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General Shiba mapping for on-site four-point correlation functions
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By applying the Shiba mapping on the two-particle level, we derive the relation between the local four-point
correlation functions of bipartite lattice models with on-site electronic repulsion and those of the corresponding
models with attractive interaction in the most general setting. In particular, we extend the results of [Phys. Rev. B
101, 155148 (2020)], which were limited to the rather specific situation of the static limit in strictly particle-hole
symmetric models, (i) by explicitly including both magnetic field and different values of the chemical potentials,
and (ii) by considering the full dependence of the generalized susceptibilities on the transfer (bosonic) Matsubara
frequency. The derived formalism is then applied, as a relevant benchmark, to the Hubbard atom by investigating
the general properties of the divergences of its irreducible vertex functions as a function of chemical potential
and applied magnetic field. The resulting phase diagrams provide an insightful compass for future studies of the
breakdown of the self-consistent perturbation expansion beyond high-symmetric regimes.
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I. INTRODUCTION

Due to the impressive algorithmic and computational ad-
vancements of the past decade, performing quantum-many
body calculations of four-point correlation functions has
become achievable also in nontrivial, strongly correlated pa-
rameter regimes. Evidently, this progress is highly relevant
for several reasons. Among these are the precise calculations
of vertex corrections of physical susceptibilities [1–5] and
conductivities [6–8], the identification of the predominant
scattering mechanisms underlying intriguing photoemission
or self-energy features [9–14], and the implementation of ad-
vanced diagrammatic expansions [15–19] for nonperturbative
regimes.

On the theoretical side, this development has triggered a
quest for improving our fundamental understanding of the
many-electron properties on the two-particle level and their
associated Feynman diagrammatic formalism. In this con-
text, a considerable effort has been recently devoted to the
analysis of generalized susceptibilities and two-particle vertex
functions [20–24] beyond the standard textbook discussions,
with a particular focus on their high-frequency asymptotics
[25–27] and on their algorithmic treatments [28]. Considering
the specific case of the physical interpretation of the local
(on-site) two-particle formalism, interesting information was
obtained in Ref. [29]. The Shiba transformation, which maps
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the quantities of a model with local electrostatic repulsion
U > 0 to those of a corresponding Hamiltonian with on-site
attraction U < 0, was applied to derive the explicit relations
between the on-site generalized two-particle susceptibilities
of the repulsive Hubbard model and their counterparts in
the attractive Hubbard model. In fact, the analytical deriva-
tions presented in Ref. [29] unveiled intrinsic symmetry
properties of the four-point correlation functions (such as
two-particle generalized susceptibilities and vertex functions)
and provided pivotal information for the investigation of the
breakdown of the self-consistent perturbation expansion in
many-electron systems.

However, the analytical derivations of Ref. [29] were lim-
ited to a very specific case: the Shiba transformation of the
static (i.e., for zero-frequency transfer, ω = 0) two-particle
generalized susceptibilities in the particle-hole symmetric
Hubbard model, i.e., half-filling (μ = U/2) and SU(2) sym-
metry (h = 0). In this paper, our goal is to address and
overcome these notable restrictions by providing the general
expressions that systematically map all two-particle gen-
eralized on-site susceptibilities of a model with a purely
local (Hubbard-like) interaction onto their counterparts in
the corresponding model with sign-flipped interaction. Impor-
tantly, these mappings are established for arbitrary values of
the chemical potential, applied magnetic field, and bosonic
Matsubara frequency ω.

Eventually, to demonstrate the correctness and usefulness
of the derived expressions, we validate them through a hands-
on application. Specifically, we exploit these expressions to
analyze the divergences affecting the irreducible two-particle
vertex functions of the Hubbard atom (i.e., of an isolated in-
teracting site) across different scattering sectors as a function
of arbitrary chemical potential, magnetic field, temperature,
and interaction. The obtained general phase diagrams will
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provide an intuitive and robust guidance to all future stud-
ies aiming at unveiling the formal [30–33] and the physical
[34–37] aspects associated with the breakdown [30–32] of the
self-consistent perturbation theory for many-electron systems,
beyond the (unrealistic) assumption of perfect particle-hole
symmetry made so far in the largest part of the corresponding
literature (with the notable exceptions of Refs. [33–35]).

The structure of the paper is as follows: In Sec. II, we
concisely introduce the one- and two-particle formalism nec-
essary for our derivations, and we recall the general definition
of the Shiba transformation. In Sec. III, we report the explicit
derivation for the mapping of generalized on-site two-particle
quantities under the action of the Shiba transformation in the
most general case (i.e., arbitrary filling, magnetic field, and
finite transfer frequencies). Thereafter, in Sec. IV we apply the
derived relations to the problem of the divergences of the irre-
ducible vertex functions occurring in the different scattering
channels of the Hubbard atom with repulsive and attrac-
tive interaction, whose specific study was hitherto restricted
to the case of perfect particle-hole symmetry. Finally, in
Sec. V we draw our conclusions, outlining possible conse-
quences of the results presented in our work.

II. FORMALISM

A. Generalized susceptibilities

When examining the fermionic four-point correlation func-
tions of systems that maintain time translation invariance,
the associated generalized susceptibilities, which character-
ize the scattering events between two particles, depend only
on three independent Matsubara frequencies (instead of four).
This reduction is due to the conservation of energy [20,38].
Additionally, for spin conservation, only 6 out of the 24

spin combinations for these correlation functions remain
independent [20].

Therefore, for our considerations all possible (local) gen-
eralized susceptibilities χ can be defined as follows [15,20]:

χσσ ′ (ν1, ν2, ν3) =
∫ β

0
dτ1dτ2dτ3 e−iν1τ1 eiν2τ2 e−iν3τ3

× (〈Tτ c†
σ (τ1)cσ (τ2)c†

σ ′ (τ3)cσ ′ (0)〉
− 〈Tτ c†

σ (τ1)cσ (τ2)〉〈Tτ c†
σ ′ (τ3)cσ ′ (0)〉),

(1)

χσσ ′ (ν1, ν2, ν3) =
∫ β

0
dτ1dτ2dτ3 e−iν1τ1 eiν2τ2 e−iν3τ3

× 〈Tτ c†
σ (τ1)cσ ′ (τ2)c†

σ ′ (τ3)cσ (0)〉, (2)

where σ, σ ′ denote the spins, νi are fermionic Matsubara
frequencies (where the fourth frequency is set by ν4 = ν1 −
ν2 + ν3), c(†)

σ annihilate (create) an electron with spin σ , Tτ

denotes the imaginary time ordering operator, and 〈· · · 〉 =
1
Z Tr(e−βH · · · ) is the thermal expectation value.

Note that for nonlocal χ , c(†)
i,σ acquire an additional lattice

index i, and for space translation invariant systems, one of the
four lattice indices can be set to zero.

By using two fermionic ν, ν ′, and one bosonic
Matsubara frequency ω, one can define two convenient

frequency conventions: the particle-hole (ph) χν,ν ′, ω and the
particle-particle (pp) χν,ν ′, ω

pp notation,

ph: ν1 = ν, pp: ν1 = ν, (3a)

ν2 = ν + ω, ν2 = ω − ν ′, (3b)

ν3 = ν ′ + ω, ν3 = ω − ν, (3c)

(ν4 = ν ′), (ν4 = ν ′). (3d)

One can go from ph to pp notation by shifting ω →
ω − ν − ν ′.

Instead of using the definitions in (1) and (2) directly, it
is often more useful to consider specific spin combinations,
which correspond to physical response functions.

The spin combinations (channels) that we consider are
charge (c), longitudinal spin (s), the coupling between charge
and longitudinal spin (cs) and (sc), transversal spin (Sx = Sy),
and the pairing channel (pair):

χν,ν ′, ω
c = χν,ν ′, ω

↑↑ + χν,ν ′, ω
↓↓ + χν,ν ′, ω

↑↓ + χν,ν ′, ω
↓↑, , (4)

χν,ν ′, ω
s = χν,ν ′, ω

↑↑ + χν,ν ′, ω
↓↓ − χν,ν ′, ω

↑↓ − χν,ν ′, ω
↓↑ , (5)

χν,ν ′, ω
cs = χν,ν ′, ω

↑↑ − χν,ν ′, ω
↓↓ − χν,ν ′, ω

↑↓ + χν,ν ′, ω
↓↑ , (6)

χν,ν ′, ω
sc = χν,ν ′, ω

↑↑ − χν,ν ′, ω
↓↓ + χν,ν ′, ω

↑↓ − χν,ν ′, ω
↓↑ , (7)

χν,ν ′, ω
Sx

= χν,ν ′, ω
Sy

= χν,ν ′, ω
↑↓ + χν,ν ′, ω

↓↑ , (8)

χν,ν ′, ω
pair = −χν,ν ′, ω

↑↓,pp
− (

χν,ν ′, ω
↓↑,pp

)∗
. (9)

For the subsequent discussion, it is convenient to view the
generalized susceptibilities as (infinite-dimensional) matrices
in the frequencies ν, ν ′ and treat ω as an additional parameter.

To simplify the notation, we are going to omit the
fermionic frequencies ν and ν ′ in the following and state the
bosonic frequency ω only explicitly when it is not the same
for all quantities in an expression. Within this notation, all
operations (e.g., multiplication, transposition, inversion, etc.)
are meant as matrix operations in the fermionic Matsubara
frequency space.

Note that for broken SU(2)-symmetry, the previously sepa-
rate charge and the longitudinal spin channels get coupled into
the longitudinal (L) channel

χL =
(

χc χcs

χsc χs

)
, (10)

where the space of the longitudinal channel is a tensor product
space of the charge and spin fermionic Matsubara frequency
spaces.

The generalized susceptibility matrices show interesting
properties that restrict their eigenvalues and eigenvector struc-
ture and depend on the symmetries of the considered model
(see Appendix A for an in-depth discussion).

For ω = 0, the matrices of the transversal spin channel χSx

as well as the pairing channel χpair can be identified as centro-
Hermitian matrices [39] [see Eq. (A11)], and therefore only
have eigenvalues that are real or come in complex-conjugate
pairs [40]. Moreover, the matrix of the coupled longitudinal
channel χL is classified as a κ-real matrix Eq. (A13), which
shows the same eigenvalue properties [41].
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FIG. 1. Schematic illustration of a κ-real matrix that is built
from blocks of centro-Hermitian matrices, which is relevant for the
coupled longitudinal channel if SU(2)S-symmetry is violated.

In addition, the generalized susceptibilities for all con-
sidered channels are symmetric matrices and, hence, can
be diagonalized by an orthogonal transformation [42]. This,
together with the centro-Hermitian and κ-real property, re-
spectively, leads to the fact that eigenvectors vα corresponding
to real eigenvalues λα have a symmetric/antisymmetric real
part Revα (in ν) and an antisymmetric/symmetric imaginary
part Imvα [see Eq. (A16)] [39]. For the longitudinal channel,
eigenvectors are symmetric/antisymmetric in the charge and
spin subspace, respectively [see Eq. (A17)]. Figure 1 shows a
schematic example of a κ-real matrix that is built from blocks
of centro-Hermitian matrices in the fermionic Matsubara fre-
quencies, as is the case in the coupled longitudinal channel.

A concise summary of the generalized susceptibility matrix
properties for ω = 0 in the different channels and under addi-
tional symmetries can be seen in Table I, where No Symmetry
refers to time translation symmetry, spin conservation, and
that the Hamiltonian is a real function of c and c†. Note that
the last assumption can be violated, for example, by the inclu-
sion of an external electromagnetic potential via the Peierls
substitution in lattice models and/or if spin-orbit coupling is
taken into account. All these symmetries can be derived by
applying Eqs. (A6)–(A10) to the respective definitions of the
different channels.

