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Resonant squeezed light from photonic Cooper pairs
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Raman scattering of photons into phonons gives rise to entangled photon pairs when the phonon emitted in a
Stokes process is coherently absorbed in antiStokes scattering, forming the photonic analog of Cooper pairs. We
present a nonperturbative theory for the time evolution of photonic Cooper pairs that treats interacting photons
and phonons as a hybrid excitation, the Ramaniton. As the Ramaniton propagates in a waveguide it displays
quantum oscillations between photon and phonon occupation, leading to resonant squeezed Stokes-antiStokes
light when the phonon occupation becomes equal to zero without recurring back to the photon vacuum. This
phenomenon is predicted to generate up to 28 dB of squeezed light even in standard silicon on insulator
waveguides.
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I. INTRODUCTION

A key challenge for the development of quantum photonic
technology is the efficient generation of photon entanglement
in solid-state chips [1]. Low noise generation of entangled
photon pairs is a necessary condition for several applications,
ranging from quantum sensing [2] and quantum computing
[3] with squeezed states to distributed quantum computing
in a future quantum internet [4]. Realizing these applications
requires maximization of photon entanglement [5], together
with minimization of noise from photon loss and thermal
emission in the solid-state environment. To achieve this, it
is desirable to develop microscopic models that account for
light-matter interaction beyond the usual free-space quantum
optic phenomenology.

A recent development was the realization that vibrational
modes of molecules and crystals (phonons) can act as me-
diators for photon-photon interaction in a wide variety of
substances [6,7]. The origin of this phenomenon is a corre-
lated Raman process, whereby a phonon emitted by a Stokes
photon scattering event is coherently absorbed by another
incident photon, generating a Stokes-antiStokes (SaS) photon
pair (see Fig. 1). This phenomenon is the photon analog of
the attractive interaction that forms Cooper pairs in supercon-
ductors, leading to the idea that the SaS state is a “photonic
Cooper pair” [8].

So far experimental and theoretical studies of photonic
Cooper pairs have focused solely on the regime of short time
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evolution or scattering [9], and the question of what photonic
state emerges for longer time evolution in a waveguide is
open. As suggested in Figs. 1(c) and 1(d), photonic Cooper
pair formation provides a microscopic mechanism for spon-
taneous four-wave mixing; however, it is not known how
to distinguish or exploit the phonon resonance depicted in
Fig. 1(c) from the usual photon-photon interaction mediated
by higher-energy virtual transitions to electronic orbital states
of the material [10]. The modeling of photonic devices tra-
ditionally assumes phenomenological quartic-in-electric-field
interactions to describe spontaneous four-wave mixing [11]; it
is not known whether the dominant mechanism is of phononic
or electronic origin, and whether it is “virtual” or “real.”

Here we propose a nonperturbative theory for phonon-
mediated generation of entangled photon pairs in Raman
scattering. The theory introduces the concept of the Ramani-
ton, a hybrid photon-phonon excitation that is different from
the polariton [12] in at least two ways: First, Ramanitons have
zero electric dipole moment and do not cause photon loss [13];
second, the excited states of Ramanitons are made of super-
positions of photons/phonons as well as their corresponding
antiparticles (holes), a direct consequence of the presence of
Cooper-pair correlations. Interpreting the photonic excitations
inside the material as Ramanitons allows the prediction of
the quantum state of light that arises in a gas of photonic
Cooper pairs. Our theory demonstrates resonant squeezing for
certain photon propagation lengths, leading to applications in
the optimization of quantum photonic devices.

II. MODEL FOR LIGHT-MATTER INTERACTION
MEDIATED BY A RAMAN PHONON

We consider a model for Stokes and antiStokes photons in-
teracting with an optical phonon, the terahertz lattice vibration
of a crystal. Their noninteracting Lagrangian density is given
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FIG. 1. Two- and four-photon Raman scattering processes.
(a) Stokes: An incident laser photon with frequency ωL and momen-
tum kL scatters into a redshifted Stokes photon with frequency ωL −
� and momentum kL − Q, and emits a phonon with frequency �

and momentum Q. (b) AntiStokes process: The laser photon absorbs
a phonon and emits a blueshifted photon with frequency ωL + �

and momentum kL + Q. (c) Formation of a Stokes-antiStokes pair
mediated by a “real” phonon: The phonon emitted by a Stokes
event is coherently absorbed by another incident laser photon, lead-
ing to an entangled Stokes-antiStokes pair. (d) Formation of a
Stokes-antiStokes pair mediated by “virtual” excitations to phonon
or electron orbital states: In this case the frequency of the Stokes-
antiStokes photons can be ωL ± δ with δ �= �. When the phonon
resonance condition δ = � is satisfied, the “real” diagram (c) is
expected to dominate the formation of Stokes-antiStokes pairs. This
phonon resonance happens when the normalized Raman shift q =
δ/� = c′Q/� = 1, where c′ is the speed of light in the material.

by [12,14]

L0 = ε

2
(|ES|2 + |EaS|2) − 1

2μ
(|BS|2 + |BaS|2)

+ ρ

2
|u̇|2 − ρ

2
�2|u|2, (1)

where vectors E j = −Ȧ j and B j = ∇ × A j [ j denotes Stokes
(S) or antiStokes (aS)] are the electric and magnetic fields for
the Stokes and antiStokes photons, which are written in terms
of vector potentials A j . The scalar u models a phonon dis-
placement with mass density ρ and frequency � independent
of wave vector Q (a dispersionless mode, describing the flat
band of optical phonons near Q = 0).

