
PHYSICAL REVIEW RESEARCH 6, 033055 (2024)

Physics-based approach to developing physical reservoir computers
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Reservoir computing leverages the dynamic properties of a fixed, randomly connected neural network to
facilitate simplified training and enhanced computational efficiency. Many forms of physical reservoir computers
have been proposed. In this paper, we use a three-dimensional (3D)-printed reservoir computer as the design
environment, develop analytic models to describe its performance, and validate the models through simulations.
This approach offers practical insights for designing physical reservoirs with targeted computational capabilities
and enables the assessment of the influence of reservoir parameters such as scale or material choice, on
performance metrics, including speed and power consumption. Additionally, the proposed approach may be
employed to optimally design physical reservoir computers to solve specific problems. This work contributes to
the understanding of physical RC systems by providing a detailed analysis of the physical basis that connects
computational performance with multidomain physical interactions at the device level. The methods and results
from this work not only propel the development of future 3D-printed physical RC systems but also serves as a
framework for evaluating and designing diverse physical RC models based on other approaches.
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I. INTRODUCTION

Reservoir computing has emerged as a transformative ap-
proach in artificial intelligence, characterized by leveraging
the rich dynamics of a fixed, randomly connected neural
network, termed the reservoir. Reservoir computing (RC)
simplifies the training process, enables efficient computation,
and provides insights into how information processing can be
achieved in complex systems. The reliance of RC on a fixed
reservoir has motivated the research on developing reservoir
computers based on physical systems [1–3]. Over the past
decade, physical reservoir computing has garnered consid-
erable attention as an alternative to commonplace machine
learning techniques. Diverging from conventional approaches
that rely on digital systems, physical reservoir computing
adopts a distinct methodology where the intrinsic character-
istics of physical systems and their responses are utilized in
lieu of complex digital computations [4–7]. At its essence,
physical RC capitalizes on the inherent dynamics of these
physical systems to nonlinearly transform input data into a
high-dimensional feature space where the system dynamics
provides a fading memory of recent events. Context is often
determined through a weighted sum of the responses of the
coupled nonlinear elements within the reservoir. Training is
achieved using simple and robust algorithms, such as linear
regression, to determine the weights for the readout layer [8].
In physical computing, specifically, training may be achieved
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in ways similar to digital computers, where internal coupling
between the computation nodes is adjusted based on training
data [9]. Within the realm of physical RC, various physi-
cal systems, including electronic circuits [10], lasers [11],
mechanical systems [12–14], or photonic systems [15–17],
have been exploited to create a reservoir—a dynamic platform
where complex calculations take place.

One significant advantage of physical RC lies in the inte-
gration of machine learning directly with sensors [18]. Two
application cases are possible within this realm: (1) near-
sensor computing, where the quantified information form a
sensor is processed by a contextual processor that is inte-
grated near the sensor, and (2) in-sensor processing, where
the physical characteristics of sensors are used to carry
out the computations needed for generating context. Within
this framework, an integrated physical computer can provide
several advantages over postprocessing of signals in digital
domain, including reducing system complexity (and number
of components), miniaturization, compatible manufacturing,
and potentially lower power consumption and higher speed,
among others [19]. However, the challenges will be the same
as with other analog computers, such as a lack of flexibility
(i.e., updating) for the core network (the output layer weights
can be updated) and a potentially more challenging design
process.

The research on physical RC has led to numerous inves-
tigations into both its theoretical foundations and practical
applications [3,20–22]. Physical RC has proven to be effective
in tackling a wide range of problems, including speech recog-
nition, image processing, and controlling nonlinear systems
[23–25]. Its potential extends to the development of the next
generation of edge processors, which could operate within
sensing networks, enabling energy-efficient and real-time
information processing capabilities [18]. Nonlinear behav-
iors in physical systems often arise from the properties of
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FIG. 1. A representation of echo state networks.

materials or devices, and the concept of fading memory can
be linked to the relaxation time of these components within
the system in response to external stimuli [26,27]. However,
the dynamic behavior of devices can deviate from that of a
single component when dealing with complex networks of
connections that interconnect computational elements. While
many physical RC systems use electrical connections for in-
formation exchange, there is also potential to employ other
types of physical coupling, such as thermal coupling in
integrated reservoirs that incorporate temperature-sensitive re-
sistors (i.e., thermistors).