B. Shiba transformation

The mapping—we apply in this paper—systematically
maps all quantities of a model with on-site interaction onto a
corresponding model with sign-flipped interaction. It has been

used for the study in Ref. [29] and is derived by applying a
partial (local) particle-hole transformation, or Shiba transfor-
mation [43], acting on the creation and annihilation operators
with

c↑ → c↑, c†
↑ → c†

↑, c↓ → c†
↓, and c†

↓ → c↓. (11)

By considering a local single-orbital Hubbard Hamiltonian
(written in a symmetric form with δμ = μ − U/2), one read-
ily sees that applying the Shiba transformation

H (U,δμ, h) =
−δμ(n↑ + n↓) − h(n↑ − n↓) + U (n↑ − 1/2)(n↓ − 1/2)�⏐⏐⏐	Shiba

−δμ(n↑ − n↓) − h(n↑ + n↓) − U (n↑ − 1/2)(n↓ − 1/2)

= H (−U, h, δμ)
(12)

(nσ = c†
σ cσ ) corresponds to interchanging the values of δμ ↔

h as well as a sign flip in the interaction U (any constant terms
that appear from the mapping in the Hamiltonian have been
omitted).

The Hamiltonian in Eq. (12) corresponds to the Hubbard
atom (HA), which we consider for our exemplary study in
Sec. IV for different fillings and external magnetic fields h.
The model can be solved analytically [44]; the corresponding
expressions for the one- and two-particle Green’s functions
can be found in Appendix D.

The (nonlocal) Shiba mapping can also be applied for a bi-
partite lattice model, i.e., a lattice that can be divided into two
sublattices, where the hopping from each site only connects
to the other sublattice. The Hamiltonian of such a Hubbard
model (HM) reads

H = −
∑
i, j,σ

ti, jc
†
i,σ c j,σ − δμ

∑
i

(ni,↑ + ni,↓)

− h
∑

i

(ni,↑ − ni,↓) + U
∑

i

(ni,↑ − 1/2)(ni,↓ − 1/2),

(13)

where ti j is zero if i and j belong to the same sublattice.
Assigning one sublattice to all even and the other one to
all odd sites, respectively, we readily see that the nonlo-
cal Shiba transformation ci,↓ → c†

i,↓(−1)i leaves the hopping
term Eq. (13) invariant and otherwise follows Eq. (12).
Therefore, the effect of the Shiba transformation on bipartite

TABLE I. Matrix properties of the generalized susceptibilities under additional symmetries, where No Symmetry refers to time translation
symmetry, spin conservation, and that the Hamiltonian is a real function of c and c†. For the additional symmetries, we use SU(2)S for Spin
SU(2) symmetry (h = 0), SU(2)P for pseudospin SU(2) symmetry (δμ = 0), PH for particle-hole symmetry [SU(2)S and SU(2)P symmetry].

Symmetry χω=0
L χω=0

Sx χω=0
pair

No symmetry κ-real, symmetric centro-Hermitian, symmetric centro-Hermitian, symmetric
SU(2)S block-diagonal, κ-real, symmetric centro-Hermitian, symmetric bisymmetric, real
SU(2)P κ-real, symmetric bisymmetric, real centro-Hermitian, symmetric
PH [SU(2)S

⊗
SU(2)P] block-diagonal, real, symmetric bisymmetric, real bisymmetric, real
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systems (with local on-site interaction) can be regarded to be
analog to purely local systems.

The Shiba mapping is linked to two sets of SU(2) spin
algebras, of which the generators are the (local) spin operator
S with the components

Sx = c†
↑c↓ + c†

↓c↑, (14)

Sy = −i(c†
↑c↓ − c†

↓c↑), (15)

Sz = c†
↑c↑ − c†

↓c↓ (16)

and the (local) pseudospin operator S p with the components

Sp,x = c†
↑c†

↓ + c↓c↑, (17)

Sp,y = −i(c†
↑c†

↓ − c↓c↑), (18)

Sp,z = c†
↑c↑ + c†

↓c↓ − 1. (19)

Evidently, the Shiba transformation maps the spin S to the
pseudospin S p. Since the components of S and S p commute,
spin and pseudospin can be regarded as independent set of
operators [38].

The pseudospin can be given the following physical in-
terpretation: Sp,x and Sp,y correspond to the local Cooper
pair operators, which describe the real and imaginary part of
the order parameter of a strong-coupling (Bose-Einstein-like)
superconductor, and Sp,z describes the deviation of the density
from half-filling.

The Hamiltonian in the upper line of in Eq. (12) commutes
with all components of S if h = 0, which we will denote as
SU(2)S symmetry, and with all components of S p for δμ = 0,
referred to as SU(2)P symmetry.

Systems that exhibit a symmetry under rotations gener-
ated by spin and pseudospin are symmetric under SO(4) 

[SU(2)S ⊗ SU(2)P]/Z2 [38]. These SO(4) symmetric systems
are particle-hole symmetric [45].

The on-site physical susceptibilities, describing the (linear)
response of the system on a local observable A when a lo-
cal observable B is coupled to an external perturbation, can
be calculated by Fourier-transforming/analytically continuing
the following expression:

χ
phys
AB (τ ) = 〈A(τ )B(0)〉 − 〈A〉〈B〉. (20)

In Matsubara frequency space, they are related to the gen-
eralized susceptibilities via

χphys
r (ω) = 1

β2

∑
νν ′

χνν ′ω
r . (21)

Using Eq. (21) and the definitions in Eqs. (4)–(9), we find

χphys
c : A = B = Sp,z, (22)

χphys
s : A = B = Sz, (23)

χphys
cs : A = Sp,z, B = Sz, (24)

χphys
sc : A = Sz, B = Sp,z, (25)

χ
phys
Sx

: A = B = Sx, (26)

χ
phys
pair : A = B = Sp,x. (27)

The mapping of the physical susceptibilities under the
Shiba transformation is thereby clearly identified from

the corresponding mapping of the spin and pseudospin
components.

The more complicated case of the Shiba mapping for the
local generalized susceptibilities is derived in Sec. III.

III. DERIVATION OF THE MAPPING

In the following, we derive how the Shiba transformation in
Eq. (11) is acting on the local [46] generalized susceptibilities
of the charge, longitudinal spin, transversal spin, and pairing
channel [see Eqs. (4)–(9)] for the most general cases, i.e.,
arbitrary filling, external magnetic field, and arbitrary bosonic
transfer frequency ω. Thereby, the coupling of the charge
and longitudinal spin channel for broken SU(2)S symmetry,
i.e., finite magnetic field h, into the longitudinal channel
[cf. Eq. (10)] has to be explicitly considered.

By applying the Shiba transformation on the general defi-
nition in Eq. (1), we find the relations

χν,ν ′, ω
↑↑,U = χν,ν ′, ω

↑↑,-U , χν,ν ′, ω
↓↓,U = χ−ν−ω,−ν ′−ω, ω

↓↓,-U ,

χν,ν ′, ω
↑↓,U = −χν,−ν ′−ω, ω

↑↓,-U , and χν,ν ′, ω
↓↑,U = −χ−ν−ω,ν ′, ω

↓↑,-U , (28)

where the subscript U refers to the model parameters
(U, δμ, h) and the subscript −U to (−U, h, δμ), i.e., the two
models related by the Shiba transformation in Eq. (12).

With these building blocks, we can now apply the Shiba
mapping to the coupled longitudinal channel. We start with
the case of ω = 0 and then generalize to finite bosonic fre-
quencies.

We will identify the similarity transformation S that
captures the action of the Shiba transformation onto the gen-
eralized susceptibilities χL,U and χL,-U. Thereby, we employ
the following matrix Q in Matsubara space:

Q = 1√
2

(
1 −J
1 J

)
with J =

⎛
⎝ 1

. .
.

1

⎞
⎠, (29)

where we divided the Matsubara frequencies into quadrants of
positive + and negative − frequencies(

χ−− χ−+
χ+− χ++

)
. (30)

The similarity transformation QT χCSQ separates the sym-
metric and antisymmetric part of a centrosymmetric matrix
(JAJ = A) into two blocks along the diagonal, and the sym-
metric and antisymmetric part of a centro-skew-symmetric
matrix (JAJ = −A) into two blocks along the skew diagonal.

Hence, a similarity transformation with Q separates the
real χ ′ and imaginary part χ ′′ of a centro-Hermitian matrix
χCH (JχCHJ = χ∗

CH) into the symmetric and antisymmetric
components, respectively,

QχCHQT =
(

χ ′
A iχ ′′

S

iχ ′′
A χ ′

S

)
. (31)

A detailed definition of the different blocks can be found in
Appendix C.
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By defining the transformations Q and T in the tensor
product space of the coupled L channel,

Q =
(

Q 0
0 Q

)
and T =

⎛
⎜⎜⎜⎝

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

⎞
⎟⎟⎟⎠ (32)

[cf. Eq. (10)], we can determine (see Appendix C) the
transformation S, which relates the two sides of the Shiba
transformation:

χL,U = SχL,-US with S = QT TQ. (33)

In Appendix C we show that this relation holds for arbi-
trary bosonic transfer frequencies ω, when adapting the Q
and T matrices by shifting the boundaries of the Matsubara
frequency quadrants by (−ω/2,−ω/2) in analogy to Eq. (30).

Hence, for finite ω the susceptibility matrices can be
viewed as centro-Hermitian in regard to the shifted Matsubara
frequency basis [see Eq. (A12)].

From Eq. (33) [more visible in Eq. (C14)] it follows that the
Shiba transformation leaves the real antisymmetric part χ ′

A of
each charge-spin component (χc, χs, χcs, χsc) in χL invariant
and exchanges the real symmetric part χ ′

S between χc ↔ χs

and between χcs ↔ χsc,
χ ′

c,-U,A ←→ χ ′
c,U,A,

χ ′
s,-U,A ←→ χ ′

s,U,A,

χ ′
c,-U,S ←→ χ ′

s,U,S ,

χ ′
cs,-U,A ←→ χ ′

cs,U,A,

χ ′
sc,-U,A ←→ χ ′

sc,U,A,

χ ′
cs,-U,S ←→ χ ′

sc,U,S .

(34)

For the imaginary parts, neither the symmetric nor the an-
tisymmetric part is invariant under the mapping, and they
exchange according to the rules below:

χ ′′
cs,-U,A ←→ χ ′′

s,U,A,

χ ′′
sc,-U,A ←→ χ ′′

c,U,A,

χ ′′
c,-U,S ←→ χ ′′

cs,U,S ,

χ ′′
sc,-U,S ←→ χ ′′

s,U,S .

(35)

By examining the eigenvectors of the generalized suscepti-
bility in the longitudinal channel, it follows that the symmetric
part in one subspace is mapped from the charge to the spin
subspace, and vice versa. However, the antisymmetric part
remains unaffected by this transformation [refer to Eqs. (C18)
and (C19)].

Finally, we apply the Shiba transformation on the gener-
alized susceptibilities of the pairing and the transversal spin
channel. From the transformation of Eq. (2) we get

χω
Sx,U = χ−ω

pair,-U (36)

(details are in Appendix C).

IV. APPLICATION OF THE MAPPING

The mapping derived in Sec. III can be useful in several
practical contexts, being applicable also beyond the purely
local Hubbard atom Hamiltonian in the first line of Eq. (12).

In fact, the expressions derived in the previous section may
also be applied to the local two-particle quantities of bipar-
tite lattice models with on-site electrostatic interaction, where
their mapping would work in a completely analogous fashion
[see Eq. (13)]. For instance, our equations could be directly
exploited to map the on-site generalized susceptibilities of
the Hubbard model on a generic d-dimensional bipartite lat-
tice with nearest-neighbor [47] hopping t and (U, δμ, h) to
the corresponding lattice model with the same hopping and
(−U, h, δμ) [48]. Evidently, this feature renders the derived
mapping also immediately applicable to the local two-particle
quantities of the widely used dynamical mean-field theory
(DMFT) [49].

Independent of the specific models considered, an evident
advantage of the mapping is to potentially reduce the effort
of two-particle calculations if these need to be systematically
performed in different regions of the phase diagram. Further,
one could exploit the mapping to investigate the two-particle
properties of regimes [e.g., with SU(2)S-broken symmetry]
that might otherwise not be directly and/or easily accessible
with the numerical algorithms at our disposal.

Finally, the derived mapping gives also some fundamental
insights on how two-particle quantities of different scattering
channels are connected to each other and how they are linked
to the symmetries of the system.

