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Simple bacterial growth model for the formation of spontaneous and triggered
dormant subpopulations
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Bacterial persistence is a phenomenon where a subpopulation of cells can survive antibiotic treatment, and
it is often linked to extremely slow growth or a dormant state. However, the mechanisms and factors that
govern dormancy are not well understood. We propose a simplified growth model that treats the main cellular
components as discrete variables and allocates resources among them according to different strategies. The
model can reproduce some of the observed features of bacterial persistence, such as wide distribution in division
times, long division times after a nutrient downshift, and the existence of different dormant phenotypes. We
also show how the growth structure, i.e., whether cells grow in a lineage or a branch, affects the dormant
cells’ occurrence and distribution due to the growth states’ mother-daughter correlation. Our model provides
a framework to explore the complex interactions between cellular processes and environmental conditions that
lead to bacterial persistence.
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I. INTRODUCTION

When a lethal amount of antibiotic is applied to a bac-
terial population, the majority is killed exponentially over
time [1,2]. However, there is almost always a minority of
cells in the antibiotic-sensitive population that dies at slower
rates [3–6]. These cells are generally referred to as bacterial
persisters [7]. The persisters seem to play a key role in chronic
infections by surviving antibiotic treatments and later giving
rise to new infections [8]. In addition, persistent cells were
linked to the rise of resistant cells [9]. Despite the massive
impact on human health and the discovery of this cellular
state more than 70 years ago [3], the molecular mechanism
of persister formation is not yet fully understood. Bacterial
persistence appears to be a complex phenomenon that involves
various timescales [6], and thus it is likely that the bacterial
persister population is composed of multiple different subpop-
ulations.

Bacterial persistence is often associated with slow or non-
growing cells. In fact, since the discovery of persister cells,
they have been linked to dormancy [4,10–12]. A naïve inter-
pretation of the link is that most types of antibiotics target
cellular growth processes, hence they are not lethal for dor-
mant cells. With this interpretation, the killing curve reflects
the distribution of dormancy duration [13], i.e., if a bacterium

*Present address: Department of Biomedical Sciences, University
of Copenhagen.

†Contact author: mitarai@nbi.ku.dk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

resumes growing under antibiotic application, it will be killed.
Given the association between dormancy and persistence,
understanding the cell-to-cell distribution of doubling times,
including the formation of extremely slow-growing cells in
a faster-growing population, could help understand bacterial
persistence.

Doubling time, or interdivision time, distributions have
been shown to have functional forms close to a Gaussian or a
gamma distribution [14–16]. Those distributions have similar
shapes close to the mean but differ in the tails. However, the
tails of the interdivision time distribution are difficult to de-
termine experimentally due to the necessity of large statistics.
Yet, it should be noted that the tails from both a Gaussian and
a gamma distribution predict a decay equal to or faster than an
exponential. In contrast, the killing curves of the persister pop-
ulation suggest that the tail of the doubling time distribution
decays slower than the single exponential extrapolated from
the majority of the population. This indicates that persistent
cells may represent subgroups in different physiological states
than the main population.

The molecular mechanisms of bacterial persistence are not
understood yet, but it is very likely that there are multiple
different mechanisms. Some of the mechanisms are linked
to specific sets of genes, such as stochastic activation of a
toxin-antitoxin system [17] and unequal expression of efflux
pumps [18]; some of them may not even be linked to slow
growth or dormancy [19,20].

However, other proposed persistence mechanisms could
potentially be understood from simple growth principles.
Radzikowski et al. hypothesized that persisters enter a state
of dormancy due to collapses in the central metabolism, lead-
ing to a state of low intracellular nutrient levels [21]. The
assumption is that a positive feedback loop in the metabolic
network can lead to some cells entering a dormant state and
thus surviving antibiotics. Another study has demonstrated
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how dormancy could arise as physiological states from the
kinetics of the bacterial metabolic network [22]. In addition, it
was previously demonstrated that a clonal population of bac-
teria can exhibit switch behavior in nutrient uptake [23,24].
Several studies link low ATP levels to bacterial persistence
[12], which could support the idea of collapses in the central
metabolism and growth deficiencies in general.

Such a view on persistence may also enable us to under-
stand the spontaneous persistence in the steady-state growth
and the triggered persistence when cells are exposed to exter-
nal stress such as starvation [7] in a coherent manner. One
possible scenario is that the spontaneous persisters are the
cells that experience the collapse of the growth process by
inherent fluctuations in the biochemical processes, and the
transient stress pushes the growth process closer to collapse,
triggering more cells to enter dormancy that cannot be imme-
diately recovered when the stressor is gone.

To understand the possible origins of heavy tails in sur-
vival time distributions, we propose a growth model based on
general growth principles of bacterial physiology in a manner
inspired by recent approaches to coarse-grained growth mod-
els [25,26]. A bacterial genome is remarkably optimized for
growth across varying conditions, where the cell must allo-
cate resources among protein synthesis, cell division, energy
production, amino acids synthesis, nucleotides, and so forth.
The allocation problem is solved in a noisy environment, with
both intrinsic and extrinsic sources of noise [27], leading to
heterogeneity in a clonal population. We construct a simple
growth model that phenomenologically takes into account the
resource allocation and the noise. We aim to demonstrate
how these growth principles could lead to extremely long
doubling times in both steady-state growth and under external
temporal stress. We then discuss the relation between our
findings and the experimental results, especially our recent
experiment on spontaneous and triggered persistence in a
controlled environment [6], to provide a base for future the-
oretical considerations on bacterial growth heterogeneity and
persister formation.

