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Inferring potential landscapes: A Schrödinger bridge approach to maximum caliber
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Schrödinger bridges have emerged as an enabling framework for unveiling the stochastic dynamics of systems
based on marginal observations at different points in time. The terminology “bridge” refers to a probability
law that suitably interpolates such marginals. The theory plays a pivotal role in a variety of contemporary
developments in machine learning, stochastic control, thermodynamics, and biology, to name a few, impacting
disciplines such as single-cell genomics, meteorology, and robotics. In this work, we extend Schrödinger’s
paradigm of bridges to account for integral constraints along paths, in a way akin to maximum caliber—a
maximum entropy principle applied in a dynamic context. The maximum caliber principle has proven useful
to infer the dynamics of complex systems, e.g., model gene circuits and protein folding. We unify these two
problems via a maximum likelihood formulation to reconcile stochastic dynamics with ensemble-path data. A
variety of data types can be encompassed, ranging from distribution moments to average currents along paths.
The framework enables inference of time-varying potential landscapes that drive the process. The resulting
forces can be interpreted as the optimal control that drives the system in a way that abides by specified integral
constraints. This, in turn, relates to a similarly constrained optimal mass transport problem in the zero-noise
limit. Analogous results are presented in a discrete-time, discrete-space setting and specialized to steady-state
dynamics. We finish by illustrating the practical applicability of the framework through paradigmatic examples,
such as that of bit erasure or protein folding. In doing so, we highlight the strengths of the proposed framework,
namely, the generality of the theory, its elegant analytical structure, the ease of computation, and the ability to
interpret results in terms of system dynamics. This is in contrast to maximum caliber problems where the focus
is typically on updating a probability law on paths.
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I. INTRODUCTION

In 1931 Schrödinger posed the following problem [1,2]:
Suppose we start with an initial distribution p0 of particles
that obey known stochastically driven dynamics. These spec-
ify the distribution pt , at subsequent times t ∈ [0, T ], via
the corresponding Fokker-Planck equation, assuming an over-
whelmingly large population. However, for a finite population
of, say N particles, the empirical distribution at time t may
differ from the one prescribed for typical events. Indeed, when
the number of particles is finite, rare events are of interest.
Thus, assume we have an “auxiliary observer” [1,3] who ob-
serves the position of the particles at times t ∈ [0, T ], without
however reporting us the results. At time T , we measure the
empirical distribution of particles pexp

T , which does not match
the prediction pT obtained by solving our dynamics. Clearly,
a rare event took place. That is, something unlikely happened,
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but what? For such instances, it is of interest to determine
what probabilistic inferences we can draw from the two ob-
servations (at time 0 and T ) regarding possible intervening
observations by the auxiliary observer. In other words, we are
interested in the most likely path that the particles may have
taken in their flow from p0 to pT , given the dynamics (prior
evolution).

This problem has been studied ever since under the name
of Schrödinger bridge (SB) [4,5]. It turns out that the solution
can be traced forward (as this subject was not in existence at
the time Schrödinger raised and answered the question) to a
field of Probability Theory known as large deviations theory
and, in particular, to Sanov’s theorem [6]. Sanov’s theorem
states that the probability of drawing an atypical distribution
for a finite collection of N particles, asymptotically, as N →
∞, decays exponentially to zero as ∼e−H , where H is the rel-
ative entropy between the atypical observed distribution and
the typical one (prior). Let us denote the atypical distribution
by P. This is a distribution on the space of continuous paths,
unknown, apart from its marginal distributions at times 0 and
T . Therefore, Schrödinger’s dictum is to find the most likely
atypical distribution, given the prior distribution Q as specified
by the dynamics of our stochastic system. That is, Schrödinger
postulated (and solved) the maximum likelihood problem to
find

min
P

H (P, Q),
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where P is such that its marginal distributions at times 0 and
T match those that have been observed empirically, i.e., p0 =
pexp

0 , and pT = pexp
T .

The Schrödinger bridge problem has had a multitude of
applications [7], ranging from economics to biology, impact-
ing disciplines such as single-cell dynamics [8], meteorology
[9], or robotics [10]. Nevertheless, the type of measurements
that have been considered before do not account for con-
straints and data that may originate in a variety of physical
experiments, such as those pertaining to currents, moments
of distributions, occupation times, or probability of different
states. This type of measurements is typically accounted for
in a principle known as maximum caliber.

Specifically, the maximum caliber principle (or MaxCal for
short), introduced by Jaynes in 1980 [11], extends the princi-
ple of maximum entropy to a dynamic context [12]. Following
a similar rationale, it maximizes entropy over trajectories,
taking into account constraints based on specific information
gathered from the system [13,14]. This approach allows for
the incorporation of various types of new data, often involving
currents, while maintaining maximum uncertainty about the
remainder of the system. The maximum caliber principle has
proven highly effective as an inference method, particularly in
the context of complex systems with a small number of parti-
cles [15], such as gene circuits [16], protein folding [17], bird
flocking [18] or network traffic [13]. Notably, it has success-
fully determined reaction rates in biomolecular simulations,
including peptides [17] and protein-protein interactions [19].

Motivated by this, and in particular, by the connection of
Schrödinger’s paradigm to the principle of maximum cal-
iber, we extend the existing theory of Schrödinger bridges
to account for diverse measurements. Specifically, the work
is organized as follows. After an introduction to classical
Schrödinger bridges in Sec. II, we consider the maximum
caliber problem from the perspective of Schrödinger bridges
(Sec. III). Therein, we tackle two problems: first, a standard
Schrödinger bridge problem with an extra ensemble-path con-
straint, and then the standard maximum caliber problem with
free initial and final marginals, which we also specialize to
steady state. Section IV, deals with the counterpart of the
theory in the setting of discrete-time discrete-space Markov
chains. Finally, Sec. V illustrates the developed framework
with examples that highlight the relevance and generality of
the theory in inferring potential landscapes.

II. CLASSICAL SCHRÖDINGER BRIDGES

Consider two probability laws P and Q on the space
of paths (continuous functions) on [0, T ], denoted by � =
C([0, T ]). We say P is absolutely continuous with respect
to Q, denoted by P � Q, if P has measure zero on all sets
in which Q has measure zero. Probability laws are typically
represented through a corresponding Radon-Nikodym deriva-
tive with respect to an absolutely continuous measure. The
Radon-Nikodym derivative then acts as a “probability den-
sity” evaluated on paths. Specifically, let P � Q, then the
probability of a set of paths A ⊆ � under P can be expressed
as

P(ω ∈ A) =
∫

A
�(ω)dQ(ω),

where � = dP/dQ is the Radon-Nikodym derivative of P
with respect to Q. If P � Q, then we can also define the
relative entropy between P and Q as

H (P, Q) =
∫

�

dP log
dP

dQ
.

Let Q represent a given (prior) probability law, and pt denote
the one-time marginals of P. The Schrödinger bridge problem
can be formalized as follows:

min
P:P�Q

H (P, Q)

s.t.
∫

�

dP = 1, p0 = pexp
0 , pT = pexp

T , (1)

this is, find the most likely law P that satisfies the experimen-
tally observed marginals pexp

0 , pexp
T .

A. Laws on paths

We formally seek a reweighting of the (prior) probabil-
ity law Q on paths so that the (posterior) P satisfies the
constraints. To do so, let {Xt } denote the canonical process
Xt = ωt , with ω ∈ �. The Lagrangian for the optimization
problem in this path space representation can be written as

L =
∫

�

[
log

dP

dQ
+ γ + μ(X0) + η(XT )

]
dP

=
∫

�

[log � + γ + μ(X0) + η(XT )]�dQ,

where �(ω) = dP
dQ (ω), and γ , μ(X0) and η(XT ) are Lagrange

multipliers that allow imposing the constraints on P. The first
variation of the Lagrangian with respect to � is given by

δL =
∫

�

[log � + γ + 1 + μ(X0) + η(XT )]δdQ,

for δ(ω) a function on �. Setting this to zero for all δ, we
obtain the first-order optimality condition

�� = e−μ(X0 )e−η(XT )

Z ,

where Z = eγ+1 is the normalization constant or partition
function, and the asterisk indicates that such a � is optimal.
Hence, the optimal law is

P� = f (X0)g(XT )Q, (2)

where f (X0) ∝ e−μ(X0 ) and g(XT ) ∝ e−η(XT ), up to the con-
stant normalization factor that we have absorbed. This is the
standard structure of the Schrödinger bridge problem [5,20],
which has the property of being Markovian whenever the
prior Q is Markovian [[5], Prop 2.10]. It remains to character-
ize the functions f (X0) and g(XT ) by imposing the endpoint
constraints. Instead of doing so directly, it is informative to
consider a dynamical description (following Ref. [21]), for
which we restrict ourselves to diffusion processes. The reader
is referred to Ref. [21] for more details and an in-depth de-
scription of the relationship between optimal mass transport
and Schrödinger bridges.
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B. Stochastic control perspective

Consider that Q is the law of a diffusion process that obeys
the Itô stochastic differential equation

dXt = α(t, Xt )dt + σ (t, Xt )dWt , X0 ∼ q0, (3)

where Xt ∈ Rn, Wt ∈ Rn is an n-dimensional Brownian mo-
tion, α(t, Xt ) ∈ Rn is the drift of the prior dynamics and
σ (t, Xt ) > 0 the diffusion coefficient. For notational simplic-
ity we assume throughout that σ is scalar; all results can be
generalized to the case of a matricial σ in a straightforward
manner [22].