As an example to illustrate how this aspect of the mapping
works, we look at the problem of the two-particle irreducible
vertex divergences in the Hubbard atom, which is of con-
siderable interest in the context of the investigation of the
breakdown of the self-consistent perturbation expansion for
many-electron systems.

A. Vertex divergences and their generalization

In this section, we extend the existing studies [22,29,32,50]
on the divergences in the two-particle irreducible vertex of
the Hubbard atom, which have been hitherto restricted to
the rather specific, highly symmetric case of δμ = h = 0
[i.e., of perfect particle-hole symmetry, so SU(2)S and SU(2)P

symmetry]. In particular, we aim here at individuating the
divergences of the two-particle irreducible vertices at transfer
frequency ω = 0 in all scattering channels for the whole pa-
rameter space of the Hubbard atom with positive (repulsive)
as well as negative (attractive) on-site interaction, arbitrary
filling, and in the presence of an external magnetic field h.

We briefly recall here that the two-particle irreducible ver-
tex function �ν,ν ′

r (ω) in a given scattering channel r (e.g.,
longitudinal, pairing, etc.) is formally defined [20,38,51,52]
as the kernel of the (self-consistent) Bethe-Salpeter equa-
tion (BSE) in the corresponding sector r, and, as such, it can
be computed by inverting the BSE, i.e.,

�νν ′
r (ω) := [

χ−1
r

]ν,ν ′, ω − [
χ−1

r,0

]ν,ν ′, ω
,

where the transversal channel has to be treated with care if
H /∈ R and ω �= 0 (see Appendix B).

Hence, the divergences of the �r are directly determined
by the vanishing of an eigenvalue of the corresponding gener-
alized susceptibility matrix χν,ν ′, ω

r in the fermionic Matsubara
frequencies ν, ν ′ [53].

As mentioned in Sec. II A by perfect SU(2)S and SU(2)P

symmetry, all local two-particle quantities for zero-transfer
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frequency (ω = 0) are real and symmetric matrices. Hence,
the sign change of an eigenvalue can only happen if this
eigenvalue vanishes. This eigenvalue is then responsible
for the divergence of �νν ′

r . These sign changes, as dis-
cussed in the recent literature [29,32,35–37,54], are crucial
to drive the suppression/enhancements of the correspond-
ing physical static response of the systems, and, in more
complicated lattice systems, even to trigger thermodynamic
phase-instabilities [35,39,54–57]. However, if either SU(2)S

(h �= 0) or SU(2)P (δμ �= 0) symmetries are broken, χνν ′
r no

longer has to be a real and symmetric matrix for all channels,
but it can be either a centro-Hermitian or a κ-real matrix (see
Table I). Consequently, its eigenvalues are no longer required
to be real: They can be either real or appear in complex-
conjugate pairs, consistent with the fundamental theorem of
algebra [40,41].

As a consequence, the discussed sign changes of an eigen-
value of the generalized susceptibilities, or at least of their
real part, may now occur continuously in the parameter space
without the necessity that the eigenvalue vanishes, which
would trigger a vertex divergence. In fact, complex-conjugate
pairs of eigenvalues can switch the sign of their real parts
without vanishing by keeping their imaginary parts finite.
We note that the occurrence of this specific behavior of
the eigenvalues of the generalized charge susceptibility has
been reported in the phase diagram of Ref. [33] showing the
DMFT [49]/cellular-DMFT [58,59] solution of the HM out
of half-filling, as well as, in a somewhat different perspective,
in Refs. [35,39,56]. Indeed, these observations highlight the
general relevance of such an evolution of the eigenvalues of
the generalized susceptibility beyond the specific framework
of the HA, which we are going to investigate systematically
in the following. In this context, we define the occurrence
of a complex-conjugate pair of eigenvalues with a vanishing
real part but a finite imaginary part as pseudodivergence. In
this way, the concept of vertex divergences can be extended
to those cases in which sign changes of the real part of an
eigenvalue pair of χνν ′

r are not directly associated with an
actual divergence of �νν ′

r . Loosely speaking, this general-
ization might recall the case of a branch cut of the square
root function, which is not crossing through the origin but
rather the negative real axis at a finite value by changing the
sign of the imaginary part. Eventually, the pseudodivergences
defined here in the physical parameter space may be linked
to the analytic properties of the generalized susceptibilities
[60,61] and/or of the perturbative expansion of the electron
self-energy [10,62–64] in abstract complex planes obtained,
e.g., through the complexification of the electronic interaction
U [10,60,61].

B. Dimensionless representation

Before starting the analysis of the vertex divergences and
pseudodivergences in the whole phase space of the Hubbard
atom, it is convenient to make a general consideration based
on the formal Lehmann representation of the on-site [65]
generalized susceptibilities, whose expressions are reported,
e.g., in Appendix D and Ref. [66]. To obtain a dimensionless
representation, we scale all parameters of the Hamiltonian
with inverse temperature β. Formally, this can be done by

considering a model Hamiltonian, which is defined through N
real parameters {εi}|Ni=1 (e.g., the hopping t , the on-site inter-
action U , etc.), where all εi have the dimension of an energy.
Evidently, all eigenenergies of the many-electron Hamiltonian
considered will only depend on these parameters (or a com-
bination thereof), i.e., {Ej} = {Ej ({εi})}. As a consequence,
all corresponding dimensionless quantities βEj must only be
dependent on the set {βεi} for all j. Then, by looking at
the Lehmann representation of the generalized susceptibility,
one readily realizes that, apart from an overall scaling of
β3, the generalized susceptibility can always be expressed in
terms of the parameter set {βEj}, which can be fully expressed
via the parameter set {βεi}. Therefore, one can rewrite the
Lehmann representation as

χνν ′ω
α1,α2,α3,α4

(β, {εi}) = β3 f nn′m
α1,α2,α3,α4

({βεi}), (37)

where n, n′ and m are the indices for ν, ν ′ and ω, and αi

is a generic set of quantum numbers. On the basis of this
observation, presenting our results for the location and the
properties of the vertex (pseudo)divergences of the HA in the
dimensionless parameter space {βδμ, βh, βU } turns out to be
a particularly convenient choice, as it allows for a “universal”
representation of our findings, directly applicable to any finite
value of the temperature.

Before discussing the results, let us clarify the seman-
tics. The nature of the vertex (pseudo)divergence is made
clear by the color and the line-style in the plot: Solid
lines mark divergences and dashed lines mark pseudodi-
vergences. For identifying the different channels where the
(pseudo)divergence occurs, we adopt the following color-
coding, extending the one introduced in the existing literature:
We use red for a vertex (pseudo)divergence in the charge
channel; yellow for the pairing channel; green for the longi-
tudinal spin channel; blue for the transversal spin channel;
and bluish green for the spin channel at SU(2)S symmetry,
where all three spin directions are equivalent. Eventually,
for broken SU(2)S symmetry (h �= 0), where the coupled
longitudinal channel needs to be considered as a whole, a
weighted mixing of green and red is used. The proportion of
red/green is determined by the percentage of the norm that
the vector has in the charge/spin subspace. For more infor-
mation, see Appendix E. Further, we classify a divergence
as “symmetric/antisymmetric” if the corresponding eigenvec-
tor of the generalized susceptibility, which has a vanishing
eigenvalue, has a symmetric/antisymmetric real part and an
antisymmetric/symmetric imaginary part, provided that we
use the norm Eq. (A15) to normalize the eigenvectors.

C. Vertex divergences of the HA: Limiting cases

We start our analysis by illustrating in Fig. 2 the results
obtained for two selected planes in the dimensionless phase
space introduced above. These correspond to the two special
cases beyond perfect particle-hole/SO(4) symmetry, where
either the SU(2)S [h = 0, Fig. 2(a)] or the SU(2)P [δμ = 0,
Fig. 2(b)] symmetry is preserved. Such a choice allows us
to showcase in the most transparent way the action of the
Shiba-mapping on the vertex functions beyond particle-hole
symmetry. In fact, a first glance at the geometrical shape
and at the nature (encoded by the different colors) of the
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FIG. 2. Dimensionless phase space diagram of the Hubbard atom with repulsive and attractive interaction, showing the location and the
nature of the (pseudo)divergences of the irreducible vertex functions in the different channels for the two special cases of (a) no magnetic field
but out of half-filling (left panel), and (b) half-filling in the presence of a magnetic field (right panel). Solid lines mark divergences, and dashed
lines mark pseudodivergences, while in order to identify the different channels, the following color coding is adopted (see the legend in the
box below the figure): red for a vertex (pseudo)divergence in the charge channel; yellow for the pairing channel; green for the longitudinal
spin channel; blue for the transversal spin channel; bluish green for degenerated spin channel. Further, when SU(2)S symmetry is broken
(h �= 0), the coupled longitudinal channel needs to be considered as a whole (see the text): In this case, a weighted mixing of green and red has
been used.

vertex (pseudo)divergence lines displayed in Fig. 2 easily
unveils the direct connection between the results of the re-
pulsive model for varying δμ [upper panel of Fig. 2(a)]
and those of the attractive model for varying h [lower panel
of Fig. 2(b)]. Consistent with the mapping relations, an
analogous correspondence is also observed between our two-
particle calculations for the attractive model at different δμ

[lower panel of Fig. 2(a)] and those for the repulsive model at
different h [upper panel of Fig. 2(b)].

Before proceeding with the detailed analysis of the geome-
try and the nature of vertex (pseudo)divergence lines in Fig. 2,
we recall that for the case of perfect particle-hole/SO(4) sym-
metry (δμ = h = 0), it has been analytically demonstrated in
the literature [22,29,50] that the HA displays a discrete set
of vertex divergences, marked by colored dots in Fig. 2. In
particular, for U > 0, the red dots on the positive βU -axis of
both panels of Fig. 2 indicate the location of the irreducible
vertex divergences in the charge channel of the HA associ-
ated with an antisymmetric eigenvector, while the orange dots
mark the simultaneous occurrence of vertex divergences in the
charge and in the pairing sector, associated with a symmetric
eigenvector. Consistent with the mapping for perfect particle-
hole symmetry [29], one finds along the negative βU axes
of Fig. 2, exactly in mirrored positions with respect to the
U > 0 case, alternating antisymmetric vertex divergences in
the charge sector (red dots) and symmetric ones in the spin
sector (bluish green dots).

We begin now our detailed discussion of the vertex di-
vergences in the HA beyond particle-hole symmetry by

examining the data shown in Fig. 2(a), corresponding to the
case of h = 0 and varying δμ. Here, it should be stressed that,
as soon as the SU(2)P-symmetry is lifted for any δμ �= 0,
the symmetric divergences in the charge and pairing chan-
nel, marked by the orange dots on the positive βU axes
of Fig. 2, no longer occur simultaneously, yielding separate
divergence lines (marked in yellow and red, respectively, for
the pairing and the charge sector). However, this is not the
only qualitative difference emerging between these two kinds
of vertex divergences for δμ �= 0: As reported in Table I,
the generalized susceptibility in the pairing channel is a real
and bisymmetric matrix as long as the SU(2)S symmetry is
preserved. Therefore, differently from its charge counterpart,
its eigenvalues remain purely real numbers, and the associated
vertex actually diverges, without any possible occurrence of
pseudodivergences and/or exceptional points (EPs). The latter
are defined as the points in parameter space where two (or
more) eigenvalues and eigenvectors coalesce and the matrix
is no longer diagonalizable [39,42]. For the same reason, the
symmetric nature of its singular eigenvectors is maintained for
arbitrary values of δμ.

On a more geometrical viewpoint, one can easily observe
in Fig. 2(a) that the divergence lines of the charge sector
form elliptic-shaped loops in the phase space, terminating
on both sides in EPs for positive and negative values of δμ.
Henceforth, for the sake of conciseness, we will refer to
these specific divergence structures, including the associated
pseudodivergence lines, with the short-hand term of loops.
These loops each consist of one symmetric (upper loop part)
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and one antisymmetric (lower loop part) divergence line that
meet at an EP. From this EP, a pseudodivergence line emerges.
Quantitatively, we note that the EPs of the loop found at
the lowest βU values correspond to a hole/electron doping
of about 6%, which roughly coincides [67] with the doping
level at which the corresponding EPs have been found in the
DMFT/cellular DMFT calculations of the HM of Ref. [33].
It is also important to stress that the three loops shown in
Fig. 2, just like all the other vertex-divergence structures dis-
cussed in the following, represent only the first three loop
structures encountered by increasing βU . In fact, consistent
with Refs. [22,50,68], where the occurrence of infinitely many
vertex divergences at half-filling has been demonstrated, we
also find infinitely many loops for increasing βU values.

