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Finding synchronization state of higher-order motif networks by dynamic learning
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Synchronization of action potentials is one of the important phenomena for neural networks to achieve
biological functions. How to find the optimal parameter space of neural networks in a synchronized state is
of great significance for studying their synchronization. This study explores the parameter space of triplet
motif-based higher-order networks in a synchronized state through the dynamic learning of synchronization
(DLS) technique, which dynamically modulates the connection weights between motifs to alter their firing
patterns. Our study delves into regular, Erdós-Rënyi random graphs, small-world, and scale-free networks,
emphasizing the high-order motif interactions that characterize these networks. Our key findings indicate that the
DLS technique successfully promotes synchronization within high-order motif networks with various connection
patterns, although the degree of synchronization in networks where motifs are interconnected by chemical
synapses is slightly weaker than those interconnected by electrical synapses. Additionally, we demonstrate the
pattern of weight changes during the regulation of network firing states by DLS, finding that the evolution of
weight distributions correlates with the network’s topological structure. This work might provide new insights
into complex network synchronization and lays the foundation for further exploration of using DLS technology
to synchronize higher-order networks through external factors.
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I. INTRODUCTION

Billions of neurons in the human brain are intercon-
nected through synapses, working together to form neural
networks with complex dynamics [1,2]. Synchronization is a
key phenomenon in the dynamic activities of neural networks,
characterized by the temporal coordination of firing states
among different neurons [3–5]. Through such dynamic be-
haviors, neurons can efficiently transmit information, thereby
facilitating cognitive processes and other functional opera-
tions [6–8]. Neurons can form specific connection patterns
known as motifs, with the motif composed of three neurons
being the most common type [9]. These motifs, as higher-
order structures, exhibit complex dynamic properties within
the network [10–12]. Synchronization within these motifs is
crucial [13–15]. The transitions in synchronization patterns
can enhance the influence of feedback mechanisms in the
nervous system. Research into motif synchronization not only
helps reveal fundamental brain mechanisms but also has pro-
found implications for treating neurological diseases (such
as epilepsy [16] and Parkinson’s disease [17]) and for de-
veloping bio-inspired computing [18,19]. Therefore, a deeper
exploration of synchronization phenomena in high-order
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motif networks can significantly improve our understanding
of the brain’s complex functions.

The local network of the brain cortex can be viewed as
a skeleton composed of stronger connections within a sea of
weaker ones [20]. This motif network structure is widely con-
sidered an essential tool for analyzing complex networks [21].
In motif networks, the factors influencing synchronization
have been extensively studied. Lizier et al. analyzed how the
connection patterns within motifs affect the overall network’s
synchrony, revealing that feed-forward and feedback loop
structures are key elements in regulating synchrony [22]. Ad-
ditionally, the stability of synchronization in motif networks is
closely related to the network topological structure, primarily
depending on two critical topological characteristics of the
network [23]. By adjusting the topology of the motif network,
synchronization states can be effectively (de)stabilized, thus
controlling the overall behavior of the network.

Although existing researches provide significant insights
into the synchrony of networks [24–26], they often rely on
prior experience and complex parameter adjustments [27,28].
This reliance limits the application of such research to broader
real-world scenarios, especially in rapidly changing environ-
ments. Consequently, two critical questions arise: Can the
optimal synchronization parameters for motif networks be
quickly identified without prior experience? And, can the net-
work quickly recover to a synchronized state after an external
attack? Here, “optimal synchronization parameters” refer to
those parameters that ensure the network can achieve and
maintain synchronization in a stable, efficient, and robust
manner. To address these issues, dynamic learning of syn-
chronization (DLS) technology has recently been proposed
[29]. This technique employs innovative strategies to capture
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the differences in membrane potentials across the network’s
nodes, dynamically adjusting network parameters. A recent
study has shown that DLS can also flexibly modulate exter-
nal stimuli through real-time monitoring of network status,
significantly enhancing the network’s ability to adapt to en-
vironmental changes and resist external disturbances [30].
Analyzing the effects of DLS technique in various application
scenarios [30,31], offers a fresh perspective on synchroniza-
tion research, contributing to a deeper understanding of the
mechanisms regulating synchronization in complex networks.

Compared to other complex networks, high-order motif
networks exhibit interactions both within and between motifs,
making their dynamic properties more complex and their syn-
chronization studies more challenging [32,33]. Parastesh et al.
analyzed the cost of synchronization in high-order networks,
finding that second-order interactions achieve synchronization
more easily than first-order interactions [34]. Additionally,
research on how high-order networks balance different types
of interactions has shown that as the interactions equitably
strengthen, so does the collective synchronization behavior of
the network [35]. However, studies on the impact of dynamic
conditions such as weight changes and noise fluctuations
between motifs on the synchronization of high-order motif
networks remain insufficient.

In order to explore the adaptive synchronization of high-
order networks, we construct a high-order network composed
of triplet motifs, using the Hodgkin-Huxley model [36] as
the base node. When the network state changes dynamically
or the network is attacked, DLS technology is applied to
modulate the weights between motifs. This allows for test-
ing the network’s potential to achieve synchronization in a
dynamic environment without prior experience. The study
also analyzes the pattern of weight changes between motifs
throughout the dynamic learning process. Discussing the reg-
ulatory effect of DLS technology on the synchronization of
high-order motif networks not only deepens the understanding
of synchronization mechanisms in high-order networks but
also provides new insights for achieving effective synchro-
nization control in similar networks.

