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Simulating (2+1)D SU(2) Yang-Mills lattice gauge theory at finite density
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We numerically simulate a non-Abelian lattice gauge theory in two spatial dimensions, with tensor networks
(TN), up to intermediate sizes (>30 matter sites) well beyond exact diagonalization. We focus on the SU(2)
Yang-Mills model in Hamiltonian formulation, with dynamical matter and minimally truncated gauge field
(hardcore gluon). Thanks to the TN sign-problem-free approach, we characterize the phase diagram of the
model at zero and finite baryon number as a function of the quark bare mass and color charge. At intermediate
system sizes, we detect a liquid phase of quark-pair bound-state quasiparticles (baryons), whose mass is finite
towards the continuum limit. Interesting phenomena arise at the transition boundary where color-electric and
color-magnetic terms are maximally frustrated: For low quark masses, we see traces of potential deconfinement,
while for high masses, signatures of a possible topological order.
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I. INTRODUCTION

Non-Abelian gauge field theories, such as quantum chro-
modynamics (QCD), lay at the core of the standard model
of particle physics. They have been extensively successful in
predicting the physical phenomena of quarks and gluons with
large momentum transfers, where perturbative methods apply.
Conversely, at the energy scales of the hadronic world, where
perturbative methods fail, robust numerical frameworks were
developed, such as lattice gauge theories (LGTs) [1,2]. Monte
Carlo (MC) simulations of LGTs characterized essential phe-
nomena such as the hadronic spectrum, the mechanism for
confinement [3–5], the chiral symmetry breaking mechanism
[6–9], and the role of topology in QCD at finite tempera-
tures [10–13]. Despite an impressive number of successful
predictions, MC methods are hindered by the infamous sign
problem, which hampers the simulation of a wide class of
physical settings described by complex or negative actions
(finite charge-density phases, fermions, real-time dynamics),
whose numerical investigations remain—to date—an open
challenge [14,15].

In the last decade, following Feynman’s seminal pro-
posal and the recent fast development of quantum computers
and simulators, quantum-inspired strategies attacked this
challenge. On one hand side, atomic quantum simulators at-
tempted to reproduce the quantum dynamics of lattice gauge
theories [16–21]. On the other hand, tensor networks (TN)
methods were identified as a powerful sign-problem-free
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numerical tool for complex lattice models [22–25]. Exploiting
TN algorithms, noteworthy results have been produced for
Abelian gauge theories in (1+1)D [26–40] and higher spatial
dimensions [41–43]. As for non-Abelian gauge symmetries,
TN-based simulations were so far limited to one spatial di-
mension [44–46].

In this paper, we overcome such limitation: We present
the TN simulations of a (2+1)D Hamiltonian analogous
to a SU(2) Yang-Mills LGT, with flavorless fermionic
matter. The 2-colored quarks are discretized as staggered
fermions on the sites of a square lattice, whereas the
non-Abelian gauge fields live on the lattice bonds, under-
going a Kogut-Susskind dynamics [1,47]. Precisely, this
study considers the smallest nontrivial electrically truncated
(0⊗0)⊕( 1

2⊗ 1
2 ) representation of the SU(2) gauge field (see

Fig. 1). This hardcore-gluon approximation keeps solely
states of the gauge field generated from the bare vacuum
with (at most) a single application of the parallel transporter
operator.

We report numerical simulation results for the model
above, using tree tensor network (TTN) methods from small
to intermediate system sizes, up to 32 matter sites. We stress
that only up to six sites of the TTN methods can be carried
out at maximum bond dimension, and thus equivalent to exact
diagonalization (ED), due to the inherent complexity of the
model. We describe several regimes of the model at equilib-
rium, including finite baryon number density. The analysis of
the ground-state properties of the system, for lattice sizes up
to 4 × 8 as performed here, due to the rich structure of the
quantum degrees of freedom, would require >160 qubits to
describe on a quantum computer. We characterize the model
phase diagram by evaluating multiple observables, such as
energy gaps, matter/antimatter and color-charge densities, and
gauge field distributions.
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FIG. 1. TTN approach to (2+1)D hardcore SU(2) Yang-Mills
LGT. Lattice sites host flavorless SU(2)-color-1/2 fermionic fields
(red and green) in a staggered configuration (white and yellow).
Lattice (blue) links describe gauge degrees of freedom from a
five-dimensional truncated Hilbert space. SU(2) Gauss law is imple-
mented at each lattice site.

TNs are based on controlled wave-function variational
ansatzes exploiting the area-law entanglement bounds sat-
isfied by locally interacting many-body quantum systems.
Thus, they allow an efficient representation of the low-
energy sectors contributing to the equilibrium properties and
(low-entangled) time evolution [48]. TN methods do not
suffer from the aforementioned sign problem [49]. In this
framework, ansatzes like matrix product states (MPS), pro-
jected entangled pair states (PEPS), and tree tensor networks
(TTN) have found increasing applications for studying quan-
tum many-body systems and LGTs [22,23,27,28,49–53]. One
main challenge for numerical and quantum simulations of
gauge theories is the finite-dimensional encoding of the con-
tinuous gauge fields. A few recipes are known to achieve
this reduction, from finite groups [33,37,54] to fusion algebra
deformation [55]. We adopt an energy-cutoff truncation strat-
egy similar to a quantum link model (QLM) [53,56–59], an
approach already considered for practical quantum simulation
of LGTs [60–69]. In this sense, the TN approach and the pre-
sented results could be used for benchmarking and validating
current and future experimental implementations on quantum
hardware [70–82] and to systematically identify the quantum
advantage threshold [83,84].

The paper is organized as follows: Sec. I introduces the
SU(2) Yang-Mills lattice Hamiltonian, and illustrates the
dressed-site formalism [73,85–87] we adopt, built on top of
an energy-truncated Kogut-Susskind formulation [47]. In Sec-
tion II, we present ground-state numerical simulation results

for the effective Hamiltonian. In Sec. III, our conclusions
and outlook are presented. Finally, the Appendices contain
additional technical details of the theoretical mapping and the
numerical simulation settings.

II. MODEL: LATTICE SU(2) YANG-MILLS

Using tensor network methods, we numerically simulate a
Hamiltonian lattice-gauge model corresponding to the SU(2)
Yang-Mills lattice gauge field theory at low energies. We place
the fermionic matter on a finite Lx × Ly lattice � and control
the following parameters of the model: the quark bare mass
m0, the quark color charge qc, the lattice spacing a, and the
baryon number density b. Sites and links are respectively
identified by the couple (j,μ), where j = ( jx, jy) is any 2D
site, while μ is one of the two positive lattice unit vectors:
μx = (1, 0), μy = (0, 1). Lattice sites are occupied by matter
fields, which we represent with SU(2)-color staggered (Dirac)
fermions ψ̂j,α [88], satisfying

{ψ̂†
j,αψ̂j′,β} = δj,j′δα,β, where α, β ∈ {r, g} (1)

are SU(2) colors. Then, the Hamiltonian reads

Ĥ0 = + ch̄

2a

∑
α,β

∑
j∈�

[
-iψ̂†

j,αÛ αβ

j,j+μx
ψ̂j+μx,β

− (−1) jx+ jy ψ̂
†
j,αÛ αβ

j,j+μy
ψ̂j+μy,β + H.c.

]
+ m0c2

∑
j∈�

(−1) jx+ jy
∑

α

ψ̂
†
j,αψ̂j,α + Ĥpure, (2)

where c is the speed of light, h̄ is the Planck constant,
and a is the lattice spacing. The first two terms describe
fermion-hopping between nearest-neighboring sites along the
(j, j + μ) lattice link. To enforce gauge symmetry, the hop-
ping mechanism has to be mediated by the SU(2)-parallel
transporter operator U αβ

j,j+μ, acting on the gauge fields, which
live on the lattice links. The latter term, or staggered mass,
ensures that the fermion fields, at low energies and free theory,
correctly describe a Dirac 4-spinor field with bare mass m0

[2,88,89].
We employ the Kogut-Susskind formulation of gauge field

dynamics [47] for the pure Hamiltonian Ĥpure, due to its sim-
plicity. Namely, we have

Ĥpure = + g2 ch̄

2a

∑
j∈�

(
Ê2

j,j+μx
+ Ê2

j,j+μy

)

− g−2 8ch̄

a

∑
�∈�

∑
α,β,

γ ,δ

Re

⎛
⎜⎝ � Û †

γ δ �
Û †

δα Ûβγ

� Ûαβ �

⎞
⎟⎠, (3)

where the coupling g(qc, a) is dimensionless, but scales
nonetheless with the lattice spacing a to ensure that the color
charge qc of a quark stays finite in the continuum limit.
Namely, in D spatial dimensions, it should scale as g(qc, a) ∝
qca

3−D
2 (see Appendix A), assuming that the SU(2) Yang-Mills

theory in 2D is indeed super-renormalizable [90].
As it is, Ĥpure in Eq. (3) is already a frustrated quantum

model even without fermion fields (m0 → ∞). The first term
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represents the SU(2)-electric energy density and corresponds
to the Casimir operator on every link,

Ê2
j,j+μ = |L̂j,j+μ|2 = |R̂j,j+μ|2, (4)

where L̂j,j+μ (resp. R̂j,j+μ) are the group generators of the
left (right) gauge transformations on the link, Hermitian and
satisfying, ∀k ∈ {x, y, z},[

L̂k, R̂k′] = 0,[
L̂k

j,j+μ, L̂k′
j′,j′+μ′

] = iδjj′δμμ′εk′′
kk′Lk′′

j,j+μ, (5)

(same with R̂) with ε the Levi-Civita symbol. The second
contribution to Eq. (3) approximates the SU(2)-magnetic
energy density through the smallest Wilson loops, i.e.,
square gauge-invariant plaquettes made out of parallel
transporters Û .

According to Wilson’s formulation of LGTs, faithful rep-
resentations of the local gauge field algebra satisfy

[
L̂k

j,j+μ, Û αβ

j′,j′+μ′
] = −δjj′δμμ′

∑
γ

σ k
αγ

2
Û γ β

j,j+μ,

[
R̂k

j,j+μ, Û αβ

j′,j′+μ′
] = +δjj′δμμ′

∑
γ

Û αγ

j,j+μ

σ k
γ β

2
, (6)

for σ k Pauli matrices and Û operators rescaled such that
closed Wilson loops preserve the state norm.

