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Error mitigation in variational quantum eigensolvers using tailored probabilistic machine learning
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Quantum computing technology has the potential to revolutionize the simulation of materials and molecules
in the near future. A primary challenge in achieving near-term quantum advantage is effectively mitigating the
noise effects inherent in current quantum processing units (QPUs). This challenge is also decisive in the context
of quantum-classical hybrid schemes employing variational quantum eigensolvers (VQEs) that have attracted
significant interest in recent years. In this paper, we present a method that employs parametric Gaussian process
regression (GPR) within an active learning framework to mitigate noise in quantum computations, focusing on
VQEs. Our approach, grounded in probabilistic machine learning, exploits a custom prior based on the VQE
ansatz to capture the underlying correlations between VQE outputs for different variational parameters, thereby
enhancing both accuracy and efficiency. We demonstrate the effectiveness of our method on a two-site Anderson
impurity model and a eight-site Heisenberg model, using the IBM open-source quantum computing framework,
Qiskit, showcasing substantial improvements in the accuracy of VQE outputs while reducing the number of
direct QPU energy evaluations. This paper contributes to the ongoing efforts in quantum-error mitigation and
optimization, bringing us a step closer to realizing the potential of quantum computing in quantum matter
simulations.
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I. INTRODUCTION

Quantum computers hold the promise of dramatically en-
hancing our ability to simulate quantum-mechanical systems.
Computational chemistry is expected to be one of the most
promising fields to benefit significantly from quantum tech-
nologies within the next few years [1–6], as the number of
qubits required to represent the active degrees of freedom
for small molecules is relatively low compared to that of
larger systems. Furthermore, quantum embedding (QE) meth-
ods [7,8] could allow us to benefit from quantum devices
for simulating larger systems (including molecules and peri-
odic materials) by employing QPUs to handle only the most
important degrees of freedom, while treating others (at the
mean-field level) on classical devices [9–12].

A major obstacle to realizing this ambitious program is the
insufficient reliability of data produced by quantum devices,
even though several effective error-mitigation methodologies

*Contact author: ykent@iastate.edu
†Contact author: nxlsps@rit.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

have already been developed and implemented [13–15]. In
this paper, we propose a method to address this problem that
is complementary to existing approaches and has the poten-
tial to significantly improve the accuracy achieved in VQE
frameworks [16–19].

Existing error-mitigation techniques focus on enhancing
the computation of expectation values with respect to a
parametrized quantum circuit at a single point in parameter
space [13–15,20–27]. For instance, the zero-noise extrapola-
tion technique measures an observable at a single parameter
point for a set of equivalent circuits with different noise
strengths, followed by fitting with analytical functions such
as polynomials and extrapolating the expectation value to
the zero-noise limit [13,14,20,22,23]. Probabilistic error can-
cellation and randomized compiling approaches convert the
expectation value with respect to a parametrized circuit at
a single point to a sum of estimations with equivalent ran-
dom circuits, effectively transforming the coherent noise into
stochastic error [15,20,21,24].

In contrast to mitigating the error of VQE measurements
for each individual variational state, as in the methods men-
tioned above, we propose a complementary approach that
aims to mitigate the error for the entire variational landscape
simultaneously by exploiting the underlying correlations be-
tween VQE outputs for different variational parameters.
Specifically, we employ a custom probabilistic machine learn-
ing method based on GPR (rooted in Bayesian statistics)
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[28], tailored to incorporate the specific structure of any
given parametrized quantum circuit. This method allows us
to include within the computation our prior knowledge about
general mathematical structure of the variational ansatz. This
approach can be combined with any of the error-mitigation
techniques mentioned above, substantially improving the ac-
curacy of VQE calculations.

The paper is structured as follows. In Secs. II, III, and
IV we present our error-mitigation formalism from a general
perspective; in Secs. V and VI we show benchmark calcula-
tions of a Fermionic impurity model and a Heisenberg model
using our method within the IBM quantum-computing frame-
work Qiskit [29].

II. HAMILTONIAN-INDEPENDENT FEATURES
OF THE VARIATIONAL LANDSCAPE

Let us consider a generic Hamiltonian Ĥ and a variational
space {|�(θ)〉}, where the components of θ = (θ1, .., θd ) are
real numbers parametrizing the trial quantum states. Our goal
is to determine

θ̄ = argminθ E (θ) , (1)

E (θ) = 〈φ(θ)| Ĥ |φ(θ)〉 . (2)

Within VQE frameworks, we prepare the state |φ(θ)〉 using
parametrized quantum gates, and estimate E (θ) from a series
of quantum measurements for each θ. However, outputs from
currently available intermediate-scale quantum devices are
affected by spurious effects such as decoherence and hard-
ware imperfections, resulting in both random and systematic
noise [30].

The key idea at the basis of our method for mitigating
the noise in VQE frameworks is to exploit the fact that the
variational landscape satisfies exact properties that are known
beforehand. Therefore, corrections to the VQE measurements,
which may be affected by spurious noise effects that poten-
tially violate such exact properties, can be rationally enforced
for consistency with them. As we are going to show, this
approach can effectively mitigate noise by aligning the VQE
output with the inherent structure of the variational landscape.
Here we illustrate this point focusing on a generic ansatz
represented as follows:

|φ(θ)〉 = Û (θ)|φ0〉 . (3)

Here, |φ0〉 is a single-particle state (e.g., the Hartree-Fock
solution of Ĥ ), and Û (θ) is a unitary transformation given by

Û (θ) =
d∏

l=1

Ml∏
m=1

eiĜlm
θ l

2 , (4)

where θ l are variational parameters, the generators Ĝlm are
Pauli strings expressed in the Hartree-Fock basis, d is the
number of variational parameters, and Ml is the number of
Pauli strings for each variational parameter. Note that a Pauli
string is defined as a generic tensor product of Pauli operators
P̂ = ⊗kP̂k , where P̂k ∈ {1, X k,Y k, Zk}, k is a generic site la-
bel, X k , Y k , and Zk are the corresponding local Pauli operators
and 1 is the identity.

A key observation is that, as noted in Refs. [31,32], since
Ĝ2

lm = Î ∀ l, m, where Î is the identity, we have

eiĜlm
θ l

2 = cos

(
θ l

2

)
Î + i sin

(
θ l

2

)
Ĝlm . (5)

Therefore, the variational energy [Eq. (2)] can be expanded in
the following form:

E (θ) =
2M1∑
i1=0

...

2Md∑
id =0

ξi1,..,id

d∏
l=1

cos

(
θ l

2

)il

sin

(
θ l

2

)2Ml −il

=
S∑

s=1

ξsTs(θ) , (6)

where we use for convenience a composite index s =
(i1, .., id ) to label the coefficients ξs, Ts(θ) are the correspond-
ing trigonometric functions, and S =∏d

l=1(2Ml + 1). Note
that the coefficients ξs are not fixed by the variational ansatz,
but they depend on the specific Hamiltonian operator Ĥ .

It is useful to note that the functions Ts(θ) have pe-
riodicity 2π , and the condition expressed by Eq. (6) can
be conveniently reformulated in terms of the corresponding
plane-waves orthonormal basis as follows:

E (θ) =
M1∑

k1=−M1

...

Md∑
kd =−Md

εk1,..,kd

d∏
l=1

eikl θl

(2π )1/2

=
∑

k

εk
eikθ

(2π )d/2
, (7)

where k = (k1, . . . , kd ) and each kl is an integer running from
−Ml to Ml . Note that this reformulation in terms of the plane-
wave basis does not alter the functional space spanned by the
Ts(θ) functions, thereby ensuring the exact representation of
the variational energy landscape is preserved. This step shows
that Eq. (6) encodes precise information about the smoothness
of the energy landscape, guaranteeing that all Fourier compo-
nents with |kl | > Ml are 0. The proposed approach involves
utilizing the GPR framework to exploit such prior knowledge
about global properties of the variational landscape. As we
are going to show, since Eq. (7) correlates the data with each
other, it can mitigate the error arising from individual QPU
measurements, and reduce substantially the computational
cost of the variational-energy minimization.