The subsequent content of this study is organized as fol-
lows. Section II provides a detailed description of the setup
of triplet motif-based high-order network, the dynamic learn-
ing of synchronization technique, and the statistical measures
used. Section III tests the firing state of the high-order mo-
tif network through numerical simulation. Using measures
like the synchronization factor, we examine the dynamics of
higher-order networks under the influence of external factors
such as connection weights and noise fluctuations. Addition-
ally, we explore the changes in weight parameters during
synchronization modulation process. Section IV presents the
conclusions of this study.

II. MODEL AND METHOD

A. Higher-order motif network structure

We consider a high-order network of triplet neuron motifs
[37], each node in the network represents a motif composed of
three neurons, which is one of the most important structures
in the brain [20]. A schematic diagram of the network and

FIG. 1. Schematic representation of a higher-order motif net-
work and its neuronal components. Within the complex network,
each node is composed of a triplet of HH neurons, forming a basic
motif. In the motif, each black dot signifies an individual HH neuron.
Connections between neurons are illustrated by black arrows, and
all intramotif connections are directed. All neurons within this net-
worked motif are subject to the influence of an external stimulating
current. For simplicity, within each motif, Neuron 3 is designated as
the signal output unit to establish connections with neurons in other
motifs within the network.

motif connections is shown in Fig. 1. We discussed four types
of topological structures: fully connected (FC), Erdós-Rënyi
(ER) random graphs [38], small-world (SW) [39], and scale-
free (SF) [40] networks. The HH model was used to simulate
the membrane potential of each neuron node and the variation
of gating and other variables. The dynamics of a single neuron
takes the following form:

Cm
dVi

dt
= −I i

Na − I i
K − I i

L + I i
ext + I i

syn1
+ I i

syn2
+ ξi(t ),

I i
Na = gNam3

i hi(Vi − VNa),

I i
K = gKn4

i (Vi − VK),

I i
L = gL(Vi − VL), (1)

where Vi is the membrane potentials in ith motif of the
network, which include Vi1 , Vi2 , and Vi3 representing the mem-
brane potentials of node 1, node 2, and node 3 in the ith motif,
respectively. The subscript i (where i = 1, 2, . . . , N) indexes
the sequence of motif networks in the equations, with N being
the total number of motifs in the network. In the simulations,
N is set to 100. Cm is the membrane capacitance per unit area
of the neuron, fixed to 1 µF/cm2. The applied external current
was set to a normal distribution with center of distribution
Iext = 10 µA/cm2. Maximum conductance of ion channels
in the model are gK = 36 mS/cm2, gNa = 120 mS/cm2, and
gL = 0.3 mS/cm2. The reverse potential of each ion chan-
nel is: VK = −77 mV, VNa = 50 mV, and EL = −54.4 mV.
In contrast to the original paper, this study associated the
reversal potential with resting potential Vrest ≈ −65 mV. For
a more detailed explanation of these parameters, further in-
formation can be found in the original paper [1]. In the
higher-order motif network, each node is also subjected to
noise disturbances. In Eq. (1), ξi(t ) represents Gaussian white
noise, with statistical properties given by 〈ξi(t )〉 = 0, and the
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autocorrelation 〈ξi(t )ξi(t ′)〉 = 2Dδ(t − t ′), where δ(t ) is the
Dirac delta function, and D denotes the noise intensity.

ni, mi, and hi are the gating variables of ionic channels in
the model, which are represented as follows:

dxi

dt
= αxi (Vi )(1 − xi ) − βxi (Vi )xi, (x = n, m, h), (2)

where the αxi and βxi are the channel conversion rates, they
are described by:

αni = 0.01(Vi + 55)

1 − exp[−(Vi + 55)/10]
,

βni = 0.125exp(−(Vi + 65)/80),

αmi = 0.1(Vi + 40)

1 − exp[−(Vi + 40)/10]
,

βmi = 4exp(−(Vi + 65)/18),

αhi = 0.07exp(−(Vi + 65)/20),

βhi = 1

1 + exp[−(Vi + 35)/10]
. (3)

Regarding the connectivity within each motif of the net-
work, Fig. 1 illustrates that synaptic coupling directions are
represented by arrowheads; specifically, neuron 1 drives neu-
ron 2, which in turn, along with neuron 1, impacts neuron 3.
Neuron 3 is designated as the output neuron for each motif.
This designation simplifies the model by allowing the output
neuron 3 of each motif to form connections with neurons in
other motifs throughout the network. Synaptic connections
within the motifs are mediated via chemical synapses. In this
work, the modeling of chemical synaptic coupling is achieved
using the α function. The synaptic current received by neuron
i from within its own motif, denoted by Isyn1

, and α function
are mathematically represented as follows:

I i
syn1

=
∑

Gε(t − tpre)(Vsyn − Vi ),

α(t ) = t

τsyn
exp

(
− t

τsyn

)
�(t ), (4)

where G is the coupling strength. For simplicity, we assume
uniform coupling strengths within the motif. The connection
matrix ε signifies the connection type within the motif, as
illustrated in Fig. 1. Here, tpre represents the most recent firing
time of the presynaptic neuron in the motif before time t . Vsyn

stands for the synaptic reversal potential, set to 0 mV for all
neurons are considered as excitatory type in this study. �(t )
is the Heaviside function.

