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The utility of near-term quantum computers and simulators is likely to rely upon software-hardware codesign,
with error-aware algorithms and protocols optimized for the platforms they are run on. Here, we show how
knowledge of noise in a system can be exploited to improve the design of gate-based quantum simulation
algorithms. We demonstrate this codesign in the context of a trapped ion quantum simulation of the dynamics of
a Heisenberg spin model. Specifically, we derive a theoretical noise model describing unitary gate errors due to
heating of the ions’ collective motion, finding that the temporal correlations in the noise induce an optimal gate
depth. We then illustrate how tailored feedforward control, best applied at this optimum, can be used to partially
mitigate unitary gate errors and improve the simulation outcome. Our results provide a practical guide to the
codesign of gate-based quantum simulation algorithms.
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I. INTRODUCTION

Large-scale fault-tolerant quantum computers have the po-
tential to catalyze progress in physics and material science,
chemistry and drug development, as well as optimization and
machine learning [1,2]. In the near term, noisy intermediate-
scale quantum (NISQ) technology may still demonstrate a
quantum advantage over classical computers for certain tasks.
The first useful task of NISQ computers likely to demon-
strate a quantum advantage is the simulation of quantum
dynamics [1,3,4]. Digital quantum simulation, accomplished
by discretizing the dynamics into several gates, is a flexible
approach with controllable error that can improve our un-
derstanding of spin systems [5,6], quantum chemistry [7,8],
biochemistry [9], and high energy physics [10,11]. A common
challenge in all such gate-based quantum simulation is to
optimize the quantum circuit implementing the algorithm for a
particular NISQ platform. Specifically, the discretization error
in the algorithm is reduced by increasing the number of gates,
while hardware noise in the system causing decoherence leads
to error that typically worsens as the number of gates in-
creases. To achieve the best performance of the algorithm, we
must therefore determine both the optimal number of gates
and the optimal parameters for these gates in order to account
for noise. The focus of this work is to provide insight into
these questions which lie at the heart of software-hardware
codesign of gate-based quantum simulation.
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More generally, understanding the principles of codesign
and error mitigation is essential to realize the potential of
quantum computers, as hardware noise usually wipes out
the effects responsible for quantum advantages [12]. Even
fault-tolerant quantum computers of the future will rely on
the characterization and mitigation of noise. The existence of
a fault tolerance threshold is only rigorously defined when
errors are assumed to be independent; this Markovian ideal-
ization is only true when spatial and temporal correlations in
the noise die off quickly [13–15]. The magnitude of indepen-
dent errors, in turn, affects the resource cost of the system,
with noisier systems requiring a larger overhead of physical
qubits per logical qubit. For near-term noisy, intermediate-
scale platforms, characterizing the noise in a system is even
more critical. Practical applications will require the codesign
of protocols optimized to different hardwares. Indeed, under-
standing the nature of noise in a system can enable tailored
quantum-control and error mitigation that improves desired
performance metrics [16,17]. In some cases, noise can even be
exploited as a feature of the system to simulate the dynamics
of complicated many-body models [18].

The three categories of error in quantum computations and
simulations are measurement errors, incoherent errors, and
coherent errors. The first, measurement error, arises as quan-
tum observables have inherent uncertainty and hence their
expectation value can only be determined with a certainty set
by the number of measurement samples. The second, incoher-
ent error, arises from coupling between the qubits and their
environment, with these interactions causing the internal state
of the qubit to change. The last, coherent error, occurs when a
desired unitary transformation of the system imparts an angle
different than intended. These unitary errors are the focus of
this work and arise due to limitations of the platform’s analog
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FIG. 1. Chain of trapped ions collectively moving at frequency
ω0 in the x direction. Ions explore different parts of the beam waist
of lasers (yellow) that apply unitary gates, thus accumulating an
incorrect phase.

control hardware or the dynamics of the physical qubits [19].
Over the course of a quantum computation or simulation, such
unitary errors accumulate and dephase the system state, killing
the coherent effects responsible for a quantum advantage and
degrading the fidelity of any simulation. In trapped ions, for
example, one dominant source of decoherence is the ions’
collective motion, which is thermally excited due to electric
field fluctuations from trap electrodes. While the internal qubit
states of the ions are not directly affected by this motion,
any quantum gate applied via individually addressed lasers
imparts an erroneous phase to the qubit states, as depicted
in Fig. 1. We can understand the source of this noise as the
phonon mode associated with the center of mass of the chain
having an energy that undergoes diffusion due to heating from
electric field fluctuations. This slow diffusion of the phonon in
energy space causes the unitary error to be non-Markovian,
with correlations arising between gates applied at different
times during an experiment.

In this work, we demonstrate how to exploit knowledge of
the noise underlying a system to optimize gate-based quantum
simulations. To provide an example, we do so in the context
of simulating the dynamics of a Heisenberg spin model in
a system of trapped ions. We first introduce the quantum
simulation task and associated gate-based algorithm. Then,
we derive a theoretical noise model describing unitary errors
from thermal ion motion in trapped ion systems and provide
a protocol to experimentally extract the latent variable un-
derlying the model. We discuss how temporal correlations
in the noise induce an optimal gate depth of the quantum
simulation circuit. These correlations cause the error in the
simulation arising from motional noise to accumulate as the
gate depth is increased, while the Trotter error associated with
discretization of the time evolution decreases as the gate depth
is increased. The competition of these two errors induces an
optimal gate depth.