The probability density function corresponding to Eq. (3)
obeys the Fokker-Planck equation

∂t q(t, x)=−∇ · (α(t, x)q(t, x))+ 1
2�(σ (t, x)2q(t, x)), (4)

with q(0, x) = q0(x). Since the prior Q is Markovian, the
Schrödinger bridge P� in Eq. (2) is also Markovian and ab-
solutely continuous with respect to Q. It follows then that P�

is the law of a stochastic process that obeys

dXt = β(t, Xt )dt + σ (t, Xt )dWt , X0 ∼ pexp
0 , (5)

for a new drift β(t, Xt ) ∈ Rn, and thus, the (one-time) proba-
bility density obeys the Fokker-Planck equation

∂t p(t, x) = −∇ · (β(t, x)p(t, x)) + 1
2�(σ (t, x)2 p(t, x)), (6)

with p(0, x) = pexp
0 (x).

Indeed, for the law of Eq. (5) to be absolutely continuous
with respect to the law of Eq. (3), it is necessary that the
diffusion coefficients are the same. Then, by Girsanov’s the-
orem, the Radon-Nikodym derivative �� = dP�/dQ can be
explicitly written as [[23], Sec. 3.5]

�� = pexp
0

q0
e

∫ T
0

‖β(t,Xt )−α(t,Xt )‖2

2σ (t,Xt )2 dt +
∫ T

0
β(t,Xt )′−α(t,Xt )′

σ (t,Xt ) dWt
,

where ′ denotes transpose. Taking the logarithm and expecta-
tion, Schrödinger’s problem (1) can be recast as

min
p,β

1

2

∫ T

0

∫
Rn

‖β(t, x) − α(t, x)‖2

σ (t, x)2
p(t, x)dxdt

such that p(0, ·) = pexp
0 , p(T, ·) = pexp

T ,

and ∂t p = −∇ · (βp) + 1

2
�(σ 2 p). (7)

To derive Eq. (7) we have used firstly the fact that the term∫
Rn pexp

0 log pexp
0
q0

dx is fixed by the boundary conditions, and
thus can be omitted from the optimization problem, and sec-
ondly, the fact that the expectation of the martingale term∫ T

0
β(t,Xt )′−α(t,Xt )′

σ (t,Xt ) dWt vanishes.
For completeness of exposition, we note that the optimal

probability density p(t, x), at any time t ∈ [0, T ], is known to
factor as

p(t, x) = ϕ(t, x)ϕ̂(t, x), (8)

where ϕ and ϕ̂ solve the Schrödinger system of PDEs

∂tϕ(t, x) = −α(t, x)′∇ϕ(t, x) − σ (t, x)2

2
�ϕ(t, x), (9a)

∂t ϕ̂(t, x) = −∇ · (α(t, x)ϕ̂(t, x)) + �

(
σ (t, x)2

2
ϕ̂(t, x)

)
,

(9b)

with boundary conditions

ϕ(0, x)ϕ̂(0, x) = pexp
0 (x), and ϕ(T, x)ϕ̂(T, x) = pexp

T (x).

This system of linear PDEs (Schrödinger system), where
the Fokker-Planck equation for the prior dynamics (9b) and
its adjoint (9a) are coupled through nonlinear boundary con-
ditions, is known to have a unique solution under mild
assumptions [24,25]. Moreover, the solution can be obtained
by a convergent algorithm due to Fortet, which is also known
as the Sinkhorn algorithm [24], [[20], Sec. 8]. The algorithm
consists in alternating between solving (9b) forward in time
and (9a) backward in time, using pexp

0 and pexp
T to obtain the

initial condition for one after computing terminal condition
for the other. Schematically, this can be expressed as iterating
the steps in the following diagram:

ϕ̂(0, x)
(9b)−−→ ϕ̂(T, x)

pexp
0 (x)

ϕ(0,x) ↑ ↓ pexp
T (x)

ϕ̂(T,x) (10)

ϕ(0, x)
(9a)←−− ϕ(T, x).

Finally, having the probability density of P� in the factored
form (8), leads to the optimal drift

β(t, x) = α(t, x) + σ (t, x)2∇ log ϕ(t, x), (11)

corresponding to P�.

C. Scope and significance of Schrödinger’s problem

The Schrödinger bridge can be interpreted as the solution
to the following three problems that are equivalent but have a
significantly different physical motivation.

1. Large deviations’ problem

This is along the lines of the Schrödinger’s original
gedanken experiment [1,2]. In this, one seeks to account
for unlikely events, that due to a finite number of diffusive
particles, have given rise to endpoint marginals that are incon-
sistent with the law of large numbers dictating that solutions
obey (4). Besides estimating the path traversed by the state of
the system in this large deviations’ scenario, Schrödinger was
exploring the reversibility of physical laws and the nature of
the solution in Eq. (8) that is reminiscent of the how probabil-
ities are computed in quantum mechanics, as ψψ̄ , with ψ a
wave function.

2. Inference problem

This may be seen as a segue to the maximum caliber
principle. Minimization of relative entropy between laws on
paths can be thought of as a generalization of maximizing
entropy to seek equilibrium distributions. Schrödinger’s prob-
lem is analogous albeit in a dynamical context, where we
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seek to identify dynamics consistent with the observations
at two endpoints. Its solution allows us to infer the typical
potential landscape [from Eq. (11)] that gives rise to the
most likely paths consistent with the endpoint measurements.
Specifically, if α = −∇U prior and σ is scalar independent of
x, the inferred potential landscape is

U post (t, x) = U prior (t, x) − σ (t )2 log ϕ(t, x).

3. Control problem

Replacing β(t, x) − α(t, x) in Eq. (7) with u(t, x), the
integral ∫ T

0

∫
Rn

1

σ 2(t, x)
‖u(t, x)‖2 p(t, x)dxdt

can be interpreted as a penalty on high values of the con-
trol parameter u. Thereby, we may interpret Schrödinger’s
problem as the control problem that seeks the “minimum
energy” control action u that steers a stochastic ensemble of
particles from a given initial to a given terminal distribution.
In the simplest scenario when the prior is a Brownian diffusion
(α(t, x) = 0) and the noise is homogeneous with σ (t, x) = ε,
the control problem takes the familiar form

min
p,u

∫ T

0

∫
Rn

‖u(t, x)‖2 p(t, x)dxdt

such that p(0, ·) = pexp
0 , p(T, ·) = pexp

T ,

and ∂t p = −∇ · (up) + 1

2
�(ε2 p). (12)

It is noteworthy that Schrödinger’s problem can be viewed
as an entropic regularization of the problem of optimal mass
transport with a quadratic cost [21,26,27], which can be
written as in Eq. (12) for ε = 0. That is, optimal mass trans-
port is the zero-noise limit of Schrödinger’s problem. The
nonzero noise term renders the problem strictly convex, which
facilitates computation, making the Schrodinger bridge prob-
lem extremely useful in solving problems of optimal mass
transport [28–30].

As may have already become apparent, Schrödinger’s
bridge problem has emerged as a versatile tool in con-
trol theory and modeling of stochastic systems, but also
in probability theory, data science, and machine learning;
e.g., see Refs. [31,32] and the references therein. In short,
Schrödinger’s bridge problem has proven key in theoretical
and applied subjects where interpolation of distributions is of
interest.