II. THE MODEL

A. Stochastic growth model

We built a mathematical model for cellular growth and di-
vision based on simple principles illustrated in Fig. 1. The cell
imports nutrients and uses them for three different processes:
building translation machinery, facilitating the cell division,
and importing more nutrients. These sectors are represented
by the variables n (intracellular nutrient level), r (translation),
s (division), and m (nutrient uptake). The model is highly
coarse-grained, and each variable represents a sector of con-
tent, rather than specific proteins, inspired by previous models
of bacterial physiology [28,29].

The variable r resembles the number of ribosomes per
cell but generally refers to the translational machinery, which
was demonstrated to be concurrently regulated [29,30]. The
variable s refers to the cell division machinery. The bacterial
division is complex and results from the cooperation of sev-
eral proteins. In fact, the exact mechanism of cell division in
Escherichia coli is not known yet [31]. Inspired by a model of

FIG. 1. Illustration of a mathematical model showing the main
features of the regulatory network. The n0 quantifies the extracellular
nutrient concentration. The uptake of nutrients is dependent on m. All
variables, except for n, are dependent on the combination of n and r
for production. The production of r is regulated according to both the
level of r and n.

the adder principle [15], the variable s represents the general
division sector in our model, and once a sufficient amount
is allocated, the cell divides. The division limit is set by the
parameter s0, which is set to be an even number; just after
a division, each daughter cell gets s0/2 units of s, and the
next division happens after s0/2 units more of s are produced.
The variable m quantifies the cell’s ability to import and
metabolize exogenous nutrients. This coarse-grained variable
includes effects, e.g., in the case of E. coli, such as the nutrient
uptake by the passive diffusion through the outer membrane
channels and the active uptake by the phosphotransferase
system [32], as well as the biosynthesis of necessary amino
acids from imported nutrients. The intracellular nutrient level
n is also a coarse-grained variable representing the materi-
als needed to build all the necessary machinery for cellular
growth. The variables r, s, and m are all distributed equally to
the two daughter cells when the cell divides. The variable n
decays both by consumption and cell division.

The model is implemented as a stochastic process using
the Gillespie algorithm [33] with the rates shown in Table I
combined with a jump process for cell division: Every time
the variable s reaches the threshold s0, the cell divides and two
new cells are produced with half the cellular content in each (if
the content is an odd number, the content is randomly divided
such that one cell gets one more unit than the other cell).
All variables are discrete and refer to the integer number of
content per cell. However, due to the coarse-grained nature of

TABLE I. The mathematical model implemented as a Gillespie
simulation. For each event, there is a given rate. The functional forms
are Q = r

n+r+kQ
and T = nr

n+r+kT
.

Event Variable update Rates

1. Nutrient uptake n → n + 1 ξ + n0m
2. r production n → n − 1, r → r + 1 εn + ω(1 − Q) · T
3. s production n → n − 1, s → s + 1 (1 − φ)QT
4. m production n → n − 1, m → m + 1 φQT
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FIG. 2. Growth-law tendencies reproduced by the growth model. (a) The growth rate increases with the extracellular nutrient concentration
to saturate at the maximum growth rate. (b) Both the cell size and the ribosome level per cell (r) increase with the growth rate.

the model, they do not represent the number of molecules per
cell. Rather, they are the units that are collectively needed to
perform the task, and also their number determines the noise
level in our simulation.

The content of each cell in the growing population is simu-
lated explicitly to analyze the cell-to-cell variability of growth
rates and their possible mechanistic origins. This is in contrast
to the growth models where cellular content is either modeled
as the time evolution of the probability density for cellular
content [26] or simply the population mean [25]. It is worth
mentioning that a stochastic version of a model that consid-
ered cellular content at a single-cell level was analyzed in one
work [34] to obtain the growth rate and size distribution in an
exponentially growing population, focusing on the behavior
around the major peak of the distribution. Here, we focus on
a larger noise level that produces dormant subpopulations at a
detectable level.

The functional dependence of the rates on the variables is
kept as simple as possible, as seen in Table I. The nutrient
uptake depends linearly on the variable m, plus a very small
constant influx ξ of nutrients. Here, ξ represents the influx
of building blocks without the help of explicit metabolic pro-
teins. The translational capacity is given by the function T =

nr
(n+r+kT ) , corresponding to the cell’s ability to make either r,
s, or m per unit of time. The numerator of T is the product of
n and r because the translational capacity depends on both the
translational machinery and energy/nutrients.