We assume u in Eq. (1) is a pure Raman mode, i.e.,
one that is invariant under the inversion symmetry op-
eration that takes E j into −E j . This necessarily implies
that the lowest-order interaction between u and photons
is linear in phonon displacement and quadratic in electric
fields:

Lint = ξ

2
uEL,x(ES,y + EaS,y) + c.c., (2)

where ξ is a coupling constant and EL,x is the amplitude of
a pump laser polarized along the x direction. The particu-
lar choice of interaction (2) is allowed by the point group
symmetry of the diamond lattice, therefore it is exact for
crystalline silicon and diamond. Similar interactions are also
present in associated amorphous dielectrics SiOx and SiNx

[1], where phonons are either pure infrared (u changes sign
under inversion) or pure Raman (u does not change sign under
inversion). While materials without an inversion center have
phonons with mixed symmetry, interactions like (2) are still
present in them provided we interpret u as the component
of a phonon displacement that does not change sign under
inversion. That is the part of the phonon that does not have
electric dipole moment and as a consequence does not cause
photon loss [13].

Assuming the pump power is much larger than the S and aS
output allows us to take the “parametric approximation” and
replace EL,x by a complex classical field, EL,x = ELei(kLz−ωLt )

where EL is the pump amplitude and ωL = c′kL is the fre-
quency of the laser, with c′ = 1/

√
εμ = c/n0 the speed of

light in the material.
The quantum Hamiltonian is obtained from the total

Lagrangian density L = L0 + Lint by assuming the dy-
namical variables AS and AaS are quantum operators with
usual commutation relations with their canonical momenta
∂L/∂Ȧ j . After going to k space we get the following
Hamiltonian:

H = h̄
∑

Q

[
ωkL+Q

(
b†

QbQ + 1

2

)
+ ωkL−Q

(
b†

−Qb−Q + 1

2

)
+ �

(
c†

QcQ + 1

2

)

+ i
η

2
cos(ωLt )

√
�ωkL+Q(c†

Q + cQ)b†
Q + i

η

2
cos(ωLt )

√
�ωkL−Q(c†

Q + cQ)b†
−Q + H.c.

]
, (3)

where b†
±Q and b±Q are creation and annihilation operators

for photons polarized along y with momentum kL ± Q and
frequency ωkL±Q = c′|kL ± Q|; c†

Q and cQ are creation and an-
nihilation operators for the phonon mode. The dimensionless
parameter η = ξEL/(�

√
ρε) is the figure of merit for the

strength of the photon-phonon coupling; it plays a key role
in our theory below.

We move to a rotating frame by applying the unitary

transformation eiωLt (b†
QbQ+b†

−Qb−Q ), and take the rotating wave
approximation by dropping the terms in Eq. (3) that are never
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able to conserve energy, cQb†
−Q and c†

Qb†
Q. These terms lead to

time-oscillatory contributions with high frequency and small
amplitude for all observables of interest. Also note that phase
matching is trivial in the absence of dispersion in c′. Without
loss of generality we focus on the case of forward scattering
where Q ‖ kL; this implies the mode b−Q ≡ bS is redshifted
in frequency, and bQ ≡ baS is blueshifted. Altogether the ap-
proximations lead to a time-independent Hamiltonian that we
call the Ramaniton model:

HR = h̄�
[− qb†

SbS + qb†
aSbaS + c†c + 1

2

+ iη−(c†b†
S − cbS) + iη+(cb†

aS − c†baS)
]
, (4)

where we wrote the dimensionless Raman shift as q =
c′Q
�

, with 0 � q � ωL/�, and the dimensionless coupling
constants as

η± = η

4

√(ωL

�

)
± q, (5)

with η = ξEL/(�
√

ρε) the figure of merit for light-matter
interaction. Hamiltonian (4) provides the microscopic real-
ization of the phenomenological model proposed in [8]. This
shows that the degree of light-matter interaction set by η±
can be tuned by the pump laser frequency ωL and amplitude
EL via η.

As a first attempt to tackle the phonon-mediated interaction
we follow Saraiva et al. [8] and apply the Schrieffer-Wolff
canonical transformation to Eq. (4). This converts the terms
linear in η± to a Cooper-pair-like interaction,

HS-W = h̄�η+η−
1 − q

(b†
Sb†

aS + baSbS), (6)

plus a series of additional higher-order terms such as
η3

−/(1 − q)2b†
Sc†.

If we assume the additional higher-order terms can be
neglected, the time evolution of photonic Cooper pairs from
the vacuum at t = 0 is predicted to be

e−i t
h̄ HR |0, 0, 0〉 ≈ e−i �t

2

∞∑
N=0

(−i)N tanhN (r)

cosh (r)
|N, 0, N〉, (7)

where r = η+η−(�t )/(1 − q) and |NS, Nc, NaS〉 denotes
number states of Stokes, phonons, and antiStokes,
respectively.