Next, we provide a platform-independent framework for
optimal feedforward control of unitary gate errors, which
involves applying gates with angles that are modified to com-
pensate for the predicted noise in the system. We illustrate
the utility of feedforward control in the trapped ion imple-
mentation of simulating the Heisenberg Hamiltonian, showing
that feedforward control partially mitigates both discretization
error and decoherence error in the simulation output.

Our work provides three results that are generally applica-
ble to the codesign of gate-based quantum algorithms beyond

the discussed simulation task: (i) the understanding that non-
Markovian correlations are the root cause of decoherence and
the subsequent limitation on gate depth in any platform where
unitary errors are the dominant noise, (ii) a method to opti-
mally leverage noise characterization to mitigate unitary gate
errors via feedforward control, and (iii) an accurate model of
unitary gate errors arising from thermally excited ion motion
in trapped ion systems.

II. HAMILTONIAN SIMULATION

Simulating the quantum dynamics of a system is a natural
application of digital quantum computers and analog quantum
simulators and is likely to be the first problem of practical
interest where a quantum advantage over classical computers
is demonstrated on near-term quantum platforms [3]. The goal
is to simulate the time evolution, Û (t ) = exp(−iĤt/h̄), of a
system whose dynamics are generated by a Hamiltonian Ĥ .
Here, we focus on the Heisenberg Hamiltonian,

Ĥ =
∑
i, j

Ji j Ŝi · Ŝ j +
∑

i

hiŜ
x
i , (1)

which is a paradigmatic spin model that describes the mag-
netic properties of many insulating crystals [20], appears in
the study of thermalization in quantum systems [21–23], and
describes the essential physics underlying nuclear magnetic
resonance (NMR) spectroscopy [9].

Many near-term quantum algorithms and simulations fo-
cus on the task of estimating the expectation value of some
observable after time evolution, with the value of such observ-
ables often being less susceptible to noise than the full system
state [24]. In this vein, we benchmark the quality of gate-based
quantum simulation of Eq. (1) with the spectrum simulation
task discussed in Ref. [9] and experimentally demonstrated
in Ref. [25]. This algorithm uses time evolution under the
Heisenberg Hamiltonian, Eq. (1), to compute the NMR spec-
trum

A(ω) = Re
∫ ∞

0
dt eiωt−γ t S(t ), (2)

where

S(t ) = 〈
Ŝz

tot(t )Ŝz
tot

〉
(3)

= Tr
[
eiĤt Ŝz

tote
−iĤt Ŝz

totρ0
]

(4)

is the total magnetization response function and ρ0 is the
initial state of the spin system. For typical NMR experiments,
it is a good approximation to assume that the system starts in
an infinite temperature state ρ0 = Î

Tr[Î]
, where Î is the identity

operator.
Letting |z j〉 be the eigenstates of Ŝz

tot corresponding to
eigenvalues mj , the response function is computed as

S(t ) = 2
∑

j;mj>0

mj

2Ns
〈z j (t )|Ŝz

tot|z j (t )〉, (5)

where |z j (t )〉 = e−iĤt |z j〉 and Ns is the number of spins in
the system. The quantum algorithm is thus preparation of the
desired computational basis states {|z j〉}, Hamiltonian sim-
ulation of Ĥ through implementation of the time-evolution
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operator Û (t ) = e−iĤt , and projective measurements in the
computational basis. These measurements yield the response
function, S(t ), whose Fourier transform gives the desired
spectrum, A(ω).

We implement this time evolution using a first-order Trot-
ter decomposition into gates commonly used in trapped ion
platforms. Specifically, we split the total time evolution into
r Trotter steps yielding Û (t ) = [Û (�t )]r , where �t = t

r .

The unitary Û (�t ) = e−iĤ�t is then approximated with the
Suzuki-Trotter product formula

Û1(�t ) = e−i(
∑

i hi Ŝx
i )�t (�〈i j〉e−iŜz

i Ŝz
j (2Ji j�t ))

× (�〈i j〉e−iŜy
i Ŝy

j (2Ji j�t ))(�〈i j〉e−iŜx
i Ŝx

j (2Ji j�t )), (6)

where 〈i j〉 corresponds to all unique pairs of spins as Ji j = Jji

in the Hamiltonian. Furthermore, we only include pairs of
spins where Ji j �= 0. The total time evolution is then given by
Û1(t ) = [Û1(�t )]r . Defining the two-qubit gates Û αα (φi j ) =
exp{−iŜα

i Ŝα
j φi j}, where φi j = 2Ji j�t , single-qubit rotation

gates R̂α
i (φ) = e−iŜα

i
φ

2 , and angles φi = 2hi�t , the quantum
circuit for time evolution is given by

Û1(t ) =�r
m=1

{[
�iR̂

y
i

(
−π

2

)](
�iR̂

z
i (−φi )

)
× (�〈i j〉Û xx(φi j ))

[
�iR̂

y
i

(π

2

)]
×

[
�iR̂

z
i

(
−π

2

)]
(�〈i j〉Û xx(φi j ))

×
[
�iR̂

z
i

(π

2

)]
(�〈i j〉Û xx(φi j ))

}
, (7)

where we apply gates from right to left. The Trotter decompo-
sition, Eq. (7), is expressed in terms of the Mølmer-Sørensen
gates, Û xx(φi j ), and single qubit rotations that are commonly
used in trapped ion computations.