Because of the coarse-grained nature of the model, the cor-
respondence between the simulation units and the real units
can be inferred only through the resulting behavior. As we
see in Fig. 2(a), the fastest growth rate with the saturating
amount of nutrients is 1 for the default parameter sets. Then,
for example, for E. coli, the maximum doubling time is about
20 minutes, making the simulation time unit to be about 0.5
hours. The conversion is harder for the concentration unit
because one unit of different variables is likely to correspond
to different protein mass.

Resource allocation is the core feature of the model. There
are different ways to model resource allocation; for exam-
ple, Erickson et al. [35] use fluxes of nutrients/metabolic
molecules and their balances to determine the resource alloca-
tion, instead of explicitly modeling the nutrient concentration
in a cell. However, inspired by other works [25,26], we as-
sume that the allocation is explicitly dependent on the amount

of nutrient available in the cell, governed by a dimensionless
function Q = r

n+r+kQ
. Q determines the allocation between

ribosome production and the other sectors. The low/high
value of Q represents the state where a large/small amount
of resources is currently allocated for the translational ma-
chinery compared to the nutrient availability. At high nutrient
availability, the majority of resources should be directed to-
ward ribosome production to keep a high translation rate. At
low nutrient levels, the resources should be directed more
toward other sectors which include nutrient transporters and
the division-associated sector. This consideration led to the
model where the fraction (1 − Q) of the translational capacity
T is devoted to the production of r and the fraction Q is
devoted to the production of s and m.

Further allocation between the metabolic sector m and the
division associated sector s is quantified by a constant param-
eter φ. The production rate of the r sector can be different
from that of the s and m sectors, which is parameterized by ω.
ω characterizes the difference between one unit of ribosomal
sector and one unit of other sectors: If one unit of ribosomal
sector protein is twice as large in terms of molecular weight,
it will take on average twice as long to make one unit com-
pared to making one unit of the other. Since our model is
very coarse-grained, we do not have a concrete number for
ω. Therefore, we test different values of ω in the following
simulation. Finally, to prevent complete growth stalling when
r = 0, we allow r to be produced with a rate εn, where ε

is a small parameter. The proportionality to n is because the
production of r consumes nutrient n.

The total set of parameters in this model is
n0, kT , kQ, φ, ω, ε, ξ , and s0. The parameter n0 quantifies
the extracellular nutrient concentration and represents the
uptake per unit time per unit transporter. The parameter
kT represents a scale of saturation for translation. For all
simulations, this value is set equal to kT = 10. The parameter
kQ is there to avoid the collapse of the function Q when
r = n = 0 and chosen to be 10−9. The parameter φ represents
an allocation between energy and division, whereas ω

determines the maximal production rate of ribosomes. We
set φ = 0.5 and ω = 1.0 unless otherwise mentioned. The
parameter s0 corresponds to the ‘Division control parameter’
in the work of Sharma et al. [25], but works here at the
single-cell level. A cell divides when the variable s reaches
the threshold s0. At a division event, two new cells are
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produced, and the content is distributed equally to each cell.
If the content of the mother cell is an uneven number, one cell
gets an extra unit of this value by a random event.

It is important to note that the noise level is regulated by the
parameter s0 in the current model, since s0 affects the mean
level of all the cellular components. The lower the value of
s0, the lower the value of all components. It was previously
demonstrated that for cell-to-cell protein distributions, the
coefficient of variation decreases as the mean protein number
increases [36]. In reality, noise crucial to the growth dynamics
is affected by the fluctuations of various limiting factors and
the amplification of small noise by nonlinear dynamics in the
complex cell growth process. Instead of modeling complex
noise sources, we choose the value of s0 so that the noise
level is high enough to observe dormancy within the available
computational time, and we focus on the qualitative features
of the dormant cells’ appearance. Hence, the value is fixed at
s0 = 10 for the main text. Changing this value is also explored
further in Supplemental Fig. S1.

The model inherently contains the possibility of slowly
growing states. If ξ = ε = 0, m = n = 0 is an absorbing state
where no further reaction is possible. r = 0 will also be a
no-growth state, as the cell is incapable of making m, r,
or s anymore, although nutrients will keep accumulating if
m > 0. Hence, m = r = 0 is another complete absorbing state
where no growth or accumulation of nutrients is possible. The
nonzero values of ξ and ε make these states transient dormant
states instead of inescapable nongrowing states.

In reality, it is likely that the exit process is not a simple
constant rate process but complex dynamics that give nontriv-
ial exit time distributions [22,37]. However, because how the
cell exits dormant processes is fairly understudied compared
to the exponential growth process, we chose to model it in the
simplest possible way so that it is easy to see the effect of
these parameters. Therefore, the focus of the current model is
to qualitatively analyze the possible entry to the dormant state
based on the simplified growth dynamics and not the recovery
from the dormant state.

The two exit rates, ξ and εn, affect the statistics of the dor-
mant subpopulations but do not affect the qualitative results as
long as the values of ξ and ε are small enough. In the current
simulation, their values are fixed at ξ = 10−3 and ε = 10−6.

Dormant states are expected as long as the probability for
entering either r = 0 or m = n = 0 is practically nonzero
within the scope of the simulations. In the following, we refer
to three different dormant states: the m-dormant (m = n = 0),
the r-dormant (r = 0), and the mr-dormant (m = r = 0).