To perform numerical simulations of the Hamiltonians in
Eqs. (2) and (3), we need to achieve a finite yet controllable
truncation of the local gauge Hilbert space. As detailed in
Appendix B, we develop an energy-cutoff truncation strategy
that is similar to the quantum link model (QLM) [58], an ap-
proach that has been already adopted for quantum simulation
of LGTs [60–68]. Our formalism is self-consistent, scalable to
arbitrarily large truncations, and applicable to lattices of any
spatial dimension. Nonetheless, all the results of this paper
refer to the smallest nontrivial energetic truncation, which we
label as hardcore-gluon approximation.

A. Hardcore-gluon approximation

In analogy to cold quantum gases, the label hardcore-gluon
aims to stress that the only accessible local configurations
are those states reachable from the bare vacuum with at most
one application of Û . Namely, we consider (0⊗0)⊕( 1

2⊗ 1
2 )

as the gauge field space (dimension 5), where (s) is the irre-
ducible spin-s representation of SU(2) [56,57,59]. This is the
smallest representation ensuring a nontrivial contribution of
all the terms in the Hamiltonian Eqs. (2) and (3). The trunca-
tion keeps the electric field operator Ê Hermitian and protects
the algebra rules of Eq. (6), but Û is no longer unitary (it loses
norm on the largest spin shell). Moreover, it introduces a local
energy cutoff in units of g2a−1 ∝ q2

c . This is the scaling, as
a function of a, of the electric energy coupling and the bare
mass energy coupling.

To accurately represent the full theory, for weak-g, larger
gauge representations are required: this increases the com-
putational challenges but it is still potentially accessible via
TNs. In Appendix B, we discuss in detail how to extend
the effective model to arbitrary truncation for spin shells, in

a practical way that can be readily implemented with TNs
or in an analog/digital quantum simulation. As a final step
of the mapping, we define an effective Hamiltonian (also
discussed in Appendix B), which acts on logical sites built
merging gauge and matter degrees of freedom in a compact
dressed-site formalism [73,85,86]. Correspondingly, as done
in loop string hadrons methods [91], the original non-Abelian
gauge invariance is exactly rewritten into an Abelian, nearest-
neighbor, diagonal selection rule, and the explicit dependence
on the fermionic matter is eliminated [41,87,92].

We also stress that large-g regime can be addressed by
exploiting perturbation theory in 1/g2 (carried out in Ap-
pendix D). In this scenario, the full theory can be mapped to a
good approximation into a spin-like Hamiltonian similar to a
2D anisotropic Heisenberg model [93,94].

III. RESULTS

This section collects the numerical results from the ground
states of SU(2) Hamiltonian in Eqs. (2) and (3), obtained
via tree tensor network simulations (TTN), for small (max-
imum bond dimension, i.e., ED) and intermediate system
sizes. Hereafter, we rescale the Hamiltonian in dimensionless
energy scale units Ĥ0→Ĥ = a

ch̄ Ĥ0 so that the hopping term
has constant coupling 1

2 . Correspondingly, the other Hamilto-
nian terms acquire the rescaled dimensionless couplings m =
m0ac/h̄ = (a/am) (staggered mass), 1

2 g2 = 1
2 (a/ag) (electric)

and 8g−2 = 8(ag/a) (magnetic), where we considered g to
scale as g∝a1/2 in two spatial dimensions (see Appendix A).

If we exclude quantum corrections to the scaling (anoma-
lous dimension [95]), then the continuum limit is located at
g2 = αcm→0 (more quantitatively at a
ag, am). The fixed
dimensionless quark ratio αc = g2/2m = 1

2 (am/ag) does not
scale with the lattice spacing and is solely determined by the
color charge and the bare mass of the quark (see Appendix A).

Together with the ground-state energy density ε =
〈Ĥ〉/|�|, we evaluate the expectation values 〈·〉 of several
local observables onto the computed ground states. Regarding
gauge fields, we track the color-electric and color-magnetic
energy densities

〈E2〉 = 1

|�|
∑
j∈�

∑
μ

〈
Ê2

j,μ

〉
, (7)

〈B2〉 = − 1

|�|
∑
�∈�

Re

〈 � Û † �
Û † Û
� Û �

〉
+ c′, (8)

where |�| and |�| correspond to the total number of sites
and lattice plaquettes. The constant factor c′ = 1

2 in Eq. (8)
sets the minimum of the magnetic energy density to 0. When
considering the matter, it is useful to separately measure the
staggered fermion density for even (+) and odd (–) sites

N± = 1

|�±|
∑
j∈�±

∑
α=r,g

〈ψ̂†
j,aψ̂j,a〉 (9)

where �+ (resp. �−) is the even (odd) sublattice. Tracking
these two quantities gives us immediate access to the den-
sity of quarks (N+) and the density of antiquarks (2 − N−)
separately, according to the staggered fermion formalism.
Similarly, we can define the total particle density (quarks plus
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antiquarks)

� = N+ + (2 − N−) 0 � � � 4 (10)

as well as the baryon number density, (quarks minus anti-
quarks divided by two)

b = 1
2 (N+ − (2 − N−)) 0 � b � 1, (11)

which is a good quantum number, as it is a conserved
quantity tied to the global staggered fermion number con-
servation. We stress that, unlike quantum chromodynamics,
SU(2) Yang-Mills baryons—colorless bound states of mat-
ter particles—are made by two, not three, quarks. Similarly,
antibaryons are made by two antiquarks. Correspondingly,
mesons are made by one quark and one antiquark as normal.

Both mesons and standalone quarks can be detected by
looking at the average matter color density |S|2, that is, the
quadratic Casimir operator of the matter field gauge group
transformations,

|S|2 = 1

|�|
∑

j

〈
Ŝ2

j

〉 = 1

2|�|
∑
j,αβ

〈(ψ̂†
j,αψ̂j,βσαβ )2〉, (12)

where α, β ∈ {r, g}. Our quantitative analysis also includes the
von Neumann entanglement entropy [48]

SA = −TrρA log2 ρA, (13)

where ρA is the reduced density matrix of the partition A,
which we choose exactly to be the bottom (or top) half of the
system.

A. Magneto-electric transition in the pure theory

We first focus on the pure theory (m = ∞) under open
boundary conditions (OBC). According to the results shown
in Fig. 2, the pure Hamiltonian displays two phases driven by
g. In the small-g (magnetic) phase, the plaquette interactions
provide the larger contribution to the energy in Eq. (3). As
such, magnetic fields are depleted, and electric fields display
large quantum fluctuations (see Appendix E) and compensate
for any electric activity. Conversely, in the large-g (electric)
phase, electric fields are energetically expensive and thus de-
pleted in the ground state, while magnetic fields show large
fluctuations.

Unlike the electric phase, which displays marginal
entanglement as the ground state is almost a product state,
the magnetic phase reveals an entanglement that scales with
the length of the bipartition: This behavior, signaling a sharp
area law of entanglement, suggests that the magnetic phase
is likely approximated by a resonant-valence bond state of
plaquettes, akin to the local structure of the ground state of
the toric code [96].

The entanglement entropy approximates a monotonic
function along g, without any peak in the transition between
the two phases. This observation suggests that, for large
bare masses m, this quantum phase transition is either first
order or a crossover. Conversely, as shown in Fig. 14 below,
the small-m scenario of the full theory peaks close to the
transition, and the peak is wider and larger for smaller
masses. We stress that the magneto-electric transition is
compatible with the roughening transition [4,97,98] observed

FIG. 2. Numerical simulations of the pure Hamiltonian in Eq. (3)
with OBC for different lattice sizes. The plots display respectively
(a) the ground-state energy density ε, (b) the entanglement entropy
SA of half the system, (c) the average electric energy contribution
〈E 2〉, with the magnetic energy density 〈B2〉 shown in the inset.

via MC simulations [99,100] and cluster expansion methods
(CEM) [90,101].

B. Baryonic spectrum

For finite m, fermionic matter is included in the full Hamil-
tonian of Eq. (2). The baryon number density b is a quantum
number associated with global symmetry, and can thus be
directly encoded in the TTN ansatz. In this way, we directly
target the ground state within a selected baryon number den-
sity sector [25,85].

The model is symmetric under CP, that is, mirror spatial re-
flection ( jx → Lx − jx) times particle-hole exchange (ψ̂α →
iσ y

αβψ̂
†
β) of staggered fermions. Then, at negative baryon den-

sities b < 0, the ground state is the CP reflected of the ground
state at positive baryon density |b|.

We numerically verified that the global ground state is
found at null baryon density b = 0 for any g and m. As we
can directly tune the baryon number of each TTN simulation,
we have immediate access to the intersector energy gap by
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FIG. 3. (a) Scaling of the intersector gap 
2/|�| in Eq. (14) as
a function of m, for different choices of the g coupling g2 = αcm.
By fitting the power-law scaling of 
2/|�| in the small-m limit, we
obtain the linear dependence on m shown in Eq. (15), whose slope
κ depends on αc as shown in (b). The inset displays the corre-
sponding k∗ of the binding energy 
∗

2/|�| in Eq. (16). Results have
been obtained from simulations of a 2 × 2 lattice in PBC, where

2/|�| = 
|b|=0.5.

calculating the difference


|b| = (εb − ε0)|�| = (ε−b − ε0)|�| � 0

= m|b||�| + 
∗
|b|, (14)

where we also defined the binding energy 
∗
|b| by subtracting

the bare mass of the corresponding excess quarks or anti-
quarks (|b||�|).