The state (7) is “photon paired”; it is known to gen-
erate two-mode squeezed states of light that are entangled
[5] and play a key role in quantum sensing and computing
[15,16]. However, the Schrieffer-Wolff method leads to a
perturbative series in powers of η/(1 − q). The series blows
up when q → 1, the phonon resonance condition for “real”
emission/absorption of a phonon. In this regime Eqs. (6) and
(7) are not expected to be good approximations. Below we
propose a nonperturbative solution to this problem.

III. NONPERTURBATIVE THEORY

Here we propose instead to diagonalize the Ramaniton
model exactly using the Nambu method, required to find
quantum excitations of superconducting [17] and antiferro-
magnetic materials [18]. In the Nambu representation the

Hamiltonian (4) is written as

HR = 1
2v† · L · v, (8)

where v = (bS, c, baS, b†
S, c†, b†

aS)T is a particle-antiparticle
column vector, and L is a 6 × 6 Hermitian matrix. The goal of
the Nambu method is to find the set of operators α = U−1 · v

that leads to

HR =
3∑

j=1

h̄ω j

(
α

†
j α j + 1

2

)
. (9)

To see how this is done, first note that in order
to preserve the bosonic commutation relations for the
new operators α we need to use a nonunitary canon-
ical transformation U that satisfies U−1 = Z · U† · Z,
where Z = diag{1, 1, 1,−1,−1,−1} is the plus (minus)
identity in the particle (antiparticle or hole) subspace.
From Eq. (9) we get [α,HR] = Z · W · α, where W =
diag{ω1, ω2, ω3, ω1, ω2, ω3}. Compare to [U−1 · v,HR] =
U−1 · Z · L · v to get (Z · L) · U = U · (Z · W ), showing
that the columns of U are the right eigenvectors of Z · L.
The first three columns have eigenvalue +ω j and the last
three have −ω j . Thus the Nambu method is to diagonalize the
non-Hermitian matrix Z · L, use its eigenvectors to form the
columns of U , and make sure the eigenvector normalization
satisfies (Z · U† · Z) · U = I, where I is the identity matrix.
The details of this procedure are described in the Appendix.

The operators α
†
j create the hybrid phonon-photon excita-

tions that we call Ramanitons. Exact diagonalization of Z · L
leads to six eigenvalues, the diagonal elements of Z · W :
ω1, ω2, ω3,−ω1,−ω2, and − ω3. The choice of which ones
are taken as positive or negative is strictly determined by the
canonical transformation constraint (Z · U† · Z) · U = I as
explained in the Appendix. These are the Ramaniton disper-
sion relations:

ω1 = −q�, (10a)

ω2 =
(

q + 1

2
− 1

2

√
(q − 1)2 + η2q

2

)
�, (10b)

ω3 =
(

q + 1

2
+ 1

2

√
(q − 1)2 + η2q

2

)
�. (10c)

Some of the Ramaniton frequencies are negative in the
rotating frame; as a check, note that taking the limit η → 0
leads to frequencies ±q� = ±c′Q and �, consistent with
Eq. (4) when η = 0.

The creation operator for the Ramaniton with frequency ω1

is given by

α
†
1 = η+√

η2+ − η2−
b†

S − η−√
η2+ − η2−

baS. (11)

This shows that ω1 is a pure photon mode that is decoupled
from the phonon. It is given by the quantum superposition
of “particlelike” Stokes and “holelike” antiStokes photons.
The latter corresponds to the absence of an antiStokes excita-
tion, with frequency equal to minus the antiStokes frequency,
−(+c′Q), which turns out to be the same as the Stokes
frequency. Antiparticle or holelike states appear because the
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FIG. 2. Ramaniton dispersions for ωL/� = 12.4, η = 0.1
(dashed lines), and η = 1 (solid lines). The ω1 Ramaniton is
decoupled from the phonon and is independent of η. When η � 1,
photon-phonon hybridization is significant only in the neighborhood
of q = 1 (phonon resonance), where there is avoided crossing
between ω2 and ω3. In contrast, for larger η the modes ω2 and ω3 are
hybridized in a wider range of q.

vacuum of the Ramaniton is “dressed” with excitations.
The other excitations ω2 and ω3 are hybrid in that they mix
(anti)photons and (anti)phonons as can be seen in Eqs. (A13)
and (A14). They lead to avoided crossing of photon and
phonon dispersions, with maximum hybridization happening
close to the phonon resonance at q = 1. The laser amplitude
EL is able to modify these modes by increasing η. The disper-
sions are shown in Fig. 2.

The Ramaniton number states are formed by superposi-
tions of multiple bare photons and phonon number states. The
vacuum for the Ramanitons is given by

|0〉R =
√

1 −
(

η−
η+

)2 ∞∑
N=0

(
η−
η+

)N

|N, 0, N〉B, (12)

where |NS, Nc, NaS〉B are Fock states for the bare modes.
Hence, the vacuum of the Ramanitons is a two-mode squeezed
state for Stokes and antiStokes photons. The bare photon
probabilities for the states α

†
j |0〉R with j = 2 and 3 are shown

in Figs. 3(a) and 3(b), respectively. As q increases from below
to above phonon resonance, the state α

†
2 |0〉R changes from

multiple photons with nearly zero phonons (q < 1) to multiple
photons with nearly one phonon (q > 1). The opposite be-
havior is observed for α

†
3 |0〉R. The change in photon-phonon

hybridization across the avoided crossing point at q = 1 is
also found in simple phonon-polaritons [12].