B. Population growth

The model presented here describes the time evolution of
cellular content in a single cell and the cell division process.
We need to choose a sampling method to generate a popu-
lation of growing cells from the model. A simple choice is
to follow a single lineage of cells by keeping only one of
the two cells at cell division [25,26,38], and it corresponds
to the experimental setup where a lineage is followed in
a mother machine [38,39]. Another choice is generating a
branching process of dividing cells and following cells in all
the branches in parallel, corresponding to bacterial growth in

a flask. Here, we call the former lineage growth and the latter
branch growth.

These two growth structures are known to result in different
distributions of doubling times [14,16,38,40]. The difference
between a lineage growth and a branching process becomes
pronounced when the formation of a dormant cell is posi-
tively correlated with its ancestor cell slowly dividing: In a
lineage growth, a slowly growing cell will eventually divide
to produce a dormant progeny, but in a batch culture, the
growing population takes over the statistics exponentially fast
before the division of a slowly growing cell. For interested
readers, the comparison of different sampling methods for the
population with growth heterogeneity is thoroughly studied
by Roy and Klumpp [38].

In the following, most simulations were done with lineage
growth unless otherwise noted. Data used for analyses were
collected after 1000 cell divisions from the initial cell, and
up to 106 to 107 cell divisions, and multiple simulations
were done for each condition. In lineage growth, the growth
rate was determined from the mean interdivision time. As
will be shown in the results, our model produces a dormancy
state, which is dependent on the status of the ancestor cell.
Therefore, we also analyze the branching process to demon-
strate the difference between the two statistics. When we
simulate a branching process, first we perform lineage growth
for 104 divisions, then the branching process is simulated for
a fixed period of time (20 times the mean lineage interdivision
time). The last state was then used for analyses. The growth
rate was determined by repeatedly growing a population of
cells from one cell to N cells, within a fixed time interval
�T . The growth rate from one simulation was determined as
log(N )/�T, and the mean of these values was then found.

III. RESULTS

A. Model mean behavior follows established growth laws

We aim to capture the basic trends of bacterial growth
physiology in the current simple model. We first compare the
population mean values with established growth laws to check
this.

Figure 2(a) shows that the growth rate increases and sat-
urates as a function of the external nutrient concentration n0.
This is consistent with the Monod growth law, i.e., the growth
rate increases with the exogenous sugar concentration for E.
coli with a hyperbolic relationship [41].

Figure 2(b) depicts the growth rate dependence of the mean
cellular value of r (blue circles) and the sum of protein-
like sectors r + s + m (orange circles), where the latter can
be interpreted as cell size in the current simple model.
The growth rate is controlled by changing n0 [Fig. 2(a)].
We see that both quantities are increasing with the mean
growth rate. On the fast growth rate (faster than 0.7), the
trend can be approximated as one exponential, and in the
middle growth rate (between 0.3 and 0.7), it appears to be
exponential dependence with another scale. Experimentally,
it has been shown by Schaechter et al. [42] that as cells grow
faster by change of the carbon source, their mean ribosome
content and the cell size increases exponentially with the
growth rate in the range of growth rate 0.4 to 2/hour. Our
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FIG. 3. The interdivision time distributions for three values of φ. The fast-growing population (∅) and three dormancy types (M, R, and
MR). The black solid line shows the overall interdivision time distribution. The occurrence of the dormant types strongly depends on the
parameter φ. The value of n0 was fixed to 1.0.

model follows this trend in a limited range of the external nu-
trient concentration n0. It is worth noting that our model does
not consider DNA replication explicitly, whereas Schaechter–
Maaløe–Kjeldgaard growth law is normally associated with
the DNA replication and cell growth coupling [43].

Another well-known growth law is that the fraction of
ribosomal protein mass in the total protein mass increases
linearly with the growth rate [28,42]. It is worth mentioning
that the previously proposed simple growth models required
somewhat complex feedback control to reproduce the riboso-
mal growth law [25,44]. Because our simple model ignores a
large part of the essential proteome, e.g., those that contribute
to the cell wall production, the ribosome fraction increases in
the model but does not show linear dependence. For interested
readers, r/(r + s + m) is plotted as a function of the growth
rate in a Supplemental Fig. S2.

B. Formation of a dormant subpopulation

Cells with extremely long doubling times form occasion-
ally during growth along a lineage. This is shown in Fig. 3,
where the doubling time distributions for various values of
φ is presented. The blue distributions show the doubling
time of cells that did not enter any dormant states. The yel-
low, green, and red distributions show the m-dormant state
(m = 0, r �= 0), the r-dormant state (r = 0, m �= 0), and the
mr-dormant state (m = r = 0), respectively. Each dormant
state has a significantly longer mean doubling time than the
nondormant case (blue distribution). We see that the dormant
state is more frequent for a lower value of φ [Figs. 3(a) and
3(b)]: For values of φ above approximately 0.6 [Fig. 3(c)],
we did not observe any dormant state within the simulated
duration. This depicts the importance of m-sector proteins
for dormancy since higher φ means the allocation of more
resources to the m-sector proteins. To further understand the
role of resource allocation in the formation of dormant cells,
we plot the mean value of m, r, or n for various values of φ and
ω in Figs. 4(a), 4(b), and 4(c), respectively. The parameter φ

determines the resource allocation between m (nutrient avail-
ability) and s (cell division), whereas the parameter ω controls
the efficiency of nutrients converted to r proteins. The effect
of these parameters on the m-, r-, and mr-dormant states as
well as the mean growth rate are also shown in Figs. 4(d),

4(e), 4(f), and 4(g), respectively. It is worth noting that the
frequencies of dormant states do not simply anticorrelate with
the mean growth rate [Fig. 4(g)]. This is demonstrated further
in Supplemental Fig. S3, showing the dormancy dependence
on the population-level growth rate.