A simple yet illustrative analysis is to study the energy
density gap between the one-baryon sector (b = 2/|�|) and
the vacuum sector (b = 0) and then approach the continuum
limit a → 0 at fixed ratio αc = g2/m ∝ q2

c/m0.
As shown in Fig. 3(a), the gap 
2/|�| displays a clear linear

scaling with m = m0c
h̄ a. Namely, we obtain


2/|�| = κ (αc)m = m0c

h̄
κ (αc)a, (15)

implying that the actual baryon mass is mb = κ (αc)m0. As for
all hadrons, its mass is always greater than the bare mass of
its quark components, thus κ � 2. We show this observation
in Fig. 3(b), where we display κ as a function of αc. More
interestingly, in the case of the binding energy 
∗

2/|�| [inset of

Fig. 3(b)], we observe a power-law scaling of κ∗ in αc,

κ∗ = 
∗
2/|�|
m

= κ−2 with κ∗(αc) ∼ 0.13 · α0.96
c (16)

compatible with linear scaling. Such relations confirm that
baryons are actual quasiparticles of the continuum theory and
provide a connection to the bare quark properties (αc, m0).
We carried out this analysis for a finite-size sample, but the
baryon-to-quark mass ratio κ is expected to stay finite even at
the thermodynamical limit.

C. Baryon-liquid phase

Beyond energy gaps, other phase properties can be inferred
when probing the observables in Eqs. (7)–(13). The magneto-
electric transition, driven by g2, remains unaltered for finite m
and even at finite baryon densities b, as shown in Fig. 4.

By contrast, the particle density � reveals an exciting be-
havior as the rescaled quark mass m is lowered. As long as
m is the largest energy scale of the model (m � 1, g2, g−2)
the emergent behavior is relatively trivial, as a system of
gapped hardcore bosons. More precisely, if b � 0 (resp. b�0)
the antimatter (matter) sites are fully emptied, while the
matter (antimatter) sites host exactly b quark-pair hardcore
bosons, mass gapped and with almost flat-band dynam-
ics. The particle density � confirms this interpretation, as
it stays at its minimum possible value of � � �min(b) =
2|b| and having no fluctuations δρ � 0 (see for instance
Appendix E).

The behavior drastically changes at low masses m, in rel-
ative proximity of the transition line g2 ∼ 2(1), as shown in
Fig. 5. In fact, for m lower than a critical value m∗(g), we
see a sharp growth of the particle density ρ and its on-site
fluctuations δρ, which become similar in magnitude (see Ap-
pendix E). Even though we do not have access to long-range
correlation functions at these limited system sizes, this ob-
servation is a strong hint of superfluidity of the phase, where
we expect the quasiparticle excitations to be gapless (in the
rescaled units).

To further investigate the nature of these quasiparticles,
we track the matter-color density |S|2 [see Fig. 7 and
Appendix E]. There is a very narrow region around the
magneto-electric transition where colored matter emerges
(maybe a possible deconfined critical boundary). Elsewhere,
especially towards the continuum limit, the color density stays
|S|2 = 0. We must conclude that the gapless quasiparticles
must be made by on-site pairs of quarks or antiquarks. As
such, we can regard the low-mass phase, m < m∗(g), as a
gapless baryon liquid.

Using a finite-size scaling technique [shown in Fig. 5(b)]
we are able to characterize m∗ as a power-law function of g2,
where a numerical regression yields

m∗(g2) � 0.267(4) × (g2)1.03(2), (17)

which is less than 2σ deviation from a linear scaling. Sup-
pose we now assume that the linear scaling holds, then
there must be a critical quark ratio α∗

c = 3.75(6) that deter-
mines the behavior when approaching the continuum limit
(recall that α∗

c depends only on quark color-charge and bare
mass, see Appendix A). Namely, for strong color charges
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FIG. 4. Numerical results of the full SU(2) Hamiltonian in Eq. (2) with OBC and baryon number density b = 0 (left column) and b = 0.5
(right column). The plots display respectively: [(a),(b)] The ground-state energy density εb, [(c),(d)] the average electric energy contribution
〈E 2〉 in Eq. (7), enlightening the transition between the magnetic (purple fluxes) and the electric (no fluxes) phases discussed in Sec. II A, and
[(e),(f)] the average particle density � in Eq. (10), which appears peaked in the g transition. The pictorial lattice configurations in the finite
baryon density b = 0.5 represent states with b extra gapped hardcore local bosons with low dynamics compatible with the two electric/magnetic
phases.

αc > α∗
c the the baryon fluid at a → 0 is gapless, while for

weak charges αc < α∗
c the baryon fluid is gapped. We recall

that we are working with energy scales rescaled by a, thus
only quasiparticles that we identify as gapless at the contin-
uum limit will survive as finite energy excitations in natural
units.

D. Nonlocal/Topological properties

A relevant analysis that can be carried out in Yang-Mills
theories is the characterization of topological properties at
the critical point, and the investigation of whether some form
of topological order emerges within or without deconfined
phases [102,103]. While the simplified model we considered
does not support the existence of a deconfined phase in prox-
imity to the continuum limit, it is still possible to characterize
some topological properties by evaluating nonlocal order pa-
rameters. As detailed in Appendix C, the pure theory in Eq. (3)
protects a topological symmetry, which exists only under

periodic boundary conditions. Such symmetry is identified
by the topological invariants (string operators) Px,y defined in
Eqs. (C4) and (C5) and forming a Z2×Z2 group.

By selecting each quantum number(s) for this symmetry
group, we can evaluate intersector and intrasector energy
gaps, and verify the presence of quasidegeneracies, signatures
of a potential spontaneous breaking of the topological symme-
try group, and thus of topological order. As shown in Fig. 6,
when approaching the transition point from the large-g phase,
intersector and intrasector gaps reach a minimum, signaling
a possible degeneracy lifted by finite-size effects. However,
both gaps reopen while moving towards the small-g phase.
This observation suggests topological order not to survive
for g2 
 2.

The addition of dynamical matter removes the topological
invariants Px,y from being symmetries of the model, due to the
hopping term inverting the string parity (see Fig. 11 below). In
the large-m limit, where the particle density vanishes, the full
theory approaches the pure one, and the topological invariants
become good quantum numbers again.
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FIG. 5. (a) Scaling of the particle density defined in Eq. (10) as a
function of m for different values of the gauge coupling g. (b) All the
ρ(m) curves of the particle density collapse on a single one simply by
rescaling the mass m by a factor m∗ displaying a power-law scaling
in g2 (see the inset). By fitting this scaling we extract Eq. (17), whose
error bars have been computed exploiting error propagation onto the
covariance matrix of the fit. Results obtained from simulations on a
2 × 2 lattice in OBC at baryon density b = 0.

FIG. 6. Energy gaps between the first excited levels and the
ground state of Eq. (3) in PBC, for a 2 × 2 lattice. Every state belongs
to one of the topological sectors sketched on top: closed red curves
on the blue torus correspond to SU(2) electric-loop excitations.

FIG. 7. Phase diagram (g2, m) of the full SU(2) Hamiltonian in
Eqs. (2) and (3) in the sector with zero baryon number density from
(a) the average electric energy density in Eq. (7), (b) the average
particle density in Eq. (10), and (c) the matter color density defined
in Eq. (12). Phases are marked according to the discussion in Sec. II,
and Appendix E.

E. (2+1)D SU(2) Yang-Mills LGT phase diagram

By collecting all the previous observations, we can outline
in Fig. 7 the full phase diagram of the 2D SU(2) Yang-Mills
Hamiltonian in Eqs. (2) and (3) around zero baryon density
b = 0 (where the baryon mass gap opens).

We observed that the presence of fermionic degrees
of freedom affects only marginally the behavior of the
gauge degrees of freedom of Eqs. (7) and (8), albeit the
magneto-electric transition becomes smoother at lower m
values (see also Appendix E).

For m sufficiently large [m > m∗(g)], matter fields play
a minor role (trivial phase). The Hamiltonian recovers the
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topological properties of the pure theory [Sec. III D (see also
Appendix C)] but no spontaneous topological order survives
outside the magneto-electric transition g2 ∼ 2(1).

Conversely, for small masses m < m∗(g), [104], we ob-
serve an emergent color density of the matter fields, only in
the proximity of the magneto-electric transition. Such obser-
vation is compatible with the existence of a deconfined critical
phase in the region where electric and magnetic fields are
maximally frustrated (see also Fig. 13 below). Elsewhere, the
system behaves like a gapless liquid of colorless baryons and
antibaryons. The collective behavior towards the continuum
limit is particularly intriguing, as it can exhibit both trivial or
baryon superfluid phase depending on the quark ratio αc.

IV. CONCLUSIONS

In this paper, we analyzed, employing TN numerical sim-
ulations, a non-Abelian Yang-Mills LGTs in two spatial
dimensions, with dynamical matter and hardcore gluons. Our
focus on this physical setting is motivated by the wide use
of the latter as a paradigmatic model to address fundamental
properties that could be relevant for high-dimensional QCD.
For instance, standard MC simulations have highlighted in-
triguing effects, such as the dimensional reduction [100,105],
the compatibility with string theory [106,107], and the possi-
bility of accessing features of the continuum theory already at
small correlation lengths [99].

In summary, we have investigated in detail both the zero
and finite baryon number density regimes, where MC methods
are severely limited due to the sign problem. Our results
confirm TN methods as a reliable approach to addressing
the nonperturbative phenomena of LGTs, capable of access-
ing strong coupling regimes as well as finite baryon number
densities.

Despite the truncation of the gauge field, by exploiting nu-
merical estimations of various observables, we inferred quite
a few qualitative and quantitative observations concerning the
zero-temperature phase diagram of the model. First, when ap-
proaching the continuum limit (a → 0 at fixed m0, αc) SU(2)
baryons and antibaryons become the actual quasiparticles of
the theory. Interestingly, baryons seem to be able to condense
into a superfluid phase for a sufficiently large quark ratio
αc � α∗

c (m0), that is, if their color charge is strong enough.
In the parameter regime at g2 ∼ 2(1), where the electric

term and the magnetic term are maximally frustrated, and
electric and magnetic field fluctuations are proportional, we
witnessed more exotic physics: At low quark masses, the
system manifests colorful matter sites, possibly indicating
a quark-deconfined regime, such as a quark-gluon plasma.
At high quark masses, the system encounters a degeneracy
between topological sectors (string symmetries in periodic
boundary conditions), possibly signaling the emergence of a
topological order reminiscent of the toric code.