Assuming that enough measurements are made during a
computation to ignore measurement errors in the expecta-
tion values, 〈z j (t )|Ŝz

tot|z j (t )〉, the computed spectrum will still
include discretization errors from Trotterization and unitary
gate errors from the ion motion described in Sec. III. The
feedforward control discussed in Sec. V can help mitigate the
latter. Figure 2 shows an example spectrum (black), the same
spectrum with both Trotter and unitary noise (orange), and the
noisy spectrum with feedforward control (green).

III. TRAPPED ION NOISE MODEL

Trapped ions have emerged as a leading platform for quan-
tum computation and simulation due to their long coherence
times, identical nature, and negligible idle errors [12,26]. The
ions in these systems crystallize into a chain after being tightly
confined in two directions via an oscillating electric field. En-
tanglement between the qubits is generated by a laser-induced
interaction between states that is mediated by the collective
motion of ions. Usually, the motional modes along the tightly
confined transverse direction are used for these operations
as they are less sensitive to electric field fluctuations arising
from the electrodes generating the trap. These fluctuations do,
however, excite the weakly confined longitudinal modes of the
chain. The deviation of the ions from their lattice positions

FIG. 2. Example spectrum without noise (black), with Trotter
error and unitary noise (orange), and noise with feedforward control
(green) for a system of four spins evolving under the Heisenberg
Hamiltonian, Eq. (1). The phonon heating rate is taken to be c2 =
0.02 ms−1 and the noisy spectra are averaged over 40 runs. The
uncorrected noisy spectrum is computed using 200 gates and the
corrected noisy spectrum is computed using 500 gates, which are the
gate depths for which each spectrum is closest to the noiseless spec-
trum, as quantified by the Hellinger distance between the spectra.

causes them to experience erroneous intensities from the in-
dividually addressed laser beams used to implement different
operations. As the longitudinal motion of the ions heats up,
these errors build into a dominant form of noise that limits the
operational time window of the system [26]. Here, we develop
a noise model for errors arising from this longitudinal heating,
ignoring other possible sources of error in trapped ion systems
that may be more prevalent in different operational regimes of
the device.

We first characterize the gate error in the system due to
longitudinal movement of the ions in the x direction, depicted
in Fig. 1. The individually addressed single- and two-qubit
gates in trapped ion systems are enacted by shining a narrowly
focused laser on a single or pair of ion lattice sites, respec-
tively. The gates take the form Û (φ) = exp(−iφÂ), where Â
is either a single spin operator, Ŝα

j , acting on a site j, or the
bilinear, Ŝx

i Ŝx
j , acting on a pair of sites. These gates form a

sufficient set for universal quantum computation. The phase of
the gate is φ = 
tg, where tg is the duration of the laser pulse
and 
 is the Rabi frequency set by the electric field amplitude
of the laser. This amplitude typically has a Gaussian spread
in the longitudinal direction which carries over to the Rabi
frequency: 
(x) = 
0 exp[−x2/(2σ 2)], where 
0 represents
the maximum beam intensity and σ characterizes the beam
width. The collective motion of the ions in the longitudinal
direction can be decomposed in terms of normal modes with
frequencies ωm. During application of a gate, these motional
oscillations cause the ions to feel a position-dependent Rabi
frequency that is less than the desired 
0. Our goal is to derive
the distribution of the erroneous phase φ that is applied when
inputting an angle φin = 
0tg. In general, this distribution will
evolve in time as the longitudinal phonon modes are heated,
leading to larger amplitude oscillations. We therefore also
seek to determine how the erroneous Rabi frequency, and
therefore the phases φ(t ) and φ(t ′), are correlated at different
times. Temporal correlations over a sufficiently long timescale
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can limit the fidelity of computations in the system, even after
feedforward optimization of individual gates.

Electric field fluctuations from electrodes trapping the ions
are primarily responsible for heating the longitudinal phonons
[27]. The lowest frequency phonon mode, characterized by
ions oscillating in phase at frequency ω0, typically dominates
the gate error as the field fluctuations are roughly uniform
over the chain [26]. The gate application time, tg, is usually
much longer than the timescale set by ω0 so we can assume
that the effective Rabi frequency, 
(t ), that an ion feels
during a gate initiated at time t only depends on the average
position of the ion:


(t ) = 
0 exp

(
−x2(t )

2σ 2

)
, (8)

where x(t ) = 1
tg

∫ t+tg
t ds〈x̂(s)〉 and x̂ is the position operator of

the ion. Letting p̂ be the canonically conjugate ion momentum
operator, we define the usual bosonic creation and annihilation
operators â† = (x̂ − i p̂)/

√
2 and â = (x̂ + i p̂)/

√
2. The

average ion position only depends on the average energy of
the harmonic motion: x2(t ) = h̄〈n̂(t )〉/(mω0), where m is the
mass of the ion and n̂ = â†â is the occupation number.