In the context of complex networks, connections between
neurons that are bridged by electrical and chemical synapses
across disparate motifs are considered separately. The corre-
sponding coupled currents are formulated as follows:

I i
syn2

=
N∑
j

δi jgi j (Vi ), (5)

where wi j is connectivity weight and δi j is the connection ma-
trix. The connection equation, denoted as gi j (∗), encompasses
both electrical synapse and chemical synapse. Specifically,

electrical synapse can be succinctly expressed as follows:

ge,i j = δi j (Vj − Vi ), (6)

and the modeling of chemical synaptic coupling also employs
the α function:

gsyn,i j = α(t − t j )(Vsyn − Vi ),

α(t ) = t

τsyn
exp

(
− t

τsyn

)
�(t ). (7)

B. Dynamic learning of synchronization technique

The dynamics of nonlinear systems characterized by cou-
pling behaviors can be effectively summarized using dynamic
expressions of representative nodes:

dVi

dt
= f (Vi ) +

N∑
j

wi jδi jgi j (Vi ), (8)

where f (Vi) is a function of the membrane potential Vi, rep-
resenting the individual dynamics of each neuron, and the
second term is from Eq. (4), corresponding to the synaptic
current between the motifs. The discrete form of Eq. (8) is
obtained by employing the Euler method:

V t+	t
i = V t

i + f
(
V t

i

)
	t +

N∑
j

wi jδi jgi j
(
V t

i

)
	t, (9)

where 	t is the time step in numerical simulation. Next, in
addition to the connectivity weight wi j , Eq. (10) is categorized
as follows:

xt
i0 = V t

i + f
(
V t

i

)
	t,

xt
i1 = δi1 gi1

(
V t

i

)
	t,

...

xt
in = δin gin

(
V t

i

)
	t . (10)

Express the aforementioned system of equations in matrix
form: xt

i = [xt
i1 , xt

i2 , . . . , xt
in ]T , and weight wi j could be rep-

resented by the similar way: wt
i = [wt

i1 ,w
t
i2 , . . . ,w

t
in ]T . Then

Eq. (9) can be rewritten as:

V t+	t
i = xt

i0 + wT
i × xt

i . (11)

In the self-adaptive DLS technique utilized in this research,
the contrast value V t+	t is ascertained by calculating the
mean membrane potential of all nodes within the network that
are subject to weight modifications throughout the learning
process [29].

V t+	t = 1

N

N∑
i

V t+	t
i . (12)

Incorporating Eq. (10), the collective set of these values across
all time steps is represented in matrix notation as:

V = [V t2 ,V t3 , . . . ,V tm+1]T ,

X m×n
i = [

xt1
i , xt2

i , . . . , xtm
i

]T
,

Xi0 = [
xt1

i0
, xt2

i0
, . . . , xtm

i0

]T
. (13)
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The objective in achieving synchronization of the ith node
with other nodes in the network is to minimize the squared
difference between the node’s value at the subsequent time
step, as predicted by Eq. (8), and a reference value. This
minimization process of the error can be expressed as:

E = arg min
1

2

tm∑
t=t1

(
wT

i × xt
i + xt

i0 − V tm+1

)2
. (14)

Then, combining the average contrast value V t+	t and xt
i0

time series of Yi could be shown in matrix form as follows:

Yi = V t+	t − xt
i0

= [
V t2 − xt1

i0
,V t3 − xt2

i0
, . . . ,V tm+1 − xtm

i0

]T
. (15)

Equation (14) could be rewritten as:

E = arg min 1
2 (Xiwi − Yi )

T (Xiwi − Yi ). (16)

Then, the gradient of the error (E ) with respect to the weights
(wi) is denoted as follows:

dE

dw
= X T

i (Xiwi − Yi ). (17)

As the error originates from the square of the difference,
according to the principles of the least-square method, the
optimal value is determined by minimizing the square of this
error. The optimal weight values are computed as:

wi = (
X T

i Xi
)−1

X T
i Yi. (18)

The subsequent step involves determining the optimal
weights wi predicated on the time series data of Xi and Yi.
The intricacies of the derivation are elaborated in our previ-
ous work [29], with the recursive formula for these optimal
weights given by:

w
tm+1
i = w

tm
i − ktm

i

((
xtm+1

i

)T
wi − Y tm+1

i

)
,

ktm
i = Ptm

i xtm+1
i

1 + (
xtm+1

i

)T
Ptm

i xtm+1
i

,

Ptm+1
i =

(
I − ktm

i

(
xtm+1

i

)T
)

Ptm
i , (19)

where ki denotes the learning rate of wi. According to
Eq. (19), we can dynamically update weights using the DLS
technique until the error value reaches a minimum, and the
network attains a stable state. In this algorithm formula,
xtm+1

i = [xtm+1
i1

, xtm+1
i2

, . . . , xtm+1
in

]T are coupled data generated
within a nonlinear system. wi = [wi1 ,wi2 , . . . ,win ]T repre-
sent the connection weights between the ith node and other
nodes requiring weight regulation in the nonlinear system.
The variable Y tm+1

i is designated as shown in Eq. (15).
The fundamental principle of the DLS technique revolves

around the continuous update of learnable parameters within a
coupled system. This update process utilizes values produced
by a nonlinear oscillator and their corresponding reference
values, establishing a recursive connection with preceding
values. Owing to the recursive characteristic of the parame-
ter updating mechanism, an initial value must be set at the
beginning of the iteration process. According to Eq. (19), the
initial value for the iterative variable Pi is typically chosen

as: Pt0
i = αI , in which I is the identity matrix and α is a

hyperparameter. In this study, α is set to 0.01 unless specified
otherwise.