Turning now to the study of the attractive sector, we
find that the divergence lines show a completely different
shape: They are disposed in a series of parabolas one inside
the other, as can be seen in the bottom part of Fig. 2(a).
More specifically, considering first the charge sector, the ge-
ometrical maximum of the parabola is represented by the
(antisymmetric) divergences located at particle-hole symme-
try. Upon doping, an antisymmetric divergence line meets
with a symmetric divergence line out of half-filling at an EP,
forming a pseudodivergence line. The qualitatively different
geometrical structure compared to the elliptical-shaped di-
vergence line structures in the repulsive sector corresponds
to a specific difference: Each symmetric divergence line ex-
tends down to βU → −∞. The reason why this happens is
the absence of symmetric divergences at half-filling in the
charge sector, which prevents the formation of closed loops
of symmetric/antisymmetric divergences, in contrast with the
repulsive sector.

In the spin sector, we observe an analogous situation
[69], only with interchanged roles of the eigenvector symme-
tries: The symmetric divergence lines, originating from the
corresponding purely symmetric divergences at half-filling,
meet with an antisymmetric divergence line, extended down
to βU → −∞, at an EP, from which a pseudodivergence
emerges.

A second important difference with respect to the repulsive
case is represented by the orientation of the pseudodiver-
gences of both channels. These, after emerging from the
corresponding EPs, are directed towards smaller absolute val-
ues of βU , in contrast with the pseudodivergences in the
repulsive sector. Even more remarkably, they do cross the
U = 0 axis, continuing afterwards in the repulsive sector.
Hence, one may regard the pseudodivergences lines that cross
the U = 0 axis as driven by the symmetry-breaking fields
(δμ and/or h) in contrast to the pseudodivergences lines that
do not cross the U = 0 axis, which would then be driven
by the interaction U . More specifically, one can classify the
(pseudo)divergences with an integer number N identifying the
positive Matsubara frequency at which their associated eigen-
vector displays its largest component. In this way, we find
that the N th pseudodivergence of both channels crosses the
U = 0 axis at βδμ = βμ = ±(2N − 1)π (see Appendix G).
In fact, this has to be the same point, because the generalized
susceptibilities of two channels coincide for U = 0, due to the
absence of vertex corrections. For more detailed information,
see [70].

As we noted at the beginning of this subsection, in the
case of preserved SU(2)P symmetry [i.e., δμ = 0, h �= 0;
see Fig. 2(b)], the mapping relations determine a perfectly
“mirrored” disposition of vertex divergences and pseudodi-
vergences, with the parabola structures now located in the
repulsive sector and the loop structure in the attractive one.

At the same time, as SU(2)S symmetry is broken for h �= 0,
the spin channel splits in the spin transverse (blue lines)
channel and in the spin longitudinal channel (green lines),
whereas the latter becomes coupled to the charge one (red) in
what we have defined as the longitudinal sector. In particular,
consistent with the mapping, all pairing vertex divergences
in the repulsive sector of the SU(2)S case [yellow lines in
Fig. 2(a)] are transformed in the corresponding divergences
of the transversal channel in the attractive sector with SU(2)P

symmetry [blue lines in Fig. 2(b)]. Indeed, for the same rea-
sons explained above, the generalized susceptibility of the
spin transversal channels remains real and bisymmetric for
δμ = 0 when the SU(2)P symmetry is preserved. Analo-
gously, all the loop and the parabola structures define now
divergences in the combined longitudinal sector, whereas the
specific ratio between their components in the charge and spin
longitudinal subspaces is highlighted by the red/green color
scale [71], as detailed in Appendix E. Moreover, a parabola
in the pairing channel [marked by a thicker yellow line in
Fig. 2(b)] is superimposed to every second parabola of diver-
gences in the longitudinal sector.

D. The T = 0 limit

Before coming to the study of the most general case, where
both SU(2)S and SU(2)P are violated, it is worthwhile to
exploit our results to infer how the vertex (pseudo)divergences
evolve in the T → 0 limit. In fact, in spite of its intrinsic
interest (e.g., to discuss the relation between the break-
down of self-consistent perturbation theory and the possible
violation of the Luttinger theorem), most of the analysis of
the nonperturbative effects on the two-particle level have been
restricted to the finite-T case. The choice of working in di-
mensionless phase space offers a valuable opportunity to fill
this gap, at least for the HA. Indeed, although our temperature-
independent representation of the vertex divergences can be
used, strictly speaking, only to analyze finite-T cases, the pos-
sibility of systematically extracting information for arbitrarily
small temperatures and evaluating the asymptotic behavior of
vertex (pseudo)divergence lines allows for a description of the
T = 0 limit.

The results obtained are summarized in the schematic rep-
resentation of the T = 0 phase space, Fig. 3, while more
details about the procedure used can be found in Appendix F.

In particular, in the lower panels of Fig. 3 we observe
a continuous distribution of vertex divergences at particle-
hole symmetry (δμ = h = 0), which occur in the charge and
pairing (spin) channels for U > 0 (U < 0). The continuity of
the vertex divergence distribution at T = 0 evidently reflects
the continuity of the Matsubara frequencies in that limit, and
appears consistent with the increasingly dense structure of the
finite-T divergences reported (but not explicitly discussed) in
previous works at particle-hole symmetry [22,29,50].
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FIG. 3. Schematic phase space diagram of the vertex
(pseudo)divergences (bottom panels) in the Hubbard atom at
T = 0 for the two special cases shown in Fig. 2 (left: h = 0 and
δμ �= 0; right: h �= 0 and δμ = 0) compared to the corresponding
filling n = n↑ + n↓ (upper left) and magnetization m = n↑ − n↓
(upper right) of the system. These values can be understood by
the corresponding ground state(s) of the HA, which are explicitly
depicted in the different parameter regions. This schematic phase
space diagram should be understood as a continuous distribution
of (pseudo)divergences of a different nature in the whole phase
space of the HA at T = 0: A divergence or pseudodivergence of
the vertex is found at every point in the phase space, whereas the
channel in which it occurs is encoded by the color of the dense set
of lines shown in the bottom panels. The plotting conventions are as
in Fig. 2.

Of greater interest are the results out of particle-hole
symmetry. In particular, for h = 0 (lower left in Fig. 3), we
observe a V-shaped area in the U > 0 sector (marked by black
lines in Fig. 3) located between δμ = −U/2 and δμ = U/2,
which corresponds to the regime of the HA where the ground
state is half-filled (see the upper left in Fig. 3). Remarkably,
for every parameter set within this V-shaped area, a vertex
divergence in the pairing channel and pseudodivergence in the
charge channel are found simultaneously. Indeed, the latter
ones stem from the “looplike” structures in Fig. 2(a), which
collapse on the δμ = 0 axis in the T = 0 limit. Outside the
V-shaped area, i.e., in the region that corresponds to a totally
empty or totally full ground state for all U (see the upper left
in Fig. 3), we find the occurrence of simultaneous pseudo-
divergences in the spin and the charge channel everywhere
(see Fig. 3, lower left). The pseudodivergences originate from
the parabola structures in Fig. 2(a) as they progressively move
towards the δμ = 0 axis in the U < 0 sector.

In the opposite situation of δμ = 0 (lower right panel in
Fig. 3) we find, as expected, a “mirrored” distribution of
divergences and pseudodivergences: the V-shaped region is
now located in the U < 0 sector, between δμ = −U/2 and

U/2. At the same time, due to the violation of the SU(2)S

symmetry and in accordance with the mapping, the V-shaped
region entails maximally mixed pseudodivergences in the
longitudinal sector and divergences in the transversal spin
channel, while pseudodivergences in the longitudinal and
pairing channel are present outside.

E. Vertex divergences of the HA: The general case

We turn eventually to a discussion of the vertex divergences
of the HA in the general case, i.e., for arbitrary values of h and
δμ. For the sake of compactness, we introduce the parameters
α and r, as sketched in Fig. 4(b), in order to facilitate the
visualization of our results when the values of δμ, h are var-
ied between the limiting cases of h = 0 (α = 0) and δμ = 0
(α = 90◦) shown in Figs. 2(a) and 2(b), respectively.

Specifically, the parameters α and r are defined as the
following set of cylinder coordinates:

δμ = r cos α and h = r sin α. (38)

It is then easy to see that the sets of δμ, h values connected
by the mapping linking the attractive and the repulsive model,
according to Eq. (12), correspond to this simple relation for
the polar coordinate α:

α ↔ α′ with α + α′ = 90◦, (39)

whereas r remains unchanged.
Further, due to Eqs. (A3)–(A5), it is enough to consider

α ∈ [0◦, 90◦], as all other regions of the phase space can be
reconstructed from this interval.

In Fig. 4, we show the evolution of the vertex divergence
structures in the longitudinal sector for representative interme-
diate parameter sets between the limiting situations studied in
Sec. IV C. These correspond to the case of α = 0◦ [Fig. 2(a)]
and α = 90◦ [Fig. 2(b)] and are also reproduced for reference
in Figs. 4(a) and 4(c), respectively. Note that, for the sake of
clarity, we only show here the lowest [72] loop and parabola
structures and their associated pseudodivergences.

We consider first the situation in which the variation of
chemical potential is larger than the magnetic field, i.e., 0◦ <

α < 45◦, which we illustrate by showing, as an example, the
case of α = 35◦ in Fig. 4(d). Interestingly, for U > 0, in
addition to the loop-structures and their associated pseudodi-
vergences already discussed for α = 0◦, a parabola structure
appears at large values of βU . We can also observe that
the pseudodivergence associated with this parabola at U > 0
is connected with the pseudodivergence emerging from the
second parabola for U < 0.

In the reverse situation, where the magnetic field domi-
nates over δμ (i.e., for 45◦ < α < 90◦), in accordance with
the mapping, the phase diagrams are geometrically identical
(the projected weights differ, as is predicted by the mapping)
to those for α′ = 90◦ − α, with 0◦ < α′ < 45◦, but for the
flipping of the U and −U sectors [see Fig. 4(f)].

Remarkably, for exactly α = 45◦, where h equals δμ, the
loop structure touches its corresponding parabola at U > 0,
while the same happens to the pair parabolas for U < 0. In
both cases, at the point where the two structures touch, a
perfectly horizontal (i.e., parallel to the r-axis) pseudodiver-
gence line is emerging, as can be seen in Fig. 4(e).
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FIG. 4. (b) Sketch of the new coordinate system {U, r, α} introduced to systematically interpolate the illustration of the vertex
(pseudo)divergences of the HA for arbitrary values of h and δμ between the limiting cases shown in Fig. 2, which correspond to α = 0◦

and 90◦. The corresponding (pseudo)divergences in the coupled longitudinal sector already shown in Fig. 2 are reproduced here, for reference,
in (a) and (c). (d)–(f) Dimensionless phase space diagrams of the vertex (pseudo)divergences in the coupled longitudinal channel in the most
general situation of finite magnetic field and arbitrary filling. Note that only the first divergence line structure is displayed for the different
constant α planes chosen (see the text). The plotting conventions are as in Fig. 2.

Our results thus unveil the specific evolution of the vertex
(pseudo)divergences between the two qualitatively differ-
ent situations of SU(2)S and SU(2)P symmetries, and, in
particular, how the loop-shaped divergence structures gets
transformed in the parabola structures and vice versa. This
also impacts the orientation of the pseudodivergence lines:
One readily notes that those emerging from a parabola always
cross the U = 0 axis at r = ν√

1±2 cos α sin α
, which is explicitly

demonstrated in Eqs. (G8) and (G9), while the ones associated
with the loops never cross the noninteracting axis. Evidently,
the condition α = 45◦ marks the change between these two
behaviors, which is featured by the horizontal pseudodiver-
gence lines.