We must describe the dynamics of the ions’ harmonic
motion in order to compute the distribution and correlations
of the Rabi frequencies, and by extension the phases of the
unitary gate. Letting the state of the system be ρ(t ), we can
model the dynamics with the Lindblad master align

d

dt
ρ = − i

h̄
[h̄ω0n̂, ρ]

+ γ+

(
â†ρâ + 1

2
{ââ†, ρ}

)

+ γ−

(
âρâ† + 1

2
{â†â, ρ}

)
, (9)

where the first term represents the coherent harmonic oscilla-
tion of the ions, the second term represents an increase in the
oscillation amplitude at rate γ+, and the third term represents
a decrease in the oscillation amplitude at rate γ−. These latter
two terms describe the incoherent dynamics of the ions re-
sulting from background electric field fluctuations. Assuming
that this background field exists in a thermal state at temper-
ature T , the ions’ oscillation amplitude changes at rates γ+ =
γN (ω0, T ) and γ− = γ [N (ω0, T ) + 1], where N (ω0, T ) =
1/(eh̄ω0/kBT − 1) is the Bose-Einstein distribution of the elec-
tric field occupation. We assume that the background electric
field is at infinite temperature so both these rates are equal
and redefine γ such that γ+ = γ− = γ . Given that the relevant
phonon frequencies are of the order of a few hundreds of kHz,
this approximation is satisfied down to very low temperatures
[27]. We also assume that the laser pulse enacting the gate
does not affect the ions’ motional state; in this sense, it is a
weak measurement rather than a strong measurement which
would collapse the ions’ motion into a particular eigenstate of
the occupation n̂.

In trapped ion experiments, it is possible to cool the chain
close to its motional ground state during preparation of the
system. We therefore assume that the initial motional state of
the system is the phonon vacuum ρ(t0) = |0〉〈0|. Dynamics

under Eq. (9) will then evolve the system into a harmoni-
cally oscillating coherent state undergoing a diffusive random
walk in its amplitude. It therefore makes sense to describe
the system state in terms of its Glauber-Sudarshan P-function
representation:

ρ =
∫

d2α P(α, α∗, t )|α〉〈α|, (10)

where {|α〉} are coherent states that form a basis for the
system. The dynamics of the system is then captured by a
Fokker-Planck align for the P-function, P(α, α∗, t ),

d

dt
P =

{
iω0

(
∂

∂α
α − ∂

∂α∗ α∗
)

+ γ
∂2

∂α∂α∗

}
P. (11)

The Green’s function of the Fokker-Planck align, ex-
pressed in the rotating frame of the phonon mode with
frequency ω0, is

K (α′, t ′|α, t ) = 1

πγ (t ′ − t )
exp

{
− |α′ − α|

γ (t ′ − t )

}
, (12)

which can be interpreted as the probability to find the ions
in state |α′〉 at time t ′ given that they were in state |α〉 at
time t . To compute the full state of the system one simply
has to involve this kernel with the initial P-function. For
systems that have not been fully cooled down and maintain
a nonzero thermal occupation of phonons, the initial state will
be Gaussian. At present, it suffices to consider the T = 0 limit
in which case the P-function is simply P(α, α∗) = δ(α)δ(α∗).
This Green’s function can be used to compute the probability
distribution and correlations of observables expressed in the
coherent state basis. Letting φ(τ ) = 
(τ )tg be the angle im-
parted by a unitary gate applied at time τ in the experiment,
when the phonon mode is in state |α(τ )〉, the Rabi phase of
the qubit will advance by an angle

φ(τ ) = φin exp

{
−

(
aosc

alaser

)2

|α(τ )|2
}

, (13)

where aosc = √
h̄/(mω0) and alaser = √

2σ are the characteris-
tic length scales of the harmonic oscillator and Gaussian laser,
respectively. The probability distribution of the angle can then
be computed as

pφ (φ; τ, c2) = 1

c2τ

1

φ

(
φ

φin

) 1
c2τ

�(φin − φ), (14)

where we have defined the heating rate constant

c2 = γ

(
aosc

alaser

)2

(15)

and the Heaviside step function, �(φin − φ), encodes the fact
that the time-averaged Rabi frequency felt by the ion cannot
be more than spending all its time at the center of the laser
where its intensity is strongest. The distribution of angles,
Eq. (14), is the noise model we need for feedforward control.
Note that it only depends on a single latent variable, λ = c2τ ,
representing the amount of diffusion the ions’ motion has
undergone.
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We can gain insight into the angle distribution by examin-
ing the average and typical angles that are applied by the gate,

φavg = Eφ[φ] = φin

1 + λ
, (16)

φtyp = exp (Eφ[lnφ]) = φine−λ. (17)

We see that, at late experimental times compared to the rate
c2 such that λ → ∞, both the average and typical angles go
to zero. Physically, the amplitude of the ions’ oscillation be-
comes so large that the ion never spends time inside the laser
beam and hence its internal qubit state is not changed. While
the average angle algebraically decays to zero at late times,
the typical angle becomes very small as τ crosses 1/c2, thus
showing that c2 sets the timescale where we can coherently
manipulate the qubits in an experiment.

We can further understand the effects of noise on a quan-
tum computation or simulation by examining the correlation
between two gates applied at a time �τ apart,

Corr[φ(τ + �τ )φ(τ )]

= Cov[φ(τ + �τ )φ(τ )]√
Var[φ(τ )]Var[φ(τ )]

= τ

τ + �t

√
(1 + 2c2τ )[1 + 2c2(τ + �τ )]

1 + 2c2τ + c2�τ + c2
2τ�τ

. (18)

Taking the limit at late times, we have

lim
τ→∞ Corr[φ(τ + �τ )φ(τ )] = 1

1 + 1
2 c2�τ

+ O
(

1

τ

)
, (19)

which shows that c2 also sets the temporal correlation length
between different gates. Given that the gate application time,
tg, is small compared to typical values of c2 in trapped ion
experiments, the unitary gate errors will be temporally corre-
lated.