III. GPR-BASED ERROR MITIGATION

In this section, we demonstrate how to use the GPR frame-
work in conjunction with Eq. (6) and the variational-energy
data D measured on QPUs to compute a “posterior probability
distribution” P[E |D] within the space of energy landscapes.

In the following sections, we show that the resulting pos-
terior probability distribution can be efficiently employed for
minimizing the variational energy in VQE frameworks, miti-
gating errors and significantly reducing the required number
of quantum measurements.
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A. Prior probability distribution associated
with a variational ansatz

Suppose the Hamiltonian Ĥ is unspecified, but the varia-
tional ansatz [Eq. (3)] has been chosen. Our aim is to “learn”
the energy landscape E (θ) from data D obtained through quan-
tum measurements, and express our prediction in the form of a
“posterior probability distribution” P[E |D]. To construct such
a predictive model, we need to incorporate our prior knowl-
edge about the function to be learned (i.e., the information
available before any measurement) into the calculation.

In the GPR framework, this prior knowledge is encap-
sulated in a “prior probability distribution” P[E], which is
conveniently assumed to be Gaussian. A significant bene-
fit of assuming that P[E] is Gaussian is that all Gaussian
distributions are entirely characterized by their correspond-
ing “propagator” (or Kernel function), which is defined as
follows:

K (θ, θ′) =
∫

D[E]P[E] E (θ) E (θ′) , (8)

where D[E] is the standard functional-integral measure, (see
Appendix A for a more detailed introduction to GPR). A key
feature of the proposed approach is that, unlike in standard
GPR where the kernel function is typically chosen empirically
from a list (including, e.g., the widely used “square exponen-
tial” kernel), here we calculate it from Eq. (6), as follows:

P[E]∝
∫ ∏

r

dξr exp

⎧⎨
⎩− 1

2η2

∫
dθ

[
E (θ)−

∑
s

ξsTs(θ)

]2
⎫⎬
⎭

× exp

⎧⎨
⎩−1

2

∑
s,s′

Ass′ ξsξs′

⎫⎬
⎭ , (9)

where

dθ =
d∏

l=1

dθ l , (10)

where the integrals over dθ l are all taken between −π and π ,
η is considered in the limit η → 0, and we have introduced a
(strictly) positive-definite matrix A, whose role is to encode a
Gaussian probability distribution for the coefficients ξs, repre-
sented as

p(ξ ) ∝ exp

{
−1

2

∑
ss′

Ass′ ξsξs′

}
. (11)

The meaning of Eq. (9) is that, within our scenario, we
know a priori that E (θ) can be expressed as in Eq. (6), where
Ts(θ) are known analytical functions. However, additional in-
formation about p(ξ ) for the coefficients ξs is necessary to
fully specify the prior probability distribution P[E].

The functional integral in Eq. (8) can be calculated explic-
itly, leading to

K (θ, θ′) =
S∑

s,s′=1

	ss′ Ts(θ)Ts′ (θ′) , (12)

where the matrix

	ss′ = A−1
ss′ = 〈ξsξs′ 〉p (13)

fully encodes the Gaussian prior probability distribution p(ξ ).
Below we derive a few examples of ansatzes for the GPR

prior, and calculate the corresponding kernel functions.

1. Kernel design I

A possible ansatz is to encode within the prior only the
condition that the energy landscape must be bounded, which
is true for all physical Hamiltonians,

p(ξ ) ∝ exp

{
− t

2

∫
dθ E2(θ)

}

= exp

⎧⎨
⎩− t

2

∫
dθ

[∑
s

ξsTs(θ)

]2
⎫⎬
⎭ , (14)

corresponding to

Ass′ = t
∫

dθ Ts(θ)Ts′ (θ). (15)

The parameter t encodes our prior information concerning the
range of the variational energy, as the resulting probability
distribution vanishes exponentially for |E (θ)| 
 t−1/2.

A direct calculation of Eq. (12) shows that the correspond-
ing Kernel function is the following:

K (θ1, θ2) = t−1

(2π )d

M1∑
k1=−M1

...

Md∑
kd =−Md

eik(θ1−θ2 ) . (16)

It should be noted that the framework above has the flex-
ibility of encoding in the prior also additional information
that may be available to us for specific VQEs. As an exam-
ple, in Sec. VI A we consider the example of a Heisenberg
model such that, because of the specific generators Ĝlm used,
the unitary transformation Û (θ) has periodicity π instead of
2π . Since, under such hypothesis, only the coefficients εk of
Eq. (7) with even kl are nonzero, we have that

K (θ1, θ2) = t−1

(2π )d

M1/2∑
k1=−M1/2

...

Md /2∑
kd =−Md /2

ei2k(θ1−θ2 ) . (17)

2. Kernel design II

While the derivation of the Kernel function in Eqs. (16) and
(17) is conceptually correct, its applicability is limited by ex-
ponential term growth with increasing variational parameters
d . This poses a scalability challenge. Here we derive an alter-
native kernel function that also encodes the same information
about the mathematical structure of the VQE landscape, but
fully resolves scalability for VQEs with many variational
parameters.

Let us consider Eq. (6), representing the VQE energy land-
scape. We note that of the prefactor ξi1,..,id of each function

Ti1,..,id (θ) =
d∏

l=1

cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

(18)

is the sum of
∏d

l=1

(2Ml

il

)
expectation values with respect

to |�0〉 of different complex operators. Based on this
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observation, we propose the following ansatz:

〈ξsξs′ 〉p = 〈ξi1,..,id ξ j1,.., jd 〉p = C
d∏

l=1

δil jl

(
2Ml

il

)
, (19)

where C is a positive constant and δi j is the Kroneker delta.
The rationale underlying Eq. (19) is that it corresponds to con-
sider the

∏d
l=1

(2Ml

il

)
terms in ξi1,..,id as independently sampled

from a zero-mean Gaussian.
A direct calculation, provided in Appendix C for complete-

ness, gives the following result:

K (θ, θ′) = C
d∏

l=1

[
cos

(
θl − θ ′

l

2

)]2Ml

. (20)

It is important to note that, while the kernel function in
Eq. (20) enforces our prior knowledge about the mathematical
structure of the VQE energy landscape, similarly to Eq. (16), it
resolves the scalability issues for a high number of variational
parameters.

3. Kernel design III

To enforce the symmetry condition that the unitary trans-
formation Û (θ) has periodicity π instead of 2π , as in the
examples presented in Sec. VI, let us introduce the translation
of π on the lth dimension, defined as follows:

Tl g(θ1, .., θd ) = g(θ1, .., θl − π, ..., θd ) , (21)

and the define the following “symmetrization operator”:

S = 2− d
2

d∏
l=1

[1 + Tl ] , (22)

which consists of a summation over all group elements with
respect to which E (θ) is invariant. We consider the following
symmetrized form of the variational landscape:

E (θ) = S
2M1∑
i1=0

...

2Md∑
id =0

ξi1,..,id

d∏
l=1

cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

,

(23)

assuming that the Gaussian probability distribution encoded
in Eq. (19) for the coefficients ξi1,..,id .

A direct calculation, provided in Appendix D for complete-
ness, gives the following result:

K (θ1, θ2) = 〈E (θ)E (θ′)〉

= C
d∏

l=1

([
cos

(
θl − θ ′

l

2

)]2Ml

+
[

sin

(
θl − θ ′

l

2

)]2Ml
)

, (24)

which is also free of the scalability issues of the Kernel func-
tion in Eq. (17). In Sec. VI B we illustrate this applying the
kernel function in Eq. (24) to a Heisenberg model, for a VQE
with 27 variational parameters.