Finally, in Fig. 5 we show for the same three exem-
plary cases as above (i.e., α = 35◦, 45◦, 55◦) the vertex
(pseudo)divergences in the transversal spin and in the pairing
channel, restricting again the plot to the first structures for
each channel. The (pseudo)divergence lines of the longitudi-
nal channel shown in Fig. 6 are replotted in gray for reference.

All the divergence lines in these channels display a
parabolic shape, consistent with the fact that, at particle-hole

symmetry, only symmetric divergences for both transversal
channels exist. However, different from the longitudinal sec-
tor, the pseudodivergences associated with the transversal spin
channel cross the U = 0 axis at r = ν√

(cos α)2−(sin α)2
, i.e., only

for 0◦ � α < 45◦, while those of the pairing channel cross
the U = 0 axis at r = ν√

(sin α)2−(cos α)2
and therefore only for

45◦ < α � 90◦.

F. Mapping of the eigenvectors

Crucial information [29,32,35,39,54,56] on the possible
physical effects associated with divergences is encoded in the
frequency structure of the associated eigenvectors, and, espe-
cially, in their overall symmetry properties. While a detailed
discussion of these properties is reported in Appendix A,
which generalizes the corresponding particle-hole symmetric
results of [29], here we illustrate some essential aspects of the
eigenvector behavior by way of a pertinent example.

To this end, we consider the following two cases, directly
related by the mapping, i.e., α = 35◦ for U > 0 and α = 55◦
for U < 0 (see the left panel of Fig. 6). The eigenvectors
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FIG. 5. Dimensionless phase space diagrams of the vertex (pseudo)divergences in the transversal spin channel (blue) and in the pairing
channel (yellow) for the Hubbard atom. Note that only the first divergence line structure is displayed for different constant α-planes. The vertex
(pseudo)divergences of the coupled longitudinal channel, already shown in Fig. 4, are reproduced here in gray for reference.

FIG. 6. Left: The phase space diagram of the vertex (pseudo)divergences in a longitudinal channel are shown for α = 35◦ in the repulsive
sector U > 0 and for α = 55◦ in the attractive sector U < 0. These are the two cases that map into each other according the the mapping
derived in Sec. III. The plotting conventions are as in Fig. 2. Middle: The eigenvectors that correspond to the (pseudo)divergence at specific
points, which are marked by black stars. The eigenvectors are split into symmetric (vS ) and antisymmetric parts (vA) to make the mapping
more visible. Note that (a) always corresponds to α = 35◦ while (b) corresponds to α = 55◦. Right: The projected weights of the eigenvectors
again split into symmetric and antisymmetric parts.
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corresponding to the (pseudo)divergences of three selected
parameter sets (marked by black stars in the left panel) are
then shown in the central panel of the figure, where each
eigenvector is split into its symmetric (vS ) and and antisym-
metric (vA) part, while their projected weight in the charge
and spin subspace (see Appendix E), calculated for the sym-
metric and antisymmetric part of each eigenvector, is shown
in the rightmost panel.

According to the relations in Sec. III, the eigenvector
marked by 1a is mapped into 1b, 2a is mapped into 2b, and
3a into 3b. When considering 1a and 1b, which are associ-
ated with an antisymmetric divergence of the vertex, we can
observe the characteristic symmetry properties of the eigen-
vectors corresponding to a real eigenvalue in a κ-real matrix
χL [see Eq. (A17)]. In particular, these eigenvectors split into
a purely real antisymmetric part and an imaginary symmetric
part. Analogously, 2a and 2b, associated with a symmetric
divergence, display purely real symmetric/purely imaginary
antisymmetric parts. On the other hand, 3a and 3b are
one of the eigenvectors associated with a pseudodivergence,
and hence with a pair of complex-conjugate eigenvalues.
Therefore, the symmetric and antisymmetric parts of these
eigenvectors are no longer purely real or imaginary. Note that
only one of the eigenvectors of the pseudodivergence is shown
since the other one can be reconstructed by Eq. (A17), and the
projected weights of these two eigenvectors are the same.

Eventually, by comparing the a and b figures of each
case, one can easily recognize the behavior predicted by the
mapping relations derived in the previous section. The sym-
metric part of the eigenvector vS changes from charge to spin
subspace and vice versa, while the antisymmetric part vA
remains invariant under the mapping. This also reflects the
relations of the corresponding weights, as it is readily seen
when projecting the portion of the symmetric/antisymmetric
part of the eigenvectors onto the charge or the spin subspace.

G. Finite bosonic transfer frequency

According to the current knowledge (cf. Ref. [32]), only
irreducible vertex divergences occurring at ω = 0 can be
directly linked to the breakdown of the self-consistent pertur-
bation theory for the many-electron problem. For this reason,
the illustrative study of the (pseudo)divergences of the HA
presented in this work is mostly focused on the ω = 0 case.

Notwithstanding, for the sake of completeness, it is worth-
while to get a glimpse of some relevant modifications of the
results presented so far, when considering vertex divergence
structures at finite transfer frequency (ω �= 0). To this end,
we will focus our discussion of the finite-ω case on the
(pseudo)divergences occurring in the charge and spin sectors,
when SU(2)S symmetry is preserved (i.e., δμ �= 0, h = 0). In
this respect, our starting point will be represented by the find-
ings of Ref. [22], where vertex divergences of the particle-hole
symmetric HA (δμ = h = 0) have been briefly analyzed for
specific finite frequency values.

More precisely, the analytical expressions of Ref. [22]
show that, for the ph-symmetric HA, vertex divergences
occur at all βU values such that (i) U = ± 2√

3

√
ν(ν + ω)

in the charge channel or (ii) U = ±2
√−ν(ν + ω) in the

spin channel, where ν = (2n−1)π
β

and ω = 2mπ
β

are the

fermionic and the bosonic Matsubara frequencies, respec-
tively. The eigenvectors associated with these divergences
display an antisymmetric structure in the shifted frequency
space Eq. (A12), i.e., they are proportional to δν,ν ′ − δν,−ν ′−ω.

Since the discriminant in the above relations (i) and (ii)
must be positive, antisymmetric divergences in the spin chan-
nel can only occur for ω �= 0, when ν(ν + ω) < 0. At the
same time, for these frequency values no divergence can
occur in the charge channel. However, the fulfillment of
ν(ν + ω) < 0 is not a sufficient condition for an antisym-
metric divergence to occur, since antisymmetric eigenvectors
require two distinct fermionic frequencies ν �= −ν − ω for
their construction. As a result, divergences in the spin channel
only appear if |m| > 1, and a new antisymmetric divergence
only appears at even m values.

Furthermore, vertex divergences associated with symmet-
ric eigenvectors in the shifted frequency space can also be
found [22], namely for all U values where

fr = U tan
(

β

4

(√
4B2

r + ω2 + ω
))

√
4B2

r + ω2
± 1 = 0 (40)

is fulfilled, where the + (−) sign is for the charge (spin)
channel, and

Bc = U

2

√
3eβU/2 − 1

1 + eβU/2
, (41)

Bs = −U

2

√
3e−βU/2 − 1

1 + e−βU/2
. (42)

From Eq. (40) one finds [22] the occurrence of symmetric
divergences in the charge channel for all values of ω if U > 0.
However, we should note that the condition of Eq. (40) cannot
be fulfilled if the corresponding eigenvector is maximal at a
ν value, for which ν(ν + ω) < 0. Note that this is the same
condition as for the antisymmetric divergences.

As for the symmetric divergences in the spin channel,
contrary to what was reported in a side remark in Ref. [22],
these can indeed occur at U > 0 for m � 3.

In summary, in the spin channel we find �m/2� antisym-
metric divergences, while an explicit evaluation of Eq. (40)
also yields �m/2� − 1 symmetric divergences. At the same
time, in the charge channel, infinitely many symmetric and
antisymmetric divergences occur, under the condition that
the corresponding eigenvectors do not have a maximum at
frequencies where ν(ν + ω) < 0.

The location of the first two symmetric and two antisym-
metric divergences in the charge and spin channels is shown in
Fig. 7 for different values of ω at ph-symmetry. The location
of the divergences is symmetric in ω, i.e., it is the same for ω

and −ω.
For particle-hole symmetry, the action of the Shiba map-

ping at finite ω can be evidenced by noting that (i) all
antisymmetric vertex divergences occur at the same absolute
U values for positive and negative U , and (ii) fc is transformed
into − fs by changing U to −U . The latter condition implies
that the symmetric vertex divergences for U < 0 can be ob-
tained by just exchanging charge and spin channels in the
discussion for U > 0. Hence, as a direct consequence of the
Shiba mapping at finite frequency [see Eq. (33)], the findings
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FIG. 7. Location of the first two symmetric and two antisymmet-
ric vertex divergences in charge and spin channels at ph-symmetry
for different ω = 2πm/β values.

of Ref. [29] for the vertex divergence of the static particle-hole
case remain identically applicable also at ω �= 0.

At the same time, a remarkable difference from the
ω = 0 case is that negative real eigenvalues of the general-
ized charge/spin susceptibility at ph-symmetry can be found
already at U = 0 [see Eq. (G1)], namely when the frequency
condition ν(ν + ω) < 0 is fulfilled. However, the role played
by these negative eigenvalues in triggering additional diver-
gences at ω �= 0 is quite different in the charge and in the
spin channel. In fact, in the former one, consistently with the
discussion above, the negative eigenvalues found at U = 0
never cross zero by increasing U . In the spin channel, instead,
all negative eigenvalues found at U = 0 will cross zero by
increasing U , except the ones that correspond to eigenvectors
which either have their maximum at the central frequency
ν∗ = −ω/2 if m is odd or that are symmetric and have their
maximum at ν = ω/2 ± π/β if m is even. Such crossings
evidently trigger vertex divergences in the spin sector that
were not present for ω = 0.

Eventually, merging the description of the vertex diver-
gences at finite ω for the ph-symmetric case [22] with the
knowledge of the δμ-evolution of the vertex divergences at
ω = 0 (Sec. IV C), it becomes easy to intuitively outline their
qualitative behavior as a function of a varying chemical poten-
tial. Specifically, by gradually increasing the absolute value of
δμ, we find that pairs of symmetric and antisymmetric vertex
divergences get closer in parameter space, forming loop-
structures in the phase diagram analogous to those shown
in Fig. 2. In contrast, vertex divergences that do not have a
partner at ph-symmetry, i.e., there exists no vertex divergence
that has its maximum at the same frequency but has oppo-
site symmetry, form a parabola-like structure in the phase
space. Such divergences are, for example, the antisymmetric
divergences in the spin channel for m = 2, 4 at the largest βU
value shown in Fig. 7.

Hence, the overall evolution of the vertex
(pseudo)divergence lines for ω �= 0 follows the intuitive
expectation gained from the ω = 0 case. This intuitive picture
is quantitatively confirmed by direct calculations (not shown).

V. CONCLUSIONS

In this work, we have derived the explicit relations map-
ping the on-site two-particle generalized susceptibilities of
bipartite lattice models with repulsive local interaction into
those of corresponding models with attractive interaction and
vice versa. The presented derivations, which exploit the Shiba
transformation on the two-particle level (i) at arbitrary filling
and/or in the presence of a finite magnetic field, as well as (ii)
for finite transfer (bosonic) Matsubara frequency, extend the
results of previous studies [29], which were restricted to the
case of static correlation functions in the specific and less real-
istic situation of perfect particle-hole symmetry of the system.

Considering the increasing importance of the calcula-
tion and the manipulation of the two-particle quantities
[20,21,23,28] for different cutting-edge algorithms [22,26,28]
designed for treating strong correlations in many-electron sys-
tems, the explicit derivation of the mapping relations on the
two-particle level might be useful in several contexts. For
instance, it may allow us to reduce the computational effort
of numerically heavy two-particle calculations in challenging
parameter regimes and provide rigorous benchmark testbeds
for computational schemes based on generalized on-site sus-
ceptibilities and vertex functions beyond the special case of
particle-hole symmetry. Further, on a more fundamental level,
our findings might represent a useful guide for an improved
understanding of the information encoded in the correlation
functions on the two-particle level.