Within the framework of the DLS technique, as outlined by
Eqs. (9) and (15), the dynamic representation of the nonlinear
system described in Eq. (1) is reformulated as follows to
facilitate weight modulation:

X tm+1
i = [

δi1 gi1

(
V tm+1

i

)
	t, . . . , δiN giN

(
V tm+1

i

)
	t

]T
,

Y tm+1
i = 1

n

∑
i

V tm+1
i

− [
V tm

i + (−INa − IK − IL + Iext + Isyn1
)	t/Cm

]
.

(20)

During numerical simulation, the objective of synchro-
nizing the complex system is accomplished by iteratively
adjusting the weights wi while continuously iterating over
X tm+1

i and Y tm+1
i .

C. Quantitative synchronization

Investigations into network synchronization highlight the
importance of quantifying synchronization levels within the
network for effective visualization. The principal measure
used for this purpose is the standard deviation (e) of mem-
brane potentials across all nodes, with a lower e signifying
greater synchronization among neurons. This study is par-
ticularly concentrated on applying the DLS technique to
modulate network weights, thereby aiming to improve net-
work synchrony. The effectiveness of this weight modulation
is monitored through the variation of e over time. The math-
ematical expression for the standard deviation of membrane
potentials is provided below:

e =

√√√√ 1

N

N∑
i=1

(
Vi − 1

N

N∑
i=1

Vi

)2

. (21)

Although the standard deviation of membrane po-
tentials across all nodes offers an initial gauge of
synchronization—where a smaller standard deviation implies
better synchronization—it falls short in accuracy and detail
for comprehensive analysis. To standardize the observation
of network synchronization more effectively, this study in-
troduces a concept from statistical physics known as the
synchronization factor R. Its mathematical expressed as:

R = 〈F 2〉 − 〈F 〉2

1
N

∑N
i=1(〈V 2

i 〉 − 〈Vi )2〉)
, F = 1

N

N∑
i=1

Vi. (22)

The computation of this factor accurately mirrors the
spatiotemporal synchronization state of neurons within the
network. By analyzing the synchronization factor under di-
verse conditions, an intuitive examination of the levels of
synchronization and the transitions therein across the network
is facilitated. In Eq. (8), Vi represents the membrane potential
as determined by Eq. (1). N denotes the total number of motifs
in the complex network. The symbol 〈∗〉 represents the aver-
age value of the variable throughout the computation process.
A synchronization factor R nearing 1 signifies a higher degree
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of synchronization, implying that the nodes are more closely
aligned in their activities. On the other hand, an R value
approaching 0 indicates poorer synchronization, indicating a
disparity in the nodes’ consistency. As a standardized statisti-
cal metric, the synchronization factor accurately measures the
extent of synchronization among nodes within the network.

III. RESULTS

In this section, we delve into the effects of dynamic
learning of synchronization (DLS) techniques on adjusting
weights to enhance the synchronicity of the higher-order mo-
tif network. The discussion also encompasses the intrinsic
mechanisms of external stimulation changes during the ad-
justment process, providing an in-depth exploration of these
complex dynamic processes. This study employs the Euler
forward algorithm to numerically solve the nonlinear dynamic
equations represented by Eqs. (1) and (8). When computing
Eq. (1), the integration step size 	t is set to 0.01. Addition-
ally, the constant external stimulation Iext for each node is
determined by Gaussian distributed values with a mean of
10 µA/cm2 and a standard deviation of 1.

A. Modulation by the DLS techniques among specific neurons
in the higher-order motif network

Initially, we examine a scenario in the higher-order motif
network where only individual nodes between each motif
are connected, utilizing the DLS technique to fine tune the
connection weights and investigating whether the network
can reach a state of synchronization after adjustment. For
the sake of clarity, all motifs are interconnected exclusively
through neuron 3, which is appointed as the output terminal,
to assess the efficacy of synchronization following the appli-
cation of the DLS technique. The initial connection weights
between output neurons are assigned randomly, with electrical
synapses weights ranging from −0.02 to 0.02.

Figure 2 illustrates the results of analyzing an ER ran-
dom graph structure with motifs interconnected by electrical
synaptic coupling. This setup is used to assess the effect of the
DLS technique. The ER random graph network is structured
with an average node degree in about 6. The simulation is
segmented into distinct phases: (i) initialization; (ii) training;
(iii) testing; succeeded by (iv) an attack phase—during which,
connections bearing weights exceeding 6 are disconnected to
provoke a loss of synchronization; (v) retraining; (vi) retest-
ing. These stages are repeatedly conducted 20 times, and
the average standard deviation of the membrane potentials
obtained from each simulation is presented in Fig. 2(a). The
firing raster diagram of the output neurons are plotted by
Figs. 2(b) and 2(c). To examine the firing dynamics of indi-
vidual neurons, Figs. 2(d) and 2(e) depict the time series of
membrane potentials of the output neurons corresponding to
the 20th and the 80th motif, respectively.