Despite the growing interest in physical RC systems, most
of the presented work to date has focused on utilizing phys-
ical systems with desired responses in order to perform the
operations without much attention to the underlying physics.
However, the physics governing the operation of the reser-
voirs, and particularly, methods to design and optimize their
operations, have remained understudied. This is partly due to
the vast variations between the implementations of physical
RC, but it is also because, like many new exploration areas,
the focus has been on the demonstration of the utility of RC
principles through different media.

This paper builds upon our earlier research involving three-
dimensional (3D)-printed computers, where we reported the
development of a physical RC based on common 3D printed
medium [28]. In this work, we provide the physical basis re-
quired to bridge the gap between computational performance
of the final system and the multidomain physical interactions.
Results of this work can be readily applied to design physical
reservoirs with a desired level of computational capability or
help evaluate the effect of different reservoir parameters, such
as its scale, on various performance parameters, such as speed
or power consumption. Our approach presents the insight to
not only develop future 3D-printed physical RC but also a
roadmap for design and evaluation of other physical RC.

II. MATERIALS AND METHODS

Most of the digital implementations of RC are based on
echo state networks (ESNs), a particular type of recurrent
neural network (RNN), as shown in Fig. 1 [29,30]. ESNs
utilize an input layer that scales temporal input and applies it
to a fixed, randomly generated reservoir of nonlinear neurons

with a fading memory of the input history and fixed internal
weights, represented as Wres, to perform computations. The
reservoir state at each point of time is therefore determined by
a time-dependent nonlinear mapping of the input signals. A
trainable readout layer Wout, is trained and reconfigured for
various temporal applications [31]. The operation of an RC is
described through

x(n) = (1 − α)x(n − 1) + α f [Win u(n) + Wresx(n − 1)],

y(n) = Wout x(n), (1)

where x(n) and x(n−1) are the reservoir states’ vectors in the
current and previous time steps, u(n) and y(n) represent the
input and predicted output at time step n, f is the nonlinear
mapping function, and α is the leaking rate. It is important to
note that in digital or software implementations, the weight
matrix that governs the behavior of the reservoir remains time
independent, just like in the case of feedforward and recurrent
neural networks. The fading memory requirement in digital
hardware RC is implemented through cascaded logic gates,
adders, and/or flip flops in a cyclic topology [32].

In physical implementation of RC, the weights between
the neurons are determined by their coupling and energy ex-
change between them. Therefore, physical RC differs in its
behavior from digital RC as the weight matrices for physical
RC are often time dependent due to the dynamics of the
physical systems. The weights may also exhibit nonlinearity
due to the response of the materials or physical components
in the reservoir. The time-dependent weight matrix allows the
physical system to adapt dynamically to input signals, enhanc-
ing its computational power, which can be utilized to expand
the capabilities of physical RC. However, proper modeling of
such intricate issues remains a challenge that we try to address
using our 3D printed RC as a tool.

A. Physical model for electrothermal RC

Resistors made of materials with temperature-dependent
resistivity are promising candidates to be used as neurons
in physical RC. These devices exhibit nonlinearity when
self-heated by passing a current through them. Moreover,
nearby devices may exchange energy in electrical or thermal
domains. We demonstrated two such implementations using
off-the-shelf thermistors [33] and 3D printed RC [28]. For the
3D-printed RC, for instance, resistors made from conductive
PLA (i.e., a composite of carbon black and polylactic acid)
exhibit a highly nonlinear temperature-dependent resistivity
[28]. This results in a nonlinear current-voltage response for
such devices where their self-heating causes a change in their
temperature, and thus, their resistance varies nonlinearly. As
the temperature rises, the polymer matrix of the material
softens, and the carbon particles may agglomerate or settle,
increasing resistance. Moreover, since heat-dissipation is a
relatively slow process, these devices will retain informa-
tion in thermal domain and exhibit complex behavior such
as hysteresis. Figure 2 presents a schematic of a 3D-printed
resistor along with its nonlinear behavior observed during a
current sweep. Each current value was injected for 10 s. This
setup ensures that the thermistor heats up adequately within
each current value, exhibiting nonlinear behavior and show-
casing hysteresis. This phenomenon highlights the presence of
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FIG. 2. (a) A schematic of a 3D-printed resistor using conductive
PLA, where the nonlinearity comes from nonlinear, temperature-
dependent resistivity in a neuron. (b) The 3D model of the resistor
encapsulated inside the regular PLA. (c) The nonlinear behavior in
the response of the 3D-printed resistor.

sufficient thermal memory within the system while behaving
nonlinearly.