Below the avoided crossing at q � 1, Eq. (10b) becomes
ω2 ≈ (1 − η2

8 )c′Q, showing that the index of refraction de-
pends on the laser intensity I = c′εE2

L/2 according to n ≈
n0(1 + η2

8 ) ≡ n0 + n2I in the low I regime. This shows that
η contributes to the Kerr effect (intensity dependence of the
index of refraction), giving rise to a nonlinear index of refrac-
tion n2 via the relation η = √

8n2I/n0. This observation can
be used to estimate η in photonic materials/devices.

Raman spectra of bulk silicon show a single strong
sharp resonance due to three degenerate optical phonons
(uyz, uxz, uxy) at �/2π = 15.6 THz [19]. Only one of them
(u ≡ uxy) couples to a pump laser polarized along x and prop-
agating along z; this generates SaS pairs and Ramaniton states
with bare photon polarization along y. If the pump is near the
1550-nm telecom wavelength (ωL/2π = 193 THz), photon
loss will be so small it can hardly be detected [20]. This
supports a model that neglects photon loss into channels other

FIG. 3. Bare photon and phonon probabilities for singly occupied Ramaniton states (a) α†
2 |0〉R and (b) α†

3 |0〉R (|0〉R is the Ramaniton
vacuum). The parameters are realistic for silicon chips, ωL/� = 12.4 and η = 10−3. These states contain bare modes |NS, Nc, NaS〉 = |N, 0, N〉B

and |N, 1, N〉B for N = 0, 1, 2, 3, . . .. As q is increased over the phonon resonance at q = 1 the character of (a) changes from phonon poor to
phonon rich, with (b) showing the opposite behavior.
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FIG. 4. Time dependence of occupations for phonon 〈Nc(t )〉,
photon Stokes 〈NS(t )〉, and antiStokes 〈NaS(t )〉 when their initial
state is the vacuum, |ψ (t = 0)〉 = |0〉S|0〉c|0〉aS, and the phonon res-
onance condition is satisfied (q = 1). The parameters are realistic
for silicon chips, ωL/� = 12.4 and η = 10−3. The occupations sat-
isfy the symmetry 〈NS(t )〉 − 〈NaS(t )〉 = 〈Nc(t )〉 so that 〈NS(t )〉 �
〈NaS(t )〉, 〈Nc(t )〉 for all t . When 〈Nc(t )〉 = 0 (at e.g. �t = 8.89 ×
103), the SaS state is “paired up,” giving rise to maximum squeezing.

than the Raman phonon. For this regime ωL/� = 12.4, with
measurements of n0 = 3.42, and n2 = 4.5 × 10−18 m2/W
[21]. Using intensities achievable on chip (I = 1011 W/m2

[22]) we estimate η ≈ 10−3 for common silicon waveguides.

IV. PHOTON VACUUM SQUEEZING AND CORRELATION

The Schrieffer-Wolff perturbative series predicts a two-
mode squeezed state (7) away from the regime of phonon
resonance (q away from 1), when no phonons are produced
and the phonon occupation remains close to zero. However, it
gives rise to a singularity as q → 1. We now use our nonper-
turbative theory to predict the dynamics of the gas of photonic
Cooper pairs in the regime of phonon resonance. This can be
done by writing bare operators in terms of Ramaniton ones,
and obtaining their Heisenberg representation from α j (t ) =
eiHRt/h̄α j (0)e−iHRt/h̄ = e−iω j tα j (0) (see the Appendix for re-
sulting expressions).

One important constraint is that the Ramaniton model
(4) has the symmetry [HR, NS − NaS − Nc] = 0, where Nc =
c†c and Nj = b†

jb j where j = S, aS are bare phonon and
photon number operators. As a result the quantity 〈NS〉 −
〈NaS〉 − 〈Nc〉 is a constant independent of time. If the initial
state is the vacuum of the bare modes, |ψ (t = 0)〉 = |0〉B ≡
|0〉S|0〉c|0〉aS, their average occupation changes in time ac-
cording to 〈NS(t )〉 − 〈NaS(t )〉 = 〈Nc(t )〉. Therefore, 〈NS(t )〉 −
〈NaS(t )〉 oscillates as time evolves due to coherent popula-
tion transfer between photons and phonons. This is shown in
Fig. 4.

When 〈Nc(t )〉 = 0 we have 〈NS(t )〉 = 〈NaS(t )〉, a special
situation where the photonic state is “paired up.” As we now
show this gives rise to maximum squeezing. For this reason,

the condition 〈Nc〉 = 0 with 〈NS〉 = 〈NaS〉 > 0 will be denoted
resonant squeezing.