During the initialization phase, the standard deviation e
of the average membrane potential of the output neurons
across 20 simulations is within a relatively high range, indi-
cating a disordered firing state and nonsynchronous activity
among the output neurons. Upon the introduction of the DLS
technique at moment T1 to modulate the connection weights

FIG. 2. The efficacy of the DLS technique in the ER random
graph motif network with a connection probability of p = 0.06
is examined. The experimental process is divided into six phases:
(i) initialization; (ii) training; (iii) testing; (iv) attack connections
with weights exceeding 6 are disconnected to induce desynchro-
nization; (v) retraining; (vi) retesting. Key time points T1, T2, T3,
T4, and T5 are set at 200 ms, 400 ms, 500 ms, 700 ms, and 900 ms,
respectively. The simulation is repeated 20 times, and the standard
deviation of the membrane potentials from each simulation is aver-
aged to produce (a). (b) and (c) depict the firing raster during different
phases from one of the repetitions. (d) and (e) display the time series
of the membrane potentials for the output neurons corresponding to
the 20th and the 80th motif in the network during various phases.

between output neurons, there is a noticeable reduction in e
to a lower value, indicating enhanced synchronization. This
improved state of synchronization is evident from the spike
raster Fig. 2(b) and the time series of the output neurons’
membrane potentials Fig. 2(d), where the synchronization
factor R reaches 0.994 during the training phase, signifying
a transition from a disordered to a synchronized state among
the output neurons.

After the training phase, testing of the network’s firing
state was conducted at moment T2. Following adjustments to
the connection weights, the standard deviation of the average
membrane potential e remained consistently low, indicating a
stable synchronization. This stable firing state of the output
neurons is observable from Fig. 2(b) the firing raster and 2(d)
the time series of membrane potential.

To test the stability of the synchronization training effect
of the DLS technique, an attack test was conducted on the
network. To compromise for the network’s synchrony, con-
nections with weight values w > 6 were disconnected, which
accounted for approximately 5% of all weight values. Addi-
tionally, Gaussian white noise with an intensity D = 20 was
introduced. It was observed that the network’s synchrony was
somewhat disrupted, and e of the average membrane potential
resumed its ascent to relatively high values during this phase.
The impact of disconnecting a certain number of weights and
noise on the synchronized state can be seen from Figs. 2(c)
and 2(e). Notably, the synchronization factor R declines to
0.796, indicating a reduction in synchrony. Subsequently, the
network was trained again after moment T4, with the same
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FIG. 3. Firing raster diagrams for the other three networks under
the implementation of the DLS technique, with experimental phases
consistent with Fig. 2. The firing raster of (a) regular motif network,
(b) small-world motif network, (c) scale-free motif network. All
three networks showed good effects in achieving a synchronized state
after the initial training and again after being subjected to an attack
and retrained.

intensity of noise applied as during the attack phase, to ob-
serve the training effect of the DLS technique under the
influence of noise. Figures 2(c) and 2(e) show that the net-
work rapidly regained a synchronized state following DLS
training. This demonstrates that DLS significantly improves
the adaptability of higher-order motif networks against con-
nectivity adjustments and external disruptions, allowing them
to efficiently achieve regular firing states even amid changes
in the external environment. Furthermore, the time series of
membrane potential in Fig. 2(e) demonstrates that even in the
presence of noise disturbances, the DLS technique can still
adjust the connection weights between motifs, achieving a
regular firing state.

Next, firing raster for three other types of networks are
drawn to observe the modulatory effects of the DLS technique
within these networks. Figure 3(a) displays the scenario sim-
ulated in a regular network. Consistent with the ER random
graph network, the output neurons of the higher-order motif
network can achieve a synchronized state after the initial train-
ing, with the synchronization factor R reaching 0.999. During
the attack phase, connections with weight values w > 0.3 are
disconnected, and the impact of noise on neurons is consid-
ered. The basic principle behind selecting different thresholds
for disconnection: We aimed to induce desynchronization
in the attacked networks by disconnecting connections with
larger weights. In biological neural networks, larger-weight
synapses often correspond to critical information pathways.
Besides, for comparison with Fig. 2, we chose thresholds that
ensure similar levels of desynchronization across the network
types (excluding the regular network), allowing for a more
meaningful comparative analysis under comparable condi-
tions. The regular network maintains better synchronization
even when a similar or greater proportion of connections are
disrupted compared to other heterogeneous networks. The
synchronization factor R can still reach 0.881, indicating a
relatively synchronized state. This is attributed to the regular

distribution of connections among nodes in the regular net-
work, where disconnecting some connections has a smaller
impact on the network’s firing state compared to other nonuni-
form networks. Similarly, after further training, the network
once again achieves a synchronized state.

The simulation scenario for the small-world network is
depicted in Fig. 3(b). The small-world network used in this
experiment has a connection probability of 0.06 and a rewiring
probability of 0.5. The process and results of the initial
training are similar to those of the two networks mentioned
earlier, showing that the DLS technique also effectively mod-
ulates the small-world motif network. The attack on this
network is by disconnecting connections in the well-trained
network with weight values w > 4, along with the introduc-
tion of Gaussian white noise. During the attack phase, the
synchrony of the small-world network is significantly im-
paired, with the synchronization factor R decreasing to 0.783.
However, after retraining, a good synchronized state is once
again achieved, and synchronization factor R is increased
to 0.999.

For the case of scale-free motif network shown in Fig. 3(c),
the initial state of the network consists of seven interlinked
motifs. Subsequently, each new motif added connects to three
old motifs. This setting ensures a connection probability of
about 0.06, consistent with the other two types of irreg-
ular motif networks. Similar to the other three networks,
modulation of the weights between output neurons using
the DLS technique allows the transition of the output neu-
rons’ firing condition from a disordered to a synchronized
state. The attack on the scale-free network is manifested by
disconnecting connections with weight values w > 8 in the
well-trained network and incorporating the effect of Gaussian
white noise, resulting in the synchronization factor R dropping
to 0.769. After further training of the network, the firing state
among output neurons is restored to synchrony. It can be ob-
served that when motifs are interconnected through electrical
synapses, the DLS technique demonstrates effective training
outcomes across all four types of higher-order motif networks.