In the latter respect, as a pertinent example for the ap-
plicability of the mapping relations, we have systematically
analyzed the location and nature of the divergences of the ir-
reducible vertex functions in the Hubbard atom with repulsive
and attractive on-site interaction for arbitrary filling and finite
magnetic field, overcoming the parameter restrictions of pre-
ceding studies [22,50]. The evident symmetries characterizing
our dimensionless phase space diagrams for the divergences in
the HA represent a direct consequence of the derived mapping
relations. This consideration allows, in turn, for an easier
comprehension of the intrinsic links existing between the var-
ious divergence structures in different parameter regimes of
the HA.

Further, among the properties characterizing the evolution
of the singularities in the different scattering channels as a
function of filling and magnetic field, it may be worthwhile
to stress here the appearance of the exceptional points (EPs)
at which the vertex divergences (associated with a vanishing
eigenvalue of the corresponding generalized susceptibility)
transform into pseudodivergences (associated with a complex-
conjugate eigenvalue pair with a zero real part). In fact, the
relevance of these EPs has been discussed recently in the
specific context of a possible topological protection [39] of
the thermodynamic phase-separation instabilities emerging
[35,54,56,73,74] in proximity to a Mott-Hubbard metal-to-
insulator transitions of correlated lattice systems. At the same
time, as demonstrated in Ref. [33], their occurrence is not
limited to purely on-site four-point correlation functions.
Eventually, the EPs might play, together with the pseudo-
divergences discussed in our work as well as with the pole
structures [61] possibly appearing in the complex interaction
plane [10], an important role in controlling the convergence
properties of the self-consistent perturbation expansions for
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the many-electron problem [22,31,32,75], beyond [33] the
rather specific condition of perfect particle-hole symmetry
mostly investigated so far.

A data set containing all numerical data and scripts for
calculating and plotting these data is publicly available on the
TU Wien Research Data repository [76].
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APPENDIX A: SYMMETRIES OF GENERALIZED
SUSCEPTIBILITIES

In this Appendix, we study the properties of the local
generalized susceptibilities for the symmetries considered in
the main text, with a particular focus on SU(2)S , SU(2)P, and
SO(4) symmetry. For a detailed derivation of these symmetry
properties and an in-depth discussion, the reader is referred to
Ref. [38].

Doing a full particle-hole transformation (cσ → c†
σ , c†

σ →
cσ ) on the Hamiltonian in Eq. (12) gives

H (U, δμ, h)
ph-trafo←−−→ H (U,−δμ,−h). (A1)

Therefore, the system is particle-hole symmetric (i.e., the
Hamiltonian is invariant under the particle-hole transforma-
tion) if δμ = h = 0, which corresponds to SO(4) symmetry.

Further, applying a full particle-hole transformation in the
definitions of Eqs. (1) and (2) and then using crossing sym-
metry and complex conjugation [Eqs. (A6) and (A7)] lead to

χ
ph-trafo←−−→ χ∗, (A2)

and a sign change in the magnetic field just flips all spins of
the generalized susceptibility (σ → −σ, ∀σ ).

We find the following relations for the different channels:
In the coupled longitudinal channel

χL
δμ,h↔−δμ,−h←−−−−−−→ χ∗

L,

χL
h↔−h←−−→ MχLM,

χL
δμ↔−δμ←−−−→ Mχ∗

LM,

(A3)

where M = (1 0
0 −1), and for the transversal spin and the

pairing channel we find

χSx

δμ,h↔−δμ,−h←−−−−−−→ χ∗
Sx

,

χSx

h↔−h←−−→ χSx ,

χSx

δμ↔−δμ←−−−→ χ∗
Sx

,

(A4)

χpair
δμ,h↔−δμ,−h←−−−−−−→ χ∗

pair,

χpair
h↔−h←−−→ χ∗

pair,

χpair
δμ↔−δμ←−−−→ χpair.

(A5)

Since the transformations in Eqs. (A3)–(A5) change nei-
ther the eigenvalues nor the projected weights [see Eq. (E2)]
of the generalized susceptibility matrices, we confirm that the
whole phase space can be generated by mapping the calcu-
lated quantities from the sub-region where δμ > 0 and h > 0.
This corresponds to the interval α ∈ [0◦, 90◦] in the cylinder
coordinates of Eq. (38).

In Eqs. (A6)–(A10) the properties of the generalized
susceptibilities under the specific symmetry relations are ex-
plicitly written following Ref. [38].

Crossing symmetry and complex conjugation are funda-
mental “symmetries,” i.e., they are always present, H ∈ R
refers to the Hamiltonian being a real function of c and
c†, and SU(2)S/SU(2)P means symmetric with respect to
spin/pseudospin,

Crossing symmetry: χν,ν ′, ω
σσ ′,ph = χω+ν ′, ω+ν, −ω

σ ′σ,ph ,

χν,ν ′, ω
σσ ′,ph

= χω+ν ′, ω+ν, −ω

σ ′σ ,ph
,

χν,ν ′, ω
σσ ′,pp

= χω−ν, ω−ν ′, ω
σ ′σ ,pp

,

(A6)

Complex conjugation: χν,ν ′, ω
σσ ′,ph = (

χ−ν ′,−ν−, −ω
σ ′σ,ph

)∗
,

χν,ν ′, ω
σσ ′,ph

= (
χ−ν ′,−ν−, −ω

σσ ′,ph

)∗
,

χν,ν ′, ω
σσ ′,pp

= (
χ−ν ′,−ν−, −ω

σσ ′,pp

)∗
,

(A7)

Ĥ ∈ R: χν,ν ′, ω
σσ ′,ph = χν ′, ν, ω

σ ′σ,ph ,

χν,ν ′, ω
σσ ′,ph

= χν ′, ν, ω
σσ ′,ph

,

χν,ν ′, ω
σσ ′,pp

= χν ′, ν, ω
σσ ′,pp

,

(A8)

SU(2)S symmetry: χν,ν ′, ω
σσ ′,ph = χν,ν ′, ω

−σ−σ ′,ph,

χν,ν ′, ω
σσ ′,ph

= χν,ν ′, ω
−σ−σ ′,ph

,

χν,ν ′, ω
σσ ′,pp

= χν,ν ′, ω
−σ−σ ′,pp

,

(A9)

SU(2)P symmetry: χν,ν ′, ω
σσ ′,ph = (

χν,ν ′, ω
−σ−σ ′,ph

)∗
,

χν,ν ′, ω
σσ ′,ph

= (
χν,ν ′, ω

−σ−σ ′,ph

)∗
,

χν,ν ′, ω
σσ ′,pp

= (
χν,ν ′, ω

−σ−σ ′,pp

)∗
.

(A10)

From Eqs. (A6)–(A10), the relations written in Table I of
the main text can be derived.
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In the following, we introduce the class of centro-
Hermitian matrices C which fulfill

JC∗J = C with J =
⎛
⎝ 1

. .
.

1

⎞
⎠. (A11)

Centro-Hermitian matrices have eigenvalues that are either
real or come in complex-conjugate pairs [40].

By using the symmetry Eqs. (A6)–(A8), we find that
all generalized susceptibilities are centro-Hermitian for ω =
0. Note that for χω=0

σσ ′,ph the centro-Hermitian property is
fundamental, since only complex conjugation and crossing
symmetry (which are always present) are needed, whereas for
χω=0

σσ ′ph/pp
also H ∈ R is required (which could be violated in

principle). Without this restriction χω=0
σσ ′ph/pp

, are per-Hermitian
matrices [39].

Moreover, χσσ ′,ph can be considered as a centro-Hermitian
matrix for finite ω when shifting the fermionic Matsubara
frequencies by ν (′) → ν (′) + �m/2�2π/β with ω = 2πm/β

[�x� refers to floor(x)]. This leads to

χν,ν ′, ω
σσ ′,ph = (

χ−ν−ω, −ν ′−ω, ω
σσ ′,ph

)∗

⏐⏐⏐⏐	frequency shift (A12)

χ
ν−�ω/2�,ν ′−�ω/2�, ω

σσ ′,ph = (
χ

−ν−�ω/2�, −ν ′−�ω/2�, ω
σσ ′,ph

)∗
,

where �ω/2� is a short-hand notation for �m/2�2π/β such
that ν − ω/2 is still a fermionic Matsubara frequency. Thus,
for any bosonic frequency ω, χσσ ′,ph is a centro-Hermitian
matrix in the frequency shifted space.

Moreover, we introduce the class of κ-real matrices [41],
which also have only real or complex-conjugate pairs as
eigenvalues. The generalized susceptibility of the coupled
longitudinal channel χL is a κ-real matrix that fulfills the
relation

�K∗� = K with � =
(

J 0
0 J

)
. (A13)

Further, all considered channels are symmetric matrices
if H ∈ R and can be diagonalized by a complex orthog-
onal transformation if there is no exceptional point. The
corresponding inner product of the orthogonal Euclidean
quasinorm is defined as

〈u, v〉 := uT · v =
n∑
i

uivi (A14)

and

‖u‖2
T := uT · u. (A15)

Eigenvectors of symmetric and centro-Hermitian matrices
that are normalized with respect to Eq. (A15) have the follow-
ing properties [39]:

if λα ∈ R (and not degenerate): vα = ±Jv∗
α,

if λα ∈ C : ∃vα′ = Jv∗
α,

(A16)

where the relation for real eigenvalues leads to the fact that
their eigenvectors have a symmetric/antisymmetric real part
with an antisymmetric/symmetric imaginary part (with re-
spect to the shifted Matsubara frequency space ν (′) → ν (′) +
�m/2�2π/β).

For the symmetric κ-real matrix χL, we can make a similar
argument to that in Ref. [39] to obtain

if λα ∈ R (and not degenerate): vα = ±�v∗
α,

if λα ∈ C : ∃vα′ = �v∗
α,

(A17)

where the relation for real eigenvalues leads to the fact
that their eigenvectors have a symmetric/antisymmetric real
part with an antisymmetric/symmetric imaginary part in the
charge and spin subspaces, respectively (with respect to the
shifted Matsubara frequency space).

APPENDIX B: BSE OF THE TRANSVERSAL CHANNEL

In general, χSx and χpair do not represent decoupled chan-
nels in the BSE. Even though χSx = χSy , they still couple to
each other for 〈Sz〉 �= 0 [19]. The same considerations apply
to the real and imaginary part of the pairing field �, which are
given by Sp,x and Sp,y, and couple for 〈Sp,z〉 �= 0. Therefore,
the Sx/pairing channel generally (for arbitrary ω) only decou-
ples within the transversal subspace when SU(2)S/P symmetry
is fulfilled. This can be shown from the symmetry relations in
Appendix A and the expressions of the coupled channels in
Eqs. (B1) and (B2). This is an example of how the mapping
“preserves” the decoupling of the channels regarding the BSE.
Instead the transverse components χσσ ′ and χσσ ′,pp remain
independent in the BSE. Hence, for the respective generalized
susceptibility of the coupled BSE, we have to consider the
transversal ph-channel (or χσσ ′ directly)

χT =
(

χ↑↓ + χ↓↑ χ↑↓ − χ↓↑
χ↑↓ − χ↓↑ χ↑↓ + χ↓↑

)
(B1)

instead of the spin channel, and the transversal pp-channel (or
χσσ ′,pp directly)

χT,pp =
⎛
⎝−χ↑↓,pp − χ∗

↓↑,pp
−χ↑↓,pp + χ∗

↓↑,pp

−χ↑↓ + χ∗
↓↑,pp

−χ↑↓,pp − χ∗
↓↑,pp

⎞
⎠ (B2)

instead of the pairing channel. If the Hamiltonian is a
real function of c and c†, then χν,ν ′, ω

↑↓ = χω+ν,ω+ν ′, −ω

↓↑ and

χν,ν ′, ω
↑↓,pp

= (χν−ω,ν ′−ω, ω

↓↑,pp
)∗ (see Appendix A), and both the BSE

of the pairing channel and the transversal spin channel decou-
ple for ω = 0. Hence, to investigate the divergences of the
two-particle irreducible vertices for ω = 0, χSx and χpair can
be used for the scope of this paper, as is done in Sec. IV.