B. QPUs data

Let us consider any fixed Hamiltonian Ĥ whose energy
landscape is a function E (θ) sampled from our prior proba-
bility distribution P[E].

For each variational parameter θα we consider the random
variable,

Eα = 1

N

N∑
r=1

Eαr , (25)

describing the average of a series of Nsh quantum measure-
ments (shots), given the variational state |φ(θα )〉 prepared
on the quantum circuit. We assume that, for large N , the
conditional probability of obtaining Eα can be represented as
follows:

P(θα|Eα ) ∝ exp

{
− 1

2σ 2
α

(E (θα ) − Eα )2

}
, (26)

i.e., that Eα is approximately gaussian distributed around the
real underlying variational energy

E (θα ) = 〈φ(θα )| Ĥ |φ(θα )〉 , (27)

with a variance σα .
We note that Eq. (26) is rigorously applicable primarily

to ideal (fault-free) quantum machines. In fact, in such sce-
narios the outcome of quantum measurements is inherently
probabilistic, and the variance σ 2

α can be precisely defined
as 〈φ(θα )| Ĥ2 − E2(θα ) |φ(θα )〉/N . In contrast, on real quan-
tum devices σα must be regarded as an aggregate measure
of the “error bar” for quantum measurements. This measure
encompasses not only the intrinsic uncertainties of quantum
projective measurements but also includes spurious effects
like decoherence and hardware imperfections. Consequently,
σα is effectively a characteristic of the specific quantum device
and is thus treated as a “hyperparameter” within our GPR
framework. This hyperparameter plays a crucial role in guid-
ing the GPR model in determining how closely the posterior
probability distribution for the variational landscape should
align with the energy values measured by the quantum device.

It is important to highlight that this setting is typical in
the practical application of GPR, where scenarios featuring
an error bar that is intrinsically probabilistic and Gaussian
are rarely, if ever, encountered. In real-world applications,
GPR is commonly utilized in contexts where the error bar
reflects a combination of inherent uncertainties and additional,
device-specific noise factors.

In summary, we assume that the probability of obtaining a
data set

D = {(θα, Eα, σα ) | α = 1, .., n} , (28)

given an underlying Hamiltonian Ĥ and a variational state
|φ(θα )〉, can be estimated by the following equation:

P[D|E] ∝
n∏

α=1

P(θα|Eα )

∝ exp

{
−

n∑
α=1

1

2σ 2
α

(E (θα ) − Eα )2

}
, (29)
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where σα is a hyperparameter (that depends on the “quality” of
the quantum device) for all θα such that the energy is evaluated
from projective measurements.

C. The posterior probability distribution

Applying Bayes’ rule with the given data D [refer to
Eq. (28)] and a prior probability P[E], we obtain the following
“posterior” conditional probability for the function E :

P[E |D] ∝ P[E] exp

{
−

n∑
α=1

1

2σ 2
α

(E (θα ) − Eα )2

}
, (30)

which represents the probability distribution for the function
E , given a data set D, see Eq. (28).

The interpretation of Eq. (30) is that the probability of a
specific energy landscape is influenced by the prior distri-
bution and “anchored” to the data, i.e., it is exponentially
suppressed for configurations deviating from the measured
data Eα by more than σα .

Since P[E |D] is Gaussian, we can calculate the following
quantities exactly:

〈E (θ)〉 =
∫

D[E]P[E |D] E (θ), (31)


2(θ) =
∫

D[E]P[E |D]
(
E2(θ) − 〈E (θ)〉2

)
, (32)

where Eq. (31) represents our prediction for E (θ) at any
test point θ and Eq. (32) represents the uncertainty of our
prediction.

Let us express explicitly 〈E (θ)〉 and 
(θ) as a function of
the data D [refer to Eq. (28)]. We define the matrix

K̄αβ = K (θα, θβ ) + σ 2
α δαβ ∀α, β ∈ 1, .., n , (33)

where K is the kernel function defined in Eq. (8). Following
the procedure detailed in Appendices A and B for complete-
ness, we have

〈E (θ)〉 =
n∑

α,β=1

K (θ, θα )[K̄−1]αβEβ, (34)


2(θ) = K (θ, θ) −
n∑

α,β=1

K (θ, θα )[K̄−1]αβK (θβ, θ) . (35)

Note that evaluating Eqs. (34) and (35) requires computing
the inverse of K̄ , whose size equals the number n of training
data points. Therefore, for our approach to be practically ap-
plicable, it is important that n does not become prohibitively
large. On the other hand, minimizing the variational energy
does not necessitate learning the entire variational landscape
[which is encoded in S parameters, see Eq. (6)]. In fact, as we
are going to show in our benchmark calculations, the number
n of training data point necessary for this task is generally
smaller than S.

In the next section we describe a general method for cal-
culating the VQE energy minima from QPU measurements,
by combining the GPR approach framework discussed above
with standard minimization algorithms.

FIG. 1. Schematic illustration of the proposed energy minimiza-
tion algorithm based on GPR. The method incorporates a GPR
machine with a customized prior based on the specific VQE ansatz.
The main steps of the algorithm are shown, including evaluation of
uncertainty, utilization of GPR estimates when the uncertainty is be-
low a threshold, and updating the GPR database when the uncertainty
is above the threshold.

IV. ENERGY MINIMIZATION WITH ACTIVE LEARNING
FRAMEWORK

The standard approach for computing the minimum of the
variational energy E (θ) involves evaluating the energy for a
series of different variational parameters by averaging over
a series of quantum measurements at each iteration. This
method does not take advantage of any prior knowledge about
the variational ansatz.

In contrast, we propose a modified procedure, as illus-
trated in Fig. 1, which incorporates the GPR method and
a customized prior based on the specific variational ansatz
implemented on the parametrized quantum circuit. This new
algorithm can be summarized as follows. After initializing
the posterior probability distribution starting from an empty
dataset D, we perform the following steps:

(i) Whenever the minimization algorithm requests to eval-
uate the variational energy for a given set of variational
parameters θ, compute the uncertainty 
(θ) using GPR, based
only on the information already available in D.

(ii) If 
(θ) � 
̄, where 
̄ is a predefined accuracy thresh-
old, proceed using the GPR estimate for the variational energy
〈E (θ)〉, without performing any additional quantum measure-
ment.

(iii) If 
(θ) > 
̄, estimate the variational energy using
quantum measurements, and load this information into the
GPR database D. Then, provide the obtained GPR estimate
〈E (θ)〉 to the minimization algorithm.

Note that our procedure, as outlined above, departs from
the standard Bayesian optimization, which typically employs
GPR uncertainty quantification to guide exploration in the
variational space (a strategy generally feasible only for low-
dimensional problems). Our approach, in contrast, relies on
an independent energy minimization procedure, and uses GPR
only to bypass QPU evaluations when possible. In this general
sense, our algorithm’s structure bears more resemblance to
the adaptive scheme employed in building potential energy
surfaces (PESs) using GPR, as seen in Ref. [33].
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A crucial element of our framework is the custom kernel
function, crafted to match the structure of the VQE circuit,
thus improving GPR predictions by incorporating the spe-
cific form of the variational ansatz in the prior. Additionally,
it is essential to point out that our approach does not aim
to learn the full VQE energy landscape. Instead, it targets
the trajectory of the energy-minimization process, which is
essentially a one-dimensional path in the parameter space,
from the start to the energy minimum. Therefore, our method
effectively avoids the computational issues often associated
with high-dimensional spaces, like the curse of dimensional-
ity. In particular, as the minimization process advances, the
explored points become increasingly close to each other, mak-
ing our prior knowledge about the landscape’s smoothness
increasingly relevant, regardless of the number of variational
parameters in the VQE ansatz.