Following our previous analysis, we are now acquainted
with the effects of the DLS technique across four types of
higher-order motif networks. Next, we will examine the dis-
tribution of the connection weights among output neurons
after modulation by the DLS technique within these networks.
Figure 4 displays the weight histograms for each network after
adjustment, with the initial weight distributions shown as in-
sets in the top right corner of each panel. In each higher-order
motif network, the initial values of the connection weights
for the output neurons are uniformly distributed. It can be
observed that after the implementation of the DLS technique,
the weight distributions in all networks have transitioned to a
Gaussian-like case. In this scenario, the distribution of weights
is predominantly centered around the region close to 0, with
the number of weights on either side gradually decreasing. For
the regular motif network, as shown in Fig. 4(a), the connec-
tion weights between output neurons are generally lower than
in the other three network structures. This is primarily because
each node in the regular network has more connections, equat-
ing to a greater number of weights available for adjustment,
thereby requiring smaller weight values to achieve a synchro-
nized state.
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FIG. 4. The histograms showing the distribution of weights after
training in each motif network are as depicted: (a) regular motif
network, (b) ER random graph motif network, (c) small-world motif
network, and (d) scale-free motif network. The initial weight distri-
butions are shown as insets in the top right corner of each panel.
Following the implementation of the DLS technique, the weight
distributions for the four motif networks exhibit a central peak within
the lower range of w. On both sides of this central peak, the num-
ber of weights Nw gradually decreases, resulting in a right-skewed
distribution.

Apart from the regular network, the other three hetero-
geneous networks have an average degree set to around 6.
Among the three irregular networks, the small-world network,
as shown in Fig. 4(c), has the smallest range of weight distri-
bution. Additionally, the quantity of weights predominantly
clustered around the center of the distribution is also lower
than that in the other two irregular network. However, the
characteristic that most weight values are close to 0 is con-
sistent with other network structures. The scale-free motif
network exhibits the highest degree of dispersion among the
irregular network structures, as illustrated in Fig. 4(d). The
proportion of negative weights is also higher in the scale-
free network than in the other networks, possibly because a
few nodes in the scale-free network are connected to a large
number of nodes, requiring more negative weights to achieve
a balanced state. Moreover, the number of weights near
the central peak is significantly higher in random and scale-
free networks compared to the small-world network.

Given that regular networks more readily achieve syn-
chronization under the same conditions, the focus of the
subsequent discussion regarding weight distribution will pri-
marily rest on the three heterogeneous networks. To further
analyze the pattern of weight changes during the network
synchronization process facilitated by the DLS technique, we
illustrate the time evolution of the weight distribution between
output neurons in the three types of irregular networks on
the left column of Fig. 5, with different colors representing
the number of weights in the network. Curves representing
the average weight as a function of time are also added
to the left column of panels. These curves show that the initial
weights are randomly distributed around a small value before
training. As training progresses, the average weight increases
and eventually stabilizes at a higher value, indicating the

FIG. 5. Changes in weights over time during the training process
in three types of irregular higher-order motif networks. The left
column presents time series histograms of weights, showing the
distribution of weights at each moment under the influence of the
DLS technique. The dashed line shows the average weight over time
with shading to convey the standard deviation from multiple tests.
The right column depicts the changes in the value of each connection
weight over time during the DLS technique’s application. (a) The ER
random graph motif network. (b) The small-world motif network.
(c) The scale-free motif network.

emergence of larger weights that regulate the collective behav-
ior of neurons. Additionally, summary line graphs depicting
the temporal evolution of each connection weight are pre-
sented on the right column of Fig. 5. It can be observed that
the connection weights in all three networks undergo a tran-
sition from an initially concentrated distribution to a broader
distribution. Compared to the other two network structures,
the small-world network requires more time to evolve to
a final stable state. The weights reached a relatively stable
distribution in a short period of time, indicating that DLS
technique not only enhances the adaptability of higher-order
network synchronization but also improves the efficiency of
the synchronization process.

Furthermore, as seen from Fig. 5(b1), the overall color of
the heat map is lighter, indicating a more uniform distribution
of weight values, which corroborates the results obtained from
the histogram shown in Fig. 4(c). The emergence of such a
weight distribution could be attributed to the small-world net-
work’s characteristics of having shorter average path lengths
and a high number of local connections. These features likely
lead to a slightly narrower range of weight values in the net-
work’s weight distribution upon achieving synchronization. In
contrast, the scale-free network exhibits a larger proportion of
smaller weights, with only a few connections having signifi-
cantly larger weight values. In Fig. 5(c1), it can be observed
that the area representing smaller weight values is brighter,
indicating a larger proportion of these weights in the scale-free
network. Only a few connections have significantly larger
weight values. This may be attributed to the heterogeneity of
the scale-free network, where a minority of nodes accumulate
a large number of connections. These few nodes signifi-
cantly impact the overall dynamical characteristics of the
network [41].
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FIG. 6. The efficacy of the DLS technique in ER random graph
motif networks connected by chemical synapses with a connection
probability of p = 0.06 is examined. The experiment is divided into
three stages: (i) initialization; (ii) training; (iii) testing. Key moments
T1 and T2 are set at 200 ms and 600 ms, respectively. The simu-
lation is repeated 20 times. (a) Averages the standard deviation of
membrane potentials across 20 simulations. (b) Firing raster diagram
from a single simulation through different phases. (c) Time series
of membrane potentials in the output neurons of the 20th and 80th
motifs.