Paradigmatically, we mention stochastic thermodynamics
[33–35], where stochastic excitation models thermal fluctua-
tion and the optimal mass transport problem with quadratic
cost can be linked to entropy production [36]. Indeed, this
framework allows us to obtain better estimates of the state
of the ensemble, and therefore of thermodynamic currents
at the level of the ensemble (such as work, heat, or entropy
production), given endpoint information on the state of the
system. Moreover, it provides a powerful tool to infer the
potential landscapes that drive thermodynamic systems [via
Eq. (11)]. Finally, in the noiseless limit, it allows finding
trajectories that drive the system between two endpoints while
minimizing entropy production.

This latter application area, stochastic thermodynamics,
has motivated our study. Specifically, the experimental infor-
mation that can be accounted for in the classical formulation
of Schrödinger’s problem is limited to distributions of the
system at different points in time. Yet, typical experimental
set-ups often allow continuous measurement of thermody-
namic quantities such as energy, work, or heat [37]. In
addition, one might only have access to information on certain
degrees of freedom of the thermodynamic system (see, e.g.,
the example in Sec. V A), or on the population of different
subsets of states (see the example in Sec. V B). Motivated by
such practical considerations, we extend Schrödinger’s dictum
to account for ensemble information of varying nature, and
along paths of stochastic ensembles. In doing so, we bridge
the theory of Schrödinger’s problem to that of maximum
caliber.

III. A SCHRÖDINGER BRIDGE APPROACH
TO MAXIMUM CALIBER

Schrödinger’s bridge (SB) problem is intimately linked to
the maximum caliber (MaxCal) formalism initiated by Jaynes
half a century later [11,12]. Establishing a connection between
these two problems provides an opportunity to leverage the
conventional tools offered by classical Schrödinger bridges.
Specifically, the framework we propose provides a dynamical
description of optimal probability laws with the advantage of
(i) having an appealing analytical structure, (ii) being com-
putationally approachable, and (iii) allowing us to infer and
interpret the potential energy driving the system, under which
the most likely observed dynamics are typical.

Our development proceeds in two steps. First, we solve the
maximum likelihood problem subject to a fixed path integral
constraint and given initial and final boundary conditions (pexp

0
and pexp

T ), just as in Schrödinger’s problem. Then, we drop
the boundary conditions to consider the standard MaxCal
problem from a new perspective. We conclude by specializing
to cases where we seek to infer stationary distributions and
corresponding potentials that are consistent with ensemble-
path constraints.

A. Schrödinger bridges with currents

In the spirit of Schrödinger’s formalism we seek a law that
is close to a prior in a relative entropy sense and agrees with
observed marginal distributions, but this time, in addition, we
introduce a constraint that represents integrated measurement
along the duration of an experiment. We formulate a pertinent
problem as follows:

min
P: P�Q

∫
�

dP log
dP

dQ
(13a)

s.t.
∫

�

dP = 1, p0 = pexp
0 , pT = pexp

T , (13b)

and
∫

�

∫ T

0
j(t, Xt )dtdP = Jexp. (13c)

Here,
∫ T

0 j(t, Xt )dt ∈ R represents a current being measured
over the duration of the experiment and Eq. (13c) its av-
erage at the level of the ensemble. Such an integral may
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represent energy/work [[33], Chapter 4] or other moments,
possibly measured along specific degrees of freedom, popula-
tion (or probability) in a certain subset of Rn, or occupation
times. For simplicity of notation and without loss of generality
we consider one such integral. A dynamic constraint where
the ensemble average∫

�

j(t, Xt )dP = Jexp(t ) (13c′)

is specified across time, can also be treated quite similarly.
Such an average may model the time history of the work rate,
for example. We will point out whenever an argument needs
to be modified to treat dynamical constraints in the form of
Eq. (13c′).

1. Laws on paths

From a path-space point of view, the Lagrangian L for this
optimization problem can be written as∫

�

[
log

dP

dQ
+ γ + μ(X0) + ν(XT ) +

∫ T

0
λ j(t, Xt )dt

]
dP.

Its first variation δL(�; δ) with respect to � = dP
dQ , i.e.,

L(� + δ) − L(�) to first order in δ, is∫
�

[
log �+γ + 1+μ(X0)+ν(XT )+

∫ T

0
λ j(t, Xt )dt

]
δdQ.

Thus, the first-order stationarity condition where the variation
vanishes for all δ, gives that the optimal choice for � is

�� = e−μ(X0 )e− ∫ T
0 λ j(t,Xt )dt e−ν(XT )

Z ,

where Z = eγ+1 is a normalization constant (partition func-
tion). Hence,

P� = f (X0)e− ∫ T
0 λ j(t,Xt )dt g(XT )Q, (14)

where f (X0) ∝ e−μ(X0 ) and g(XT ) ∝ e−ν(XT ), having absorbed
the normalization constant into f , g.

Equation (14) displays a form of Doob’s h-transform
[38] (also Feynnman-Kac [39]). Such transforms are cen-
tral to problems of large deviations [40] and preserve the
Markovian character of Q [41]. Variants have also been
utilized in Schrödinger bridge problems where endpoint
marginals have different mass (and, therefore, creation or
killing of particles has taken place) [42].

We finally note that a similar analysis applies to the case
where the dynamical constraint (13c′) is imposed, instead of
Eq. (13c). The only difference between the two is that in the
case of Eq. (13c′), the Lagrange multiplier λ needs to be a
function of t , as opposed to being a scalar.

2. A stochastic control perspective

To gain an intuition for the nature of Eq. (14), let us
consider the corresponding stochastic dynamics and process.
Starting from the diffusion process (3) with law Q, the process
corresponding to the law (14) is Markovian and obeys

dXt = β(t, Xt )dt + σ (t, Xt )dWt . (15)

Applying once again Girsanov’s theorem, Eq. (13) can be
recast as the following minimization problem:

min
p,β

1

2

∫ T

0

∫
Rn

‖β(t, x) − α(t, x)‖2

σ (t, x)2
p(t, x)dxdt, (16a)

subject to ∫ T

0

∫
Rn

j(t, x)p(t, x)dxdt = Jexp, (16b)

∂t p = −∇ · (βp) + 1

2
�(σ 2 p), (16c)

and p(0, ·) = pexp
0 , p(T, ·) = pexp

T . (16d)

This time the Lagrangian L is

∫ T

0

∫
Rn

{
1

2

‖β − α‖2

σ 2
p + λ j p

}
dxdt − λJexp

+
∫ T

0

∫
Rn

{
log ϕ

[
∂t p + ∇ · (βp) − 1

2
�(σ 2 p)

]}
dxdt .

(17)

Here, log ϕ(t, x) is a Lagrange multiplier introduced to ensure
that the Fokker-Planck equation (16c) holds.

The vanishing of the first variation with respect to β is both
a necessary as well as sufficient condition for optimality, due
to strict convexity. Specifically, the first variation with respect
to β reads

δL(β; δβ ) =
∫ T

0

∫
Rn

(
β − α

σ 2
− ∇ log ϕ

)′
pδβdxdt . (18)

Setting this to zero for all functions δβ , we obtain

β(t, x) = α(t, x) + σ (t, x)2∇ log ϕ(t, x). (19)

We see that the posterior drift differs from the prior by the
term σ 2∇ log ϕ. This has exactly the same structure as in
Eq. (11). In the important case where α is a gradient of a
potential, and provided σ is scalar and independent of x, the
posterior drift β is also the gradient of a potential. In general,
the inferred forcing β can be decomposed into [43,44]

β(t, x) = −∇U post (t, x) + χ (t, x)

p(t, x)
,

where χ (t, x) is a divergence-free vector field accounting for
nonconservative forcing, while U post (t, x) represents an effec-
tive potential.

The difference between Eqs. (19) and (11) comes in
through the ϕ dynamics. Indeed, the first variation with re-
spect to p is

δL(p, δp) =
∫ T

0

∫
Rn

(
− ∂t log ϕ − β ′∇ log ϕ − 1

2
σ 2� log ϕ

+ 1

2
‖σ∇ log ϕ‖2 + λ j

)
δpdxdt,
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where we have used Eq. (19) and integration by parts. Setting
the integrand to zero,

∂t log ϕ = −α′∇ log ϕ − 1
2‖σ∇ log ϕ‖2 − 1

2σ 2� log ϕ + λ j

= −α′∇ log ϕ − 1
2σ 2 �ϕ

ϕ
+ λ j, (20)

where for the second equality we have used the identity
� log ϕ + ‖∇ log ϕ‖2 = �ϕ/ϕ, we obtain

∂tϕ = −α′∇ϕ − 1
2σ 2�ϕ + λ jϕ. (21a)

The solution for Eq. (21a) dictates our new drift β. How-
ever, we still need to find the appropriate terminal condition
ϕ(T, x) that will allow matching the boundary conditions
(16d). To do so, it is convenient to define

ϕ̂(t, x) = p(t, x)

ϕ(t, x)
.