From a theoretical perspective, the studied Hamiltonian
describes the interaction between flavorless 2-color fermionic
matter and hardcore boson gauge fields [encoded as the
(0⊗0)⊕( 1

2⊗ 1
2 ) representation]. Considering larger represen-

tations in the gauge Hilbert space (following the prescription
detailed in Appendix B) would be a natural extension of this

paper and an improved approximation of the continuous gauge
field theory.

A larger truncation becomes substantial in the small cou-
pling limit, where the Hamiltonian is dominated by the
magnetic interaction, which is nonlocal and nondiagonal in
the representation basis developed in Appendix B. This makes
the model significantly entangled and challenging to be nu-
merically attacked via TNs.

As an outlook of this paper, we plan to develop an
analogous formalism in the magnetic basis, where plaquette
terms are diagonal [54,108,109]. This change of basis should
ease TN simulations, which in our case are limited to fi-
nite system sizes, but anyway larger than the state-of-the-art
of quantum-inspired or quantum simulations of non-Abelian
LGTs [77,110,111]. Accessing larger system sizes would be
a substantial advantage, as it would enable the character-
ization of correlation functions not distorted by finite-size
effects. Correspondingly, larger sizes would allow for study-
ing magnetic effects at small coupling, as in MC simulations
[112–114].

To overcome these limitations (finite gauge representa-
tion and finite system sizes), further developments of the
numerical simulation architecture are also required. On the
hardware side, the possibility of running the computation
on a (pre)exascale HPC environment, while on the soft-
ware side the development of new and improved TN-based
algorithms. The latter will be achieved by exploiting the
augmented TTN ansatz, which drastically enhances the ca-
pability of representing area-law states in high dimensions
[115]. These steps will be fundamental for the long-term
goal of applying TN methods to large-scale lattice QCD in
three spatial dimensions and ultimately address open, secu-
lar research problems, such as confinement and asymptotic
freedom.

From an experimental viewpoint, the dressed-site formal-
ism developed to build the Hamiltonian could be encoded on
quantum hardware. In this perspective, the results and the
methods presented in this paper represent essential tools for
benchmarking and validating current and future experimental
implementations [79,116–118].
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APPENDIX A: DIMENSIONAL ANALYSIS
AND CONTINUUM LIMIT LOCATION

The simplest way to carry out dimensional analysis while
locating the continuum limit in the space of coupling parame-
ters is to consider the electric energy

Helec = εc

2

∫
E2(x)(dx)D (A1)

for a system of D spatial dimensions, together with the Gauss’
Law for electric fluxes∫

E (x) · u⊥(dx)D−1 = qc

εc
. (A2)

From these equations, it follows that, in dimensioned units
(such as SI), the physical dimensions of the color-vacuum
permittivity εc and the color-electric field E respectively read

[εc] = (charge)2(length)2−D(energy)−1,

[E] = (charge)−1(length)−1(energy). (A3)

To recast the problem onto a spatial lattice, we substitute∫
(dx)D → aD

∑
j,μ

, E2(x) → q2
c a2−2D

ε2
c

E2
j,μ, (A4)

where we introduced a lattice spacing a, a quark color-charge
qc, in such a way to obtain a dimensionless E2

j,μ as in Eq. (4).
It is then possible to recast the charge in dimensionless units,
precisely as

g = qc
a

3−D
2√

h̄cεc
, (A5)

yielding the conversion

Helec = q2
c a2−D

2εc

∑
j,μ

E2
j,μ = g2 ch̄

2a

∑
j,μ

E2
j,μ, (A6)

compatible with Eq. (3). Then, if we neglect quantum correc-
tions to the scaling (see by contrast [10,26]), it makes sense to
assume that in the continuum a → 0 limit the color-charge
qc stays finite. This assumption is perfectly reasonable for
the SU(2) Yang-Mills theory in D = 2 spatial dimensions, as
it is known to be a superrenormalizable theory [90]. In this
framework, g2 has to scale linearly with a. One can write

g = √
a/ag, where ag = h̄cεc/q2

c (A7)

is the (inverse square) color charge written as a length scale.
Similarly, the bare mass can be expressed as

am = h̄

cm0
. (A8)

Correspondingly, moving toward the continuum limit a→0,
the electric energy coupling g2ch̄/2a = ch̄/2ag and the mass
coupling m0c2 = h̄c/am stay at the fixed ratio of

αc = q2
c

2m0c2εc
= 1

2

(
am

ag

)
, (A9)

which is determined by the quark bare mass m0 and its color
charge qc. As αc is a dimensionless parameter not scaling with
the lattice spacing, it plays a role equivalent to a fine-structure
constant (in two-spatial dimensions).

From a quantitative point of view, the continuum limit is
reached when a is the smallest length scale present in, or emer-
gent from, the theory. Thus, first of all, we require that a 
 am

as well as a 
 ag. Additionally, any emergent property, such
as nonvanishing order parameters, must occur at wavelengths
longer than a, basically k 
 2π

a (infrared cutoff stability).

APPENDIX B: EFFECTIVE DRESSED-SITE MODEL
OF TRUNCATED SU(2) YANG-MILLS LGTS

As discussed in Sec. I, to make LGT Hamiltonians suitable
for TN methods and quantum hardware, a finite-dimensional
gauge-link Hilbert space is required. Here, we provide a
comprehensive description of an effective truncated SU(2)
Yang-Mills LGT that is valid for lattices of arbitrary spatial
dimensions.

On the trails of [73,85], we dress every physical matter
site with the information related to its adjacent gauge links.
A pictorial scheme of this approach is outlined in Fig. 8:
starting from the original description matter fields on sites and
gauge fields on links, (a) we truncate the SU(2) gauge group
imposing an energy cut-off on the Casimir operator. Then, (b)
we express each truncated gauge link as a pair of fermionic
rishon mode ζ and (c) constrain their link dynamics according
to the original SU(2) algebra. Ultimately, (d) we merge each of
these modes to its adjacent matter site, ending up in a compact
dressed-site formalism. The resulting effective Hamiltonian is
made out of only bosonic operators and directly acts on the
SU(2) gauge invariant Hilbert sub-space.

Such an approach is general and valid for all the possible
incremental truncations of the SU(2) gauge links. Moreover,
in the limit of an infinitely large spin irreducible representa-
tion of the SU(2) gauge group, it recovers all the properties
of the original SU(2) Yang-Mills LGT. Nonetheless, the use
of this approach in the minimal truncation of SU(2) has been
used to achieve nontrivial results as the ones discussed in
Sec. II.

1. Truncating the SU(2) gauge group

Let us start recalling the properties of the original SU(2)
LGT. In the presence of single-flavor matter fields with SU(2)-
color 1/2 {r, g}, expressed in terms of Dirac fermions ψj,α and
located at the lattice sites j ∈ �, gauge fields Êj,j+μ and Û α,β

j,j+μ
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(a) (b)

(c)

(e)

(d)

FIG. 8. Sketched representation of the approach developed in
Appendix B. (a) Starting from the original formulation with matter
sites and SU(2) gauge links, (b) we split the latter in pairs of rishon
modes ζ defined in Eq. (B35), (c) constrain their dynamics with the
SU(2) link symmetry in Eq. (B30), and (d) merge them with matter
fields into dressed SU(2) gauge singlets.

live on lattice links (j, j + μ) and generate the SU(2) gauge
algebra in Eq. (6).

To truncate the continuous SU(2) gauge group, we ex-
press it in terms of the irreducible representation (irrep)
basis [120,121]. As SU(2) admits a quasi-real-representation,
where the fundamental and the antifundamental represen-
tations coincide, ∀j,μ∈�, the gauge Hilbert space of the
(j, j + μ) link can be written as

Hlink = {| j, mL, mR〉}, where − j � mL(R) � j (B1)

is the corresponding third spin component associated with the
left (right) side of the SU(2) link-irrep j. Correspondingly, the
parallel transporter Û αβ

j,j+μ act as follows:

〈 j′m′
Lm′

R|Û αβ | jmLmR〉 = C jmL
1
2 ,α; j′m′

L
C j′m′

R

jmR; 1
2 ,β

(B2)

where the C symbols are the Clebsh-Gordan coefficients for
SU(2) [120]. In hopping terms, the action of Û has to match
the fundamental irrep of the matter field, whose Hilbert space
in the Fock space, can be written as

Hsite = {|�〉, ψ†
r |�〉, ψ†

g |�〉, ψ†
r ψ†

g |�〉}, (B3)

whose action in the irrep basis | j; m〉 corresponds to the fol-
lowing SU(2) charges:

Hsite = {|0; 0〉, ∣∣ 1
2 ; 1

2

〉
,
∣∣ 1

2 ; − 1
2

〉
, |0; 0〉}. (B4)

In this basis, the electric field Êj,j+μ is diagonal, and

〈 j′m′
Lm′

R|Ê2| jmLmR〉 = C2( j)δ j, j′δmL,m′
L
δmR,m′

R
, (B5)

where C2( j) = j( j + 1) is the quadratic Casimir.
Then, the truncation of the gauge fields is applied by im-

posing a cutoff � on the Ê2 spectrum, keeping the irreps j �
jmax such that C2( jmax) � �. Such a truncation preserves the
SU(2) gauge algebra in Eq. (6). Namely, truncated Û αβ fields
satisfy the following left and right gauge transformations:[

L̂ jmax , Ûαβ

] = −
∑

γ

σαγ

2
Ûγ β,

[
R̂ jmax , Ûαβ

] = +
∑

γ

Ûαγ

σγ β

2
, (B6)

where L̂ jmax and R̂ jmax are (truncated) generators of the left-
and right-handed groups of SU(2) transformations. They can
be expressed as the block-diagonal direct sum of spin matrices
S j in consecutive j representations from the smallest ( j = 0)
to the largest one ( j = jmax),

L̂ jmax =
jmax⊕
j=0

(S j⊗1 j ) = diag(S0⊗10, . . . , S jmax⊗1 jmax ),

R̂ jmax =
jmax⊕
j=0

(1 j⊗S j ) = diag(10⊗S0, . . . ,1 jmax⊗S jmax ),

(B7)

in such a way that ∀m, n ∈ {x, y, z}, [Lm
jmax

, Rn
jmax

] = 0. The
truncation keeps Û unitary only as long as it acts on spin shells
with j < jmax. Correspondingly, Wilson loops stay unitary as
long as the outer spin shell j = jmax is nowhere populated.
Namely, it implies that ∀ j < jmax,∑