Such neurons can be 3D printed with the desired spa-
tial distribution limited by the printing process, allowing
for their coupling through heat exchange. Therefore, for
3D-printed reservoirs, the weight matrix can be derived by
understanding the thermal coupling among the resistors. The
temperature distribution in the medium encompassing the re-
sistors changes in response to the self-heating of the resistors,
as neurons heat up when current passes through them (heat
generation) and heat is distributed within the surroundings
(heat transfer). The amount of heat transfer and temperature
distribution depends on the boundary conditions of the resis-
tors within the reservoir.

B. Static thermal response of RC

An analytic model for the static response of a reservoir
comprising four 3D-printed resistors is developed first. This

structure models resistors from electrically conductive PLA
embedded in/on an electrically insulating substrate of reg-
ular PLA. Four such resistors, as illustrated in Fig. 3, are
considered in this model that represent different potential
combinations in a 3D printed reservoir. To simplify the anal-
ysis, it is assumed that each resistor takes the form of a
long cylinder with a radius ri. The primary objective here
is to study the heat transfer within the medium surrounding
these resistors. Furthermore, we assume that the temperature
of the resistors does not change significantly across its cross
section, so the average temperature for each resistor is equal
to the temperature at its contact surface with the regular PLA,
i.e., T (ri) (see the Supplemental Material [34]). Each resistor
receives an input signal in the form of current density, J
(in A

m2 ), and the response of these neurons is quantified in
terms of its temperature (in K). It is important to note that
these neurons are not electrically connected. For the static
analysis of heat distribution, the electrical conductivity of the
neurons is considered to be insensitive to temperature, which
does not affect the results. The focus is to gain insight into
the thermal coupling between these neurons, including their
strength and the factors that influence the strength of these
connections.

The first step involves deriving the temperature distribu-
tion inside a regular PLA piece resulting from the heating of
the resistors. This requires solving the heat transfer problem
within the PLA to understand how heat spreads and impacts
the overall temperature distribution. In the subsequent stage,
the temperature at the location of each neuron (or resistor)
is calculated, taking into consideration the influence of all
the other neurons. Since we assume that the medium behaves
linearly, we can apply the principle of superposition by calcu-
lating the temperature distribution from each heated resistor
on its own and summing up the results after repeating the
analysis for all resistors.

FIG. 3. The heat transfer problem with four resistors/neurons. Resistors are long cylinders with extremely small radiuses compared to
medium thicknesses.
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FIG. 4. (a) Simplification of heat transfer for resistor/neuron 1. It is assumed that the heat transfer ceases at the top surface of the PLA,
where it contacts the surrounding air, allowing application of a thermal isolation boundary condition. Thermal isolation at a specific point can
be caused due to the system’s symmetry. Therefore, instead of solving a half-cylindrical problem, the general heat conduction problem for a
fully cylindrical structure would result in the temperature distribution due to the self-heating of resistor 1. (b) Simplification of heat transfer for
resistor/neuron 3. To accurately represent the thermal isolation boundary condition at the top surface in contact with the air, we can consider a
projection of resistor 3 along the negative z axis.

To obtain the temperature distribution, the general heat
conduction problem using a cylindrical coordinate system
needs to be solved [35]:
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where κPLA, ρm, and Cp represent the thermal conductivity,
mass density, and specific heat capacity of the PLA material,

respectively. The term
ė
egen signifies the heat generated within

the PLA piece. As we are considering the static case, the term
on the right side of the equations is zero.

It is worth noting that while heat is indeed generated within
the resistors, the internal resistor volumes are excluded from
these equations, and instead a specific heat flux boundary
condition is applied at the interface between the resistor and
the substrate. Mathematically, this boundary condition is ex-
pressed as −κPLA

dT
dr = q, where q represents the heat flux at

the point where the neuron contacts the PLA and the heat
generated in the resistor is conducted away from the contact
surface. The heat flux for each resistor with a radius of ri is
determined as qi = ρe Ji

2 ri, with ρe representing the electrical
resistivity (see the Supplemental Material [34]). Additionally,
it is assumed that the substrate under study has substantial
dimensions compared to the resistors such that at a location
far from the resistors, the temperature reaches the ambient
temperature, denoted as Ta. This assumption allows for the
application of a constant temperature boundary condition,
specifically, T (r = tPLA) = Ta. Furthermore, assuming negli-
gible heat transfer to the ambient through the top surface of
the substrate, a thermal isolation boundary condition for this
surface may be used. This assumption simplifies the solution
as the substrate may be assumed to be the symmetric copy
of itself across the top surface. Therefore, instead of solving a
half-cylindrical problem, we can address the general heat con-
duction problem for a fully cylindrical structure, as depicted

in Fig. 4(a). This simplifies the problem to

1

r

d

dr

(
κPLAr

dT
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)
= 0. (3)