Taking the time derivative, ∂t ϕ̂ = ∂t p/ϕ − ϕ̂∂tϕ/ϕ, and using
the dynamical equations for p and ϕ, Eqs. (16c) and (21a),
respectively, we obtain

∂t ϕ̂ = −∇ · (αϕ̂) + 1
2�(σ 2ϕ̂) − λ jϕ̂. (21b)

Therefore, instead of solving Eqs. (16c) and (21a), we can
solve the Schrödinger system (21a) and (21b), together with
boundary conditions ϕ(T, x) and ϕ̂(0, x) such that

ϕ(0, x)ϕ̂(0, x) = pexp
0 (x), and ϕ(T, x)ϕ̂(T, x) = pexp

T (x).

Note that the decomposition of p into the product of ϕ and ϕ̂

is not necessary, but it is computationally advantageous.
Indeed, in Ref. [42], it is shown that for each choice of

pexp
0 , pexp

T , λ [and for enough regularity in j(t, x)] there exists
a unique pair of ϕ̂(0, x), ϕ(T, x) [that evolve according to
Eqs. (21a) and (21b)], such that

p(t, x) = ϕ(t, x)ϕ̂(t, x) (22)

satisfies the boundary conditions pexp
0 and pexp

T . This pair can
be found via an iterative algorithm akin to Eq. (10), in which
the only difference is the term proportional to λ j(t, x) in
Eqs. (21a) and (21b). In Ref. [42], λ j(t, x) represented the
killing rate of particles in an unbalanced Schrödinger bridge
problem in which particles can appear and disappear. In this
work, the “creation” and “annihilation” terms in Eqs. (21a)
and (21b) cancel out to obtain (22), that conserves mass. In
addition, λ constitutes a Lagrange multiplier that enforces the
ensemble constraint (16b). Therefore, we are also required to
iterate to find the optimal λ that achieves the required current.

Before we do that, note that for each fixed λ the obtained
solution is indeed in the form of Eq. (14). To see this, let us
write the Radon-Nikodym derivative between P and Q with
the optimal drift β (19) as

dP

dQ
= pexp

0

q0
e

1
2

∫ T
0 ‖σ∇ log ϕ‖2dt+∫ T

0 σ∇ log ϕ′dWt . (23)

Using the Itô rule to take the differential of log ϕ(t, Xt ) we
realize that

σ∇ log ϕ′dWt = − ∂t log ϕdt − β ′∇ log ϕdt − 1
2σ 2� log ϕ

+ d log ϕ. (24)

Substituting ∂t log ϕ by Eq. (20), we obtain that Eq. (23) can
be written as

dP

dQ
= pexp

0 (X0)

q0(X0)
elog ϕ(T,XT )−log ϕ(0,X0 )−∫ T

0 λ j(t,Xt )dt

= ϕ̂(0, X0)

q0(X0)︸ ︷︷ ︸
f (X0 )

e− ∫ T
0 λ j(t,Xt )dt ϕ(T, XT )︸ ︷︷ ︸

g(XT )

,

matching Eq. (14).

3. Computing the Lagrange multiplier

It remains to determine the Lagrange multiplier λ that
enforces the constraint

h(λ) :=
∫

�

∫ T

0
j(t, Xt )dtdP = Jexp. (25)

Note that, using Eq. (14),

∂λh(λ) = −
∫

�

( ∫ T

0
j(t, Xt )dt

)2

dP � 0.

Thus, h is a monotone function of λ, as expected from the
convexity of the problem. Therefore, we can have a simple
iterative way of finding λ, such as Newton’s method or gra-
dient descent in the dual λ-space, in which, at each iteration,
Eqs. (21a) and (21b) need to be solved for a new value for λ.
The nonexistence of an optimal λ is not of concern here, since
it is assumed that any physically meaningful measurement
will lead to an attainable ensemble constraint.

Note that, if instead of imposing a time-integrated con-
straint like Eq. (13c), we are interested in a rate-constraint as
in Eq. (13c′), λ needs to be a function of time. The search for
λ(t ) is then more involved since it becomes an infinite dimen-
sional search. Nevertheless, it is still approachable through
gradient descent in the dual space. Specifically, we seek λ(t )
as the extremum of Eq. (17). That is, in each iteration we set

λ(t ) → λ(t ) + s ×
(∫

Rn

j(t, x)p(t, x)dx − Jexp(t )

)
, (26)

where s is the step size of the gradient descent.

4. Scope and significance

We have derived a dynamical description (22) of the most
likely path that satisfies two boundary conditions and an
ensemble-path constraint. It allows updating a prior model to
one that is consistent with measurements and thereby provides
improved estimates of other physical quantities of interest. At
the same time, it provides an update of the drift term (19) that,
when the diffusion coefficient is a scalar independent of x,
is in gradient form. Hence, an updated potential landscape
that drives the system dynamics is revealed, giving a better
understanding of the underlying properties of the physical,
chemical, or biological system.

The problem at hand can also be interpreted as one seeking
a control action u = β − α with minimum energy, that not
only drives a stochastic system between two specified end-
point distributions but also ensures ensemble constraints along
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the path. Its noiseless limit (σ → 0)

min
p,u

∫ T

0

∫
Rn

‖u(t, x)‖2 p(t, x)dxdt

s.t. p(0, ·) = pexp
0 , p(T, ·) = pexp

T ,∫ T

0

∫
Rn

j(t, x)p(t, x)dxdt = Jexp,

and ∂t p = −∇ · (up),

represents a variant of the standard optimal mass transport
(OMT) problem in which integral path constraints are intro-
duced. Such problems are particularly relevant in stochastic
thermodynamics, where u(t, x) typically represents the mean
velocity of particles and the quadratic cost on u represents
entropy production along the path from pexp

0 to pexp
T [36,45].

Therefore, this OMT problem is simply that of minimizing
entropy production while driving the system between two
endpoints with a fixed current Jexp, which could represent, for
example, work produced along a trajectory.

There have been previous efforts to unify OMT theory and
MaxCal in the discrete-time and discrete-space setting [46].
Therein, the entropic regularization term is used to account for
entropy minimization, while the original OMT cost represents
an ensemble average constraint, analogous to Eq. (13c′). Thus,
the standard discrete OMT problem is used to solve a certain
MaxCal problem, without additional constraints. In this work,
they derive optimal transition rates by assuming knowledge
of initial and final distributions at every time step. However,
such an approach does not appear suitable in our setting.
Herein, ensemble-path constraints are added to the entropy-
regularized OMT problem. Moreover, the optimization is over
paths in the probability space; these are not given, only their
endpoints are fixed.

B. Maximum caliber problem

In typical experimental setups, one may not have access
to complete knowledge of the distribution at time-end points.
Thus, we now consider the more standard MaxCal problem
in which we minimize relative entropy subject to observed
currents, but otherwise with no additional constraints. That is,
we consider the problem

min
P: P�Q

∫
�

dP log
dP

dQ

s.t.
∫

�

∫ T

0
j(t, Xt )dtdP = Jexp, and

∫
�

dP = 1. (27)

Note that in standard maximum caliber problems, entropy
over paths is minimized (instead of relative entropy). This
simply amounts to the prior Q being “uniform” over � =
C([0, T ]), e.g., the stationary Wiener measure [47]. Then, in
the spirit of maximum entropy, the problem corresponds to
finding the optimal P that would be uniform over all possible
trajectories (the dynamical equivalent of microstates) were it
not for the fact that a current (the dynamical equivalent of
energy) is fixed.

Following the same steps as in Sec. III A 1, it is clear that
the optimal law on paths P must be given by

dP�

dQ
= e− ∫ T

0 λ j(t,Xt )dt

Z , (28)

where Z is the normalization constant. This structure is typi-
cal of maximum caliber problems, as well as large deviations
and control problems [40,48], and is such that P� has a
Markovian structure as long as Q does too.