βγ

Uαβ |0;0,0〉⊗Uβγ | j;mL,mR〉⊗Uγ δ|0;0,0〉 (B8)

displays the same norm of Uαδ|000〉 ∀α, δ, that is 1/
√

2. Ul-
timately, we require the parallel transporter to display spatial
reflection symmetry. Namely,

Û †
αβ = −F̂ÛβαF̂, (B9)

where F̂ is the swap operator on a gauge link,

F̂ =
∑

j,mL,mR

| j; mL, mR〉〈 j; mR, mL| = F̂−1 = F̂†. (B10)

With all these premises, the resulting truncated SU(2) Yang-
Mills Hamiltonian of Eqs. (2) and (3) will act on quantum-
many-body (QMB) states like the following:

|�〉 =
⊗
j∈�

⊗
μ

|site〉j ⊗ |link〉j,j+μ, (B11)

where gauge-link and matter sites degrees of freedom live
respectively in Eq. (B1) and Eq. (B3). Notice that matter and
gauge fields display different statistics. In these terms, we
expect U αβ

j,j+μ to be mutually bosonic, as it commutes with all
the matter-fields operators,[

Û αβ

j,j+μ, ψ̂
(†)
j,α

] = 0 ∀j,∀μ,∀α, β (B12)
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and purely local, as its link-algebra commutes with the one of
any other link,[

Û αβ

j,j+μ, Û γ δ

j′,j′+μ′
] = 0∀j �= j′, μ �= μ′,∀α, β, γ , δ. (B13)

Therefore, any numerical simulation of such an LGT has to
consider both fermionic and bosonic anticommutation rules.
Moreover, among all the possible QMB states in Eq. (B11),
we must select only the ones where the SU(2)-Gauss law is
locally satisfied [see the panel (e) of Fig. 8].

2. SU(2) fermionic rishon modes for arbitrary representations

It is, of course, possible to generalize the rishon decompo-
sition of Û αβ to arbitrary truncation of the maximum allowed
spin shell jmax, although at a (manageable) added cost. Start-
ing from a given spin shell j, we have to separately account
for the action when both rishons are increased to shell j + 1

2 ,
and both are decreased to shell j − 1

2 . We can then decompose
Û αβ as follows:

Û αβ

j,j+μ = ζ̂ α
A,j,μζ̂

β†
B,j+μ,−μ + ζ̂ α

B,j,μζ̂
β†
A,j+μ,−μ, (B14)

where the two ζ -rishon species, A and B, act respectively as
raising and lowering the spin shell of the SU(2) gauge irrep.
Interestingly, they are related to each other as

ζ̂ α
A = iσ y

α,β ζ̂
β†
B , ζ̂

α†
A = iσ y

α,β ζ̂
β
B . (B15)

We can then rewrite Eq. (B14) just in terms of one species,
e.g., B. Dropping the index, i.e., ζ̂ α

B = ζ̂ α , it holds

Û αβ

j,j+μ = iσ y
αγ ζ̂

γ †
j,μζ̂

β†
j+μ,−μ + iσ y

βγ ζ̂ α
j,μζ̂

γ

j+μ,−μ (B16)

or equivalently

Û rr
j,j+μ = ζ̂

g†
j,j+μζ̂

r†
j+μ,−μ + ζ̂ r

j,j+μζ̂
g
j+μ,−μ,

Û rg
j,j+μ = ζ̂

g†
j,j+μζ̂

g†
j+μ,−μ − ζ̂ r

j,j+μζ̂ r
j+μ,−μ,

Û gr
j,j+μ = −ζ̂

r†
j,j+μζ̂

r†
j+μ,−μ + ζ̂

g
j,j+μζ̂

g
j+μ,−μ,

Û gg
j,j+μ = −ζ̂

r†
j,j+μζ̂

g†
j+μ,−μ − ζ̂

g
j,j+μζ̂ r

j+μ,−μ. (B17)

For a chosen truncation jmax of the SU(2) irreducible repre-
sentation, ζ -rishons are defined as follows:

ζ̂ g(r) =
⎡
⎣ jmax− 1

2∑
j=0

j∑
m=− j

χ ( j, m, g(r))| j, m〉〈 j+ 1
2 , m∓ 1

2

∣∣
⎤
⎦

F

(B18)

where the function χ ( j, m, α) reads

χ ( j, m, g(r)) =
√

j ∓ m + 1√
(2 j + 1)(2 j + 2)

. (B19)

It is possible to show that this construction is indeed compati-
ble with the explicit form of the parallel transport reported in
Eq. (B2).

3. SU(2) Rishon Parity

By construction, ζ -rishons anticommute among them-
selves at different orbitals and with matter fields,{

ζ̂ α
j,μ, ζ̂

β

j+μ,−μ

} = 0,
{
ζ̂ α

j,μ, ψ̂j,β
} = 0 ∀α, β. (B20)

To satisfy Eq. (B20), we need to characterize them as fermion
operators properly. For a fermionic quantum many-body sys-
tem with particles arbitrarily sorted along a certain path, any
tensor product of fermionic operators should take into consid-
eration the proper anti-commutation rules. Namely, a generic
fermionic operator F̂j acting on the jth position along the path
reads

F̂j = . . . Pj−2 ⊗ Pj−1 ⊗ Fj ⊗ 1j+1 ⊗ 1j+2 . . . (B21)

where Pj = P†
j = P−1

j is a fermion parity operator that gets
inverted after the action of a fermionic operator

{Pj, Fj} = 0 [Pj, Fj′ �=j] = 0 ∀j, j′ ∈ �. (B22)

Therefore, matter fields admit their notion of parity satisfying
Eq. (B22). For Dirac fermions, we have

ψ̂Dirac =
(

0 1
0 0

)
F

P̂Dirac =
(+1 0

0 −1

)
(B23)

where the subscript F is a reminder that the ψ̂ matrix is meant
“as a fermion”, with the global action in Eq. (B21). Similarly,
as for Majorana fermions, we have

γ̂Majorana =
(

0 1
1 0

)
F

, P̂Majorana =
(+1 0

0 −1

)
. (B24)

Being fermions, also ζ -rishons satisfy Eq. (B20). We define
the SU(2) rishon parity operator Pζ with an even (+1) parity
sector on integer irreps and odd (−1) sector on semi-integer
ones.

Correspondingly, the parallel transporter Û αβ

j,j+μ reads

Û αβ

j,j+μ = iσ y
αγ ζ̂

γ †
j,μζ̂

β†
j+μ,−μ + iσ y

βγ ζ̂ α
j,μζ̂

γ

j+μ,−μ

= + iσ y
αγ

(
ζ

γ †
j,μ · Pζ ,j,μ

)⊗ ζ
β†
j+μ,−μ

+ iσ y
βγ

(
ζ α

j,μ · Pζ ,j,μ
)⊗ ζ

γ

j+μ,−μ. (B25)

4. SU(2) Rishon algebra

Instead of relying on two separate SU(2) generators, L
and R, ζ -rishons have a unique gauge transformation algebra.
The generator of SU(2) gauge rotations upon the ζ -rishon
space reads

T̂ jmax =
jmax⊕
j=0

S j = diag(S0, S1, . . . S jmax ). (B26)

By construction, ζ operators are SU(2) covariant, as they
transform as follows:

[ζ̂ α, T̂] = 1

2

∑
β

σαβ ζ̂ β [T̂, ζ̂ †
α ] = 1

2

∑
β

ζ̂ β†σβα. (B27)

Moreover, T̂ is genuinely local, as for ∀j �= j′ ∀μ �= μ′,[
T̂j+μ, ζ̂ α

j′+μ′
] = [T̂j+μ, ψ̂j′,α] = 0 ∀α ∈ {r, g}. (B28)

We can easily recover the left- and right-handed sides gen-
erators of the gauge field at link (j, j + μ) as

L̂j,+μ = T̂j,+μ⊗1j+μ,−μ, R̂j,+μ = 1j,+μ⊗T̂j+μ,−μ. (B29)

Since in the SU(2) group the fundamental and the antifun-
damental representations coincide, the rishon formalism is

033057-11



CATALDI, MAGNIFICO, SILVI, AND MONTANGERO PHYSICAL REVIEW RESEARCH 6, 033057 (2024)

meaningful as long as the quadratic Casimir operator of the
two sides of the link coincide as in Eq. (4),

|L̂j,+μ|2 = |R̂j+μ,−μ|2. (B30)

Thanks to Eq. (B30), the two rishons of the link are in the
same SU(2) irrep, and the parallel transport in Eq. (B14) coin-
cides with the one in Eq. (B2). Correspondingly, the Casimir
operator of the (j, j + μ) link in Eq. (4) can be expressed as

Ê2
j,j+μ = 1

2 [|L̂j,+μ|2 + |R̂j+μ,−μ|2], (B31)

which looks explicitly symmetric under link reversal.

5. Example: Minimally truncated SU(2) gauge link

As an example, we consider the smallest nontriv-
ial representation of the gauge fields, obtained truncat-
ing the Casimir up to jmax = 1

2 [56,57,122,123]. This
truncation is the one adopted in Sec. II and corre-
sponds to the following five-dimensional gauge-link Hilbert
space:

Hlink = {|0, 0〉, |r, r〉, |r, g〉, |g, r〉, |g, g〉}. (B32)

Within this representation, we can then define the correspond-
ing versions of the truncated gauge fields. As for the parallel
transport, we have [120]

Uαβ = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 +δαrδβg −δαrδβr +δαgδβg −δαgδβr

−δαgδβr 0 0 0 0

−δαgδβg 0 0 0 0

+δαrδβr 0 0 0 0

+δαrδβg 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B33)

where the 1/
√

2 factor ensures that the hopping term pre-
serves the state norm on its support. Correspondingly, the
quadratic Casimir operator in Eq. (4)

E2 = 3

4

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (B34)

Correspondingly, ζ -rishons in Eq. (B18) reduces to

ζ̂r = 1
4
√

2

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠

F

, ζ̂g = 1
4
√

2

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠

F

,

(B35)

with the corresponding parity operator

P̂ζ =
⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ (B36)

and SU(2) rishon generators

T̂ x
1/2 = 1

2

⎛
⎝ 0

0 1
1 0

⎞
⎠ T̂ y

1/2 = 1

2

⎛
⎝ 0

0 −i
i 0

⎞
⎠

T̂ z
1/2 = 1

2

⎛
⎝ 0

1 0
0 −1

⎞
⎠. (B37)

By definition, the spin-Hilbert space of every side of the link
(j, j + μ) hosting a rishon mode is three dimensional,

Hj,+μ = {|0〉, |r〉, |g〉} = Hj+μ,−μ. (B38)

Correspondingly, the Hilbert space of the whole link Hlink =
Hj,+μ ⊗ Hj+μ,−μ has nine states. To recover the original five-
dimensional space in Eq. (B32), we must impose the SU(2)
link constraint defined in Eq. (B30).