This equation needs to be solved for two separate cases
of resistors that are printed on the surface and those that are
embedded within the substrate. Solving this equation for resis-
tor 1, considering the condition −κPLA

dT
dr |

r=r1
= q1, yields the

temperature distribution for the region within the PLA where
r1 < r < tPLA as given by

�T1(r) = ρe J2
1 r2

1

κPLA
ln

(
tPLA

r

)
. (4)

Here, �Ti(r) = Ti(r) − Ta, which represents the relative
temperature of the resistors with respect to the ambient tem-
perature. To obtain an approximate temperature of resistor #1,
one can substitute r = r1 into Eq. (4) and add the ambient
temperature. It is important to highlight that the area through
which heat transfers from resistor 3 and its transfer to the
surrounding area differ from the previous case. For resistor
3, a thermal isolation boundary condition is applied at the
top surface in contact with the air. This boundary condition
is accurately represented by considering a projection of re-
sistor 3 along the negative z axis, as depicted in Fig. 4(b).
As a result, the heat flux boundary condition for resistor 3
and its projection is adjusted, −κPLA

dT
dr |

r=r3
= ρe J3

2 r3 and

−κPLA
dT
dr′ |r′=r3

= ρe J3
2 r3. Solving Eq. (3) for the region

where r3 < r, r′ < tPLA − Rd yields

�T3(r) = ρe J2
3 r2

3

κPLA
ln

(
tPLA

2 − Rd
2

r r′

)
, (5)

where Rd represents the distance of resistor 3 from the top
surface, and r and r′ represent the coordinate system centered
at the midpoint of resistor 3 and its projection, respectively.
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Now, it is simpler to use the Cartesian coordinate system
for the temperature distribution for the remaining resistors.
We maintain the origin of the Cartesian coordinate system at
the center of resistor 1. This leads to the following substitu-
tions in the equations:

(i) By replacing r =
√

y2 + z2 in Eq. (4), the temperature
distribution due to self-heating of resistor 1 for the region
where r1 <

√
y2 + z2 < tPLA is determined as

�T1(y, z) = ρe J2
1 r2

1
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ln

(
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y2 + z2

)
. (6)

(ii) By replacing r =
√

y2 + (z − Rd )2 and r′ =√
y2 + (z + Rd )2 in Eq. (5), the temperature distribution

due to self-heating of resistor 3 for the region where
r3 <

√
y2 + (z − Rd )2 < tPLA − Rd is determined as
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3 r2
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)
.

(7)
Now that the problem has been solved for two types of tem-

perature distributions within the material—neurons located
on the top layer and those buried at any depth from the top
surface—the temperature distribution for the remaining resis-
tors/neurons in the reservoir can be described as follows:

(iii) By replacing y = y − R12 in Eq. (8), the temperature
distribution due to the self-heating of resistor 2 for the region
where r2 <

√
(y − R12)2 + z2 < tPLA) is
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2 r2

2
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)
. (8)

(iv) By replacing y = y − R34 in Eq. (9), the tempera-
ture distribution due to the self-heating of resistor 4 for the
region where r4 <

√
(y − R34)2 + (z − Rd )2 < tPLA − Rd is

given as
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4 r2
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The principle of superposition then implies the overall
temperature distribution as

�T (y, z) =
4∑

i=1

�Ti(y, z). (10)

Now, with the equation described above, the temperature
of each resistor/neuron by incorporating their respective lo-
cations into the equation and considering all sources of heat
generation results in the static model of the reservoir as⎡
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Here �T is the vector describing the neuron responses and
J2 represents the input signal. Wres is the static weight matrix
of the physical reservoir. Considering ri � Ri j , where i �= j,
this weight matrix is given as
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⎡
⎢⎢⎢⎢⎣