Consider now a diffusion process (3) with drift α as our
prior. Due to Markovianity, the posterior will be the diffu-
sion process in Eq. (15) with drift β. Instead of going the
same route as in the previous section, we will directly find
the stochastic process that corresponds to the law defined by
Eq. (28) [39]. In this case, this turns out to be considerably
easier than solving the optimization problem from the dy-
namic point of view (as in Sec. III A 2), since the boundary
conditions on ϕ and ϕ̂ will come in naturally, as we will see
next.

Let us postulate that the optimal drift β is again of the form
α + σ 2∇ log ϕ, with ϕ evolving according to Eq. (21a). The
Radon-Nikodym derivative between P and Q with this β reads

dP�

dQ
= p0

q0
e

1
2

∫ T
0 ‖σ∇ log ϕ‖2dt+∫ T

0 σ∇ log ϕ′dWt . (29)

Using Eq. (24), and substituting ∂t log ϕ by Eq. (20), we
obtain, as before,

dP�

dQ
= ϕ̂(0, X0)

q0(X0)
ϕ(T, XT )e− ∫ T

0 λ j(t,Xt )dt , (30)

where ϕ̂(0, X0) = p0(X0 )
ϕ(0,X0 ) . However, this expression must

match (28). This implies that, up to a multiplicative constant,

ϕ̂(0, X0) = q0(X0), and ϕ(T, XT ) = 1

Z ,

since the expression on the right-hand side of Eq. (30) can
not be a function X0 or XT . Therefore, the optimal one-time
marginals are given by

p(t, x) = ϕ(t, x)ϕ̂(t, x),

with ϕ(t, x), ϕ̂(t, x) satisfying

∂tϕ = −α′∇ϕ − 1

2
σ 2�ϕ + λ jϕ, ϕ(T, ·) = 1

Z , (31a)

∂t ϕ̂ = −∇ · (αϕ̂) + 1

2
�(σ 2ϕ̂) − λ jϕ̂, ϕ̂(0, ·) = q0,

(31b)

where q0 is the one-time marginal of Q at t = 0, as before.
Note that, in contrast to the Schrödinger bridge problem,

here the boundary conditions are uncoupled, and thus there is
no need for (Sinkhorn-type) iteration. In practice, however, Z
is unknown. Thus, one can solve Eq. (31a) with ϕ(T, ·) = 1
as the boundary condition. Then, the normalization constant
Z can be simply found at any time as Z = ∫

ϕ(t, x)ϕ̂(t, x)dx,
leading to the optimal solution p(t, x) = ϕ(t, x)ϕ̂(t, x)/Z .
However, the Lagrange multiplier λ remains to be found,
which must be done iteratively as in Sec. III A 3. Once again, it
is possible to account for multiple current constraints (leading

033070-7



OLGA MOVILLA MIANGOLARRA et al. PHYSICAL REVIEW RESEARCH 6, 033070 (2024)

to vectorial λ), as well as dynamic constraints of the form of
Eq. (13c′) [leading to time-varying λ(t )].

To sum up, we have found an explicit dynamical de-
scription of the most likely paths and the typical potential
landscapes that give rise to the observed current. This has the
advantage of being both physically interpretable and compu-
tationally approachable. Moreover, this solution still solves an
optimal control problem in which control effort is minimized.
However, this control effort is no longer used to drive the
system between endpoint states, but only to attain a certain
ensemble-path average (e.g., a moment of the distribution),
regardless of initial and final distributions.

This same problem has appeared in the context of large de-
viations and optimal control. Specifically, in Refs. [40,48] the
long-time limit of a conditioned process (conditioned on a cur-
rent) is shown to be equivalent to a driven process that results
from this optimization problem. Moreover, optimality condi-
tions, along with the optimal drift, are obtained. In contrast, in
the present work, the optimality conditions arise in the form
of an explicitly time-varying Schrödinger system motivated
by maximum caliber problems, unifying the MaxCal and
Schrödinger bridge approaches. In the context of maximum
caliber, a recent work in this direction [49] has aimed to obtain
the most likely constant parametric perturbation of a prior
potential energy given a dynamical constraint, specifically, a
rate constant. Therein, implicit necessary conditions for the
optimal potential parameters are provided, where up to two
parameters are considered. However, the presented framework
is general in terms of the possible posterior potentials, which
are allowed to be time-varying. This provides a higher level
of abstraction that allows for a clear structure of the opti-
mal solutions. Other works have also inferred the transition
probabilities from steady-state data [50–52], and postulate
that these transition probabilities still hold out of equilibrium.
Herein, however, we update our model with possibly nonsta-
tionary data and allow for time-dependent drifts (analogous
to time-dependent transition probabilities, as we will see in
Sec. IV) that better match nonstationary dynamics. Thus, we
provide a framework for dynamical maximum caliber-type
model inference, in which macroscopic properties give force
fields reporting on the underlying physics.

C. Steady state

The introduced framework can also be used to infer station-
ary dynamics that are consistent with ensemble constraints.
Specifically, the steady state arises as a particular case by
assuming that ∂t p = 0 and no boundary conditions, that is,
no information on the steady state pss of the system. The prior
and the observed current must also be stationary, in the sense
that we now assume α(t, x) = α(x), σ (t, x) = σ (x), and∫

Rn

j(x)pss(x)dx = Jexp. (32)

By following the same steps as in Sec. III A 2, we obtain the
optimal drift

β(x) = α(x) + σ (x)2∇ log ϕ(x),

together with the steady-state Schrödinger system

α′∇ϕ + 1
2σ 2�ϕ − λ jϕ = 0, (33a)

−∇ · (αϕ̂) + 1
2�(σ 2ϕ̂) − λ jϕ̂ = 0. (33b)

Thus, ϕ and ϕ̂ are eigenfunctions for the zero eigenvalue of
the weighted infinitesimal generator α∇ + 1

2σ 2� − λ j and its
adjoint, respectively. Assuming enough regularity of α and j,
these equations can be solved for nontrivial ϕ and ϕ̂, to give
the most likely steady state of the system

pss(x) = ϕ(x)ϕ̂(x),

which indeed satisfies

∂t pss = 0 = −∇ · (βpss ) + 1
2�(σ 2 pss ).

Previous works have obtained analogous expressions for the
discrete case [53–55] (see Sec. IV C), whereas in this work
these appear as a special case of the general dynamic frame-
work. Similar results are also obtained in Refs. [40,48] for
conditioned diffusion processes in the long-time limit.

Interestingly, if the prior satisfies detailed balance, the
posterior does too. By detailed balance, we understand the
vanishing of the probability current at steady state. That is,
the prior is detailed balanced if the probability current

vqqss := (
α − 1

2∇σ 2 − 1
2σ 2∇ log qss

)
qss = 0, (34)

which, of course, implies stationarity

∂t qss = −∇ · (vqqss ) = 0. (35)

For the posterior to be detailed balanced,

vp pss := (
α + σ 2∇ log ϕ − 1

2∇σ 2 − 1
2σ 2∇ log pss

)
pss (36)

must vanish. Since pss must be absolutely continuous with
respect to qss, it is enough to show that vq = 0 implies vp = 0.
Indeed, using Eq. (34) in Eq. (36), we obtain that for vp to
vanish we must have

pss(x) = ϕ(x)2qss(x),

up to a multiplicative constant. Thus, for the posterior to be
detailed balanced, ϕ̂(x) = ϕ(x)qss(x) must satisfy Eq. (33b),
which can be checked using the equations for qss (35) and ϕ

(33a), together with Eq. (34).
It is important to note that the problem tackled in this

subsection is not equivalent to a naive maximum entropy
approach in which one may seek the steady-state distribution
that is closest to the prior in relative entropy while satisfying
a certain ensemble-average constraint. Namely,

arg min
pss

∫
Rn

pss(x) log
pss(x)

qss(x)
dx, subject to Eq. (32).

Such an approach only outputs a steady-state distribution pss

which is consistent with an infinite number of underlying dy-
namics. Then, in a separate optimization problem, one would
need to find the most likely dynamics leading to this steady
state, resulting in an overall sub-optimal solution. Instead,
herein, the steady-state distribution and the dynamics are si-
multaneously optimized.
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IV. DISCRETE SETTING

So far we have developed our theory in continuous time
and continuous state space. In the present section, we follow
up with the counterpart for dynamics taking place on a dis-
crete space and over a discrete time-indexing set. Relevant
applications abound, as in chemical networks [13], genetic
circuits [16], systems that model the firing of neurons [56], or
conformational changes of molecules and biopolymers [17],
and many others. However, an added incentive for studying
the discrete setting is drawn from parallels to the continuous
counterpart of the theory that ultimately helps elucidate both.
Hence, we now consider the discrete time/space Schrödinger-
maximum caliber problem.