As a limiting case, we can examine how the noisy gate
angles are distributed at short times when the ions are very
close to the center of the laser beam. By simultaneously taking
the limits φ → φin and c2τ → 0 in Eq. (14), we get the short
time distribution

pshort
φ (φ; τ, c2) = 1

c2τφin
e− (φin−φ)

c2τφin �(φin − φ). (20)

This expression can equivalently be derived by Taylor expand-
ing Eq. (13) as φ(τ ) = φin(1 − ( aosc

alaser
)2|α(τ )|2) and computing

the probability distribution of gate angles using the Green’s
function given in Eq. (12). The exponential distribution of
gate angles described in Eq. (20), valid at short times, is in
agreement with the ion noise model discussed in Ref. [26].

We now give a protocol to experimentally extract the value
of c2 which characterizes the noise in a particular trapped ion
setup. Prepare a system of two qubits in the computational
basis state |↓↓〉, wait a time τ , and apply a gate Ûxx(φ) =
exp(−iφŜx

i Ŝx
j ) with an input angle φin. Then, do a projective

measurement in the computational basis state to extract the
return probability of the system being in the |↓↓〉 state. If there
was no noise in the system, this probability would be

P↓↓ = 〈↓↓ |Ûxx(φin)| ↓↓〉 = cos2

(
φin

4

)
(21)

for all τ . With unitary gate error due to the ions’ motion, the
probability becomes

P↓↓(φin, c2τ ) = Eφ

[
cos2

(
φ

4

)]

= cos2

(
φin

4

)
+ φ2

inc2τ

8 + 16c2τ

× 1F2

(
1 + 1

2c2τ
,

3

2
, 2 + 1

2c2τ
,−φ2

in

16

)
,

(22)

where 1F2 is the generalized hypergeometric function. This
average return probability is directly related to the moment
generating function of Eq. (14). Measuring Eq. (22) for differ-
ent input angles, φin, and wait times, τ , yields curves that can
be used to fit the value c2. We give examples of these curves
in Fig. 3(a). In Fig. 3(b), we show how the return probability
can differentiate between the noise model derived here and
typical phase damping. The latter leads to a return probability
characterized by an exponentially decaying oscillation with
a constant phase shift dependent on the input angle. Armed
with knowledge of the noise model, Eq. (14), and a method to
experimentally determine the latent variable, c2, we now illus-
trate how non-Markovian correlations in the noise induce an
optimal gate depth when implementing a quantum algorithm.

IV. OPTIMAL GATE DEPTH

We can gain insight into how non-Markovian correlations
amongst gates induce an optimal gate depth in a quantum
algorithm by first considering a single one- or two-qubit gate
Û (φtot ) = exp(−iφtotÂ) of the form discussed in Sec. III. Let
us discretize this gate into r Trotter steps: Û (φtot ) = [Û (φ)]r ,
where φ = φtot/r and Û (φ) = exp(−iφÂ). The expected an-
gle applied by the total sequence Û (φtot ) is

E[φtot] = rEφ[φ], (23)

where Eφ[φ] is the average angle applied by Û (φ). If the
unitary gate errors in the system were modeled as Markovian,
and therefore uncorrelated, the variance in the total angle
would be

Var(φtot ) = r Var(φ), (24)

where Var(φ) is the variance in the angle applied by Û (φ).
Regardless of the source of unitary error, this variance of
each discretized gate will typically be proportional to Eφ[φ]2.
Letting the constant of proportionality be β, defined through
Var(φ) = βEφ[φ]2, the noise-to-signal ratio of the total gate
sequence becomes

η =
√

Var(φtot )

E[φtot]
=

√
β

r
. (25)

As an example, if we take the noise model developed in
Sec. III and ignore temporal correlations, we have β =
(c2τ )2/(1 + 2c2τ ). This constant β is computed by assuming
that each gate angle is independent and identically distributed
according to Eq. (14). We see that η → 0 as r → ∞, implying
that discretizing the total intended gate, Û (φtot ), into a large
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FIG. 3. Return probability predictions for experimental protocol to extract c2. (a) Curves for different wait times, τ , as a function of input
angle φin. (b) Difference between derived noise model and phase damping.

number of steps eliminates the unitary error in the system,
thus illustrating that unitary gate errors in experiments cannot
be fully described using a Markovian noise model. Corre-
lations between the unitary gate errors are responsible for
decoherence observed in experiments, with an optimal gate
depth being set by the timescale upon which this decoherence
becomes too large.

To demonstrate how this optimal gate depth manifests in
practice, we turn to the Hamiltonian simulation task described
in Sec. II. The computed spectrum will have errors both due to
discretization via the Trotter decomposition, Eq. (7), and uni-
tary gate noise due to heating of the ions’ motion as described
in Sec. III. Trotter error decreases as the number of gates in
the circuit is increased, while unitary errors accumulate as the
number of gates is increased. Therefore, there is an optimal
gate count balancing Trotter error and accumulated unitary
error.