Define the generalized quadrature [15]

X (t ) = 1

23/2
{e−iφ[bS(t ) + baS(t )] + H.c.}, (13)

where b j (t ) = eiHRt/h̄b j (0)e−iHRt/h̄ are photon operators in
the Heisenberg representation, and φ is a phase. The amount
of vacuum noise squeezing as a function of time in decibel
units is given by

S(t, φ) = −10 log10

{ 〈[�X (t )]2〉
〈[�X (0)]2〉

}
, (14)

where �X (t ) = X (t ) − 〈X 〉. The averages are taken by as-
suming the initial state is the vacuum of the bare modes in
the rotating frame, |ψ (t = 0)〉 = |0〉B. The denominator in
Eq. (14) is the variance of X in the vacuum, 〈[�X (0)]2〉 =
1/4. This reference corresponds to the quantum noise limit
(QNL) of 0 dB. The generalized quadrature is said to be
squeezed (antisqueezed) whenever the variance of X is below
(above) the QNL [15,16].

Using Eqs. (A15) and (A16) we obtain

〈[�X (t )]2〉
〈[�X (0)]2〉 = |XS(t ) + e2iφY ∗

aS(t )|2

= 1 + 〈NS(t )〉 + 〈NaS(t )〉
+ [e−2iφXS(t )YaS(t ) + c.c.]. (15)

The noise ratio is minimized (maximum squeez-
ing) when e−2iφXS(t )YaS(t ) is negative, equal to
−√

1 + 〈NS(t )〉√〈NaS(t )〉. This happens when the phase
φ is equal to the optimal phase:

φopt (t ) = 1
2 {π + Arg[XS(t )YaS(t )]}. (16)

When φ = φopt we can write

〈[�X (t )]2〉
〈[�X (0)]2〉

∣∣∣∣∣
φ=φopt

= |
√

1 + 〈NS(t )〉 −
√

〈NS(t )〉 − 〈Nc(t )〉|2.

(17)
This equation is minimized (maximum squeezing) when
〈Nc(t )〉 = 0 simultaneously with 〈NS(t )〉 → ∞, i.e., when
the brightness of the Stokes channel is maximized. The lat-
ter takes place at the phonon resonance, when q = 1 and
φopt (t ) = π/2 is independent of time.

Our calculations show that the amount of vacuum squeez-
ing S(t, φopt ) is oscillatory as a function of the propagation
time t or length L = c′t of a waveguide; this is shown in
Fig. 5, where �t is now replaced by L/(c′/�), with L the
length of a photonic waveguide. The quantum oscillations as
a function of L arise from the population exchange between
bare phonon and photons in the time evolution of the Ra-
maniton. As a consequence, for each Raman shift q there is
a value of nonzero t or L that gives rise to 〈Nc〉 = 0 and
maximum squeezing. Figure 6 shows vacuum squeezing as
a function of Raman shift q for three different waveguide
lengths L. The global maximum for squeezing is obtained for
L�/c′ = 8.89 × 103 and q = 1, when both the condition for
resonant squeezing (〈Nc〉 = 0) and the condition for phonon
resonance (q = 1, emission/absorption of a real phonon) are
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FIG. 5. Vacuum noise squeezing S(t = L/c′, φopt ) for the opti-
mum phase given by Eq. (16) as a function of propagation length
L using parameters realistic for silicon on insulator waveguides.
The parameters are ωL/� = 12.4, η = 10−3, and Raman shifts q =
0.9995 (blue) and q = 1 (red). The black line represents the quantum
noise limit of 0 dB.

simultaneously satisfied. For other values of L, the condition
for resonant squeezing 〈Nc〉 = 0 is satisfied away from q = 1;
as a result squeezing shows local maxima at these points.

The condition for resonant squeezing, 〈Nc〉 = 0 with
〈NS〉 = 〈NaS〉 > 0, requires the system to recur to a zero

FIG. 6. Vacuum noise squeezing S(t = L/c′, φopt ) for realistic
silicon waveguides as a function of Raman shift q, for three differ-
ent waveguide lengths L. Global maximum squeezing of 28 dB is
achieved for L = 8.89 × 103c′/� and q = 1, the phonon resonance
condition when a real phonon is emitted/absorbed. For other prop-
agation lengths squeezing has local maxima away from q = 1. The
parameters used are ωL/� = 12.4 and η = 10−3.

FIG. 7. Ramaniton occupations 〈α†
j (t )α j (t )〉 and modulus of cor-

relations |〈α j (t )αk (t )〉| for the evolved bare vacuum as a function of
q. Note that both are independent of time. At q = 1 the sum of cor-
relations is maximized, leading to maximum destructive interference
at t = tRS as shown in Eq. (20).

phonon state without recurring back to the full vacuum state
|0〉B. The reason why this can happen is related to the fact
that the first Ramaniton is decoupled from the phonon [see
Eq. (11)]. As a result, the phonon operator in the Heisenberg
picture c(t ) is a linear combination of only two Ramanitons,
α2(t ) and α3(t ) [see Eq. (A10)]. As these two Ramanitons
evolve in time they will interfere constructively when their
phase difference is the same, ei(ω3−ω2 )t = 1. When this hap-
pens, c(t ) is the same as c(0) apart from a global phase, and
〈Nc(t )〉 = 0. This shows that resonant squeezing occurs when
t = tRS for

tRS = 2πnq,η

ω3 − ω2
= 2πnq,η

�

√
(q − 1)2 + η2q

2

, (18)

with nq,η a positive integer that avoids full recurrence to
〈NS〉 = 〈NaS〉 = 0. Since the operators b†