In the next section, we illustrate in detail the methodol-
ogy proposed above for calculations of a series of 2-qubit
impurity-model Hamiltonians and present benchmark calcu-
lations performed on real quantum devices.

V. BENCHMARK CALCULATIONS
OF A 2-QUBIT IMPURITY MODEL

We consider a Fermionic Hamiltonian represented as fol-
lows:

Ĥ = U

2
(n̂c − 1)2 + D

∑
σ=↑,↓

(c†
σ dσ + d†

σ cσ ) + λc
∑

σ=↑,↓
dσ d†

σ ,

(36)

where c†
σ and cσ are the creation and annihilation operators

of the so-called “impurity degrees of freedom”, d†
σ and dσ

are the creation and annihilation operators of the so-called
“bath degrees of freedom”, σ ∈ {↑,↓} is the spin index, n̂c =∑

σ c†
σ cσ is the impurity number operator, U is the Hubbard-

repulsion parameter for the impurity degrees of freedom,
while λc and D are the coupling constants characterizing the
bath of the impurity model and its coupling to the impurity,
respectively. From now on we set D = −|D|, with |D| serving
as the unit of energy.

We emphasize that Eq. (36) represents the simplest pos-
sible “impurity model” or “embedding Hamiltonian” (EH), a
fundamental building block of QE methods. Given that solv-
ing the EH in QE calculations is one of the most promising
potential applications of VQE, our choice of this model for
benchmark calculations aims to showcase the potential of
our method in addressing more complex quantum systems
typically encountered in practical QE calculations.

Specifically, we illustrate and benchmark our method for
calculating the ground state |�(D, λc,U )〉 of Ĥ , within the
subspace generated by states with two electrons (i.e., half
of the maximum possible occupation). The QPU data are
generated using the IBM open-source framework for quantum
computing Qiskit [29], which provides methods for manipu-
lating quantum programs on real quantum computers, as well
as on classical QPU simulators.

A. Qubit representation of the EH

Following the approach in Ref. [11], we transform the EH
[see Eq. (36)] using the so-called “parity mapping” [34], as
implemented in Qiskit [29], leading to the following 2-qubit
representation:

Ĥ = ζ01 + ζ1
(
σ z

1 − σ z
2

)+ ζ2
(
σ x

1 + σ x
2

)+ ζ3σ
z
1σ z

2

+ ζ4
(
σ x

1 σ z
2 − σ z

1σ x
2

)+ ζ5σ
x
1 σ x

2 , (37)

where the symbols σ x
k , σ y

k , and σ z
k (with k = 1, 2) represent the

Pauli matrices acting on the kth qubit, and the coefficients ζ j

are determined from the EH parameters U , D, and λc through
the parity mapping.

B. The VQE ansatz

To calculate the spin-singlet ground state of the EH we use
an ansatz inspired by unitary coupled cluster ansatz with sin-
gle and double excitations (UCCSD) [16,17,19,35]. We here
express the wave function directly in qubit basis similar to
previous studies [11,17] and expressed as products of unitary
single and double rotations,

|φ(θ )〉 = e
i
2 θ1σ

y
2 e− i

2 θ1σ
y
1 e− i

2 θ2σ
y
1 σ x

2 e
i
2 θ2σ x

1 σ
y
2 |φ0〉 . (38)

Here θ = (θ1, θ2), with each angle in the range of [−π, π ]
and |φ0〉 is the spin-restricted Hartree-Fock ground-state solu-
tion of Ĥ . The angles for the single-qubit rotations are set to
be equal because of spin rotational symmetry.

Note that Eq. (38) is a special case of Eqs. (3) and (4),
with d = 2 and M1 = M2 = 2. Therefore, from the framework
described in Sec. II it follows that the variational energy E (θ )
can be expressed as a linear combination of 25 trigonometric
functions of the angles,

E (θ) =
2∑

k1,k2=−2

εk1,k2

eik·θ

2π
, (39)

and the GPR framework can be applied with the Kernel
function,

K (θ1, θ2) = t−1

(2π )2

2∑
k1,k2=−2

eik·(θ1−θ2 ) . (40)

The variational energy estimation 〈E (θ)〉 and uncertainty
quantification 
(θ) are given by Eqs. (34) and (35),
respectively.

C. Numerical tests on QPU simulators and real quantum devices

In this subsection, we evaluate the performance of our
parametric GPR method for the impurity model described by
Eqs. (36) and (37). We consider bath parameters λc = 0, 1, 2
and Hubbard interaction strengths U = 1, 4, 8, covering a
wide range of interaction scenarios, from weakly interacting
to strongly correlated regimes.

To demonstrate the effectiveness of our method, we
used the simultaneous perturbation stochastic approximation
(SPSA) [36], a standard optimization approach used for prob-
lems involving noisy function evaluations, comparing the
results obtained from the bare method with the results aug-
mented with an active learning strategy, here referred to as
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FIG. 2. Comparison of energy convergence for the impurity model as a function of iteration steps in the energy minimization procedure,
using SPSA and SPSA+AL optimization methods on simulator with noise model (NM) derived from IBMQ_MUMBAI and IBMQ_MUMBAI

QPU. Upper panels [(a)–(c)] show the results for SPSA (NM), middle panels [(d)–(f)] for SPSA+AL(NM), and lower panels [(g)–(i)] for
SPSA+AL(QPU). For the impurity model, we fix λc = 0 and vary Hubbard interaction strength U = 1 (left panels), U = 4 (middle panels),
and U = 8 (right panels), representing weakly interacting to strongly correlated regimes. The red-dashed horizontal lines indicate the exact
state vector results. Full symbols indicate points obtained from direct energy measurement and added to GPR dataset D, while empty symbols
represent points from GPR prediction without requiring additional measurement. Blue and orange circles indicate points used for gradient
calculations, while black circles represents energy reached at each iteration. With 30 iterations, the number of times to measure the energy
E (θ) is 92 for SPSA, and falls in the range of [15,17] for SPSA+AL. We use Nsh = 210 shots for the measurement of each term in the
Hamiltonian (37).

SPSA+AL. In our SPSA+AL calculations, we set the fol-
lowing hyperparameters for the active learning framework,
σα = 
̄ = 0.005 and t = 1/(2π )2 such that K (θ, θ) = Kc =
25. We note that Kc is larger than the numerical estimation
of it obtained by sampling a set of N = 100 random angles
{θα} in the range of [−π, π ], 1

N

∑N
α=1[E (θα )]2, for the model

at all the parameter points of λc and U , which falls in the
range of (0.5, 15). We chose 
̄ = σα to align the accuracy
threshold for the GPR uncertainty, used in the active learning
strategy, with the inherent limitations in the accuracy of the
training data points. Although we focus on these specific

hyperparameter values for the paper, we have also tested other
values, such as σα = 
̄ = 0.05 or σα = 
̄/2 = 0.005, and
found our results to be qualitatively consistent, indicating
the robustness of our method. All points have been gener-
ated from either QPU simulators or real quantum devices
and loaded within the GPR framework, following the active
learning procedure described in Sec. IV.

Figure 2 illustrates the energy evolution as a function of
the number of iteration steps throughout the energy minimiza-
tion procedure, employing bare SPSA [panels (a), (b), and
(c)] and SPSA+AL [panels (d), (e), and (f)] for λc = 0 and
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TABLE I. Average and standard deviation of ground-state ener-
gies obtained using SPSA(NM) and SPSA+AL(NM) optimization
methods of the impurity model over a sample of 20 runs each with
different bath energy levels (λc = 0, 1, 2) and Hubbard interaction
strengths (U = 1, 4, 8). Each row corresponds to a specific combina-
tion of U and λc. Columns present the average and standard deviation
for SPSA(NM), and SPSA+AL(NM) results, with the last column
displaying the exact state vector energies for comparison.