6. Constructing dressed site operators

We have then all the ingredients to build a dressed-site
compact representation. In the case of a 2D lattice, one
possible pictorial description of dressed-site states reads∣∣∣∣∣∣∣ζ̂j,−μx

⎛
⎜⎝

ζ̂j,+μy

ψ̂j,rψ̂j,g

ζ̂j,−μy

⎞
⎟⎠ζ̂j,+μx

〉
, where

∣∣∣∣∣∣2
⎛
⎝ 5

0, 1
3

⎞
⎠4

〉
(B39)

is a possible internal ordering to be used as in Eq. (B21)
when constructing composite operators out of matter fields
and rishons inside the dressed site.

We can start rewriting the SU(2) Yang-Mills Hamiltonian
terms in Eqs. (2) and (3) in terms of rishon modes.

(a) Arrival operators. Let us start with the hopping Hamil-
tonian term. Discarding all the prefactors, we can focus on

ĥhopping
j,j+μ =

∑
α,β

ψ̂
†
j,αÛ αβ

j,j+μψ̂j+μ,β

=
∑
α,β

ψ̂
†
j,α

[
ζ̂ α

A,j,μζ̂
β†
B,j+μ,−μ+ζ̂ α

B,j,μζ̂
β†
A,j+μ,−μ

]
ψ̂j+μ,β

= [Q̂†
A,j,μQ̂B,j+μ,−μ + Q̂†

B,jQ̂A,j+μ,−μ],

where we defined two species of arrival operators

Q̂†
A,j,μ =

∑
α

ψ̂
†
j,αζ̂ α

A,j,μ, Q̂†
B,j,μ =

∑
α

ψ̂
†
j,αζ̂ α

B,j,μ. (B40)

These operators’ practical construction must be consistent
with the internal ordering in Eq. (B39).
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(b) Matter number density operators. Matter density oper-
ators acting on the dressed-site basis read

N̂j,r = ψ
†
j ψj,r ⊗ 1j,g

⊗
μ

1j,μ,

N̂j,g = 1j,r ⊗ ψ
†
j ψj,g

⊗
μ

1j,μ. (B41)

They also give access to other observables like

N̂j,tot = N̂j,r + N̂j,g, N̂j,pair = N̂j,rN̂j,g,

N̂j,single = N̂j,tot − N̂j,pair, (B42)

which respectively measure the total matter density and the
corresponding occupancy of pairs or single particles.

(c) Dressed-site Casimir operator. As we assumed via
Eq. (B31) that each of the two ζ -rishons equally contributes to
the link-electric energy density, we can equivalently define a
dressed-site operator summing the Casimir contributions from
its attached rishons,

�̂j = 1

2

∑
μ

T̂2
j,μ. (B43)

(d) Corner operators. Expressing Û as in Eq. (B14), the
plaquette interaction gives rise to 16 different terms,

U αβ

j,j+μx
U βγ

j+μx,j+μx+μy
U γ δ

j+μx+μy,j+μy
U δα

j+μy,j

=

⎛
⎜⎜⎜⎜⎜⎝

� ζ̂
δ†
B,+μx

ζ̂
γ
A,−μx

�
ζ̂ δ

A,−μy
ζ̂

γ †
B,−μy

ζ̂
α†
B,+μy

ζ̂
β
A,+μy

� ζ̂ α
A,+μx

ζ̂
β†
B,−μx

�

⎞
⎟⎟⎟⎟⎟⎠+ . . .

=∗ −

⎛
⎜⎝

CAA
−μy,+μx

CAA
−μx,−μy

| |
CAA

+μx,+μy
CAA

+μy,−μx

⎞
⎟⎠+ . . . ,

where, in ∗, we combined rishons in pairs to form corner
operators like the following:

ĈAA
j,μ1,μ2

=
∑

α

ζ̂ α
A,j,μ1

ζ̂
α†
A,j,μ2

=
∑
α,κ,κ ′

iσ y
α,κ ζ̂

κ†
B,j,μ1

iσ y
α,κ ′ ζ̂

κ ′
B,j,μ2

= −
∑

α

ζ̂
α†
B,j,μ1

ζ̂ α
B,j,μ2

= ĈBB
j,μ2,μ1

,

ĈAB
j,μ1,μ2

=
∑

α

ζ̂ α
A,j,μ1

ζ̂
α†
B,j,μ2

= (
ĈBA

j,μ2,μ1

)†
. (B44)

As for the previous dressed-site operators, the practical con-
struction of corner operators has to be consistent with the
internal ordering in Eq. (B39).

(e) SU(2) link symmetry. Within the dressed-site formal-
ism, the condition in Eq. (B30) requiring the two rishon of
the links to display the same Casimir operator is simply an
Abelian link symmetry. It can be then easily encoded in TN
libraries employing symmetries [25].

FIG. 9. Example of the matter-gauge interaction. Within the
dressed-site formalism, the hopping always involves an even number
of fermions (the matter field plus a rishon mode).

7. The operative defermionized Hamiltonian

We are then ready to rewrite the SU(2) lattice Yang-Mills
Hamiltonian in Eq. (2) making use of dressed-site operators
in Eq.s (B40)-(B44). Namely, we have

Ĥ = − 1

2

∑
j∈�

[
i
[
Q̂†

A,j,+μx
Q̂B,j+μx,−μx

+ (A�B)
]

+ (−1) jx+ jy
[
Q̂†

A,j,+μy
Q̂B,j+μy,−μy

+ (A�B)
]+ H.c.

]
+ m

∑
j∈�

(−1) jx+ jy N̂j,tot + 3g2

16

∑
j∈�

�̂j

− 8

g2

∑
�∈�

Re

(
−ĈAA

� ĈAA
�

ĈAA
� ĈAA

�
+ ĈBB

� ĈAB
�

ĈAA
� ĈAB

�
+ . . .

)
.

(B45)

Not surprisingly, Eq. (B45) is completely bosonic, as all the
dressed-site operators are made out of pairs of fermions (mat-
ter field + rishon, pairs of matter fields, or rishon pairs).
Then, fermionic degrees of freedom are completely hidden
inside each dressed site and there is no more need to face
anti-commutation rules (see Fig. 9).

Such an approach is inspired by [73,85–87] and confirmed
to be reliable when dealing with gauge theories and dynamical
matter interacting in high-dimensional lattices. Therein, due
to the presence of long-range strings of operators, the use of
Jordan-Wigner transformation [124] or parity operators as in
Eq. (B21) is extremely inefficient from a numerical and exper-
imental perspective. So far, only a few alternative techniques
[125–127] have been developed.

8. Projecting dressed site operators onto
the gauge-invariant basis

All the dressed-site operators obtained so far act on a
Hilbert space of dimension

dimHdressed-site = dimHsite × dim(Hrishon)2D, (B46)

where D is the number of spatial dimensions. Luckily, the sub-
set of gauge invariant states is much smaller than Hdressed-site.
Therefore, the effective operators of the operative Hamilto-
nians should be obtained by projecting the obtained ones
on the subspace generated by a gauge-invariant basis M.
Namely, for any dressed-site operator Ô among the previously
defined, the corresponding effective operator Ôeff acting on
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gauge-invariant states reads

Ôeff = MT · Ô · M (B47)

where, for the gauge invariant basis, it holds

M† · M = 1 and (M · M†)2 = (M · M†). (B48)

As for the SU(2) LGT, the gauge-invariant basis M is made
by SU(2) singlets and can be determined as the kernel of the
Gauss law operators GSU (2),

GSU(2) · M =
∣∣∣∣∣∣Ŝmatter +

∑
μ

T̂μ

∣∣∣∣∣∣
2

· M = 0, (B49)

where T̂μ is the ζ -rishon generator along the μ direction and
defined in Eq. (B26), while Ŝ2

matter is the matter color density
introduced in Eq. (12). In the minimal jmax = 1

2 truncation of
SU(2), the gauge-invariant Hilbert space of every dressed site
of the full Hamiltonian has 30 gauge invariant states, whereas,
restricting to the pure theory, the local Hilbert space is nine-
dimensional.

More in general, the resulting operators Ôeff, for any spatial
dimension D and any value of the gauge truncation jmax, are
available in the GitHub repository [128], which also allows
for simulations via exact diagonalization.

APPENDIX C: NONLOCAL/TOPOLOGICAL PROPERTIES

In this Appendix, we address the topological properties of
the (2+1)D minimally truncated SU(2) Yang-Mills LGT. In
particular, we show that the pure theory in Eq. (3) displays a
nonlocal Z2 × Z2 symmetry whose topological sectors closes
as approaching the g transition. Such a topological structure
disappears in the full Hamiltonian Eq. (2) but can be recov-
ered in the infinite mass limit. We stress that the topological
symmetry is completely independent of the chosen truncation
of the SU(2) gauge Hilbert space developed throughout Sec-
tion B.