S(t ) and baS(t ) both
involve Ramaniton α

†
1 (t ) in addition to α2(t ) and α3(t ), full

recurrence requires ei(ω3+ω1 )t = ei(ω3−ω2 )t = 1. But this can
only happen if (ω3 + ω1) is commensurable with (ω3 − ω2)

nq,η = ω3 − ω2

ω3 + ω1
m, (19)

for a positive integer m. For q = 1 we get (ω3 − ω2)/(ω3 +
ω1) = 2, showing that resonant squeezing occurs only
for n1,η = odd, i.e., �tRS = (2

√
2π/η)n1,η with n1,η =

1, 3, 5, . . .. At even multiples of 2
√

2π/η we get recurrence
to |0〉B. This behavior is seen in Fig. 4 for η = 10−3 and
2
√

2π/η = 8.89 × 103.
The global maximum for squeezing can also be re-

lated to Ramaniton occupations and correlations. Figure 7
shows the Ramaniton occupations 〈α†

j (t )α j (t )〉 and cor-
relations 〈α j (t )αk (t )〉 for the evolved bare vacuum as a
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function of q. Note that the former is independent of time, and the latter oscillates as e−i(ω j+ωk )t . At q = 1 and φ = φopt = π/2
the noise as a function of t becomes

〈[�X (t )]2〉
〈[�X (0)]2〉

∣∣∣∣∣
φ= π

2 ,q=1

=
[(ωL

�

)
−
√(ωL

�

)2
− 1

]{
1 + 〈α†

1 (t )α1(t )〉 + 1

2
[〈α†

2 (t )α2(t )〉 + 〈α†
3 (t )α3(t )〉]

+ |〈α2(t )α†
3 (t )〉| cos [(ω3 − ω2)t] +

√
2[|〈α1(t )α2(t )〉| + |〈α1(t )α3(t )〉|] cos [(ω1 + ω3)t]

}
. (20)

When t = tRS, cos [(ω3 − ω2)t] = 1, and cos [(ω1 + ω3)t] =
−1, showing that the Ramaniton correlations 〈α j (t )αk (t )〉
interfere destructively with the occupations. On top of this,
Fig. 7 shows that at q = 1 the sum of correlations is maxi-
mized. The interference is maximally destructive, leading to
the global minimum of the noise:

〈[�X (tRS)]2〉
〈[�X (0)]2〉

∣∣∣∣∣
φ= π

2 ,q=1

=
{(ωL

�

)
−
√(ωL

�

)2
− 1

}2

, (21)

which goes to zero when ωL/� → ∞.
For additional insight, we turn to calculations of the

second-order cross correlation between photons in Stokes and
antiStokes modes. The zero-time delay two-mode intensity
correlation function is defined as [16]

g(2)
SaS(0) = 〈b†

S(t )b†
aS(t )baS(t )bS(t )〉

〈b†
S(t )bS(t )〉〈b†

aS(t )baS(t )〉 . (22)

When the initial state is the vacuum, we can use the Nambu
method to obtain the exact result:

g(2)
SaS(0) = 2 + 1

〈NS(t )〉 . (23)

This shows that in the Ramaniton model g(2)
SaS(0) is a proxy for

the number of photons in the Stokes mode. Figure 8 shows
g(2)

SaS(0) as a function of q for L = 8.89 × 103c′/� and other
parameters the same as in Fig. 6. We see that g(2)

SaS(0) is min-
imum at the global maximum squeezing point at q = 1. For
this case g(2)

SaS(0) anticorrelates with the amount of squeezing.
The inset of Fig. 8 shows the number of Stokes and an-

tiStokes photons as a function of q for the same parameters.
Away from q = 1, 〈NS(t )〉 ≈ 〈NaS(t )〉 decreases and as a result
g(2)

SaS(0) increases [see Eq. (23)]. When q � 1 or q � 1, both
〈NS(t )〉 and 〈NaS(t )〉 are quite small, leading to g(2)

SaS(0) � 2
(not shown).

V. CONCLUSIONS

We presented a nonperturbative theory for phonon-
mediated photon-photon interaction based on the concept of
the Ramaniton, an excitation that is qualitatively different than
the polariton in that it mixes particle and antiparticle (holelike)
phonon/photon modes. This distinctive feature arises from
Cooper-pair-like correlations that are universal to all Raman
scattering processes. The Ramaniton removes the distinction
between real and virtual phonon processes in correlated Ra-
man scattering, regularizing the singularity that appears in the
perturbative treatment for this problem [8].

While exciton polaritons are also known to mix photon
excitations with antiexciton ones, the amount of mixing is
antiresonant, in that it can be safely neglected in the rotat-
ing wave approximation [23,24]. Thus in most circumstances
exciton polaritons nearly conserve the number of excitations
and do not show anomalous quantum effects. A notable ex-
ception occurs in Fabry-Pérot cavities with multiple quantum
wells, where ultrastrong light-exciton coupling amplifies the
quantum nature of the exciton polariton. In this regime, inter-
esting quantum effects related to squeezing and photon pair
generation are reported to occur [24].