SPSA(NM) SPSA+AL(NM)

λc U AVG STD AVG STD EXACT

0 1 –1.121 0.016 –1.134 0.009 –1.266
4 0.921 0.046 0.917 0.016 0.764
8 3.431 0.049 3.386 0.025 3.172

1 1 –2.295 0.019 –2.311 0.015 –2.454
4 –0.164 0.041 –0.174 0.021 –0.323
8 2.376 0.055 2.355 0.034 2.140

2 1 –3.782 0.029 –3.797 0.014 –3.968
4 –1.420 0.050 –1.440 0.023 –1.604
8 1.314 0.078 1.252 0.036 1.038

U = 1, 4, 8. Panels (g), (h), and (i) show the energy conver-
gence of SPSA+AL for real quantum devices (QPU) across
the range of interaction strengths, U = 1, 4, 8.

Our results show that, SPSA+AL exhibits rapid conver-
gence compared with bare SPSA across all parameter regimes,
necessitating a significantly smaller number of QPU energy
evaluations. This holds true for both the data produced by the
simulator and the data obtained from real quantum devices,
demonstrating the ability of our method to adapt to the distinct
noise characteristics of real hardware.

To systematically compare the performance of bare SPSA
and SPSA+AL, we compiled the results in Table 1, which
presents the average and standard deviation of ground-state
energies obtained for 30 energy minimization steps of the
impurity model with different Hubbard interaction strengths
(U = 1, 4, 8) and bath energy levels (λc = 0, 1, 2). For both
SPSA and SPSA+AL, the energy minimum evaluations were
computed after 30 iterations, as the energy oscillated without
further improvement beyond that point, as illustrated in Fig. 2.
These results expand the analysis above in two significant
ways. Firstly, by including 20 repetitions of the simulation,
we demonstrate the robust performance of our SPSA+AL
method. Secondly, by extending the analysis away from half-
filling, we showcase the effectiveness of our approach for
nonzero values of λc.

It should be noted that the data presented in Table 1 are
derived exclusively from simulations, because of the limited
availability of real quantum devices. However, the successful
application of our method to real device data in the analysis of
Fig. 2 suggests that the conclusions drawn from the simulated
data remain valid and applicable to real quantum hardware.

The analysis presented in Table 1 highlights the superior
performance of SPSA+AL compared to bare SPSA. For each
iteration, SPSA queries two times for the value of E (θ) to
estimate the gradient, and one time for the energy at the
current step, which allows to revert the change of variational
angles if the updated energy shoots over a preset threshold

(0.5 for current calculations). Therefore, the total 30 SPSA
iterations correspond to 30 × 3 + 2 = 92 times (including the
initial and final energy measurement) of direct energy mea-
surement for each run. In contrast, SPSA+AL requires only
15 to 27 times for energy measurement per run. Furthermore,
SPSA+AL consistently delivers slightly more accurate ener-
gies for all values of U and λc considered, and the fidelities
of the final variational states systematically exceed 99.7%.
This demonstrates the effectiveness of our approach in en-
hancing the optimization process, reducing the number of
QPU evaluations, and showcasing its robustness and appli-
cability across different regimes. It is worth noting that the
standard deviations observed for SPSA+AL method are sys-
tematically lower than the other methods, indicating reduced
fluctuations compared to SPSA. This reduction in fluctuations
could potentially improve the stability of QE methods using
VQE as impurity solvers, as such methods require iterative
impurity-model solutions with varying parameters, and output
fluctuations can hamper stability and convergence.

VI. BENCHMARK CALCULATIONS
OF HEISENBERG MODEL

To further demonstrate the effectiveness of SPSA+AL ap-
proach, we apply it to variational ground-state preparation of
an L-site Heisenberg chain with Hamiltonian

Ĥ = J
L−1∑
i=1

σ i · σ i+1. (41)

Here σ i is the vector of Pauli operators at site i, and we set
J = 1 for antiferromagnetic coupling.

A. VQE ansatz with two parameters

The following Hamiltonian variational ansatz (HVA) is
adopted for ground-state preparation [37],

|φ(θ)〉 = e
i
2 θ1H1 e

i
2 θ2H2 |φ0〉, (42)

with H1 =∑L/2
i=1 σ2i−1 · σ2i and H2 =∑L/2−1

i=1 σ2i · σ2i+1. The
reference state |φ0〉 = ⊗L/2

i=1
1√
2
(|↑↓〉 − |↓↑〉)2i−1,2i is a prod-

uct state of Bell pairs (spin singlets), which is also the ground
state of H1. Each angle of θ can be restricted to range of
[−π/2, π/2].

For the following numerical simulations, we set L = 8,
corresponding to eight qubits. The ansatz of Eq. (42) corre-
sponds to d = 2, M1 = 12, and M2 = 9 for generic expression
of Eqs. (3) and (4). The variational energy E (θ) can therefore
be expressed as a linear combination of 25 × 19 trigonometric
functions of the angles,

E (θ) =
12∑

k1=−12

9∑
k2=−9

εk1,k2

eik·θ

2π
, (43)

and the GPR framework can be applied with the Kernel
function

K (θ1, θ2) = t−1

(2π )2

6∑
h1=−6

4∑
h2=−4

ei2h·(θ1−θ2 ) , (44)
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FIG. 3. Comparison of energy convergence for the Heisenberg
model as a function of iteration steps in the energy minimization
procedure, using SPSA and SPSA+AL optimization methods on
simulator with noise model derived from IBMQ_MUMBAI QPU. Panel
(a) shows the results with SPSA, while panel (b) shows that with
SPSA+AL. We use the same color encoding as Fig. 2 for the data
points: full symbols from direct energy measurement, while empty
symbols from GPR prediction. Blue and orange circles indicate
points used for gradient calculations, while black circle represents
energy at each iteration. With 100 iterations, the number of times to
measure the energy E (θ) is 302 for SPSA, and 61 for SPSA+AL.
The simulation is performed for an eight-site Heisenberg chain with
antiferromagnetic coupling. We use Nsh = 210 shots for the measure-
ment of each term in the Hamiltonian (41).

where we take into account that the period of E (θ) with
respect to θ is π rather than 2π . This originates from the
special form of the generators of H1 and H2, where we have∏

μ∈{x,y,z} σ
μ
i σ

μ
i+1 ∝ 1, with σμ labeling the three components

of Pauli matrices and 1 for the identity.

Numerical tests on QPU simulators

In Fig. 3, we present an energy-versus-iterations plot
for the eight-site Heisenberg model using the SPSA and
SPSA+AL optimization methods, illustrating a represen-
tative example of how a standard run proceeds. In line
with our findings from the impurity model calculations, the
SPSA+AL method exhibits significantly enhanced conver-
gence efficiency, requiring on average only about 20% of the
energy measurements compared to the bare SPSA method.
To quantify this, we conducted an ensemble analysis involv-
ing 20 separate runs for each of the SPSA and SPSA+AL
simulations. The results show that the averaged final energy
for SPSA is −9.321 ± 0.311, while for SPSA+AL, it is
notably lower at −9.701 ± 0.151, indicating a more precise
convergence with a reduced variance. It is important to note,
however, that the exact ground-state energy for this model

is −13.299. This significant discrepancy points to substantial
biases in both simulation methods, consistent with the trends
observed in the impurity model calculations.