Let X denote a discrete state space that, for simplicity, we
assume finite, i.e., with cardinality |X | = n. Then, X T +1 is
the space of sample paths with T + 1 time steps, with the
associated sample points denoted as

x = (x0, x1, . . . , xT ),

for x0, x1, . . . , xT ∈ X . In other words, a path x is a function
from the time indexing set {0, 1, . . . , T } to X .

Let Q be a (prior) Markov Law on X T +1, specified by

Q(x) = q0(x0)qx1|x0 qx2|x1 · · · qxT |xT −1 ,

where q0 is an initial probability distribution (vector) on X
and qxt |xt−1 represents the transition probability to a state xt

from a state xt−1 at time t . The Markov transition kernel
satisfies ∑

xt ∈X
qxt |xt−1 = 1,

for t ∈ {0, 1, . . . , T }. As compared to previous related works
[50,51], with little overhead, we develop our framework as-
suming time-varying prior, for generality.

As before, we assume that our prior Q is inconsistent with
measurements (ensemble-path integrals in the form of cur-
rents), and our task is to determine the most likely law that is
compatible with the measurements. The optimal posterior law
is foreseeably Markov, similar to the continuous case. Indeed,
as shown next, the discrete optimization problem yields a new
Markov kernel that leads to the most likely sought stochastic
evolution.

A. Schrödinger bridges with currents

We first consider the Schrödinger bridge problem with a
current constraint which, in analogy to the continuous case,
takes the form

min
P�Q

∑
x∈X T +1

P(x) log
P(x)

Q(x)

s.t. p0(x0) = pexp
0 (x0), pT (xT ) = pexp

T (xT ),

∑
x0,...,xT ∈X

(
T −1∑
k=0

jk (xk, xk+1)

)
P(x0, x1, . . . , xT ) = Jexp. (37)

Here, jk (xk, xk+1) denotes the measured current between sites
xk and xk+1 in X , and pt denotes the one-time marginal for the

distribution P, that is

pt (xt ) =
∑

x1,...,xT \xt

P(x0, x1, . . . , xT ).

The measured current may capture quantities of interest such
as work, heat, dwell times, or traffic between two states [57].

Based on similar arguments presented in the continuous
setting, it is straightforward to verify that the optimizer takes
the form

P�(x) = f (x0)g(xT )e
−

T −1∑
k=0

λ jk (xk ,xk+1 )
Q(x), (38)

where f (x0) and g(xT ) arise as Lagrange multipliers of the
endpoint constraints pexp

0 and pexp
T . The structure of P� implies

that the Markovianity of Q is preserved. This can be traced
to the fact that the Radon-Nikodym derivative factors into a
product of 2-tensors, since the exponent is likewise the sum
of 2-tensors. Imposing the endpoint constraints we obtain

ϕ̂0(x0)
∑

x1,...,xT

ϕT (xT )e
−

T −1∑
k=0

λ jk (xk ,xk+1 )
qx1|x0 · · · qxT |xT −1

= pexp
0 (x0), (39a)

ϕT (xT )
∑

x0,...,xT −1

ϕ̂0(x0)e
−

T −1∑
k=0

λ jk (xk ,xk+1 )
qx1|x0 · · · qxT |xT −1

= pexp
T (xT ), (39b)

where we have defined

ϕ̂0(x0) := f (x0)q0(x0), and ϕT (xT ) := g(xT ).

The structure of the equations suggests an evolution

ϕ̂t+1(xt+1) :=
∑

xt

qxt+1|xt �(xt , xt+1)ϕ̂t (xt ), (40a)

ϕt (xt ) :=
∑
xt+1

qxt+1|xt �(xt , xt+1)ϕt+1(xt+1), (40b)

for ϕ̂ and ϕ, with t ∈ {0, . . . , T } and �(xk, xk+1) :=
e−λ jk (xk ,xk+1 ). Then, equations (39) couple the boundary con-
ditions of Eq. (40), since

ϕ̂0(x0)ϕ0(x0) = pexp
0 (x0), (40c)

ϕT (xT )ϕ̂T (xT ) = pexp
T (xT ). (40d)

The system (40) is the discrete Schrödinger system [58,59].
For λ specified, the uniqueness of solutions follows by the
same argument as in Ref. [59].1 We note that Eqs. (40a) and
(40b) are the discrete evolution counterparts of the Fokker-
Planck equation (21b) and its adjoint (21a), respectively. A
point of departure from these earlier works [58,59] is that a
parameter λ is to be determined to satisfy the last ensemble
path condition in Eq. (37).

1One simply has to notice that the map

ϕ̂i
0

(40a)�→ ϕ̂i
T

(40d )�→ ϕi
T

(40b)�→ ϕi
0

(40c)�→ ϕ̂i+1
0

for i = 1, 2, . . . is a contraction in the Hilbert metric.
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Summing over all xi ∈ X but for xt in Eq. (38), the one-
time marginals of P� can be computed to be

pt (xt ) = ϕt (xt )ϕ̂t (xt ), (41)

for all t ∈ {0, 1, . . . , T }. Moreover, the optimal law can be
factored into

P�(x) := p0(x0)px1|x0 px2|x1 · · · pxT |xT −1 , (42)

by noticing

P�(x) = ϕ̂0(x0)qx1|x0�(x0, x1) × · · ·
× qxT |xT −1�(xT −1, xT )ϕT (xT ),

= ϕ0(x0)ϕ̂0(x0)qx1|x0�(x0, x1)
ϕ1(x1)

ϕ0(x0)

× 1

ϕ1(x1)
× · · · × ϕT −1(xT −1)

× qxT |xT −1�(xT −1, xT )
ϕT (xT )

ϕT −1(xT −1)
.

Therefore, the new Markov kernels are given by

pxt+1|xt = qxt+1|xt �(xt , xt+1)
ϕt+1(xt+1)

ϕt (xt )
, (43)

for all t ∈ {0, 1, . . . , T }.
Thus, we obtained explicit expressions for the updated

transition probabilities (43), which may also vary as a function
of time. It remains to find a value for λ to ensure that the last
ensemble-path condition in Eq. (37) is satisfied. Feasibility
is not automatic, since this last condition departs from the
standard setting of the Schrödinger bridge problem. Assuming
feasibility (e.g., by arguing on physical grounds that the data
represent indeed such measurements), an optimal value for λ

exists due to convexity. Determining the value for the optimal
λ can proceed through an iterative search, akin to the one in
the continuous case (see Sec. III A 3). In this case, this search
is faster due to the discrete nature of the problem. Moreover,
having time-varying constraints [cf. Eq. (13c′)] becomes more
approachable since the search for λ(t ) is a finite-dimensional
search as well.

B. Maximum caliber problem

Let us now tackle the more standard problem of maximum
caliber. Specifically, in analogy to the classical case, we con-
sider the following problem:

min
P�Q

∑
x∈X T +1

P(x) log
P(x)

Q(x)

s.t.
∑

x0,...,xT ∈X

(
T −1∑
k=0

jk (xk, xk+1)

)
P(x0, x1, . . . , xT ) = Jexp,

i.e., without specific boundary constraints. The optimizer
takes the form

P�(x) = e
−

T −1∑
k=0

λ jk (xk ,xk+1 )
Q(x)

Z .

Setting

ϕ̂0(x0) = q0(x0), and ϕT (xT ) = 1

Z ,

the optimizer can be written as

P�(x) = ϕ̂0(x0)

q0(x0)
ϕT (xT )e

−
T −1∑
k=0

λ jk (xk ,xk+1 )
Q(x),

with the optimal Markov kernel obtained via Eq. (43), and the
one-time marginals given by Eq. (41), where the functions ϕt

and ϕ̂t are obtained through Eqs. (40a) and (40b).

C. Steady state

We now return to the maximum caliber problem with sta-
tionary conditions. Specifically, we consider a steady-state
prior Q and a current constraint of the form∑

x0,x1∈X
j(x0, x1)P(x0, x1) = Jexp,

and we search for the most likely steady-state law P that
satisfies this constraint. Here, it is enough to consider a
path x = (x0, x1) with only two successive points in time.
Once again, without loss of generality, we assume a scalar
such constraint—a vector-valued constraint can be dealt with
similarly. The problem can be written in the form of a
Schrödinger bridge problem (37) with identical endpoint con-
straints pexp

0 (x) = pexp
1 (x) = p(x) that need to be determined.

