) = (1 − 2p1)2(1 − 2p2)2n2, (A9)

preserving the Heisenberg scaling, albeit with a prefactor (1 −
2p1)2(1 − 2p2)2 that reduces the overall sensitivity.
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FIG. 9. Swap-test interferometry with controlled-phase beam-
splitter gates. (a) Circuit for implementing a controlled-swap gate
using a 50:50 beam-splitter gate followed by a 50:50 controlled-
phase beam splitter and a controlled-phase gate. Alternatively, the
order of the beam splitter and controlled-phase beam splitter can be
exchanged. (b) Scheme for swap-test interferometry with balanced
controlled-phase beam-splitter gates and auxiliary Kerr-cat qubits
in circuit QED. Deterministic beam splitters are not needed when
starting from suitably modified initial coherent states with α̃1,2 =
(α1 ∓ α2)/

√
2.

For phase estimation with entangled coherent states, we
first evaluate the probabilities in the first swap test. Follow-
ing the same procedure as for NOON states [for which we
obtained Eqs. (7) and (9)], we get the probability of the mea-
surement outcome |±〉 for two general pure states with overlap
s = 〈ψ |φ〉:

p± =
(

1 − p1

N−
+ p1

N+

)(
1 ± |s(ϕ)|2 + |s(−ϕ)|2

2

)

+
(

p1

N+
− 1 − p1

N−

)

×
(

|s|2 ± sψ (ϕ)sφ (−ϕ) + sψ (−ϕ)sφ (ϕ)

2

)
. (A10)

Focusing on the case α1 = α ∈ R, α2 = 0, a straightforward
calculation gives

�(ϕ) = 1 − exp(α2 cos ϕ) cos(α2 sin ϕ)

eα2 − 1

− 2p1
1 − exp[α2(1 + cos ϕ)] cos(α2 sin ϕ)

e2α2 − 1
.

(A11)

Phase-flip errors during the first swap test thus give rise to
a more general modification of the interference pattern than
in the case of NOON states where it gives a constant factor
1 − 2p1. Phase flips during the second swap test, on the other
hand, act the same way as before, resulting in a constant
factor 1 − 2p2 multiplying the overlap witness �(ϕ) → (1 −
2p2)�(ϕ). From these probabilities, one can also obtain an
analytical expression for the classical Fisher information; we
do not reproduce it here as it is long and provides no insight.

FIG. 10. Swap-test interferometry with controlled beam splitters.
(a) Overlap witness �(ϕ) for controlled beam splitter (BS, solid blue
line) and controlled swap (dashed orange line) for coherent state with
α = 5 and the vacuum. (b) Classical Fisher information Fα,0

C corre-
sponding to the curves in (a). (c) Maximum of the classical Fisher
information over phase plotted against the mean photon number
n = α2. The dotted green line shows the quantum Fisher information.

APPENDIX B: CONTROLLED BEAM SPLITTER
WITH COHERENT STATES

In the mean-field approximation (where we replace the
operators for the cat qubit with their classical value 〈c〉 =
〈c†〉 = ±β ∈ R), the ideal controlled-phase beam-splitter
Hamiltonian (29) becomes

H± = ±iζ1β(a†b − b†a). (B1)

This Hamiltonian describes beam-splitter coupling between
the two cavity modes at a rate ζ1β. These transformations are
described by the unitaries

U+ = U †
− =

(
t r

−r t

)
, (B2a)

t = cos(ζ1βτ ), (B2b)

r = sin(ζ1βτ ), (B2c)

where τ is the duration of the interaction. The transformation
of the fields is described by (a,b)T → U±(a, b)T .

The CPBS interaction can be used to implement a
controlled-swap gate using the circuit in Fig. 9. A balanced
CPBS gate (i.e., a gate with t = r = 1/

√
2) is preceded (or,

equivalently, followed) by a deterministic beam splitter that
applies the unitary U−. When the cat qubit is in the logical
state |0L〉 = |β〉, the two gates cancel each other since U+ =
U †

− and the joint state of the fields is unchanged. When, on the
other hand, the cat starts from the logical state |1L〉 = | − β〉,
the two gates add up and perform a full swap of the two
fields. The final controlled-phase gate (a π shift of the first
mode) compensates the relative phase that the field acquires
during the beam-splitter transformation. The circuit thus
implements the unitary Ucswap = |0L〉〈0L| ⊗ I + |1L〉〈1L| ⊗ S,
where I is the identity and

S =
(

0 1
1 0

)
(B3)

is the swap unitary.
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In an experiment, the conditional phase gate can be omitted
with little to no penalty in terms of sensitivity. For a cavity
mode with a specific photon number n, the phase associated
with the beam splitter gives a total phase (−1)n, which is
irrelevant for states with an even photon number. For coherent
states in the two cavities (we consider the case α1 = α ∈ R,
α2 = 0 since it is the optimal scenario), a straightforward
calculation reveals the modified overlap witness

�(ϕ) = −1 − cosh(α2 cos ϕ) cos(α2 sin ϕ)

1 − exp(α2)
(B4)

which we compare with the ideal case of Eq. (20) in
Fig. 10(a). The overlap witness now oscillates only be-
tween ± 1

2 due to the negligible overlap between the cavity
states | ± α〉 for large α; this additional phase shift also
leads to the oscillations reappearing around ϕ = π (not
shown in the plot). Despite this modified behavior, the quan-
tum Fisher information Fα,0

Q remains unchanged when the
controlled-swap gate is replaced by a controlled beam split-
ter, allowing, in principle, the same Heisenberg-limited phase
sensitivity as with controlled-swap gates. The classical Fisher
information