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

⎤
⎥⎥⎥⎥⎦ = ρe

κPLA
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2
1 In

( tPLA
r1

)
r2

2 In
( tPLA

R12

)
r2

3 In
( t2

PLA−R2
d

R2
13

)
r2

4 In
( t2

PLA−R2
d

R2
14

)
r2

1 In
( tPLA

R12

)
r2

2 In
( tPLA

r2

)
r2

3 In
( t2

PLA−R2
d

R2
23

)
r2

4 In
( t2

PLA−R2
d

R2
24

)
r2

1 In
( tPLA

R13

)
r2

2 In
( tPLA

R23

)
r2

3 In
( t2

PLA−R2
d

2r3Rd

)
r2

4 In
( t2

PLA−R2
d

R34R′
d

)
r2

1 In
( tPLA

R14

)
r2

2 In
( tPLA

R24

)
r2

3 In
( t2

PLA−R2
d

R34R′
d

)
r2

4 In
( t2

PLA−R2
d

2r4Rd

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The unit of the weight matrix is �.K
W m4. The weight

matrix is contingent upon the spacing between the re-
sistors/neurons, represented as Ri j . As may be seen, the
coupling between two resistors is strongly influenced by
the inverse of the distance between them. Another impor-
tant factor that affects the coupling between the neurons
is the thermal conductivity of the substrate, κPLA. Last, it
is the resistivity of the resistors/neurons, ρe, that influences the
weights. A temperature-independent resistivity yields a lin-
ear reservoir matrix, while nonlinear temperature-dependent
resistivity gives rise to nonlinear interactions among the re-
sistors/neurons (not modeled in the above). Furthermore, a
key to have a rich reservoir (diverse weight elements) is
to design distinct resistors/neurons with varying radii. In-
deed, in a 3D-printed reservoir, the resolution of the printer
serves as a key determinant of the achievable coupling weight
resolution, as it dictates the physical dimensions governing
thermal coupling. While this paper primarily focuses on the

physical dimensions determining thermal coupling, it is es-
sential to acknowledge the role of potential random electrical
connections in enhancing the richness of the weight matrix.
These connections introduce an additional degree of freedom
in the design, allowing for greater flexibility in generating
diverse weight matrices. Although this aspect has not been
extensively discussed in this paper, it is an important consid-
eration that can significantly influence the performance of the
reservoir.

C. Dynamic thermal response of RC

Understanding how a reservoir reacts to time-series data
is crucial. The transient heat transfer analysis helps model
and analyze the dynamic behavior of a reservoir comprising
thermally connected neurons. Self-heating resistors exhibit
a transient response characterized by two thermal time con-
stants: the internal time constant (τint) and the substrate time
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constant (τsub). The internal time constant represents the du-
ration it takes for the heat generated inside the resistors to
stabilize inside the resistor volume. The substrate time con-
stant signifies how fast the heat is conducted away from the
resistors’ contact surface into the substrate. The thermal time
constants rely on the physical properties of the thermistor
and substrate, including their dimensions, thermal mass, and
thermal conductivity. In a reservoir with effectively large
dimensions for the substrate compared to the resistors, the
substrate time constant would dominate the response time and
determine the transient behavior of the neurons and its design.
Therefore, understanding factors that affect τsub are important.
We introduce thermal diffusivity for the PLA as αth = kPLA

ρmCp
. If

we assume that temperature changes mostly in the radial di-
rection (r), and we express temperature as a product of radial
and temporal components, i.e., T (r, t ) = R(r) T (t ), solving
Eq. (2) by focusing on the time-dependent part gives us

T (t ) = Tf + (Ti − Tf )e−αthλ
2t ,

R(r) = B1BesselJ (0, λr),
(13)

where B1 is an amplitude coefficient, τ = 1/αthλ
2 is the ther-

mal time constant, Ti and Tf are the resistor’s initial and final
temperatures, and BesselJ (0, λr) is the Bessel function of the
first kind of order zero, a common solution to cylindrical heat
conduction equations. To determine the value of λ, appropri-
ate boundary conditions need to be applied and the problem
solved numerically. A numerical solution for τth is given as
[35]

τth = Lch
2

2.42αth
, (14)

where Lch represents the characteristic length of the sub-
strate, defined as the distance from the resistor to the surface
of the PLA piece with a constant temperature. For resis-
tors in the top layer, Lch equals tPLA. For resistors/neurons
deeper within the PLA, Rd,i, the characteristic length is Lch =√

(tPLA − Rd,i )2 + (tPLA + Rd,i )2 =
√

tPLA
2 + Rd,i

2.
This approach helps estimate thermal time constants,

which approximate the reservoir’s timescale. This timescale

FIG. 5. A sample reservoir with a general, random configuration
defining the neurons in the top layer and in-depth of PLA.

determines the length of events the reservoir can detect and,
consequently, the frequency at which the reservoir output
should be read [28]. Even though Eq. (13) describes the
transient response of a reservoir with single resistor, the en-
tire reservoir, comprising multiple interconnected elements,
exhibits a distinct dynamical behavior. When all resistors gen-
erate heat in a linear medium, the dynamic response of the
reservoir can be described as