Thus, p(x) is free (sums to 1) and has to be optimized for.
Therefore, the optimal law has the form (38), and must

be such that Eq. (39) is satisfied for pexp
0 (x0) = p(x0) and

pexp
1 (x1) = p(x1). Namely, for any x0, x1,

ϕ̂0(x0)ϕ0(x0) = p(x0), and ϕ̂1(x1)ϕ1(x1) = p(x1),

where we only need to consider one step,
ϕ̂1(x1) =

∑
x0

qx1|x0�(x0, x1)ϕ̂0(x0), (44a)

ϕ0(x0) =
∑

x1

qx1|x0�(x0, x1)ϕ1(x1). (44b)

This implies that ϕ̂0(x)ϕ0(x) = ϕ̂1(x)ϕ1(x). We choose

ϕ̂1(x) = ηϕ̂0(x) and ϕ1(x) = 1

η
ϕ0(x).

Then, ϕ and ϕ̂ are uniquely fixed by Eq. (44). To see this,
note that ϕ̂0 and ϕ1 are the right and left Perron-Frobenius
eigenvectors of the matrix

[qx1|x0�(x0, x1)]x0,x1∈X ,

respectively, with eigenvalue η; see Ref. [60] for the Perron-
Frobenius theory that ensures a unique maximal real and
positive eigenvalue η and Ref. [61] for an analogous frame-
work to ours in the context of networks. Evidently,

p(x) = ϕ̂t (x)ϕt (x)

is the same for all t , and the updated time-homogeneous
Markov kernel is given by

px1|x0 = qx1|x0�(x0, x1)
ϕ0(x1)

ηϕ0(x0)
,

which recovers previous steady-state results [53,54,62].
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V. EXAMPLES

A. Schrödinger bridges with currents: Quadratic
potential with hidden DoF

Let us consider a two-dimensional colloidal particle sub-
ject to a quadratic potential (exerted for instance by optical
tweezers). This quadratic potential has two contributions. The
first comes from a force applied along the first degree of
freedom that we have control over, while the second comes
from an underlying unknown potential, which we want to
estimate, affecting a degree of freedom that remains “hidden.”
The force under our control extracts an amount of work from
the system that we can measure and provides the data for our
modeling and estimation problem.

Specifically, we consider the following potential energy:

U (t, x) = 1
2 x′[Kprior + C(t )]x,

where x ∈ R2, and

Kprior =
[

3 1
1 2

]
, C(t ) =

[
cos(t ) 0

0 0

]
represent the intensity of the unknown underlying poten-
tial we want to estimate, and the control force, respectively.
Hence, the prior dynamics follow

dXt = − 1

γ
[Kprior + C(t )]Xt dt +

√
2kBT

γ
dWt ,

where {Wt } is a two-dimensional Brownian motion, γ repre-
sents the friction coefficient, kB the Boltzmann constant and
T ∈ R the temperature of the heat bath. The work extracted
from the system over a time interval [0, T ] by our control
force is given by

W = −1

2

∫ T

0

∫
x′Ċ(t )xp(t, x)dxdt

= 1

2

∫ T

0
�11(t ) sin(t )dt, (45)

where �11 denotes the one-one component of the covariance
matrix � = ∫

xx′ pdx, and Ċ denotes the time derivative of
C. In this first example, we measure work extraction W exp

along a time interval [0, T ], when our system starts and ends
at Gaussian distributions with zero-mean and covariances

�
exp
0 =

[
1 0.75

0.75 1.5

]
and �

exp
T =

[
0.2 −0.01

−0.01 0.5

]
,

respectively. However, the measured data is not consistent
with the prior dynamics and we are interested in the most
likely path that the ensemble of particles took to produce the
measurements we obtained. The resulting dynamics allow in-
ference of the underlying potential affecting the hidden degree
of freedom.

To this end, we apply the formalism developed in Sec. III A
to the particular dynamics at hand. Due to the quadratic nature
of the potential and the Gaussian endpoints, ϕ, and ϕ̂ can be
taken as an ansatz to be of the form

ϕ(t, x) = N (t )e− 1
2 x′A(t )x and ϕ̂(t, x) = M(t )e− 1

2 x′B(t )x.

FIG. 1. Prior and posterior distributions along the second degree
of freedom x2, together with their associated potentials. (a) Prior one-
time marginals along x2. (b) Work extracted for different values of λ.
Blow-up figures correspond to the values of λ that satisfy W (λ) =
1 and W (λ) = −1, respectively. (c) Posterior one-time marginals
along x2 for W (λ) = 1. (d) Posterior one-time marginals along x2

for W (λ) = −1. (e, f) Entries of the potential intensity matrix Kpost

under which the posterior distribution in panels (c, d) is typical;
the values of entries are drawn (continuous curves) on top of those
(dotted lines) corresponding to the prior potential intensity matrix
Kprior .

Then, due to Eqs. (21a) and (21b), A(t ) and B(t ) must satisfy

Ȧ = (Kprior + C)′A + A′(Kprior + C) + σ 2A′A + λĊ,

Ḃ = (Kprior + C)′B + B′(Kprior + C) − σ 2B′B − λĊ,

where we have used the fact that j(t, x) = − 1
2 x′∂tC(t )x and

have set σ 2 = 2kBT
γ

. The boundary conditions must be such
that(

�
exp
0

)−1 = A(0) + B(0) and
(
�

exp
T

)−1 = A(T ) + B(T ).

Moreover, the optimal λ must lead to

−1

2

∫ T

0

∫
x′Ċ(t )xϕ(t, x)ϕ̂(t, x)dxdt = W exp. (46)

To find the appropriate boundary conditions A(T ), B(0)
and the value of the Lagrange multiplier λ, we first apply
a Sinkhorn algorithm for different λ’s to find the boundary
constraints A(T ) and B(0), along with the obtained work W (λ)
[63]. Then, we find the particular λ that satisfies Eq. (46). The
results of this procedure for W exp = 1 and W exp = −1 (the
negative denoting work is put into the system) are shown in
Fig. 1. Therein we observe how for the different measured
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work values, we obtain vastly different posterior distributions
[Figs. 1(c) and 1(d)], along with different estimates of the
underlying potential intensity [Figs. 1(e) and 1(f)],

Kpost (t ) = Kprior + σ 2A(t ).

These results highlight the impact that a measurement that
pertains to the first degree of freedom has on estimating
one-time marginals along the second (hidden) degree of free-
dom. Indeed, the posterior distributions and potentials have
approximately opposite phases in these two cases. This can
be understood by observing that to obtain positive work output
the phase of �11(t ) must approximately match that of sin(t )
[cf. Eq. (45)], while the phase must be opposite if negative
work output is obtained. Moreover, it is also seen that to
obtain positive work output, λ has to be further away from 0
(λ = −6.31) than in the negative work output case (λ = 5.09).
This seems reasonable since extracting work in finite time is
thermodynamically costly (due to unavoidable dissipation),
and hence more constrained than putting work in.

B. Maximum caliber: A bit erasure experiment

We consider a bit erasure experiment [64], in which the
state of the system starts being uniformly distributed over
two possibilities (0 and 1), and is driven towards a specified
state (say, being reset to 0). This kind of experiment can be
realized through a trapped colloidal particle [65] or nanomag-
netic memory bits [66]. We consider an experiment in which
the only available information is the success rate in erasing
the bit, that is, the probability mass corresponding to state 0
at the final time. Assuming that the observation does not
match the prior dynamics, we adapt the maximum caliber
formalism in Sec. IV B to account for this discrepancy.

Following Refs. [64,65], we assume the prior dynamics of
our colloidal particle undergoing bit erasure to be

dXt = − 1

γ
∇U prior (t, Xt )dt +

√
2kBT

γ
dWt ,

where Xt ∈ R, {Wt } is the one-dimensional Brownian motion,
and the potential function U (t, Xt ) is given by

U prior (t, x) = 1
4 x4 − 2(x + 0.2t )2,

with t ∈ [0, T ], where T = 5. The experiment starts at an
equilibrium distribution in which the particles are in the left
and right wells with equal probability. “Tilting” of the poten-
tial steers the particles towards the right well [see Fig. 2(a)].
At the end of the experiment, we expect the bit to be erased,
that is, the probability of the particle sitting on the right well
to be close to 1 (specifically, 0.926). However, we perform the
bit erasure experiment and we observe that at the end (t = T )
the bit is not perfectly erased; the probability of erasure is
measured to be ∫ ∞

0
p(T, x)dx = Jexp = 0.6.