We remark that the Ramaniton is qualitatively different
from exciton polaritons, in that its admixture between pho-
tons and antiphotons remains strong after taking the rotating
wave approximation (4) and even becomes “resonant” at
q = 1. From Eqs. (11), (A13), and (A14) the amount of
photon/antiphoton admixture is η−/η+ ≈ 1 for all q. Thus,
our quantum theory of Raman scattering reveals opportunities
for the demonstration of quantum electrodynamical effects
with conventional materials and devices.

The usefulness of the Ramaniton is evident from Fig. 4.
As time evolves, the number of photons/phonons goes
from 0 to ≈102; capturing this range of modes with exact

FIG. 8. Two-mode intensity cross-correlation function g(2)
SaS(0) as

a function of Raman shift q for the parameters leading to a global
maximum in squeezing. This is waveguide length L�/c′ = 8.89 ×
103 and other parameters as in Fig. 6. The inset is the plot of the
average number of Stokes and antiStokes photons for the same set of
parameters.
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numerical diagonalization is challenging. The Ramaniton
solves this problem and enables analytical determination of
the regimes where optimal squeezing takes place.

We show that the amount of two-mode vacuum noise
squeezing, a property that is well known to arise from entan-
glement [5], shows local maxima (resonances) as a function of
photon time of flight t or waveguide propagation length L =
c′t . “Resonant squeezing” occurs when the average number of
excited phonons 〈Nc〉 becomes equal to zero at the same time
that the number of Stokes and antiStokes photons is nonzero.
When this happens the numbers of Stokes and antiStokes
photons become equal, leading to “photonic pairing,” with
squeezing measured in decibels increasing logarithmically
with the number of photons.

The global maximum for squeezing happens when both the
condition for resonant squeezing 〈Nc〉 = 0 and the condition
for phonon resonance q = 1 are simultaneously satisfied. In
this case the “paired state” has maximum brightness and the
amount of squeezing increases logarithmically with the laser
frequency as shown in Eq. (21). As seen in the q = 1 curve
of Fig. 5, the global maximum peak is relatively broad as
a function of L, so maximum squeezing can be achieved
without the need of high precision on the value of L. This
leads to our prediction that up to 28 dB of squeezing may
be reached in silicon on insulator waveguides, provided that
light can be extracted near the optimal waveguide length
L = 8.89 × 103c′/� = 7.95 mm. Achieving this would be a
significant improvement on the 15 dB of squeezing measured
in an optical table [25] and also on the 11 dB of squeezing
inferred before extraction on optical fibers [26] and photonic
chips [27].

We expect similar resonant squeezing phenomena to oc-
cur in resonators that trap photons for extended periods of
time. The photon trapping time τ will play a similar role
as the propagation time t = L/c′ in waveguides, leading
to optimal squeezing for certain values of τ that depend
not only on resonator length but also on resonator quality
factor Q.

The conventional mechanism for generating squeezed
states in waveguides is to use photon evolution under the Kerr
effect in order to convert a coherent state into a one-mode
squeezed state [28]. This process is optimized in optical fibers
measuring several meters long, and it was pointed out that
Raman scattering out of the squeezed photon mode provides
the limiting factor for maximum squeezing [26]. Our paper
presents a qualitatively different mechanism, where Raman
scattering acts instead as the generator of two-mode squeezed
states, leading to maximum squeezing in waveguides with
much shorter length.

In conclusion, we described a theory for phonon-mediated
generation of squeezed light. The theory opens up avenues
for material and device optimization in integrated quantum
photonics for quantum information and sensing applications.
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APPENDIX: EXACT DIAGONALIZATION
OF THE RAMANITON HAMILTONIAN WITH THE

NAMBU METHOD

The Nambu method provides a systematic way to carry
out the Bogoliubov transformation necessary to put the Ra-
maniton Hamiltonian in diagonal form (9). In the Nambu
representation the Hamiltonian (4) is written as HR =
1
2v† · L · v, where v = (bS, c, baS, b†

S, c†, b†
aS)T is a particle-

antiparticle column vector and L is a 6 × 6 Hermitian
matrix. Our goal is to find the 6 × 6 nonunitary transfor-
mation U that connects v to the Ramaniton operators α, as
in v = U · α.

As explained in Sec. III of the paper, the columns of
U are formed by the eigenvectors of Z · L, where Z =
diag{1, 1, 1,−1,−1,−1} is the plus (minus) identity in the
particle (antiparticle) subspace. Inspection of Eq. (4) leads to

Z · L = h̄�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q 0 0 0 iη− 0

0 1 −iη+ iη− 0 0

0 iη+ q 0 0 0

0 iη− 0 q 0 0

iη− 0 0 0 −1 −iη+
0 0 0 0 iη+ −q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A1)
We observe that

Z · L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

0

0

0

ξ2

ξ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= h̄�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−qξ1 + iη−ξ2

0

0

0

iη−ξ1 − ξ2 − iη+ξ3

iη+ξ2 − qξ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A2)

showing that Z · L is block diagonal. The first block is
given by

T = �

⎛⎜⎝−q iη− 0

iη− −1 −iη+
0 iη+ −q

⎞⎟⎠, (A3)

with eigenvalues

λ1 = −q�, (A4a)

λ2 =
(

−q + 1

2
+ 1

2

√
(q − 1)2 + η2q

2

)
�, (A4b)