Following the discussion above, we have learned that the
DLS technique has a good effect on synchronizing higher-
order motif networks connected by electrical synapses. Next,
we will analyze the effect of this technique on the regulariza-
tion of firing patterns of output neurons within higher-order
motif networks, which are connected by chemical synapses.
The initial connection weights between output neurons are
randomly assigned, ranging from 0–0.02. We will also start
with the ER random graph as an example, and the en-
tire simulation process is divided into the following stages:
(i) initialization, (ii) training, (iii) testing. To achieve better
synchronization with chemical synapses, a longer training
period is required than electrical synapses. The training dura-
tion was determined through testing to achieve a stable firing
state. Since the training effectiveness of chemical synapses is
weaker compared to electrical synapses, a longer duration of
400 ms was set to achieve stability. The simulation process
is repeated 20 times, and the standard deviation of the mem-
brane potentials from each simulation is averaged to produce
Fig. 6(a), with the firing raster of the output neurons illustrated
in Fig. 6(b). Similarly, Fig. 6(c) displays the time series of the
membrane potentials for the output neurons of the 20th and
80th motifs.

In Fig. 6(a), it can be observed that before the adjustment
of weights using the DLS technique, the firing state among
output neurons was disordered, and the standard deviation
of the membrane potentials was relatively high. After the
implementation of the DLS technique at moment T1, the stan-
dard deviation of the membrane potentials rapidly decreased.
In conjunction with the raster in Fig. 6(b), it can be seen
that the output neurons gradually achieved a synchronized
firing state. Although there are numerical fluctuations, e de-
creases again at the moments of spiking. Unlike the more

FIG. 7. Firing raster diagrams of output neurons in three other
motif higher-order networks connected by chemical synapses. The
experimental process is consistent with that depicted in Fig. 6.
(a) Regular motif network, (b) small-world motif network, (c) scale-
free motif network. These three networks all exhibit good synchro-
nization states after training with the DLS technique.

synchronized firing state of higher-order motif networks con-
nected by electrical synapses, those trained with the DLS
technique for chemical synapses still exhibit some degree of
disorder. This is also reflected in the synchronization fac-
tor R, which was 0.803 during the testing phase for the
random motif network with chemical synapses, indicating
a lesser synchronization effect compared to the electrical
synapse scenario. This may be because electrical synapses,
as part of a diffusion system have a stronger synchroniza-
tion capability and can achieve a better synchronized state
more rapidly. Figure 6(c) displays the time series of the
membrane potentials, showing that the firing rate before
the application of the DLS technique was higher than af-
ter. This may be because, to achieve a dynamic equilibrium
state, the neurons reduce their dynamic response frequency,
allowing synchronized activity to persist at a lower fir-
ing rate. Thus, in higher-order motif networks connected
by chemical synapses, synchronization among output neu-
rons can also be achieved through the application of the
DLS technique.

Similarly, we have depicted the firing raster for three
types of higher-order motif networks connected by chemical
synapses, as shown in Fig. 7. Due to the chemical synapses’
significant impact only at the moment of neuronal firing, an-
alyzing the synchronization of chemical synaptic systems is
more complex. As Fig. 7 shows, it can be observed that the
synchronization effect in the regular network remains the best
among the networks. After the DLS technique has adjusted the
weights, the synchronization factor R between output neurons
can reach 0.974, indicating a good state of synchronization.
For the small-world and scale-free networks, the synchro-
nization factors R after DLS training are 0.804 and 0.801,
respectively, which represent a synchronized state compared
to the disordered state before training. This demonstrates that
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FIG. 8. The firing raster diagrams for all neurons in the network
when connections between motifs are electrical synapses, and the
DLS technique is applied only to specific neuronal connections.
During the testing phase, the synchronization factor between output
neurons is R = 0.999, with only node 3 achieving a synchronized
state.

the DLS technique still effectively regulates regular neuronal
spikes in the other three networks. However, both in terms of
the time required to adjust weights and the effect of synchro-
nization achieved, the synchronization effect between output
neurons connected by chemical synapses is inferior to those
connected by electrical synapses.

B. Modulation by the DLS techniques among multiple neurons
in the higher-order motif network

In previous sections, we analyzed the simplest motif net-
works where only output neurons are connected, focusing
solely on the firing patterns of these output neurons without
considering the firing states of the other two neurons. Next,
we will address a more realistic scenario where the output
neuron can connect with all neurons within the network,
and we will illustrate the firing patterns of all neurons in
the network. As shown in Fig. 8, taking a random motif
network as an example, in the higher-order motif networks
connected by electrical synapses, the connections between
output neurons, after being trained with the DLS technique,
show that only the output neurons have achieved a synchro-
nized firing state, with the post-training synchronization factor
R reaching 0.999. The firing states of neuron 1 and neuron
2, which were not adjusted by the DLS technique, remain
disordered.

Similarly, this phenomenon can be observed in higher-
order motif networks connected by chemical synapses. As
shown in Fig. 9, when the DLS technique is applied only
to the connections between output neurons, only the firing
state of the output neurons achieves synchronization, with
the post-training synchronization factor R reaching 0.803. The
firing states of the other two neurons remain disordered. We
aim to analyze the regulatory effect of the DLS technique
on the entire higher-order motif network. Next, we will ap-
ply the DLS technique to all connections between motifs,
i.e., adjusting the connection weights between the output

FIG. 9. The firing raster diagrams for all neurons in the network
when connections between motifs are chemical synapses, and the
DLS technique is applied only to specific neuronal connections.
During the testing phase, the synchronization factor between output
neurons is R = 0.803, with only node 3 achieving a synchronized
state.

neuron and other nodes within the entire higher-order motif
network, and then observe the synchronization of the entire
network.