What is the most likely evolution of the probability density of
this bit erasure experiment? What is the potential landscape
under which this evolution is typical?

To solve this problem we make use of the framework pre-
sented in Sec. IV B, with a slight modification. In this case,

FIG. 2. Prior and posterior distributions of a bit erasure exper-
iment, along with the corresponding potential energies plotted at
initial and final times for simplicity. (a) Prior potential energy at
initial and final times; the arrow designates the motion of a typical
particle being reset to 0. (b) Posterior potential energy at initial and
final times. (c) Prior density flow that begins at equilibrium with
particles distributed equally over the two sides of a double well
potential, and ending with 92.6% of the particles in the right well.
(d) Most likely flow of the probability distribution of particles that
end with only 60% in the right well.

our current constraint reads∫
R

j(T, xT )p(T, xT )dxT = 0.6,

with j(T, xT ) = H (xT ), where H is the Heaviside function.
Therefore, the optimal posterior distribution must be of the
form [cf. Eq. (28)]

P� = e−λ j(T,XT )Q

Z .

This leads to the one-time marginals

p(t, x) = ϕ(t, x)ϕ̂(t, x),

with ϕ(t, x), ϕ̂(t, x) satisfying

∂tϕ = −α∇ϕ − 1

2
σ 2�ϕ, ϕ(T, x) = 1

Z e−λH (x),

∂t ϕ̂ = −∇ · (αϕ̂) + 1

2
�(σ 2ϕ̂), ϕ̂(0, x) = q0(x). (47)

We remark that in this case, ϕ̂ evolves according to the
prior Fokker-Planck equation, with the prior initial condition.
Thus, ϕ̂(t, x) = q(t, x). Moreover, in this example, it is not
necessary to search for the optimal λ, since it is explicitly fixed
by our constraint∫ ∞

0
p(T, xT )dxT = e−λ

Z

∫ ∞

0
q(T, xT )dxT = 0.6,

implying that

e−λ

Z = 0.6

0.926
= 0.648.

Since all one-time marginals must be normalized,∫
R

p(T, x)dx = 1

Z

∫ 0

−∞
q(T, x)dx + 0.6 = 1,
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FIG. 3. (a) Prior potential and the associated steady-state dis-
tribution; schematics of the conformational state of the protein
corresponding to the denatured (unfolded), native, and molten glob-
ule states are depicted (left to right). (b) Posterior potential and
steady-state distribution (solid curves); the dashed curve represents
the shape of j(x) as a smooth indicator function on the native state.

from where we can obtain Z to uniquely fix the endpoint
constraint in Eq. (47).

Following this procedure, we have obtained the optimal
posterior distribution, along with the associated estimate of
the potential landscape

U post (t, x) = U prior (t, x) − 2kBT

γ
log ϕ(t, x),

which are depicted in Fig. 2. We observe how the constraint on
the endpoint populations smoothly affects the whole trajectory
of particles, including the initial distribution and potential.

C. Steady state: Energy landscapes for protein folding

As a last example, let us consider protein folding ki-
netics [67]. A popular model to describe such kinetics is
based on energy landscapes on the conformation space of
the protein [68,69] [see Fig. 3(a) for an example]. Dena-
tured (unfolded) proteins move across those (typically steady)
energy landscapes through some noisy dynamics [70], eventu-
ally reaching the native (folded) state. Specifically, let Xt ∈ R
denote the conformation state of the protein, which we assume
to evolve according to [71,72]

dXt = −∇U prior (Xt )dt + σdWt , (48)

where U prior (x) is the energy landscape depicted in Fig. 3(a).
The considered landscape has two metastable states corre-
sponding to the unfolded state (left well) and a molten globule
state (right well). The stable state (middle well) corresponds to
the folded state in which the protein is biologically functional.
An ensemble of such proteins reaches a steady state qss, in
which 82.5% of the proteins are at the native state.

Assume we measure the concentration of proteins at steady
state in the native state to be less than what we expected from
qss. That is, we measure∫

Rn

j(x)pss(x)dx = 0.72, (49)

where j(x) is the smoothed indicator function of the native
state depicted in Fig. 3(b). The most likely steady state that
led to that measurement, along with the energy landscape that
generates it, can be found by solving for ϕ(x) and ϕ̂(x) in

Eq. (33). Then, as usual,

pss(x) = ϕ(x)ϕ̂(x)

and

U post (x) = U prior (x) − σ 2 log ϕ(x),

up to a constant. Iteration over values of λ is necessary to find
the one that satisfies the constraint (49). The corresponding
optimal solution is portrayed in Fig. 3(b). As noted earlier,
the obtained solution is not equivalent to the naive entropy-
maximizing steady-state distribution.

The dynamical counterpart of this theory may be used to
determine dynamical energy landscapes of coupled binding
and protein conformational change [73,74]. Indeed, inferring
energy landscapes is invaluable in identifying and designing
novel protein-binding ligands for drug discovery [75,76].

VI. CONCLUSIONS

The goal of this work has been to link and further develop
certain classical viewpoints for solving inverse problems,
seeking the most likely explanation of experimentally col-
lected measurements. Historically, the main ideas go back to
the dawn of statistical mechanics at the beginning of the 19th
Century. Our theme however begins with a proposal by Erwin
Schrödinger, the so-called Schrödinger bridge, that seeks an
update to a prior law to restore consistency between measured
marginal distributions at different points in time and the given
prior law. The celebrated maximum entropy and maximum
caliber methods represent extensions of this basic idea, and
this is the message that we hope to convey.

On the practical side, the significance of Schrödinger’s
dictum is that the most likely explanation gives rise to a
new law, and as a consequence, to an updated dynamical
model. For many problems in physics and biology, dynam-
ics are intimately connected to an energy landscape that
steers stochastic systems between measurements. Estimat-
ing potential landscapes, that dictate underlying microscopic
physics (e.g., material properties), is of fundamental relevance
across science. Indeed, the subtle relationship between micro-
scopic phenomena—such as chemical interactions, molecular
mechanics, or transition rates—and macroscopic and thermo-
dynamic properties is of key importance in chemistry, biology,
physics, and material science.

In biology, for instance, distinctive energy landscapes are
responsible for the workings of F0F1-ATP synthase rotary
motors [77,78], as well as the sliding of kinesin molecules
across microtubule networks [79]. In material science and
chemistry similar examples abound. In our last example,
Sec. V C, even if at a rudimentary level, we have seen
how the shape of energy landscapes can provide descrip-
tions of dynamics along conformation states that capture key
thermodynamic and kinetic quantities. The practical sig-
nificance of understanding energy landscapes cannot be
underestimated, as it drives protein engineering and the de-
sign of molecules and materials with specified macroscopic
properties [80,81].

On this broad template, the paradigm of maximum caliber
brings yet another dimension to the type of measurements that
one may consider, ensemble-path measurements. As we have
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seen in the body of the paper, these can be seamlessly treated
within the frame of Schrödinger bridges. Ensemble-path mea-
surements are especially interesting as they may represent
work, currents, and other physical quantities of timely impor-
tance in the rapidly developing technological front that peers
into the microscopic world.

In this work, we have presented an integrated view of
Schrödinger bridges and maximum caliber to provide opti-
mal estimates of both ensemble dynamics and time-varying
potential landscapes. The framework has an elegant analytical
structure that is computationally tractable and dates back to
Schrödinger. We see as items for future research the follow-
ing. First, the fact that, in general, we obtain time-varying
dynamics may be impractical in cases where potential land-
scapes are “known” to be constant. Thus, how to come up
with time-invariant landscapes (or other parameters), without
assuming that the system is at steady state, is of great interest.
Second, we note that the presented theory can only account for
measured currents j(t, x) that are independent of the model,
i.e., independent of both the ensemble distribution p(t, x) and

the drift β(t, x). Therefore, certain currents of interest, such
as heat or entropy, cannot be accounted for directly. An adap-
tation of the formalism to account for such “coupled” currents
would be highly valued. Finally, our theory opens up the study
of a new optimal mass transport problem in which currents
are fixed. Specifically, it is of interest to explore whether the
optimal mass transport problem with currents gives rise to a
meaningful distance on the space of probabilities; a useful
metric in which gradient flows are envisioned to provide opti-
mal models in the sense of maximum caliber.
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