APPENDIX C: CALCULATIONS FOR THE SHIBA
MAPPING OF THE GENERALIZED SUSCEPTIBILITIES

In this Appendix, we derive the action of the Shiba trans-
formation applied to the local generalized susceptibilities.
The results of this transformation are shown in Sec. III.
For the derivation we start by showing how the orthogonal
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transformation

Q = 1√
2

(
1 −J
1 J

)
(C1)

separates the symmetric and antisymmetric parts of a centro-
Hermitian matrix. Every centro-Hermitian matrix χCH can be
represented by the sum of a centrosymmetric real matrix χ ′
(Jχ ′J = χ ′) and a skew-centro-symmetric imaginary matrix
χ ′′ (Jχ ′′J = −χ ′′).

For even dimensions, a centro-Hermitian matrix can be
represented by

χCH = χ ′ + iχ ′′ with χ ′ =
(

A′ JB′J

B′ JA′J

)
,

χ ′′ =
(

A′′ −JB′′J

B′′ −JA′′J

)
,

(C2)

where χ ′(′), A′(′), and B′(′) are real square matrices.
The transformation Q acts on (skew-)centro-symmetric

matrices as follows:

Qχ ′QT =
(

A′ − JB′ 0

0 A′ + JB′

)
(C3)

and

Qχ ′′QT =
(

0 A′′ − JB′′

A′′ + JB′′ 0

)
. (C4)

A′ − JB′ and A′′ + JB′′ are referred to as antisymmetric
blocks, and A′ + JB′ and A′′ − JB′′ are termed symmetric
blocks. To understand why, we let χ ′ and χ ′′ act on a generic
vector v that is decomposed into symmetric and antisymmet-
ric parts:

χ ′v =
(

A′ JB′J

B′ JA′J

)[(
vS

JvS

)
+

(
vA

−JvA

)]

=
(

(A′ + JB′)vS + (A′ − JB′)vA
(C′ + JB′)vS + (C′ − JB′)vA

)
(C5)

and

χ ′′v =
(

A′′ −JB′′J

B′′ −JA′′J

)[(
vS

JvS

)
+

(
vA

−JvA

)]

=
(

(A′′ − JB′′)vS + (A′′ + JB′′)vA

(B′′ − JA′′)vS + (B′′ + JA′′)vA

)
. (C6)

As can be seen, A′ − JB′ and A′′ + JB′′ couple to the an-
tisymmetric part of the vector, and A′ + JB′ and A′′ − JB′′
couple to the symmetric part of the vector.

Therefore, we identify the blocks in Eq. (31) by

χ ′
A = A′ − JB′,

χ ′
S = A′ + JB′,

χ ′′
A = A′′ + JB′′,

χ ′′
S = A′′ − JB′′.

(C7)

As described in Appendix A, the generalized susceptibility
χσσ ′,ph is still a centro-Hermitian matrix for ω �= 0 if we

consider the shifted space ν (′) → ν (′) + �m/2�2π/β with ω =
2mπ/β. As already mentioned in the main text, the derivation
for even m is completely analogous to the ω = 0 case if the
shifted space is considered.

However, for odd m slight adaptations are needed since the
matrix acquires an odd frequency structure with a new central
frequency ν∗ = −ω/2. In other words, if we consider a finite
frequency box (e.g., in numerical calculations), the frequency
shift leads to a (2N ) × (2N ) matrix for even m and to a (2N +
1) × (2N + 1) matrix for odd m.

A centro-Hermitian matrix of odd dimension can be
depicted by

χCH = χ ′ + iχ ′′ with χ ′ =

⎛
⎜⎜⎝

A′ a′ JB′J

b′ c b′J

B′ Ja′ JA′J

⎞
⎟⎟⎠,

χ ′′ =

⎛
⎜⎜⎝

A′′ a′′ −JB′′J

b′′ 0 −b′′J

B′′ −Ja′′ −JA′′J

⎞
⎟⎟⎠,

(C8)

where A, B ∈ RN×N , a ∈ RN×1, b ∈ R1×N , and c ∈ R. With

Q = 1√
2

⎛
⎜⎜⎝

1 0 −J

0
√

2 0

1 0 J

⎞
⎟⎟⎠ (C9)

we can apply the transformation QχCHQT , in the same way as
for the even-dimensional case to identify the symmetric and
antisymmetric blocks of the matrix in Eq. (31):

χ ′
A = A′ − JB′,

χ ′
S =

⎛
⎜⎝ c

√
2b′

√
2a′ A′ + JB′

⎞
⎟⎠,

χ ′′
A =

( √
2b′′

A′′ + JB′′

)
,

χ ′′
S = (√

2a′′, A′′ − JB′′).

(C10)

Now we can start with the derivation of the mapping of the
generalized susceptibilities by writing the action of the Shiba
transformation in Eq. (28) as matrix products in the frequency
shifted space:

χ↑↑,U = χ↑↑,-U, χ↓↓,U = Jχ↓↓,-UJ,

χ↑↓,U = −χ↑↓,-UJ, and χ↓↑,U = −Jχ↓↑,-U.
(C11)

With these building blocks, we can construct the coupled
longitudinal matrix

χL =
(

χc χcs

χsc χs

)
(C12)
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and then apply the transformation

Q =
(

Q 0

0 Q

)
(C13)

to it.
With simple matrix multiplication, we obtain

QχL,-UQT =
(

Qχc,-UQT Qχcs,-UQT

Qχsc,-UQT Qχs,-UQT

)

=

⎛
⎜⎜⎝

χ ′
c,-U,A iχ ′′

c,-U,S χ ′
cs,-U,A iχ ′′

cs,-U,S
iχ ′′

c,-U,A χ ′
c,-U,S iχ ′′

cs,-U,A χ ′
cs,-U,S

χ ′
sc,-U,A iχ ′′

sc,-U,S χ ′
s,-U,A iχ ′′

s,-U,S
iχ ′′

sc,-U,A χ ′
sc,-U,S iχ ′′

s,-U,A χ ′
s,-U,S

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

χ ′
c,U,A iχ ′′

cs,U,S χ ′
cs,U,A iχ ′′

c,U,S
iχ ′′

sc,U,A χ ′
s,U,S iχ ′′

s,U,A χ ′
sc,U,S

χ ′
sc,U,A iχ ′′

s,U,S χ ′
s,U,A iχ ′′

sc,U,S
iχ ′′

c,U,A χ ′
cs,U,S iχ ′′

cs,U,A χ ′
c,U,S

⎞
⎟⎟⎠

= TQχL,UQT T,

(C14)

where an appropriate Q matrix has to be used depending on
whether the generalized susceptibility is an even or an odd
matrix. From Eq. (C14) and the fact that Q is an orthogonal
transformation, Eq. (33) in the main text is obtained.

In Eq. (C14) one can see that after the Q transformation,
χL,U and χL,-U only differ by a permutation of the different
submatrices. This reshuffling is done by the matrix T in
Eq. (32), which needs to be adapted to Eq. (C15) for the
odd-dimensional case

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C15)

We find that (i) a symmetric/antisymmetric block of χL,U

always maps to a symmetric/antisymmetric block of χL,-U,
and (ii) all χ ′

A blocks are invariant under the mapping. All
other blocks get redistributed according to Eq. (C14), which
is summarized in Eqs. (34) and (35) in the main text [77].
Note that for χL the subscript A/S refers to the coupling of
the respective anti-/symmetric components in the charge and
spin subspace of a generic vector v. For the even-dimensional
case,

v =

⎛
⎜⎜⎝

vc,S
Jvc,S
vs,S

Jvs,S

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

vc,A
−Jvc,A

vs,A
−Jvs,A

⎞
⎟⎟⎠ (C16)

and for the odd-dimensional case,

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

vc,S
mc

Jvc,S
vs,S
ms

Jvs,S

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

vc,A
0

−Jvc,A
vs,A

0
−Jvs,A

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C17)

Eventually, we consider the action of the Shiba transforma-
tion S = QT TQ, which is orthogonal and symmetric, on the
eigenvectors and eigenvalues of χL.

Since S is an orthogonal transformation, χL,U and χL,-U

have the same eigenvalues. Further, if v is an eigenvector
of χL,U, then Sv is an eigenvector of χL,-U with the same
eigenvalue. Transforming the eigenvector v, we find

Sv = S

⎡
⎢⎢⎣

⎛
⎜⎜⎝

vc,S
Jvc,S
vs,S

Jvs,S

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

vc,A
−Jvc,A

vs,A
−Jvs,A

⎞
⎟⎟⎠

⎤
⎥⎥⎦

=

⎛
⎜⎜⎝

vs,S
Jvs,S
vc,S

Jvc,S

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

vc,A
−Jvc,A

vs,A
−Jvs,A

⎞
⎟⎟⎠

(C18)

for the even-dimensional case, and

Sv = S

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

vc,S
mc

Jvc,S
vs,S
ms

Jvs,S

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

vc,A
0

−Jvc,A
vs,A

0
−Jvs,A

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎝

vs,S
ms

Jvs,S
vc,S
mc

Jvc,S

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

vc,A
0

−Jvc,A
vs,A

0
−Jvs,A

⎞
⎟⎟⎟⎟⎟⎟⎠

(C19)

for the odd-dimensional case. Evidently, the symmetric part
of the eigenvector changes the subspace between charge and
spin, while the antisymmetric part of the eigenvector is invari-
ant under the transformation.

To obtain the Shiba transformation for the generalized sus-
ceptibility in the transverse spin channel χSx , we apply the
Shiba transformation on Eq. (2) and get

χν,ν ′, ω
↑↓,U

= −χν,ν ′, −ν−ν ′−ω

↑↓,-U
= −χν,ν ′,−ω

↑↓,pp,-U
,

χν,ν ′, ω
↓↑,U

= −χ−ν,−ν ′, ν+ν ′+ω

↓↑,-U
= −χ−ν,−ν ′, ω

↓↑,pp,-U
= −(

χν,ν ′,−ω

↓↑,pp,-U

)∗
,

(C20)

where we use the fact that shifting ω → ω − ν − ν ′ is
changing the ph-convention to the pp-convention, and in the
second line we applied the property for complex conjugation
Eq. (A7).

Together with the definition of χν,ν ′, ω
Sx

and χν,ν ′, ω
pair in (8) and

(9), we get

χν,ν ′, ω
Sx,U

= χν,ν ′, −ω
pair,-U , (C21)

which is, in our notation, equivalent to Eq. (36) in the
main text.