While the primary objective of the AL method is not
to directly address systematic errors, it plays a crucial role
in ensuring consistency with the preestablished mathemati-
cal structure of the variational landscape. For the eight-site
Heisenberg model studied here, it is feasible to obtain the
exact ground state ψG by diagonalization on a classical com-
puter. This allows us to calculate the fidelity of the converged
solution, defined as f = |〈φ(θ)| ψG〉|2 at the optimized angles
θ, which evaluates the efficacy of this indirect form of error
mitigation. From the same sample set, we observe a fidelity
of f = 0.888 ± 0.051 for SPSA and a notably higher f =
0.945 ± 0.016 for SPSA+AL, demonstrating enhanced fi-
delity and reduced variance. Remarkably, the obtained fidelity
closely approaches the maximum achievable value of f =
0.960 as per the ansatz in Eq. (42). This suggests that, while
our AL method primarily enforces consistency in the vari-
ational landscape, conventional error-mitigation techniques
might still be beneficially applied post-SPSA+AL optimiza-
tion to further diminish measurement biases, aligning with
observations in existing literature [38].

We repeated these calculations also using the Kernel func-
tion defined in Eq. (24), obtaining −9.695 ± 0.091 for the
energy and 0.943 ± 0.021 for the fidelity, requiring on aver-
age only about 13% of the energy measurements compared
to the bare SPSA method. These results are consistent with
those obtained using the Kernel function in Eq. (44). In the
following section we also show SPSA+AL benchmark calcu-
lations of the Heisenberg model for a VQE with 27 variational
parameters, leveraging that the kernel function in Eq. (24) it
is free of scalability issues, as pointed out in Sec. III A.

B. Multilayer VQE ansatz with 27 parameters

To demonstrate the scalability of SPSA+AL to larger
parameter spaces, we consider the following generalized Nl -
layer HVA:

|φ(θ)〉 = �
Nl
l=1

(
�

L/2
j=1e

i
2 θ

(1)
l j σ2i−1·σ2i

)(
�

L/2−1
i=1 e

i
2 θ

(2)
li σ2i·σ2i+1

)|φ0〉.
(45)

Compared with ansatz of Eq. (42), we promote θ
(1)
l j , θ

(2)
l j to

be independent intra-layer variational parameters and adopt
a multi-layer structure. The dimension of θ is given by
Nl (L − 1).

Numerical tests on QPU simulators

In Fig. 4, we present a representative energy-versus-
iterations plot for the ten-site Heisenberg model with 27
variational parameters, using both SPSA and SPSA+AL with
the Kernel function defined in Eq. (24).

We set a total number of 1000 iterations for the calcula-
tions to account for the relatively large number of parameters.
Compared to the calculations with HVA of two parameters as
shown in Fig. 3, about one order of magnitude more iterations
are required for convergence.

Consistent with the previous benchmark calculations,
the SPSA+AL method reduces quantum resources by
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FIG. 4. Comparison of energy convergence for a Heisenberg
model as a function of the iteration step in the energy minimization
procedure with a three-layer HVA (27 parameters), using SPSA and
SPSA+AL optimization methods on simulator with noise model
derived from IBMQ_MUMBAI QPU. Panel (a) shows the results with
SPSA, while panel (b) shows that with SPSA+AL. Full symbols
indicate direct energy measurement, while empty symbols indicate
GPR energy predictions. Blue and orange circles indicate points used
for gradient calculations, while black circle represents the energy at
each iteration. With 1000 iterations, the number of times to measure
the energy E (θ) is 3002 for SPSA, and 2005 for SPSA+AL. The
simulation is performed for a ten-site Heisenberg chain with antifer-
romagnetic coupling. The number of shots used for evaluating each
term in the Hamiltonian (41) is Nsh = 214. For clarity, only every
tenth point is shown in the figure.

requiring about 2/3 of energy measurements in comparison
with SPSA. We similarly conducted an ensemble analysis of
20 independent runs for each of the SPSA and SPSA+AL
simulations. The results show that the averaged final energy
for SPSA is −8.474 ± 0.052, while for SPSA+AL, it im-
proves to −8.556 ± 0.024, indicating a better convergence
with a reduced variance. Concerning fidelity, we observe f =
0.958 ± 0.008 for SPSA and a slightly higher f = 0.960 ±
0.005 for SPSA+AL. We note that the exact minimal en-
ergy for this ansatz is −17.031, which indicates substantial
biases in both simulation methods, consistent with the trends
observed in previous calculations.

VII. CONCLUSIONS

In this paper, we have presented a framework grounded on
an active learning strategy for improving both accuracy and
efficiency in quantum computations, with a focus on VQE.
By employing a probabilistic machine learning based on
GPR, our method leverages on our prior knowledge about the
mathematical structure of the VQE ansatz. In particular, it ac-
counts for exact cutoffs in the Fourier series of the variational

landscape, which quantitatively encode its smoothness and
periodicity properties. A remarkable property of this frame-
work is its compatibility with any VQE energy-minimization
framework or error-mitigation method, enabling the integra-
tion of precise information about the variational landscape
that is typically not utilized in standard approaches. We ap-
plied our active learning method in combination with SPSA,
a standard optimization method, to a two-sites Anderson
impurity model and to a eight-sites Heisenberg model, demon-
strating its effectiveness across a range of parameters regimes,
from weakly interacting to strongly correlated systems. Our
results reveal that the SPSA+AL algorithm consistently out-
performs the bare SPSA method, delivering more accurate and
reliable ground-state energies, while requiring considerably
fewer direct QPU energy evaluations. While these exploratory
benchmarks are based on relatively simple systems and vari-
ational ansatzes, generalizations to more complex problems
are plausible, and present promising directions for future
research. Note also that we have, for fairness, compared per-
formance utilizing the well-established SPSA algorithm with
using identical settings. However, it is likely the GPR-based
approach have the potential to open for other new algorithmic
improvements. For example, efficiency and accuracy could be
further improved by combining our active learning strategy
with gradient-descent algorithms. This could be achieved by
leveraging GPR for estimating not only the energy landscape
but also its gradient, or by incorporating Bayesian optimiza-
tion methods that utilize probabilistic models to optimize
global functions under uncertainty. Exploring these research
directions could lead to more efficient and accurate quantum
computing methodologies, contributing to the development
of advanced quantum matter simulation techniques. We an-
ticipate that our framework will prove particularly valuable
within the context of QE methods, enabling calculations
with large impurities to describe dynamical-correlation effects
beyond the capabilities of classical impurity solvers. In par-
ticular, we foresee promising applications to QE frameworks
that require computing only the ground state of a finite An-
derson impurity model, such as the recently developed “ghost
Gutzwiller approximation” [39,40] and density matrix embed-
ding theory [41]. Incorporating these QE frameworks with
VQE has the potential to accelerate the advent of quantum
advantage for simulations of large molecules and periodic
materials, effectively capitalizing on the potential of near-term
QPUs. In conclusion, our approach lays a solid foundation for
future research and development in quantum error mitigation
and optimization, potentially bringing us closer to realizing
the full potential of quantum computing in the context of
quantum matter simulation.
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APPENDIX A: PATH INTEGRAL FORMULATION
OF PARAMETRIC GPR

Our goal is to learn a real valued function E (θ) (θ ∈ Rd )
from a finite set of training data points,

D = {(θα, Eα, σα ) | α = 1, .., n} , (A1)

where each Eα is the outcome of the evaluation of E for the
input parameter θα , which is assumed to be sampled from a
Gaussian distribution

P(Eα|θα ) ∝ exp

{
− 1

2σ 2
α

(E (θα ) − Eα )2

}
, (A2)

i.e., the probability of evaluating E1, .., En (which are assumed
to be independent) from a given underlying function E (θ) is
assumed to be

P[D|E] ∝
n∏

α=1

P(θα|Eα )

∝ exp

{
−

n∑
α=1

1

2σ 2
α

(E (θα ) − Eα )2

}
, (A3)

Specifically, we aim to compute the so-called “posterior
probability distribution” P[E |D], i.e., the probability that the
function that we aim to learn is E (θ), based on (i) the data D
at our disposal and (ii) a Gaussian “prior probability distribu-
tion” P[E], encoding our prior knowledge before having any
training data points.