Fα,0
C (ϕ) = α4[cosh(α2 cos ϕ) sin(α2 sin ϕ) cos ϕ + sinh(α2 cos ϕ) cos(α2 sin ϕ) sin ϕ]2

[eα2 − cosh(α2 cos ϕ) cos(α2 sin ϕ)][−2 + eα2 + cosh(α2 cos ϕ) cos(α2 sin ϕ)]
(B5)

is, however, reduced as can be seen in Fig. 10(b) which
shows that the maximum Fisher information shifts from ϕ = 0
which we had with ideal controlled-swap gates. This maxi-
mum is reduced but still keeps the quadratic scaling in the
photon number as shown in Fig. 10(c). If one is satisfied with
the overall scaling of the Fisher information, it is therefore
not necessary to implement the controlled-parity operation
(which could be difficult to implement) and the CPBS gate is
sufficient.

For experimental implementation with coherent states, a
further simplification is possible by omitting the deterministic
beam-splitter gates. Since coherent states are transformed by
linear beam splitters onto coherent states, one can start with

modified initial cavity states(
α̃1

α̃2

)
= U−

(
α1

α2

)
= 1√

2

(
α1 − α2

α1 + α2

)
(B6)

instead of applying the first deterministic beam splitter on
the cavity states α1,2. The deterministic beam splitter of the
second swap test can be applied after the controlled-phase
beam splitter; since we are interested only in the statistics
of the qubit measurement (which are unaffected by the beam
splitter), the deterministic beam splitter is irrelevant; with
coherent states, the simplified interferometer that is shown in
Fig. 9(b) can therefore be used.
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[42] R. Stárek, M. Mičuda, M. Miková, I. Straka, M. Dušek, P.
Marek, M. Ježek, R. Filip, and J. Fiurášek, Nondestructive de-
tector for exchange symmetry of photonic qubits, npj Quantum
Inf. 4, 35 (2018).

[43] Y. Y. Gao, B. J. Lester, K. Chou, L. Frunzio, M. H. Devoret,
L. Jiang, S. M. Girvin, and R. J. Schoelkopf, Entanglement
of bosonic modes through an engineered exchange interaction,
Nature (London) 566, 509 (2019).

[44] K. Zhang, J. Thompson, X. Zhang, Y. Shen, Y. Lu, S. Zhang, J.
Ma, V. Vedral, M. Gu, and K. Kim, Modular quantum compu-
tation in a trapped ion system, Nat. Commun. 10, 4692 (2019).

[45] H. C. J. Gan, G. Maslennikov, K.-W. Tseng, C. Nguyen, and
D. Matsukevich, Hybrid quantum computing with conditional
beam splitter gate in trapped ion system, Phys. Rev. Lett. 124,
170502 (2020).

[46] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.
Horodecki, and L. C. Kwek, Direct estimations of linear and
nonlinear functionals of a quantum state, Phys. Rev. Lett. 88,
217901 (2002).

[47] R. Filip, Overlap and entanglement-witness measurements,
Phys. Rev. A 65, 062320 (2002).

[48] C.-H. Nguyen, K.-W. Tseng, G. Maslennikov, H. C. J. Gan, and
D. Matsukevich, Experimental swap test of infinite dimensional
quantum states, arXiv:2103.10219.

[49] J. Carrasco, A. Elben, C. Kokail, B. Kraus, and P. Zoller, The-
oretical and experimental perspectives of quantum verification,
PRX Quantum 2, 010102 (2021).

[50] T. Macrì, A. Smerzi, and L. Pezzè, Loschmidt echo for quantum
metrology, Phys. Rev. A 94, 010102(R) (2016).

[51] H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for
interferometry, J. Mod. Opt. 49, 2325 (2002).

[52] R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V.
Albert, L. Frunzio, L. Jiang, and R. J. Schoelkopf, Cavity state
manipulation using photon-number selective phase gates, Phys.
Rev. Lett. 115, 137002 (2015).

[53] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.
Devoret, and R. J. Schoelkopf, Implementing a universal gate

033074-13

https://doi.org/10.1103/PhysRevLett.123.153604
https://doi.org/10.1103/PhysRevLett.97.043602
https://doi.org/10.1103/PhysRevLett.119.193602
https://doi.org/10.1038/s41467-019-10576-4
https://doi.org/10.1103/PhysRevA.100.060301
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1103/PhysRevA.103.023705
https://doi.org/10.1103/PhysRevA.87.043833
https://doi.org/10.1103/PhysRevLett.89.247901
https://doi.org/10.1103/PhysRevLett.116.053601
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1103/PhysRevA.66.013804
https://doi.org/10.1103/PhysRevLett.74.4835
https://doi.org/10.1038/nature08919
https://doi.org/10.1103/PhysRevA.85.023815
https://doi.org/10.1038/ncomms4049
https://doi.org/10.1103/PhysRevLett.116.220502
https://doi.org/10.1103/PhysRevX.4.021045
https://doi.org/10.1126/sciadv.1501531
https://doi.org/10.1038/s41534-018-0087-x
https://doi.org/10.1038/s41586-019-0970-4
https://doi.org/10.1038/s41467-019-12643-2
https://doi.org/10.1103/PhysRevLett.124.170502
https://doi.org/10.1103/PhysRevLett.88.217901
https://doi.org/10.1103/PhysRevA.65.062320
https://arxiv.org/abs/2103.10219
https://doi.org/10.1103/PRXQuantum.2.010102
https://doi.org/10.1103/PhysRevA.94.010102
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1103/PhysRevLett.115.137002
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