We can quantify the error in the computation using two
different metrics. The first is to compute the average fidelity

F (t ) =
∣∣∣∣ 1

2n
Tr{Û1(t )†Û (t )}

∣∣∣∣
2

, (26)

where Û (t ) = e−iĤt , with Ĥ given by Eq. (1), is the desired
time evolution operator and Û1(t ) is the noisy Trotterized evo-
lution we implement in the quantum circuit, given by Eq. (7),
with noisy gate angles. Given that computation of a spectrum
requires implementing time evolution for a series of different
times in order to generate samples of S(t ), given by Eq. (5),
we can define the time-integrated fidelity

Fint = 1

T

∫ T

0
F (t ), (27)

where T is the last sampled time. The optimal gate depth is
then determined by the largest value of Fint. This metric is not
biased towards any particular choice of observable.

Alternatively, we can quantify the error in the spectrum by
computing the Hellinger distance

D2
H (Ai, Aj ) = 1

2

∫
dω

2π
(
√

Ai(ω) − √
Aj (ω))2 (28)

between a noiseless spectrum, Ai(ω), generated by the perfect
time evolution operator, Û (t ) = e−iĤt , and a noisy spectrum,
Aj (ω), generated by a noisy Trotterized evolution, Û1(t ). At
the optimal gate depth, the Trotterized spectrum will have
the most overlap with the true noiseless spectrum according
to the Hellinger distance. This metric is biased towards the
computation of the spectrum.

The optimal gate depth with the corresponding average
fidelity and Hellinger distance for an example noisy computa-
tion is shown in Figs. 6 and 7, respectively, and we discuss
these results in the next section. The total amount of error
in the noisy computation can be reduced by appropriately
modifying the angles of the gates comprising the quantum
simulation circuit, Eq. (7), a method known as feedforward
control. We develop a systematic, platform-independent pro-
tocol to determine the modified gate angles in the next section.
We then illustrate the benefits of the feedforward control in
the context of the Hamiltonian simulation task by showing
improvements in the fidelity and Hellinger distance for an
example Hamiltonian of the form in Eq. (1).

V. FEEDFORWARD CONTROL

A quantum computation or simulation involves applying a
unitary operation Û to a system of qubits. Often, this unitary
transformation is a composite of several single- and two-qubit
unitary gates Û (φ) = exp(−iφÂ), with Â typically linear or
bilinear in spin-1/2 operators, Ŝα

j = σ̂ α
j /2. A unitary error

in the system manifests as application of Û (φ) when we
intend to apply Û (φp). We usually do not have deterministic
knowledge of the value of the incorrect angle, φ, and therefore
describe it with a probability distribution pφ (φ; φin, �λ), where
�λ is a vector of latent variables characterizing the physical
noise underlying the system and φin is the angle we input when
applying the gate. If the gate was noiseless, we would have
pφ (φ; φin, �λ) = δ(φ − φin) and would input φin = φp, where
φp is the desired output gate angle. The idea of feedforward
control is to appropriately adjust the input gate angles of the
computation to reduce the error accumulated from incorrect
gate angles.
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Formally, let the total unitary describing the
actual computation be Û = ∏M

m=1 Ûm(φ(m) ), where
Ûm(φ(m) ) = exp(−iφ(m)Âm). The desired computation is
Ûp = ∏M

m=1 Ûm(φ(m)
p ). As the output angles are probabilistic,

a particular manifestation of the output computation Û
depends on the joint probability distribution p �φ ( �φ; �φin, �λ),

where �φin and �φ are the m different input and output angles,
respectively. The goal of feedforward control is to pick the
optimal input angles, �φ∗

in, such that the computation Û is close
to Ûp on average. In general, �φ∗

in will depend on both the set
of desired output angles, �φp, and the latent noise variables, �λ.

Optimizing over the entire computation, however, can be
challenging as it requires knowledge of the full joint distri-
bution, p �φ , which is generally nontrivial to compute, even for
the model presented in Sec. III. Additionally, even if possible,
such an optimization may not generalize well to other compu-
tations represented by different gate sequences. We therefore
focus on optimizing each individual unitary gate indepen-
dently of the others, which amounts to neglecting correlations
between unitary gate errors and assuming that they are inde-
pendent and identically distributed according to the marginal
distribution, pφ . Mathematically, this amounts to the factor-
ization of the joint distribution: p �φ = ∏M

m=1 pφ(m) . Temporal
correlations in the physical noise underlying the system lead
to correlations in the angles �φ that are not captured by such
a factorization. Feedforward optimization of individual gates
can therefore only partially mitigate the error in the overall
computation. Ignoring the non-Markovian effects discussed in
Sec. IV implies that the feedforward control is best applied at
sufficiently shallow gate depths; when circuit discretization
becomes comparable to temporal correlations of noise, the
feedforward correction will be inaccurate. The advantage of
ignoring error correlations, however, is that the correction can
be easily applied to any computation, Û , as it is done at the
level of individual gates.

The error due to applying a gate Û (φ) when we desire to
apply Û (φp) can be quantified by the gate fidelity

F
(
φ, φp

) =
∣∣∣∣ 1

2n
Tr{Û (φ)†Û (φp)}

∣∣∣∣
2

, (29)

which describes the expected fidelity of an n-qubit gate for
a random state drawn uniformly from the n-qubit state space
[28]. For example, let us consider a unitary gate corresponding
to Â = Ŝα

i Ŝα
j describing an interaction between two qubits i

and j. The fidelity then takes the simple form F (φ, φp) =
cos2[(φ − φp)/4]. The figure of merit we want to optimize
with feedforward control is the average fidelity over all possi-
ble wrong angles φ,

F (φin, φp, �λ) =
∫

dφ pφ (φ; φin, �λ)F (φ, φp). (30)

The optimal input angle is then

φ∗
in(φp, �λ) = arg max

φin

F (φin, φp, �λ). (31)

Calculation of this optimal feedforward angle requires knowl-
edge of the control landscape defined by the dependence of the
figure of merit, Eq. (30), on the input angle φin and desired

output angle φp. This landscape can either be numerically
mapped out with experimental measurements or analytically
computed after developing a theoretical description of the
noise underlying the system.