Our first goal is to define precisely the concept of a prob-
ability distribution over a space of functions. Following the
path integral procedure, this can be accomplished by first
considering a discrete finite mesh with uniform spacing ε,
over a d-dimensional rectangle R,

Mε = {θ1, .., θN } ⊂ R ⊂ Rd . (A4)

Over such discretized domain, probability measures can be
rigorously represented as pε[E]Dε[E], where

pε[E] = pε[E (θ1), .., E (θN )] (A5)

is a standard N-dimensional probability function, and

Dε[E] =
∏
θ∈Mε

dE (θ) (A6)

is the standard path integral measure.

1. The parametric prior

In our context of application, the prior probability distri-
bution is designed to enforce the fact that E has to be of the
following mathematical form:

E (θ) =
S∑

s=1

ξsTs(θ) , (A7)

where Ts : R ⊂ Rd → R are known functions, while the coef-
ficients ξs are unknown. This information can be encoded in
the following probability distribution,

Pη
ε [E] ∝

∫ S∏
r=1

dξr e
− ε

2η2

∑
θ∈Mε

(E (θ)−∑s ξsTs(θ))2

× e− 1
2

∑
ss′ Ass′ ξsξs′ , (A8)

where we have introduced a (strictly) positive-definite matrix
A, whose role is to encode the probability distribution for
the coefficients ξs, while also enforcing that the range of E
is bounded, as we prove below. The parameter η will be con-
sidered in the limit as it approaches zero, i.e., in our formalism
we take the limit η → 0.

Let us prove that Pη
ε [E] is a normalizable Gaussian proba-

bility distribution with zero mean for all finite values of η. By
performing the Gaussian integral in Eq. (A8), we obtain that

Pη
ε [E] ∝ e

− 1
2

ε

η2

∑
θ,θ′∈Mε

�θθ′E (θ)E (θ′ )
, (A9)

where 1 is the N × N identity matrix and

� = 1 − T
1

η2

ε
A + T †T

T †, (A10)

Tθs = Ts(θ) ∀ s = 1, .., S, θ ∈ Mε . (A11)

Note that � is positive definite. In fact, since η2

ε
A is positive

definite, we have

1 − T
1

η2

ε
A + T †T

T † > 1 − T
1

T †T
T † , (A12)

where the right-hand side is an orthogonal projector, as one
can readily verify by inspection calculating its square. It
follows that Eq. (A9) represents a normalizable zero-mean
Gaussian distribution.

2. Posterior probability distribution

Let us assume to have a series of data D [see Eq. (A1)],
where θα ∈ Mε ∀α = 1, .., n. As explained in the main text
[see before Eq. (20)], from Bayes’ theorem it follows that the
posterior conditional probability distribution for the function
E is the following:

Pη
ε [E |D] ∝ Pη

ε [E]e
−∑n

α=1
1

2σ2
α

(E (θα )−Eα )2

, (A13)

which represents the probability distribution for the function
E , given the data set D and the prior Pη

ε [E] [see Eqs. (A3)
and (A8)].
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3. Probabilistic predictions at a test point

We are interested in calculating quantities of the following
form:

〈E l (θ)〉 =
∫

Dε[E]Pη
ε [E |D] (E (θ))l

=
∫

Dε[E]Pη
ε [E] e

−∑n
α=1

1
2σ2

α
(E (θα )−Eα )2

E l (θ) , (A14)

where l ∈ N and θ ∈ Mε (which is assumed to be different
from all of the θα in the training data set) is a so-called “test
point,” i.e., a point where we want to evaluate the probabil-
ity distribution for E (θ), based on our posterior probability
distribution.

Equation (A14) can be conveniently rewritten by integrat-
ing out all variables except E (θ1), .., E (θα ), and E (θ). From
standard Gaussian identities, it follows that this gives the
following expression:

〈E l (θ)〉 =
∫ [∏n

α=1 dE (θα )
]
dE (θ) e−Sη

ε −U (E (θ))l∫ [∏n
α=1 dE (θα )

]
dE (θ) e−Sη

ε −U
, (A15)

where:

U =
n∑

α=1

1

2σ 2
α

(E (θα ) − Eα )2 (A16)

and:

Sη
ε = 1

2

n∑
α,β=1

[
K̄η

ε

]−1

α,β
E (θα )E (θβ )

+ 1

2

[
K̄η

ε

]−1

n+1,n+1 E (θ)E (θ)

+ 1

2

n∑
α=1

[
K̄η

ε

]−1

α,n+1 E (θα )E (θ)

+ 1

2

n∑
β=1

[
K̄η

ε

]−1

n+1,β
E (θ)E (θβ ) , (A17)

where [K̄η
ε ] is the (n + 1) × (n + 1) matrix with entries[
K̄η

ε

]
α,β

= Kη
ε (θα, θβ ) ∀α, β ∈ 1, .., n, (A18)[

K̄η
ε

]
α,n+1 = Kη

ε (θα, θ) ∀α ∈ 1, .., n, (A19)[
K̄η

ε

]
n+1,β

= Kη
ε (θ, θβ ) ∀β ∈ 1, .., n, (A20)[

K̄η
ε

]
n+1,n+1 = Kη

ε (θ, θ), (A21)

and

Kη
ε (θ, θ′) =

∫
Dε[E]Pη

ε [E] E (θ) E (θ′) ∀ θ, θ′ ∈ Mε (A22)

is the so-called “kernel function” of the prior distribution Pη
ε .

As discussed in the main text, we are specifically interested
in calculating

Ēη
ε (θ) =

∫
Dε[E]Pη

ε [E |D] E (θ), (A23)

(

η

ε (θ)
)2 =

∫
Dε[E]Pη

ε [E |D] (E2(θ) − 〈E (θ)〉2) , (A24)

where Eq. (A23) represents our prediction for E (θ) at any
test point θ and Eq. (A24) represents the uncertainty of our
prediction. These quantities can be conveniently evaluated by
computing first the “partition function”,

Zη
ε (λ) :=

∫ [ n∏
α=1

dE (θα )

]
dE (θ) e−Sη

ε −U+λE (θ) (A25)

and subsequently using the following identities:

Ēη
ε (θ) = ∂λ ln

(
Zη

ε (λ)
)
, (A26)(


η
ε (θ)

)2 = ∂2
λ ln

(
Zη

ε (λ)
)
. (A27)

A direct calculation shows that

Ēη
ε (θ) =

n∑
α,β=1

Kη
ε (θ, θα )

[
K̄η

ε

]−1

αβ
Eβ, (A28)

(

η

ε (θ)
)2 = Kη

ε (θ, θ) −
n∑

α,β=1

Kη
ε (θ, θα )

[
K̄η

ε

]−1

αβ
Kη

ε (θβ, θ) ,

(A29)

where K̄η
ε is the n × n matrix with entries[

K̄η
ε

]
αβ

= Kη
ε (θα, θβ ) + σ 2

α δαβ ∀α, β ∈ 1, .., n . (A30)

4. Calculation of the Kernel function

As shown in the previous section, the GPR estimate of our
prediction for E (θ) and the corresponding uncertainty [see
Eqs. (A28) and (A29), respectively] depend explicitly on η

and ε through the Kernel function,

Kη
ε (θ1, θ2) =

∫
Dε[E]Pη

ε [E] E (θ1)E (θ2) , (A31)

which is defined ∀ θ1, θ2 ∈ Mε .
Since we aim to enforce Eq. (A7) exactly, we need to

evaluate Eq. (A31) for η → 0. In this limit we obtain

K (θ1, θ2) = lim
ε→0

lim
η→0

Kη
ε (θ1, θ2) ∝ lim

ε→0
lim
η→0

∫
Dε[E]