Increasing φ increases the mean value of m [Fig. 4(a)]
and hence lowers the chance to enter the m-dormant states
[Fig. 4(d)] due to a smaller probability of reaching m = 0.
While the mean m level is independent of ω, we see a weak
dependence of the m-dormant probability on ω. This is be-
cause low ω results in less r-proteins [Fig. 4(b)], hence slower
consumption of the nutrients. This enables a cell to store
energy (higher n) for low values of ω [Fig. 4(c)], reducing
the probability to reach n = 0 which is also required for the
m-dormant state.

The mean value of r increases with φ and ω [Fig. 4(b)].
Since the probability to reach r = 0 anticorrelates with the
mean value of r, we naturally observe the opposite trend in
the frequency of r- and mr-dormant states [Figs. 4(e) and
4(f)]. We observe that mr-dormant states are in general rarer
than the m-dormant state and occur in a more limited part
of the parameter space [Figs. 4(e) and 4(f), respectively]. In
the next subsection, we show that the r- and mr-dormant
states are preceded by the m-dormant state, which explains the
reason the parameter region with higher levels of r- and mr-
dormancy are a subset of the parameter region with frequent
m-dormancy.

C. Interdependency of dormant states leads to a higher
frequency of dormancy during lineage growth compared

to branch growth

The statistics presented so far were based on lineage
growth. When we compared the frequency of dormant cells
in lineage growth with the frequency in branch growth, we
found a significant reduction in the branch growth [Fig. 5(a)].
Noticeably, the r- and mr-dormant cells do not form during
branch growth for this specific set of parameters within the
simulation (the bars with hatch show the detection limit due
to the sample size). The explanation for this difference is
that there are mother-daughter correlations in the formation
of dormant cells spanning several generations. Once a cell has
entered a dormant state, the probability for the offspring to
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FIG. 4. The dependence on resource allocation parameters φ and ω. (a) Mean value of m. (b) Mean value of r. (c) Mean value of n. (d)
m-Dormant state frequency. (e) r-Dormant frequency. (f) mr-Dormant frequency. (g) Mean growth rate. n0 = 1 was used.

FIG. 5. (a) Dormancy probability in the lineage growth (blue)
and the branch growth (orange). The orange bars with hatch show
the detection limit due to the sample size. (b-d) The time-averaged
population mean of cellar content before, during, and after a (b)
m-dormant, (c) r-dormant, or (d) mr-dormant state along an lineage.
Each number corresponds to the cell number before and after entry
into dormancy, illustrating the necessity of m-dormancy in ancestry
cells before entry into mr-dormancy. The yellow line is the interdivi-
sion time �t . For this simulation, φ = 0.3 was used.

be dormant is strongly increased (see Supplemental Fig. S1).
In other words, if we follow a lineage, once a dormant state
is observed, several generations of dormant states are likely
to be observed. In contrast, in a branch growth, nondormant
cells take over the population before a dormant cell produces
another cell that enters the dormancy.

To understand the correlation better, the mean content of
cells leading up to and following a dormant state is depicted
in Figs. 5(b)–5(d) averaged over an ensemble of lineages. The
cell assigned the number 0 is either m-, r-, or mr-dormant,
respectively. The m-dormant state formation is least depen-
dent on previous states, as seen in Fig. 5(b), in contrast to the
other dormant states which are preceded by the m-dormant
state (m = n = 0).

The formation of an mr-dormant state requires a few gen-
erations to form [Fig. 5(d)]. We observe that the cell keeps
dividing but at a slower rate when the nutrient starts limiting,
indicating that the cell will keep producing s instead of m.
As a consequence, r is kept distributed upon cell division to
eventually hit r = 0. Thus, the probability for this to happen
is an increasing function of 1 − φ, since 1 − φ is the rate to
produce s. This is consistent with the observation in Fig. 4(f).

Figure 5(c) shows that the m-dormant state precedes the
r-dormant state, but it enters the r-dormant state if the cell
manages to produce m while r is distributed to be zero by cell
division. Since m is nonzero, nutrient n can accumulate while
the cell awaits the production of r. Furthermore, the resource
will be fully allocated to r-production due to the functional
form of Q. Hence, the cell just after the exit from r-dormancy
can overshoot in the level of r and n.
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FIG. 6. The effect of a transient downshift on m-dormancy formation. The fraction, given by f = Pds/Pcontrol, of dormant cells with and
without a downshift is plotted as a function of the mean nutrient level in the cells (a) or the growth rate before downshift (b). The color of the
symbols represents the value of the φ, and the shape of the symbols represents the value of ω. Different values of n0 were simulated for each
parameter set to obtain different mean n values and growth rates.