λ3 =
(

−q + 1

2
− 1

2

√
(q − 1)2 + η2q

2

)
�. (A4c)
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The eigenvectors of matrix T corresponding to the eigen-
value λ1 are

ξ
(1)
1 = η+√

η2+ − η2−
, (A5a)

ξ
(1)
2 = 0, (A5b)

ξ
(1)
3 = η−√

η2+ − η2−
. (A5c)

Note that this eigenvector can be chosen to satisfy the positive
normalization rule |ξ (1)

1 |2 − |ξ (1)
2 |2 − |ξ (1)

3 |2 = +1, so it can
be chosen as the first column of U . Thus the first Ramaniton
has frequency ω1 = λ1. Recall that the normalization condi-
tion for the columns of U is set by the requirement that the
transformation is canonical, (Z · U† · Z) · U = I. Hence the
first three columns of U must satisfy the positive normal-
ization rule, with the other three satisfying the negative rule
described below.

The remaining eigenvectors of matrix T corresponding to
eigenvalues λ j ( j = 2, 3) are

ξ
( j)
1 = iη−√(

q + λ j

�

)2 + η2+ − η2−
, (A6a)

ξ
( j)
2 =

(
q + λ j

�

)√(
q + λ j

�

)2 + η2+ − η2−
, (A6b)

ξ
( j)
3 = iη+√(

q + λ j

�

)2 + η2+ − η2−
. (A6c)

Because η+ > η−, these cannot satisfy the positive normaliza-
tion rule; instead they have to be normalized by the negative
rule, |ξ ( j)

1 |2 − |ξ ( j)
2 |2 − |ξ ( j)

3 |2 = −1. So we have to choose
these two remaining eigenvectors to be the fifth and sixth
columns of U , respectively. Their associated eigenvalues cor-
respond to negative Ramaniton frequencies, so we must have
ω2 = −λ2 and ω3 = −λ3 for the remaining two Ramanitons.
These Ramaniton eigenfrequencies are the ones displayed in
Eqs. (10a)–(10c).

The other 3 × 3 block of Z · L is

T̃ = �

⎛⎜⎝ 1 −iη+ iη−
iη+ q 0

iη− 0 q

⎞⎟⎠, (A7)

with eigenvalues λ̃ j = −λ j and eigenvectors
(ξ ( j)∗

2 , ξ
( j)∗
3 , ξ

( j)∗
1 )T . The j = 2, 3 eigenvectors satisfy the

positive normalization rule, so they belong to the second

and third columns of U , respectively. The j = 1 eigenvector
satisfies negative normalization so it forms the fourth column
of U .

Putting all eigenvectors together we get

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ
(1)
1 0 0 0 ξ

(2)
1 ξ

(3)
1

0 ξ
(2)∗
2 ξ

(3)∗
2 ξ

(1)∗
2 0 0

0 ξ
(2)∗
3 ξ

(3)∗
3 ξ

(1)∗
3 0 0

0 ξ
(2)∗
1 ξ

(3)∗
1 ξ

(1)∗
1 0 0

ξ
(1)
2 0 0 0 ξ

(2)
2 ξ

(3)
2

ξ
(1)
3 0 0 0 ξ

(2)
3 ξ

(3)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A8)

This implies

bS = ξ
(1)
1 α1 + ξ

(2)
1 α

†
2 + ξ

(3)
1 α

†
3, (A9)

c = ξ
(2)∗
2 α2 + ξ

(3)∗
2 α3, (A10)

baS = ξ
(2)∗
3 α2 + ξ

(3)∗
3 α3,+ξ

(1)∗
3 α

†
1, (A11)

and the inverse relations

α1 = ξ
(1)∗
1 bS − ξ

(1)
3 b†

aS, (A12)

α2 = −ξ
(2)
1 b†

S + ξ
(2)
2 c + ξ

(2)
3 baS, (A13)

α3 = −ξ
(3)
1 b†

S + ξ
(3)
2 c + ξ

(3)
3 baS. (A14)

These are used to find the time evolution of photon operators
in the Heisenberg representation. Plug α j (t ) = e−iω j tα j (0)
into Eqs. (A9)–(A11) and use Eqs. (A12)–(A14) to express
α j (0) in terms of bare photons at t = 0. The result is

bS(t ) = XS(t )bS(0) + YS(t )b†
aS(0)

+ ZS(t )c†(0), (A15)

baS(t ) = XaS(t )baS(0) + YaS(t )b†
S(0)

+ ZaS(t )c(0), (A16)

with for example

XS(t ) = ∣∣ξ (1)
1

∣∣2e−iω1t − ∣∣ξ (2)
1

∣∣2eiω2t

− ∣∣ξ (3)
1

∣∣2eiω3t , (A17)

YaS(t ) = −ξ
(2)∗
3 ξ

(2)
1 e−iω2t − ξ

(3)∗
3 ξ

(3)
1 e−iω3t

+ ξ
(1)∗
3 ξ

(1)
1 eiω1t . (A18)

Using Eqs. (A15) and (A16) we obtain B〈0|NS(t )|0〉B =
|YS(t )|2 + |ZS(t )|2 = |XS(t )|2 − 1 (the last identity comes
from [bS(t ), b†

S(t )] = 1), and B〈0|NaS(t )|0〉B = |YaS(t )|2.
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