Let us start searching for some topological invariants. The
right candidates involve the rishon parity operators P̂ζ intro-
duced in Eq. (B36). Thanks to the link symmetry in Eq. (B30),
we can extend such a definition to the whole link (j, j + μ)
and consider the corresponding parity operator P̂j,j+μ. As
aforementioned, it returns (+1) for integer and (−1) for
semi-integer SU(2) representations. In our five-dimensional
(0⊗0)⊕( 1

2⊗ 1
2 ) SU(2) minimally truncated Hilbert space,

such an operator reads

P̂j,j+μ =

⎛
⎜⎜⎜⎜⎝

+1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ∀j, ∀μ. (C1)

By definition, P̂j,j+μ commutes with the Casimir operator in
Eq. (B34), as both are diagonal in the link basis[

P̂j,j+μ, Ê2
j,j+μ

] = 0 ∀j, ∀μ. (C2)

Rather, P̂j,j+μ anticommutes with the parallel transport Û (and
Û †), as its action on the link decreases (respectively increases)

FIG. 10. Pictorial representations of the topological invariants
defined in Eq. (C4) and Eq. (C5) on a lattice � in PBC (i.e., a torus).
The topological sectors of Eq. (C8) are sketched in the yellow panel.
Closed red curves on the blue torus � correspond to SU(2) loop
excitations

the SU(2) link representation by 1/2,

{P̂j,j+μ, Û (†)
j,j+μ} = 0 ∀j, ∀μ ∈ �. (C3)

Then, let us consider our 2D lattice � in PBC and introduce
the consecutive action of the horizontal link parity operators
along a vertical loop in � (see orange links in Fig. 10).
Namely, we define

P̂y ≡
|�y|⊗
k=0

P̂j+kμy,j+kμy+μx

= P̂j,j+μx
⊗ P̂j+μy,j+μy+μx

⊗ . . . (C4)

Correspondingly, the consecutive action of the vertical link
parity operator along a horizontal loop in � (see green links
in Fig. 10) is

P̂x ≡
|�x |⊗
k=0

P̂j+kμx,j+kμx+μy

= P̂j,j+μy
⊗ P̂j+μx,j+μx+μy

⊗ . . . (C5)

It is clear that both the P̂x and P̂y operators remain un-
affected by the action of the electric field along any of their
steps, as their parity does not get flipped. Correspondingly,
any plaquette term B̂2

� of the magnetic interaction applied on
the chain where P̂x or P̂y is evaluated flips the parity of two
consecutive steps of the chain so that the overall sign is left
unchanged. Namely,[

P̂j, Ê2
j,j+μ

] = 0 = [P̂j, B̂2
�] ∀j,� ∈ �. (C6)
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We conclude that P̂x and P̂y are generators of two symmetries
of the pure Hamiltonian in Eq. (3),

[P̂x, Ĥpure] = 0, [P̂y, Ĥpure] = 0, (C7)

and we can refer to them as topological invariants. The whole
symmetry group is then Z2 × Z2, as we have [P̂x, P̂y] =
0 ∀x, y ∈ �. Therefore, any physical state |�〉 of the pure the-
ory in Eq. (3) lies in one of the sectors of P̂x and P̂y sketched in
the yellow panel of Fig. 10. The distinction between different
symmetry sectors is in terms of the number of nonremovable
loop excitations displayed by the state. With loop excitations,
we refer to closed magnetic strings (red circles in the blue
torus of the yellow panel of Fig. 10) displayed by the state
on its topological geometry. In particular, nonremovable loops
are the ones that cannot be removed through homotopies, i.e.,
without modifying the topology of the system.

Then, any state with an even number of horizontal (ver-
tical) nonremovable loop excitations lies in the even sector
of the vertical P̂y (horizontal P̂x) topological invariant. Cor-
respondingly, any state with an odd number of nonremovable
loop excitations lies in the odd sector of the proper topological
invariant. Hence, ∀k ∈ {x, y},

〈�|P̂k|�〉 = λ where λ ∈ P̂x +1 +1 −1 −1
P̂y +1 −1 +1 −1

.

(C8)

Such symmetry explicitly disappears in the full Hamiltonian
Eq. (2) because of the hopping terms, as each of them includes
a single parallel transport Û that flips one link parity along the
line where Px or P̂y are defined. However, in the large-m limit,
where the full Hamiltonian Eq. (2) falls back into the pure
theory in Eq. (3), we expect to recover the same topological
invariants (at least in the ground state).

To check numerically the previous statements, we would
need to measure the topological invariants on the low energy
states of the Hamiltonian in Eq. (B45). Within our dressed site
formalism, Eqs. (C4) and (C5) can be expressed just as chains
of single-site operators along one of the two sides of the links.
Indeed, as long as the SU(2) link-symmetry in Eq. (B30) is
satisfied, the information about every link-parity is present in
both the attached neighboring sites.

As shown in Fig. 6, the topological sectors of the first
four lowest eigenstates of the pure theory in PBC belong
to a different topological sector of Eq. (C8). Moreover, the
eigenstates are sorted in increasing energy according to the
table in Eq. (C8). In particular, E1 = E2 only in the case of
isotropic geometries, as nonremovable loop excitations along
the two directions are equally expensive in energy. In the case
of anisotropic lattices, where |�|x �= |�|y, nonremovable loop
excitations along different axes are shifted in energy.

As for the full theory, we restrict our simulations to the
zero charge density sector of a 2 × 2 lattice in PBC with m ∈
[10−2, 10+2].

In Fig. 11, we look at the distance between the exact even
topological sector of P̂y (+1) and the corresponding value
measured on the ground state. That gap gets larger when ap-
proaching the g transition while vanishing far from the latter.
Moreover, as aforementioned, in the large-mass m limit, we
recover the full symmetry sector of the pure theory.

FIG. 11. Distance between the ground-state Py-topological in-
variant in the full theory and the corresponding one of the pure
theory for different m values (a) and g couplings (b). Results from
simulations in a 2 × 2 lattice with PBC at b = 0.

APPENDIX D: LARGE-g PHASE
VIA PERTURBATION THEORY

In the large-g limit, the zero-density sector of the truncated
SU(2) Hamiltonian can be studied via perturbation theory. In
this regime, we can rewrite Eq. (B45) as

H ∼ [Ĥ0+(Ĥmatter+Ĥx-hop+Ĥy-hop+Ĥplaq)]

=
∑
j∈�

[
ĥ0

j +ĥmatter
j +ĥx-hop

j +ĥy-hop
j +ĥplaq

j,�
]

(D1)

where ĥ0 is the single-site unperturbed Hamiltonian,

ĥ0
j = 3g2

16
�̂j (D2)

while the perturbative terms read

ĥmatter
j = m(−1) jx+ jy N̂j,tot, (D3)

ĥx-hop
j = 1

2

[−iQ̂†
j,+μx

Q̂j+μx,−μx
+ H.c.

]
, (D4)

ĥy-hop
j = 1

2

[−(−1) jx+ jy Q̂†
j,+μy

Q̂j+μy,−μy
+ H.c.

]
, (D5)

ĥplaq
j,� = − 8

g2

(
Ĉ� Ĉ�
Ĉ� Ĉ�

)
, (D6)

where for simplicity, we replaced the two species of arrival
operators in Eq. (B40) and corner operator in Eq. (B44) with
a unique version, Q̂ and Ĉ respectively.

In the large-g limit, we expect the zeroth-order ground-
state |E0〉 not to display gauge activity, as the electric
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(a)

(b)

(c)

FIG. 12. Graphical representation of the first- and second-order
perturbative effects of the magnetic and the hopping terms to the
ground state of Eq. (D2).

interaction is energetically penalized. Then, the effective
Hilbert state of the dressed sites reduces just to states with
singlets in the matter fields. Namely, in terms of the sectors of
the local charge density operator, we have only

|0〉 ≡
∣∣∣∣∣∣

0
0 0 0

0

〉
and |2〉 ≡

∣∣∣∣∣∣
0

0 rg 0
0

〉
. (D7)

Therefore, at the zeroth order, the single-site ground-state |E0〉
can be expressed as a linear combination of Eq. (D7) with
energy E0 = 0,

|E0〉 = α|0〉 + β|2〉 with
√

α2 + β2 = 1. (D8)

At the first perturbative order, we have to separately consider
the action of every single term in Eqs. (D3)–(D6). As for the
plaquette term in Eq. (D6), we expect it to yield a vanishing
contribution. Indeed, if we refer to |E0〉 as a single-plaquette
ground state, then we have

〈E0|ĥplaq|E0〉 = 〈E0|
(

− 8

g2

)(
1√
2

)4

|E1〉

= − 2

g2
〈E0|E1〉 = 0, (D9)

since the plaquette-state |E1〉 is orthogonal to the ground-state
|E0〉, as all its links are electrically active (see Fig. 12). The
factor 1/

√
2 is due to each single corner operator Ĉ acting on

the corresponding empty corner of the plaquette state |E0〉.

As for the hopping terms, we focus on the effective Hilbert
space of the joint neighboring sites j and j + μ,

Heff
j,j+μ = {|0, 0〉, |0, 2〉, |2, 0〉, |2, 2〉} ∀j, ∀μ, (D10)

where we labeled the states |j, j + μ〉 in terms of the only two
possible single-site states in Eq. (D7). First of all, we notice
that |0, 0〉 and |2, 2〉 are completely decoupled from the other
two states, since ∀μ,

Q̂†
j,+μQ̂j+μ,−μ|0, 0〉 = Q̂†

j,+μQ̂j+μ,−μ|2, 2〉 = 0. (D11)

Then, the only relevant matrix elements of the effective (per-
turbed) hopping-Hamiltonian are the following ones:

Q̂†
j,+μQ̂j+μ,−μ|0, 2〉 = (−1)2|1, 1〉

Q̂j,+μQ̂†
j+μ,−μ|2, 0〉 = (−1)2|1, 1〉

∀j, ∀μ (D12)

where |1, 1〉 is figured in Fig. 12, while the (−1) factor is
due to the action of a single arrival operator Q̂(†)

j,μ defined in
Eq. (B40) on the states in Eq. (D7). Clearly, since

〈0, 2|1, 1〉 = 0 = 〈2, 0|1, 1〉, (D13)

none of the hopping Hamiltonians Eqs. (D4) and (D5) do
provide any first-order correction to Ĥ0 in Eq. (D2).

The only relevant first-order term is the one related to
Ĥmatter, as it acts just on the matter fields without yielding
any gauge activity. Moreover, it removes the ground-state
degeneracy of Eq. (D8) by favoring a staggered configuration
to the lattice, namely,

|E1(j)〉 = δ1,(−1)jx+jy |0〉 + δ−1,(−1)jx+jy |2〉 (D14)

where δi j is the Kronecker delta function. However, for suf-
ficiently small values of the mass m, the staggering effect is
irrelevant, and the degeneracy of Eq. (D8) is restored. There-
fore, in the small-m limit, the first relevant perturbative order
is the second one.