D. Nutritional downshift leads to a higher frequency
of dormant cells in a manner dependent on the growth

structure and allocation strategy

Next, motivated by the recent experiment on spontaneous
and triggered persistence [6], we analyze the effect of a
sudden nutritional downshift to the dormancy in our growth
model. We model the transient nutritional downshift by setting
n0 = 0 for a certain time interval and then returning the pa-
rameter to its original value. Here, the downshift lasts 10 units
of time, which is well below the interdivision times of dormant
cells and at the same time well above fast-growing cells’
interdivision time. The aim is to investigate how a downshift
affects the statistics of dormant cell formation and to deter-
mine how this effect is dependent on the model parameters.

We observed that the downshift strongly enhances the m-
dormant fraction, but the effect is dependent on the parameter
values. This is summarized in Fig. 6, where the fraction of
m-dormant cells observed just after a downshift end (Pds)
relative to the fraction of m-dormant cells without a downshift
(Pcontrol), f = Pds

Pcontrol
, is plotted in the vertical axis. The down-

shift effect is very dependent on the mean level of n in the
cells before the downshift, as seen in Fig. 6(a). The downshift
naturally leads to a lower level of n and consequently shuts
down the cell’s metabolism by reaching an n = 0 in some
cells. The effect of the downshift is dependent on how the cell
allocates its surplus of n before not being able to synthesize
new content. As seen in Fig. 6(a), there is a threshold in
mean n for the downshift effect, and the cell does not enter
dormancy if the mean n is too low before starvation. This is
because, to enter an m-dormant state, the cell should be able
to keep dividing to distribute m to reach zero. The observed
threshold value of n (about 15 units) is consistent with the
observation that it requires a few cell divisions to reduce m
enough, and it requires at least 5 units of n to divide once
since s0 is set to 10.

We have also observed that the downshift effect correlates
with the growth rate before downshift as shown in Fig. 6(b)
in an ω-dependent manner. This can be understood through
the mean n dependence presented in Fig. 6(a): Because ω

determines the efficiency of conversion from n to r, the lower

values of ω result in less r and hence more storage of n in
a cell [see also Figs. 4(b) and 4(c)] for a given growth rate.
Therefore, the cells with lower ω manage to divide more often
during the downshift, resulting in a higher frequency of the
dormant cells by reaching m = 0.

In nature, the bacteria are expected to experience cycles of
nutrient-rich and starvation conditions repeatedly [45,46]. We
therefore also tested how the fraction of dormant cells changes
when the nutrient availability n0 is between a positive constant
value and 0. We limited both the starvation and feast period to
10-time units (Supplemental Fig. S4). Similar to the starvation
pulse case of Fig. 6(a), a large difference with and without a
starvation period was observed only for a relatively rich feast
condition (n0 � 10), where the fraction of m-dormant cells
increased significantly.

IV. DISCUSSION

The simplified growth model presented here attempts to
explain a few observed features of bacterial persistence from
simple principles to possibly understand some of the many
factors at play rather than fully understanding the highly
complex phenomena of interdivision time distribution and
bacterial persistence. The proposed simple allocation model
managed to mimic some of the growth laws. By treating the
main contents of a cell as discrete variables, the model has
produced cell-to-cell variability in division times with distinct
dormant states. The occurrence of long division times was
shown to be perturbed by a transient downshift and the re-
source allocation strategy.

The model illustrated how a dormant subpopulation could
comprise various physiological types, such as a collapse in
translation or metabolism/energy production and how these
might be interconnected. In this model, a collapse in energy
production, i.e., hitting m = 0, was almost a necessity to reach
a collapse in the translation system (r = 0). The existence of
different classes of dormant states and their correlation is, in
principle, an experimentally testable prediction, although it
requires the development of single-cell experimental methods
that can tell which part of the growth process is corrupted.
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Consistent with existing literature [14,16,38,40], we ob-
served that the growth structure, i.e. lineage versus branch
growth, strongly affects the occurrence of the dormant phe-
notypes. Growth in the branch structure led to much fewer
cells in the dormant state. The effect was strong because,
in the current model, there was a strong correlation for a
slow-growing cell to produce another slow/dormant progeny.

Our model predicts the memory of dormancy, where the
appearance of the dormant cell is preceded by longer in-
terdivision time in the lineage [Figs. 5(b)–5(d)]. It is worth
noting that literature that studies bacterial aging points to the
existence of memory [47–49], although the mechanism has
been mostly attributed to the asymmetric division of damage
aggregates that stresses a cell [50], and they may also compete
against ribosomes for space [51]. Our current model assumed
equal cell division as much as possible, and we still observed
the dormancy because of the positive feedback. It is an inter-
esting extension of the current model to include the effect of
asymmetric division and damage aggregates.

Assuming that the dormant population is also a persister
population, this model provides qualitative explanations for a
few key results obtained in a previous experimental study on
bacterial persistence [6] as follows.