As an example of the latter approach, the distribution
pφ (φ; φin, �λ) for the trapped ion noise discussed in Sec III
is given by Eq. (14). The ion noise is parametrized by a
single latent variable, λ = c2τ , which can be experimentally
extracted by measuring the return probability Eq. (22). The
figure of merit for feedforward control, Eq. (30), in this case
can be analytically computed:

F (φin, φp, c2τ ) = 1

2
+ 1

2
cos

(
φin

2

)
cos

(
φp

2

)

+ φ2
inc2τ

8 + 16c2τ
cos

(
φp

2

)

× 1F2

(
1 + 1

2c2τ
,

3

2
, 2 + 1

2c2τ
,−φ2

in

16

)

+ φin

4 + 4c2τ
sin

(
φp

2

)

× 1F2

(
1

2
+ 1

2c2τ
,

3

2
,

3

2
+ 1

2c2τ
,−φ2

in

16

)
.

(32)

The optimal input angle, φ∗
in(φp, c2τ ), for the trapped ion

noise is the angle which satisfies the condition

F (φ∗
in, φp, c2τ ) = F (φ∗

in, φp), (33)

where we recall that F (φ, φp) = cos[(φ − φp)/4] is the fi-
delity of a gate imparting angle φ when we desire to apply
φp. We implement feedforward control by taking each desired
output gate angle, φi j , of the Û xx gates in Eq. (7) as φp at the
experimental time τ that the gate is applied. The optimality
condition, Eq. (33), is then solved numerically for each such
gate and the angle φ∗

in is input into the noisy gate rather
than φi j .

We show the optimal input angle, Fig. 4(a), and average
gate fidelity, Fig. 4(b), for a range of desired output angles
φp. First, we note that the optimal feedforward angle, φ∗

in,
always yields a better average fidelity than inputting φp. We
see that, for small output angles, there is always a finite opti-
mal input angle. For sufficiently large output angles, however,
the optimal input angle is φ∗

in = 0, meaning we do not apply
the gate. These angles are such that doing nothing leads to a
better fidelity than any nonzero gate we apply. Furthermore,
for times τ > 1/c2, meaning that the ions’ collective motion
has undergone a considerable amount of diffusion, there is an
intermediate range of angles where the optimal thing to do is
apply a maximally strong laser pulse to make φ∗

in as large as
possible. In this case, the gate essentially applies a random
phase to the state and yields an average fidelity of 1/2.

To benchmark the utility of the feedforward control, we
implement the Hamiltonian simulation task of Sec. II using
optimal input angles computed from Eq. (33). In Fig. 5,
we plot an example of the time-dependent fidelity, Eq. (26),
for different heating rate and gate counts with and without
feedforward control. We see that for low gate counts such
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FIG. 4. Optimal feedforward control characterization. (a) Optimal input angle. (b) Average gate fidelity. The black dashed line depicts the
fidelity if no gate is applied and the dotted lines represent the fidelity if the desired output angle, φp, is directly taken as the input to the gate.

as computations with 100 gates, the drop in fidelity comes
almost fully from Trotter error without heating noise hav-
ing much of an effect. For larger gate counts, heating noise
becomes the dominant cause of the drop in fidelity. While
the fidelity for the zero heating case gets continuously better
with increased gate count, finite heating causes computations
with sufficiently large gate counts to decrease the overall
fidelity.

Feedforward control can improve the situation in two dif-
ferent ways, which can be seen by comparing, for example,
the 300 gate and 700 gate curves. The first effect is to im-
prove the total fidelity over all time values, as quantified by
the improvement in Fint, Eq. (27), depicted in Fig. 6. This
improvement indicates that the computation of Û1(t ) is closer
on average to the desired computation Û (t ) for all values of
t , with the feedforward correction bringing the fidelity of a

FIG. 5. Time dependent fidelity of noisy Trotterized time evolution for a system of four spins evolving under the Heisenberg Hamiltonian,
Eq. (1). Solid curves include both heating noise and Trotter error, while the dotted curves include only Trotter error and are given as a noiseless
reference. (a) c2 = 0.005 ms−1 and no feedforward correction. (b) c2 = 0.02 ms−1 and no feedforward correction. (c) c2 = 0.005 ms−1 with
feedforward correction. (d) c2 = 0.02 ms−1 with feedforward correction. The noisy computations are averaged over 40 runs.
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FIG. 6. Optimal fidelity resulting from balancing Trotter and decoherence errors for a system of four spins evolving under the Heisenberg
Hamiltonian, Eq. (1). The heating rate c2 is given in units of ms−1. (a) Optimal gate count. (b) Integrated fidelity. The noisy computations are
averaged over 10 runs.

computation closer to the upper bound set by the Trotter error.
The second effect is that, for computations with large gate
counts, the fidelity for samples at late times, corresponding to
large values of t , is improved more significantly than for short
time samples. This improvement causes the fidelity to have
a more shallow decay and creates windows of time samples
where it may be more advantageous to use circuits with differ-
ent gate counts. For example, in Fig. 5(c), a computation with
300 gates is advantageous for samples with c2t � 3, while
a computation with 700 gates is advantageous for samples
with c2t � 3. The significance of this result is that particular
observables of interest may have information that is more
concentrated in a particular time window. For example, the
resolution between the peak of the spectrum, Eq. (2), comes
from samples at late times. Therefore, the optimal gate count
determined by the accuracy of the spectrum may be larger than
the optimal gate count determined by the integrated fidelity.
Indeed, this is what is seen when comparing Figs. 6 and 7.