033061-17



EßL, REITNER, SANGIOVANNI, AND TOSCHI PHYSICAL REVIEW RESEARCH 6, 033061 (2024)

APPENDIX D: ANALYTICAL EXPRESSION FOR THE GENERALIZED SUSCEPTIBILITY IN THE HUBBARD ATOM

Following Ref. [44], the one-particle Green’s function and the connected two-particle Green’s functions for the HA in ph-
notation for different spin combinations are as follows:

G1,σ (ν) = 1 − n−σ

iν + μ + σh
+ n−σ

iν + μ + σh − U
, (D1)

Gcon
2,↑↑(ν, ν ′, ω) = βU 2n↓(1 − n↓)(δω0 − δνν ′ )

(iν + iω + μ + h)(iν + iω + μ + h − U )(iν ′ + μ + h)(iν ′ + μ + h − U )
, (D2)

Gcon
2,↑↓(ν, ν ′, ω)

= n↑ + n↓ − 1

iν + iν ′ + iω + 2μ − U

(
1

iν + iω + μ + h − U
+ 1

iν ′ + μ − h − U

)(
1

iν ′ + iω + μ − h − U
+ 1

iν + μ + h − U

)

+ n↑ − n↓
iν ′ − iν − 2h

(
1

iν ′ + μ − h
− 1

iν + μ + h − U

)(
1

iν ′ + iω + μ − h
− 1

iν + iω + μ + h − U

)

+ βU 2δω0
(
e(2μ−U )β − e2μβ

)
(1 + e(μ+h)β + e(μ−h)β + e(2μ−U )β )2

1

(iν + μ + h)(iν + μ + h − U )(iν ′ + μ − h)(iν ′ + μ − h − U )

+ n↑ − 1

(iν ′ + iω + μ − h)(iν ′ + μ − h)(iν + μ + h − U )
+ 1 − n↑

(iν + iω + μ + h − U )(iν + μ + h − U )(iν ′ + μ − h)

+ 1 − n↓
(iν + iω + μ + h)(iν ′ + μ − h − U )(iν + μ + h − U )

+ n↓ − 1

(iν + iω + μ + h)(iν + μ + h − U )(iν ′ + iω + μ − h)

+ 1 − n↓
(iν ′ + μ − h)(iν + iω + μ + h)(iν ′ + iω + μ − h)

+ 1 − n↓
(iν ′ + μ − h)(iν + iω + μ + h)(iν + μ + h)

+ 1 − n↓
(iν ′ + μ − h − U )(iν + μ + h)(iν ′ + iω + μ − h − U )

+ n↓ − 1

(iν ′ + μ − h − U )(iν + iω + μ + h)(iν + μ + h)

+ 1 − n↓
(iν + iω + μ + h − U )(iν + μ + h)(iν ′ + iω + μ − h − U )

+ n↓ − 1

(iν ′ + μ − h)(iν + iω + μ + h − U )(iν + μ + h)

+ −n↑
(iν ′ + μ − h − U )(iν + iω + μ + h − U )(iν ′ + iω + μ − h − U )

+ −n↑
(iν ′ + μ − h − U )(iν + iω + μ + h − U )(iν + μ + h − U )

, (D3)

where

nσ = e(μ+σh)β + e(2μ−U )β

1 + e(μ+h)β + e(μ−h)β + e(2μ−U )β
(D4)

and Gcon
2,↓↓ and Gcon

2,↓↑ can be obtained from Eqs. (D2) and (D3)
by changing h to −h. Note that the terms in the first two lines
in Eq. (D3) can become singular (i.e., proportional to δν,ν ′+ω

and δν,ν ′ ) for μ = U/2 and h = 0, respectively; in these cases,
the limit has to be taken carefully.

With these building blocks we can calculate all generalized
susceptibilities of the HA: The σσ ′ spin indices can be calcu-
lated directly with Eqs. (D5) and (D6),

χν,ν ′, ω
σσ = Gcon

2,σσ (ν, ν ′, ω) + χν,ν ′, ω
0,σσ , (D5)

χν,ν ′, ω
σσ ′ = Gcon

2,σσ ′ (ν, ν ′, ω) with σ �= σ ′. (D6)

The spin indices σσ ′ can be calculated with

χν,ν ′, ω
σσ ′ = −χν,ν+ω, ν−ν ′

σσ ′ + χν,ν ′, ω
0,σσ ′ , (D7)

where σ �= σ ′ [38] and the bubble terms χ0 are defined in
Eqs. (G1) and (G2).

Finally, the generalized susceptibilities in the particle-
particle channel can be calculated by performing the fre-
quency shift ω → ω − ν − ν ′.

APPENDIX E: PROJECTED WEIGHT IN THE COUPLED
LONGITUDINAL CHANNEL

To quantify how much an eigenvalue of χL is attributed to
either the charge or the spin subspace, respectively, we split
each eigenvector v [normalized by ‖.‖T in Eq. (A15)] into the
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charge and spin subspaces

v =
(

vc

vs

)
. (E1)

In doing so, we can assign each eigenvector a projected weight
which gives the percentage contribution of the eigenvector in
the charge/spin subspace Nc/Ns with

Nc/s = ‖vc/s‖2
†

‖v‖2
†

, (E2)

where Nc + Ns = 1 and ‖u‖2
† = u† · u [78].

To prove that pseudodivergences with SU(2)P symmetry
(δμ = 0) are always maximally “mixed” (Nc = Ns = 0.5),
we first note that the Shiba mapping connects the SU(2)P

symmetric case with the SU(2)S symmetric case (h = 0),
where the charge and the spin channel are decoupled centro-
Hermitian matrices.

We consider the eigenvectors v1 and v2 of a complex-
conjugate pair of eigenvalues of the generalized susceptibility
in the charge or the spin channel. Because of Eq. (A16), the
symmetric and antisymmetric parts of v1 can be written as

v1 = 1
2 (v1 + v∗

2 ) + 1
2 (v1 − v∗

2 ) with vS/A = 1
2 (v1 ± v∗

2 ).

(E3)

As we know from Eq. (C18), only the symmetric part of
the eigenvector gets mapped from the charge/spin subspace
to the spin/charge subspace.

Therefore, we must calculate the norm only for the
symmetric/antisymmetric part of the eigenvector,

‖vS/A‖2
†

‖v1‖2
†

= 1

4‖v1‖2
†

(
v

†
1 · v1 ± vT

2 · v1 ± v
†
1 · v∗

2 + vT
2 · v∗

2

)

= 1

2
, (E4)

where vT
1 · v2 = 0 and ‖v2‖† = ‖v1‖† [79].

Hence, we find that complex-conjugate pairs, and therefore
pseudodivergences, have the maximal mixing (Nc = Ns =
0.5) between the charge and longitudinal spin subspace when
SU(2)P symmetry is fulfilled.

APPENDIX F: T = 0 LIMIT OF THE HUBBARD ATOM

The advantage of considering a dimensionless parameter
space of {βδμ, βh, βU } in the main text allows also for an
intuitive understanding of the T → 0 limit.

In Fig. 8, the first loop and the first parabola divergence
line structure in the charge channel for the SU(2)S symmetric
case are shown for different inverse temperatures β = 1/T .

Here, we observe that, for T → 0 (β → ∞), the loop
structure contracts to a single point, and both exceptional
points of the parabola approach δμ = 0.

The scaling suggested by the T → 0 evolution of diver-
gence lines shown in Fig. 8 outlines an intuitive procedure
to get a first understanding of the T = 0 vertex divergence
properties. This procedure generally works satisfactorily, ex-
cept for the discontinuous parts of the phase space, located
at δμ = 0 for U < 0 and at δμ = ±U/2 for U > 0. In par-
ticular, since the generalized susceptibility matrix becomes
Hermitian for δμ = 0, the exceptional points must transform
either continuously into two degenerate or discontinuously

FIG. 8. The phase space diagram of the first loop and parabola
divergence line structure in the charge channel for different temper-
atures for the SU(2)S symmetric case (h = 0).

into two separate eigenvalues of two linear-independent
eigenvectors (one symmetric, one antisymmetric). By care-
fully evaluating the analytical expressions at δμ = 0 and
T = 0 (see Refs. [22,70]), we find a single vanishing eigen-
value with an antisymmetric eigenvector for every U < 0 and
δμ = 0 at T = 0, where the model is discontinuous. On
the other hand, for U > 0 where no discontinuity appears,
one finds two degenerate vanishing eigenvalues (one with a
symmetric eigenvector and one with an antisymmetric eigen-
vector) for every U > 0 and δμ = 0 at T = 0. This behavior
matches the T → 0 evolution that the loop structures formed
by a symmetric and an antisymmetric divergence that con-
tracts to a single point.

Further, we find that the pseudodivergence lines
(at δμ �= 0) become parallel to δμ = ±U/2 in the limit
of U, δμ → ∞, which mark the boundaries of a V-shaped
region in the phase diagram. Thus, the pseudodivergences
that stem from the loop structure at U > 0 remain inside this
V-shaped region (U > 2|δμ|), and the pseudodivergences
that emerge from the parabolas at U < 0 stay outside of it
(U < 2|δμ|).

Applying the same analysis to the spin and pairing chan-
nel, one can show that the pairing divergences are confined
inside the V-shaped area while the spin pseudodivergences
stay outside of it. From these intuitive considerations, we can
schematically draw Fig. 3 in the main text.

In principle, a more rigorous treatment of the T = 0 limit,
which yield, however, the same results [80], can be performed
as explained in Ref. [70]. In particular, for the analytical
expressions of the generalized susceptibility reported in Ap-
pendix D, one has to take into account that the Matsubara
frequencies become continuous and can no longer be regarded
as matrix indices.

Consequently for T = 0, a sum over Matsubara frequen-
cies becomes an integral, and a Kronecker δ in Matsubara

033061-19



EßL, REITNER, SANGIOVANNI, AND TOSCHI PHYSICAL REVIEW RESEARCH 6, 033061 (2024)

FIG. 9. The phase space diagrams of the vertex
(pseudo)divergences in the coupled longitudinal channel for
the Hubbard atom are shown. Note that the first two divergence line
structures are displayed. The plotting conventions are as in Fig. 2.

frequencies becomes a Dirac δ:

1

β

∑
ν

β→∞−→
∫ ∞

−∞

dν

2π
, (F1)

βδνν ′
β→∞−→ 2πδ(ν − ν ′), (F2)

βδω0
β→∞−→ 2πδ(ω). (F3)

For the remaining terms in the analytical formulas in Ap-
pendix D, we take the limit β → ∞.

APPENDIX G: ADDITIONAL INFORMATION ON VERTEX
DIVERGENCE STRUCTURE

In this Appendix, we will give some additional information
about the vertex (pseudo)divergence phase diagram.

To get started, we show the first two vertex
(pseudo)divergence line structures in the coupled longitudinal
channel for α = 42◦ in Fig. 9.

In addition to the first divergence line loop, we find a
second loop at higher U values for U > 0. On the other hand,
for U < 0 we find a second pair of parabolas. Furthermore, we
find a second parabola for U > 0 at smaller r values than the
first parabola at U > 0. The pseudodivergence that is adjoined
to the second parabola takes a large detour to high r values and
then goes back to the parabola pair at negative U < 0.

To investigate the pseudodivergences at U = 0, we just
have to consider the bubble term χ0 of the susceptibility. The

bubble term in the spin index space is defined as

χν,ν ′, ω
0,σσ ′ = −βGσ (ν)Gσ (ν + ω)δνν ′δσσ ′, (G1)

χν,ν ′, ω
0,σσ ′ = −βGσ (ν)Gσ ′ (ν + ω)δνν ′ , (G2)

χν,ν ′, ω
0,σσ ′,pp

= −βGσ (ν)Gσ ′ (ω − ν)δνν ′ (G3)

for the longitudinal and transversal spin channel in ph and pp
frequency convention. χ0 in the longitudinal channel reads

χ0,L =
(

χ0,↑↑ + χ0,↓↓ χ0,↑↑ − χ0,↓↓
χ0,↑↑ − χ0,↓↓ χ0,↑↑ + χ0,↓↓

)
. (G4)

Note that χ0,L is only diagonal for SU(2)S symmetric sys-
tems, but it can be diagonalized by

Pχ0,LP =
(

χ0,↑↑ 0
0 χ0,↓↓

)
with P =

(
1 1
1 −1

)
, (G5)

where P transforms from the spin index basis to the longi-
tudinal (physical) channel. Further, the bubble terms for the
transversal spin and the pairing channel are defined as

χ0,Sx = χ0,↑↓ + χ0,↓↑, (G6)

χ0,pair = −χ0,↑↓,pp − (
χ0,↓↑,pp

)∗
. (G7)

By replacing Gσ with G0,σ and by solving for Re(χ0) = 0,
we find the pseudodivergences for U = 0 and ω = 0. The re-
sulting conditions for the different channels are the following:

χ0,↑↑ : r = ν√
1 + 2 cos α sin α

, (G8)

χ0,↓↓ : r = ν√
1 − 2 cos α sin α

, (G9)

χ0,Sx : r = ν√
(cos α)2 − (sin α)2

, (G10)

χ0,pair : r = ν√
(sin α)2 − (cos α)2

. (G11)

Therefore, for χ0,↑↑ and χ0,↓↓, two pseudodivergences
cross the U = 0 axis for almost all values of α except for α =
45◦, where only the pseudodivergences of χ0,↓↓ are present at
U = 0. By transforming the eigenvectors back in the space of
the longitudinal channel, we find that all pseudodivergences
at U = 0 are maximally “mixed” (Nc = Ns = 0.5).

In the transversal spin channels, pseudodivergences cross
the U = 0 axis only for 0◦ � α < 45◦ and for the pairing
channel only for 45◦ < α � 90◦.
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