First, the model reproduced persistence as a growth-rate-
dependent phenomenon: There is a clear correlation that the
higher the growth rate, the lower the dormancy fraction.
The spontaneous persisters were below detection in the fast-
growing cells in a rich medium [52], but in an exponentially
growing population in a minimal media at an intermediate
growth rate, a significant number of persisters were observed
[6]. The simulations in this study suggest that the sponta-
neous persister only exists at high enough frequency at slower
growth rates, at least if a collapse in the central metabolism
forms these persisters. According to our model, this observed
growth rate dependence can be explained by the nutritional
and energy state of the cell being closer to a collapse at lower
growth rates. Here, it is worth mentioning that the growth rate
is not the sole determinant of the dormant cell frequency; how
close a cell is to a collapse depends also on which parameters
control the growth rate.

Second, it is worth discussing the downshift in the current
model and its relation to the experimental observation. In the
current model, downshift induces a higher level of dormant
cells for the intermediate to high growth rate condition, be-
cause the cells keep dividing even though the external nutrient
is suddenly depleted. In the case of E. coli, wild-type cells
would show stringent response in such a sudden downshift,
where the alarmone (p)ppGpp accumulates quickly [53,54].
(p)ppGpp then triggers the regulatory mechanism to halt the
growth to prepare the cell for starvation. Hence, the current
model may be more appropriate for (p)ppGpp-deficient, so-
called relaxed, mutants. In the work of Svenningsen et al.
[6], a mutant deficient in (p)ppGpp production (relA− strain)
was studied. It has been observed that the strain had a higher
general level of persisters in the steady state growth, but
upon the sudden downshift, it showed a factor of 10 to 100
more persisters for 2 to 7 hours after antibiotic applica-
tion, with more persisters for a higher growth rate. This is
qualitatively consistent with the current observation. It should
be noted that, in the longer time scale (a day or more after the

downshift), the downshift effect disappeared in these mutants
[6], indicating the possibility that the long-term persisters are
formed in a different mechanism.

The molecules (p)ppGpp are both involved in fine-tuning
of physiology during balanced growth but are also necessary
to elicit various stress responses during entry into a stationary
phase, which is a qualitatively different state than the balanced
growth state [53]. The model presented here does not consider
these types of explicit bacterial stress responses. However,
stress responses likely play a key role in physiology during a
downshift for the wild-type strain. It is known that wild-type
cells undergo reductive divisions during nutritional stress and
that these lead to a reduction in size. In this process, all DNA
replication will finish, and the cells will divide until there are
one or two chromosomes per cell [53,55]. Because faster-
growing cells contain more origins of replication, which leads
to more chromosomes when DNA replication is finished, they
experience more reductive divisions and hence have a bigger
probability of a key cellular component going below a certain
threshold that requires a significant amount of time to regrow.
We show in the Appendix how a simple model of reductive
division can predict a strong effect of a transient nutritional
downshift, as an alternative to the main model presented here.
The main prediction from the reductive division model is
that the persister fraction should increase with the downshift
period until it saturates at a level, where all cells had time to
go through the total number of possible reductive divisions.

Before concluding, we emphasize that our model is based
on the well-characterized phenomenology of medium- to fast-
growing bacteria to study how dormancy could appear in a
subpopulation. However, we did not take into account the in-
active ribosomes, ribosome degradation, and turnover, which
increase when nutrients are limited [56,57], and the degree of
increase depends on what is limiting, e.g., carbon source or
phosphate source [2,58]. We did not consider inactive ribo-
somes and turnover since their roles and regulations are un-
clear, but as better understanding becomes available, it will be
fruitful to extend the current model to take them into account.
Including ribosome degradation kinetics upon starvation will
be especially relevant to analyzing long-term starvation.

All in all, this study adds to a coarse-grained understand-
ing of fluctuations in bacterial physiology. Assuming that the
machinery central to metabolism, translation, and cell division
has a “threshold” below which the cell growth is strongly im-
paired, rare but distinct dormant states of a cell are expected.
Despite the simplicity, this model provides qualitative tenden-
cies consistent with the experimental observations, providing
a baseline to discuss dormancy and persistence occurring
without specific molecular mechanisms together with other
works looking for a robust and universal explanation of the
phenomenon [22,37,59].

The Supplemental Figs. S1–S4 is available at [60]. The
code used is available at [61].
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FIG. 7. Reductive division during a stress response. Since the
cells divide until they contain only one chromosome, they will also
distribute other cellular content without potentially producing too
much new protein.

APPENDIX: THE REDUCTIVE DIVISION MODEL

In the following, we present an alternative model, which
includes a stress response. We want to demonstrate that such
a model can arrive at qualitatively similar results as our main
model, but it also leads to differences in the model predictions.