As for the plaquette interaction, the second-order does not
remove the ground-state degeneracy, as it completely restores
|E0〉 providing just an energy shift. Namely, the second-order
perturbative corrections to the single-site ground-state energy

FIG. 13. Quantum fluctuations of the gauge observables in
Eqs. (7) and (8) as a function of the g coupling. Results obtained
from simulations of a 2 × 2 lattice in OBC.
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FIG. 14. Simulations of the full SU(2) Hamiltonian in Eq. (B45) on a 2 × 2 lattice with OBC in the b = 0 [(a),(c),(e)] and b = 0.5
[(b),(d),(f)] baryon number density sectors. The plots display respectively: (a) (b) the average electric and magnetic energy contributions 〈E 2〉
and 〈B2〉 (inset) enlightening the transition between the magnetic and the electric phases discussed in Sec. II A; (c) (d) the average particle
density � in Eq. (10), which appears peaked in the g transition; (e) (f) the entanglement entropy SA of half the system, with a peak in the g
transition, which is larger for smaller m while disappearing for large ones.

reads

Eplaq
2 = 1

4
〈E0|ĥplaq[E0 − H0]−1ĥplaq|E0〉

= 1

4

(
− 2

g2

)
〈E0|ĥplaq[E0 − H0]−1|E1〉

= − 1

2g2
〈E0|ĥplaq

⎡
⎣−3g2

16

∑
j∈�

�̂j

⎤
⎦

−1

|E1〉

= − 1

2g2

(
−8 · 3g2

16

)−1

〈E0|ĥplaq|E1〉

= − 1

3g4

(
− 2

g2

)
〈E0| =〉 2

3g6
(D15)

where [Ô]−1 is the Moore-Penrose inverse and the initial 1/4
factor is put to get the single-site energy out of the one of a
plaquette.

As for the hopping terms, because of Eqs. (D11) and (D12),
∀k ∈ {x, y}, the only relevant terms are the diagonal ones

1
2 〈0, 2|ĥhop[E0 − Ĥ0]−1ĥhop|0, 2〉

= 1
2 〈2, 0|ĥhop[E0 − Ĥ0]−1ĥhop|2, 0〉 (D16)

and the off-diagonal ones,

1
2 〈0, 2|ĥhop[E0 − Ĥ0]−1ĥhop|2, 0〉

= 1
2 〈2, 0|ĥhop[E0 − Ĥ0]−1ĥhop|0, 2〉. (D17)

The factor 1/2 is put to take into account just the single-site
energy out of the corresponding two-site energy. As for the
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FIG. 15. Simulations of a 2 × 2 lattice in PBC. The plots display respectively: (a) the average particle density ρ and (b) its quantum
fluctuations δρ; (c) the matter color density |S|2 and (d) its quantum fluctuations δ|S|2. All the observables are studied as a function of the
square coupling g2 for different mass values m ∈ [10−4, 101].

hopping along the x axis, we have

1

2
〈0, 2|ĥx-hop[E0 − Ĥ0]−1ĥx-hop|0, 2〉

= 1

2
〈0, 2|hx-hop[E0 − Ĥ0]−1

(
− i

2

)
|1, 1〉

=
(−i

4

)
〈0, 2|ĥx-hop

[
−3g2

16

(
�̂j+�̂j+μx

)]−1

|1, 1〉

=
(−i

4

)
〈0, 2|ĥx-hop

(
− 8

3g2

)
|1, 1〉

= 2i

3g2
〈0, 2|

(
i

2

)
|0, 2〉 = − 1

3g2
. (D18)

Analogously proceeding, we have

1

2
〈2, 0|ĥx-hop[E0 − Ĥ0]−1ĥx-hop|0, 2〉 = 1

3g2
. (D19)

Then, the second-order perturbative x-hopping term reads

ĥeff
x-hop = − 1

3g2

⎛
⎜⎜⎝

0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0

⎞
⎟⎟⎠

= − 1

6g2

[
σ̂ x

j σ̂ x
j+μy

+ σ̂
y
j σ̂

y
j+μy

− σ̂ z
j σ̂ z

j+μy

]
. (D20)

As for the y-hopping Hamiltonian, one can prove that

ĥeff
y-hop = 1

3g2

⎛
⎜⎜⎝

0 0 0 0
0 +1 +1 0
0 +1 +1 0
0 0 0 0

⎞
⎟⎟⎠

= − 1

6g2

[
σ̂ x

j σ̂ x
j+μy

+ σ̂
y
j σ̂

y
j+μy

+ σ̂ z
j σ̂ z

j+μy

]
. (D21)

Summarizing, in the large-g limit, the Hamiltonian in
Eq. (B45) can be approximated as

Ĥ eff∼ − 1

6g2

∑
j,μx

[
σ̂ x

j σ̂ x
j+μx

+σ̂
y
j σ̂

y
j+μx

−σ̂ z
j σ̂ z

j+μx

]

− 1

6g2

∑
j,μy

[
σ̂ x

j σ̂ x
j+μy

+σ̂
y
j σ̂

y
j+μy

+σ̂ z
j σ̂ z

j+μy

]
, (D22)

which looks similar to a 2D quantum Heisenberg Hamiltonian
apart from the staggering factor in the kinetic term σ̂ zσ̂ z.

APPENDIX E: EXACT RESULTS AT SMALL SIZES

As pointed out in Sec. II, addressing the 2D SU(2) LGT on
large system sizes is significantly demanding, especially in the
small-g (magnetic) phase and close to the g transition, because
of the large entanglement displayed by the model. Never-
theless, by exploiting small system simulations at maximum
TTN bond dimension (equivalent to ED), we can provide
compelling features of both the pure and the full SU(2)
theories.

As for the pure theory, we show in Fig. 13 that the
magnetic and the electric phases discussed in Sec. II A are
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FIG. 16. Convergence tests for (a) the pure and the (b) full Hamiltonian in Eq. (B45) on a 4 × 4 lattice in OBC. The plots display the scaling
of the ground-state energy density ε (up to its minimal value εmin) as a function of the bond dimension χ adopted in the TTN simulations.

characterized by strong fluctuations

δE2 =
√

〈E4〉 − 〈E2〉2
, δB2 =

√
〈B4〉 − 〈B2〉2

, (E1)

of the gauge observables in Eqs. (7) and (8) respectively. In
particular, the magnetic (small-g) phase is characterized by
large and strong fluctuating electric energy, while the electric
(large-g) phase displays large and strong fluctuating magnetic
energy.

As for the full SU(2) theory, to select the chosen baryon
density sector b∗ we add to Eq. (B45) the term

Ĥb = η̃

⎛
⎝∑

j∈�

∑
α

ψ̂
†
j,αψ̂j,α + 2 − 2b∗

⎞
⎠

2

(E2)

where η̃ plays the role of a large penalty coefficient that
increases the energy associated with baryon number densi-
ties differing from b∗. When exploiting TTN methods, the
chosen symmetry sector is externally selected by directly
encoding the Abelian symmetry U (1) in the TTN ansatz
[23,25,129,130].

In Fig. 14, we focus on the local observables in Eqs. (7),
(8), and (10) and the entanglement entropy in Eq. (13) under
OBC at b = 0 and b = 0.5. By varying m ∈ [10−1, 100], we
notice that, for both the baryon-density sectors, the larger
the mass m, the sharper the transition between the magnetic
(small-g) and the electric (large-g) phases.

Moreover, as discussed in Sec. III C, in between the two
phases, the model is characterized by a baryon-liquid phase,
where the particle density � defined in Eq. (10) reveals peaked
and strong fluctuating [check also Figs. 15(a) and 15(b)], and
the peak is higher and larger for smaller m values.

Correspondingly, for fixed m values, the entanglement en-
tropy of half the lattice is constant in the magnetic phase,
peaked in the g transition, and tending to a default value (0 for
b = 0 and 1 for b = 0.5) in the electric phase. In the limit of
large masses, this peak in the entropy progressively vanishes,
and we recover the (crossover/first-order) transition observed
in Fig. 2 for the pure theory.

Within the Baryon-liquid phase, we can also notice a non-
null value of the color density defined in Eq. (12), which is

related to the presence of single particle non-null expectation
values. As shown in Fig. 15, |Ŝ|2 displays a peak in the prox-
imity of the magnetic-electric g transition and is supported
by fluctuations δ|Ŝ|2 of the same order of magnitude of the
observable itself. In these terms, this phase represents the only
candidate for displaying deconfinement. At any rate, it does
not survive in the continuum limit, as it remains bound in
intermediate g values.

APPENDIX F: TENSOR NETWORK METHODS

Tensor network simulations performed in this paper have
used the tree tensor networks ground-state variational search-
ing algorithm [25,50,51]. Given the Hamiltonian of the
considered system, the unconstrained binary TTN is con-
structed, and the ground state is determined by optimizing
all the tensors in the tree network with a fixed bond
dimension χ .

In detail, we exploit the Krylov subspace expansion tech-
nique to numerically solve the local eigenvalue problem for
each tensor [25]. This step is carried out efficiently by apply-
ing the Arnoldi method of the ARPACK library [131]. The
optimization is sequentially iterated for all the tensors in the
tree network. The whole procedure (sweep) is repeated as long
as the total energy does not converge to a minimal value. As
for the single-node optimization of the tensor network, we set
the Arnoldi algorithm to discard singular values smaller than
10−4. Then, the convergence of the whole TN algorithm relies
on absolute and relative convergence thresholds 
εabs = 10−5

and 
εre� = 10−5 defined respectively as


εabs ≡ |εn−1 − εn|, 
εre� ≡
∣∣∣∣εn−1 − εn

εn

∣∣∣∣, (F1)

for energy values εn−1 and εn arisen from consecutive opti-
mization sweeps n − 1 and n. Ultimately, the maximal bond
dimension χ adopted in the reported TN simulations is always
obtained by looking at the single-site energy relative conver-
gence of 10−4 (see Fig. 16).
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