∫ S∏
r=1

dξr e
− ε

2η2

∑
θ∈Mε

(E (θ)−∑s ξsTs(θ))2

e− 1
2

∑
ss′ Ass′ ξsξs′ E (θ1) E (θ2)

∝ lim
ε→0

∫
Dε[E]

∫ S∏
r=1

dξr δ

(
E (θ) −

∑
s

ξsTs(θ)

)
e− 1

2

∑
ss′ Ass′ ξsξs′ E (θ1) E (θ2)
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=
∫ S∏

r=1

dξr e− 1
2

∑
ss′ Ass′ ξsξs′

⎛
⎝ S∑

s1=1

ξs1 Ts1 (θ1)

⎞
⎠
⎛
⎝ S∑

s2=1

ξs2 Ts2 (θ2)

⎞
⎠

=
S∑

s1,s2=1

Ts1 (θ1)Ts2 (θ2)
∫ S∏

r=1

dξr e− 1
2

∑S
s,s′=1 Ass′ ξsξs′ ξs1ξs2 =

S∑
s1,s2=1

	s1s2 Ts1 (θ1)Ts2 (θ2) , (A32)

where

	 = A−1 . (A33)

The final step is to compute the Kernel function in the con-
tinuum limit ε → 0, which is given by the following equation:

K (θ, θ′) =
S∑

s,s′=1

	ss′ Ts(θ)Ts′ (θ) . (A34)

APPENDIX B: SUMMARY OF FINAL EQUATIONS

In summary, we derived the following equations, previ-
ously introduced in the main text:

Ē (θ) =
n∑

α,β=1

K (θ, θα )[K̄]−1
αβEβ, (B1)

(
(θ))2 = K (θ, θ) −
n∑

α,β=1

K (θ, θα )K̄−1
αβ K (θβ, θ) , (B2)

where K̄ is the n × n matrix with entries

[K̄]αβ = K (θα, θβ ) + σ 2
α δαβ ∀α, β ∈ 1, .., n . (B3)

The Kernel function is given by the following equation:

K (θ, θ′) =
S∑

s,s′=1

	ss′ Ts(θ)Ts′ (θ′) , (B4)

where

	ss′ = 〈ξsξs′ 〉 , (B5)

and the expectation value fully encodes the Gaussian prior
probability distribution for the coefficients ξs.

APPENDIX C: CALCULATION OF KERNEL
EQ. (20) OF THE MAIN TEXT

Let us consider the equation for the VQE landscape intro-
duced in Eq. (6) of the main text,

E (θ) = S
2M1∑
i1=0

...

2Md∑
id =0

ξi1,..,id

d∏
l=1

cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

.

(C1)
Let us now calculate the Kernel function based on the

following identity introduced in the main text:

〈ξsξs′ 〉p = 〈ξi1,..,id ξ j1,.., jd 〉p = C
d∏

l=1

δil jl

(
2Ml

il

)
, (C2)

where C is a positive constant

K (θ, θ′) = 〈E (θ)E (θ′)〉=
∑
ss′

〈ξsξs′ 〉pTs(θ)Ts′ (θ′) = C
2M1∑
i1=0

...

2Md∑
id =0

d∏
l=1

(
2Ml

il

)
cos

(
θl

2

)il

cos

(
θ ′

l

2

)il

sin

(
θl

2

)2Ml −il

sin

(
θ ′

l

2

)2Ml −il

= C
d∏

l=1

[
cos

(
θl

2

)
cos

(
θ ′

l

2

)
+ sin

(
θl

2

)
sin

(
θ ′

l

2

)]2Ml

= C
d∏

l=1

[
cos

(
θl − θ ′

l

2

)]2Ml

, (C3)

which is the result previously stated in Eq. (19) of the main
text.

APPENDIX D: CALCULATION OF KERNEL
IN EQ. (24) OF THE MAIN TEXT

Let us consider the symmetrized equation for the VQE
landscape introduced in Eq. (23) of the main text,

E (θ) = S
2M1∑
i1=0

...

2Md∑
id =0

ξi1,..,id

d∏
l=1

cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

,

(D1)

where

S = 2− d
2

d∏
l=1

[1 + Tl ] . (D2)

and Tl represents a translation of π on the lth dimension,
defined by

Tl g(θ1, .., θd ) = g(θ1, .., θl − π, ..., θd ) . (D3)

Let us now calculate the Kernel function based on the
following identity introduced in Eq. (19) of the main text,

〈ξsξs′ 〉p = 〈ξi1,..,id ξ j1,.., jd 〉p = C
d∏

l=1

δil jl

(
2Ml

il

)
, (D4)
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where C is a positive constant:

K (θ, θ′) = 〈E (θ)E (θ′)〉 =
∑
ss′

〈ξsξs′ 〉pTs(θ)Ts′ (θ′) = C 2−d
2M1∑
i1=0

...

2Md∑
id =0

d∏
l=1

(
2Ml

il

)

×
(

cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

+
[
− sin

(
θl

2

)]il[
cos

(
θl

2

)]2Ml −il
)

×
(

cos

(
θ ′

l

2

)il

sin

(
θ ′

l

2

)2Ml −il

+
[
− sin

(
θ ′

l

2

)]il[
cos

(
θ ′

l

2

)]2Ml −il
)

= C 2−d
d∏

l=1

2Ml∑
il =0

(
2Ml

il

)(
cos

(
θl

2

)il

sin

(
θl

2

)2Ml −il

+
[
− sin

(
θl

2

)]il[
cos

(
θl

2

)]2Ml −il
)

×
(

cos

(
θ ′

l

2

)il

sin

(
θ ′

l

2

)2Ml −il

+
[
− sin

(
θ ′

l

2

)]il[
cos

(
θ ′

l

2

)]2Ml −il
)

= C 2−d
d∏

l=1

⎧⎨
⎩

2Ml∑
il =0

(
2Ml

il

)[
cos

(
θl

2

)
cos

(
θ ′

l

2

)]il[
sin

(
θl

2

)
sin

(
θ ′

l

2

)]2Ml −il

+
2Ml∑
il =0

(
2Ml

il

)[
sin

(
θl

2

)
sin

(
θ ′

l

2

)]il[
cos

(
θl

2

)
cos

(
θ ′

l

2

)]2Ml −il

+
2Ml∑
il =0

(
2Ml

il

)[
− cos

(
θl

2

)
sin

(
θ ′

l

2

)]il[
sin

(
θl

2

)
cos

(
θ ′

l

2

)]2Ml −il

+
2Ml∑
il =0

(
2Ml

il

)[
− sin

(
θl

2

)
cos

(
θ ′

l

2

)]il[
cos

(
θl

2

)
sin

(
θ ′

l

2

)]2Ml −il

⎫⎬
⎭

= C
d∏

l=1

⎧⎨
⎩

2Ml∑
il =0

(
2Ml

il

)[
cos

(
θl

2

)
cos

(
θ ′

l

2

)]il[
sin

(
θl

2

)
sin

(
θ ′

l

2

)]2Ml −il

+
2Ml∑
il =0

(
2Ml

il

)[
− cos

(
θl

2

)
sin

(
θ ′

l

2

)]il[
sin

(
θl

2

)
cos

(
θ ′

l

2

)]2Ml −il

⎫⎬
⎭

= C
d∏

l=1

{[
cos

(
θl

2

)
cos

(
θ ′

l

2

)
+ sin

(
θl

2

)
sin

(
θ ′

l

2

)]2Ml

+
[

cos

(
θl

2

)
sin

(
θ ′

l

2

)
− sin

(
θl

2

)
cos

(
θ ′

l

2

)]2Ml
}

= C
d∏

l=1

([
cos

(
θl − θ ′

l

2

)]2Ml

+
[

sin

(
θl − θ ′

l

2

)]2Ml
)

, (D5)

which is the result previously stated in Eq. (24) of the main text.
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