In Figs. 7(a) and 7(b), we show the optimal gate count
and associated Hellinger distance of spectra computed both
with and without the feedforward correction. We see that
the accuracy of the optimal noisy spectrum is significantly

improved. An example spectrum for a system with heating
rate c2 = 0.02 ms−1 is depicted in Fig. 2. The feedforward
control both directly mitigates decoherence error from the
motion of the ions and indirectly reduces the Trotter error by
increasing the optimal gate count. Therefore, by effectively
increasing the optimal gate depth of the circuit, feedforward
control can be used to partially mitigate both discretization
error and accumulated unitary gate error in the system.

VI. DISCUSSION AND CONCLUSION

This improvement in the quality of the Hamiltonian sim-
ulation can be helpful for practical applications, such as the
NMR spectrum inference task discussed in Ref. [9]. In that
work, a hybrid quantum-classical algorithm is used to infer
the parameters of a Hamiltonian, Eq. (1), that models the
system of nuclear spins which produce a given experimental
NMR spectrum. The premise of the algorithm is to iteratively
simulate the spectrum corresponding to different Hamiltonian
parameters on quantum hardware and guess parameters that
are closer to the target experimental spectrum using clas-
sical optimization techniques. After a sufficient number of

FIG. 7. Optimal spectra resulting from balancing Trotter and decoherence errors for a system of four spins evolving under the Heisenberg
Hamiltonian, Eq. (1). The heating rate c2 is given in units of ms−1. (a) Optimal gate count. (b) Hellinger distance between optimal noisy spectra
and noiseless spectrum. The noisy computations are averaged over 10 runs.
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FIG. 8. Simulation of NMR inference algorithm with motional noise and Trotter error for a system of four spins. At each update step of the
protocol, noisy spectra computed from a set of sample Hamiltonians are used to calculate the next update step (a) Hellinger distance between
the average Hamiltonian’s noisy spectrum and the target spectrum with and without feedforward correction. (b) Spectrum comparison. We
take the average Hamiltonians found at the initial and last iterations of the noisy inference protocol and simulate what its spectrum would
be if there was no noise. The fact that the last spectrum is significantly closer to the target spectrum compared to the initial spectrum gives
a visual indication of the improvement in the underlying Hamiltonian during the inference protocol. The phonon heating rate is taken to be
c2 = 0.02 ms−1 and the noisy spectra are computed with 500 gates and averaged over 10 runs.

iterations, the learned Hamiltonian parameters can be used to
gain insight into the chemical structure of the sample that pro-
duced the given NMR spectrum. In Fig. 8, we demonstrate the
benefit of feedforward correction in this inference algorithm.
Figure 8(a) shows the Hellinger distance between the average
noisy Trotterized spectrum and a given target spectrum at each
iteration of the protocol. We see that the feedforward correc-
tion allows the algorithm to converge faster, as the increased
resolution in the simulated spectra allows the classical opti-
mization to more easily guess better Hamiltonian parameters.
In Fig. 8(b), we take the Hamiltonian parameters for the initial
and last iterations of the noisy protocol with feedforward
correction and compute the corresponding spectra without
noise to compare how well the learned parameters correspond
to the true parameters underlying the given target spectrum.
We see that even though the quantum simulation is noisy, we
are still able to iteratively infer the Hamiltonian parameters
underlying the target spectrum.

We have shown how to tailor gate-based quantum simu-
lation algorithms for particular hardware platforms. Specif-
ically, we demonstrate how knowledge of hardware noise
leading to unitary gate errors can be exploited to implement
feedforward control to improve the simulation outcome. The
ion noise model we derive applies to an array of computations
and simulations performed in trapped ions. Feedforward con-
trol, albeit being unable to correct for temporal correlations
in the noise, can be used to partially mitigate errors in these
applications. A similar approach may ameliorate errors other
than the leading order rotation error captured by our noise
model, but would require the development of noise models
accurately describing such errors.

In addition to feedforward control, it may be possible to
incorporate feedback control to mitigate the motional noise.
For example, the motional state of an ancilla ion can be pe-
riodically measured. Such a strong measurement, or relatedly
midcircuit cooling, would restart the ions’ diffusion process,
effectively reducing the time τ over which the system un-
dergoes diffusion. Knowledge of the motional state can then
be used to generate feedforward corrections until they are
recalibrated by the next measurement.

Other common quantum platforms such as superconduct-
ing qubits and Rydberg atoms also suffer from unitary gate
errors. The physical mechanisms underlying these errors,
however, is quite different from that of trapped ions and under-
standing the structure of the optimal feedforward correction in
these systems may provide insight into which quantum algo-
rithms and simulations are best suited to different platforms.
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