The model is based on reductive division. When E. coli
is growing exponentially, the number of chromosomes is
positively correlated with its growth rate such that as the
population grows faster, the average cell will contain more
chromosomes. If they run out of some key nutritional com-
ponent, they will enter a stationary phase, and with that
comes a number of reductive divisions. The population does
not increase its biomass, but the cell number still increases,
meaning that cells are not growing but still dividing and
consequently reducing their size. Cells growing exponentially
can have more than six chromosomes per cell [30], which
means they will go through two to three divisions before they
reach one chromosome. The assumption is that these cells do
not produce new biomass, so their cellular content will be
divided between the new smaller cells, which would increase
the probability of some cells stochastically going below a
threshold. The model assumes a key protein x, where the lack
of it in a cell induces a persister state. This idea is illustrated
in Fig. 7.

At the starting point of the downshift, we assume that each
cell contains x proteins. This could be a random variable, but
let us for simplicity assume that this is the same value for
each cell. At each division, x is divided between the daughter
cells following a binomial distribution, with x1 being the value
in one cell and x − x1 in the other cell: x1 ∼ P(x1 | x) =( x

x1

)
0.5x1 (1 − 0.5)x−x1 . Now this process repeats a few times,

depending on the initial number of chromosomes per cell,
until the cells reach one chromosome. A binomial random
variable conditional on another binomial random variable is
itself a binomial random variable, with the probability for
one protein being in a specific cell p = 0.5σ , where sigma
is the number of divisions. Thus, we arrive at the probability
distribution for cellular content of xds after σ divisions:

P(xds | x) =
(

x

xds

)
0.5xdsσ (1 − 0.5σ )x−xds .

The number of divisions σ is approximated by the mean
number of origins per cell, which is given by 2tcyc/τ , where tcyc

is the mean genome replication time and τ is the interdivision

time. The cell then needs to divide log2 2tcyc/τ = tcyc/τ times
to reach one origin per cell. Thus, σ = tcyc/τ .

The probability to reach xds = 0 is given by P(0 | x) =(x
0

)
0.50(1 − 0.5σ )x = (1 − 0.5σ )x. If we then compare the

probability of reaching the zero state with and without the
downshift, it depends exponentially on the number of re-
ductive divisions and consequently on the initial number
of chromosomes, which is given approximately by σ ≈
log2(Nchromosomes). As an example, let us compare the differ-
ence between one and two reductive divisions, corresponding
to either two or four initial chromosomes:

P(0 | x, σ = 2)

P(0 | x, σ = 1)
= (1 − 0.52)x

(1 − 0.51)x
=

(
3

2

)x

.

As x increases from zero, this number increases exponentially.
The downshift thus has a much bigger effect on a population
of faster-growing cells compared to a population of slower-
growing cells.

It is not easy to determine the dynamics of this process.
There are several sources of noise, such as cell age, replication
time, and cell-to-cell variability of content. However, we can
expect the probability of entering a zero state to increase
rapidly in the initial part of the downshift and then saturate,
as all cells have gone through all the reductive divisions.

Given that cells perform more reductive divisions if they
contain a higher number of origins prior to the stringent
response, faster-growing cells, with more origins, will see a
bigger effect of a downshift than slower-growing cells, with
fewer origins per cell. This qualitatively explains the higher
fraction of dormant cells in the faster-growing population.
Next, we extend this consideration to analyze the time depen-
dence of the dormant fraction of the cells upon downshift.
Here, we assume a very simple model where the cells go
through reductive division following a Poisson process. We
further assume that the fraction of cells to have undergone the
first division increases with a rate λ, then the next division
happens with the same rate λ. This is illustrated for two
divisions in the following, where the index corresponds to the
number of divisions:

ḟ0 = −λ f0

ḟ1 = λ f0 − λ f1

ḟ2 = λ f1.

These equations have the following solution, with initial con-
dition f0 = 1 and f1 = f2 = 0:

f0 = exp(−λt )

f1 = λt exp(−λt )

f2 = 1 − exp(−λt )(1 + λt ).

Since these three variables sum to 1 at all times, they cor-
respond to fractions. Thus, they are the probability of a cell
having undergone zero, one, or two divisions following a
downshift. These fractions can now be used to describe the
probability of a cell reaching a zero-value state, assuming
that the initial value is x. The probability to reach a zero
state increases with the number of cell divisions, which means
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FIG. 8. (a) Probability of either zero, one, or two divisions. (b)
The probability of reaching a zero state, which in this model is as-
sumed to be dormancy. There is an initial increase in the probability,
as the cells start to divide, but the probability saturates, as the cells
enter the dormant state. λ = 0.1 and x = 50 were used in the plot.

that cells of the subpopulation f2 have a higher probability of
reaching zero than the f1 population. The f0 has no probability

to reach the zero-value state since the cell experiences no
division. In the preceding section, the probability of a zero
state was shown to be P(0 | n) = (1 − 0.5σ )x. Thus, the prob-
ability for a fraction of the population to reach zero can be
described as the product of each population fraction with their
corresponding probability of reaching the zero state:

P(0 | t, x) =
0︷ ︸︸ ︷

f0(t )P(0 | x, ndiv = 0)

+ f1(t )P(0 | x, ndiv = 1)

+ f2(t )P(0, x | ndiv = 2)

= λt exp(−λt )0.5x

+(1 − exp(−λt )(1 + λt ))0.75x.

The time course of this probability is shown in Fig. 8
with λ = 0.1. We observe a rapid initial increase followed by
saturation.
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