In Fig. 10, it can be seen that when the DLS technique
is applied to modulate the connection weights between mo-
tifs, all neurons in the network can achieve a synchronized
state. Consistent with the synchronization effect of training
between individual neurons, when the DLS technique adjusts
the connection weights between all motifs, the electrical activ-
ity of all neurons in the network reaches a synchronized state.
Therefore, we can suggest that the DLS technique has a good
training effect in the higher-order motif networks connected
by electrical synapses.

FIG. 10. The firing raster diagrams for all neurons within the
network, when motifs are interconnected via electrical synapses and
the DLS technique is applied to adjust the weights of all connections
between motifs. Nodes 1, 2, and 3 all achieve a synchronized state
during the testing phase, with the entire network’s firing state reach-
ing synchronization.

033071-9



YE, WU, DING, XIE, AND JIA PHYSICAL REVIEW RESEARCH 6, 033071 (2024)

FIG. 11. The firing raster diagrams for all neurons within the
network, when motifs are interconnected via chemical synapses and
the DLS technique is applied to adjust the weights of all connec-
tions between motifs. Nodes 1, 2, and 3 all achieve a synchronized
state during the testing phase, significantly enhancing the overall
network’s synchronicity.

In the higher-order motif network connected by chemical
synapses, the firing raster Fig. 11 reveals that all neurons
achieve a synchronized state after modulation with the DLS
technique. Following the adjustment of weights by the DLS
technique, the synchronization factors R for neurons 1, 2, and
3 are 0.836, 0.826, and 0.843. To compare the synchronization
levels of neurons 1, 2, and 3, we repeated the simulation
process more than 20 times and calculated the mean and stan-
dard deviation of the synchronization factors obtained from
these simulations. The mean synchronization factors (± stan-
dard deviation) are R̄1 = 0.8146 ± 0.0266, R̄2 = 0.8197 ±
0.0217, and R̄3 = 0.8254 ± 0.0193. The small differences in
the mean synchronization factors indicate that the synchro-
nization states of neurons 1, 2, and 3 are essentially identical.
With the same initial parameters and compared to the sce-
nario where only the weights between output neurons are
adjusted, the synchronicity among all nodes is enhanced, and
every node in the network reaches a state of synchronization,
leading to an overall synchronized state in the higher-order
motif network. However, the overall firing rate of the network
significantly decreases, which may be because, in order to
achieve a dynamic equilibrium state, each neuron reduces
its dynamic response frequency, allowing synchronized activ-
ity to persist at a lower firing rate. The number of neurons
achieving synchronization in the entire motif network is much
greater than when only the output neurons are synchronized,
leading to a reduction in the firing rate of network nodes as a
result.

From the analysis above, whether the higher-order motif
networks are connected by electrical or chemical synapses,
when the DLS technique is applied to modulate the connection
weights among all motifs, the network can achieve an overall
synchronized state. This indicates that the DLS technique has
a good regulatory effect on the spike rhythm of the motif
network.

IV. CONCLUSIONS

This investigation thoroughly examines the utilization and
efficacy of the dynamic learning of synchronization (DLS)
technique for promoting synchronicity within high-order net-
works. We analyzed the impact of the DLS technique on
the dynamics of the higher-order motif networks, which
are composed of triplet motifs, each consisting of three
Hodgkin-Huxley neurons. Various combinations of motifs
were considered, including topological structures such as
regular, ER random graphs, small-world, and scale-free net-
works. The DLS technique enhances network synchronicity
by adjusting the weights between relevant nodes within the
network.

Results indicate that when only the connection weights
between output neurons of motifs are modulated by the DLS
technique, for motifs interconnected by electrical synapses,
the firing state between output neurons transitions from dis-
order to order after training. Furthermore, in the various
analyzed higher-order motif network structures, the firing
state between output neurons can be synchronized. Taking
electrical synapses as an example and analyzing the changes
in connection weights throughout the adjustment process, it
was found that the connection weights transition from an
initial uniform random distribution within a small range to
a more dispersed distribution. Different higher-order motif
network structures exhibit distinct weight distribution states
after adjustment by the DLS technique, the evolution of
weight correlates with the network’s topological structure.
For motifs interconnected via chemical synapses, the DLS
technique can still synchronize the output neurons, but the
synchronization effect is slightly inferior to that in the case of
electrical synapses, and the firing rate of the output neurons
declines.

Finally, taking the random motif network as an example,
we analyzed a more realistic scenario where output neurons
can connect with all neurons within the network. It was found
that when the DLS technique is applied to all connection
weights between motifs, all nodes can achieve a synchro-
nized state, regardless of whether the connections between
motifs are electrical or chemical synapses. However, the over-
all degree of synchronization in higher-order motif networks
connected by chemical synapses remains weaker than that in
networks with electrical synapses. In summary, DLS offers a
highly adaptive synchronization strategy to network changes
and external disturbances. It can facilitate the emergence of
synchronized states in highly complex nonlinear networks.
Based on this study, future work will focus on the application
of DLS technology in more practical systems and models,
attempting to provide a deeper understanding of synchroniza-
tion issues from a more realistic perspective.
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