T (t ) =
4∑

j=1

Tf , j + (Ti, j − Tf , j )e
−t/τ j . (15)

This equation accounts for the combined thermal effects
across the different resistors and their respective time con-
stants τ j . Therefore, the dynamic temperature of the resistors
evolves from an initial condition of �Ti(y, z, 0) as⎡

⎢⎢⎣
�T1

�T2

�T3

�T4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

�Ti,1e−t/τ1

�Ti,2e−t/τ2

�Ti,3e−t/τ3

�Ti,4e−t/τ4

⎤
⎥⎥⎦ + Wres(t )(4×4)

⎡
⎢⎢⎣

J2
1

J2
2

J2
3

J2
4

⎤
⎥⎥⎦. (16)

It is important to note that the initial condition is not
considered constant, especially in the case of a time-series
input signal. Equation (16) accounts for the extent to which
the resistors are heated through the introduction of any input
signal. This ensures that subsequent time steps in the time
series are dependent on the temperatures reached in previous
steps. The time-dependent weight matrix Wres(t ) is given by

Wres(t ) =

⎡
⎢⎢⎢⎣

W11(1 − e−t/τ1 ) W12(1 − e−t/τ2 ) W13(1 − e−t/τ3 ) W14(1 − e−t/τ4 )

W21(1 − e−t/τ1 ) W22(1 − e−t/τ2 ) W23(1 − e−t/τ3 ) W24(1 − e−t/τ4 )

W31(1 − e−t/τ1 ) W32(1 − e−t/τ2 ) W33(1 − e−t/τ3 ) W34(1 − e−t/τ4 )

W41(1 − e−t/τ1 ) W42(1 − e−t/τ2 ) W43(1 − e−t/τ3 ) W44(1 − e−t/τ4 )

⎤
⎥⎥⎥⎦. (17)

The value of τ j depends on different neurons and input signal conditions. Importantly, as time (t) approaches infinity, Wres(t )
converges to the static weight matrix derived in the previous section, mathematically represented as

Lim
t→∞Wres(t ) = Wres. (18)

Despite the reservoir’s continuous operation, it usually interacts with a digital system whose output is sampled at specific
time intervals �t . A discrete time representation of the weight matrix is

Wres, �t =

⎡
⎢⎢⎢⎣

W11(1 − e−�t/τ1 ) W12(1 − e−�t/τ2 ) W13(1 − e−�t/τ3 ) W14(1 − e−�t/τ4 )

W21(1 − e−�t/τ1 ) W22(1 − e−�t/τ2 ) W23(1 − e−�t/τ3 ) W24(1 − e−�t/τ4 )

W31(1 − e−�t/τ1 ) W32(1 − e−�t/τ2 ) W33(1 − e−�t/τ3 ) W34(1 − e−�t/τ4 )

W41(1 − e−�t/τ1 ) W42(1 − e−�t/τ2 ) W43(1 − e−�t/τ3 ) W44(1 − e−�t/τ4 )

⎤
⎥⎥⎥⎦ (19)
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TABLE I. Specific dimensions used for the COMSOL Multiphysics simulations.

Parameter Definition Value

r1 and r2 radius of resistors/neurons in the top layer 5
√

2 (µm)
r3 and r4 radius of resistors/neurons in the second layer 5 (µm)
tPLA thickness of the 3D-printed piece PLA 10 (mm)
WPLA width of the 3D-printed piece PLA 100 (mm)
LPLA length of the 3D-printed piece and the resistors/neurons 100 (mm)
R12 and R34 shortest spacing between two neighboring resistors/neurons in one layer 2 (mm)
R13 and R24 shortest spacing between two neighboring resistors/neurons in two different layers 2 (mm)

after each time step �t . When �t is significantly smaller than
the thermal time constants (�t � τ j), the weight matrix ap-
proaches zero, indicating that the input at the current time step
has little influence on the temperature distribution within the
reservoir. Consequently, the reservoir retains the previous re-
sponse, albeit slightly attenuated, and interneuron interactions
become negligible. Conversely, when �t is much larger than
the thermal time constants (�t � τ j), the input at the current
time step essentially determines the temperature distribution
in the system, overriding past events. This analysis highlights
the importance of time response considerations with regard
to the suitability of a physical reservoir computer to solving
problems. For a given physical reservoir, the choice of sam-
pling frequency ( fs = 1

�t ) plays a crucial role in determining
its performance.

D. Generalization of the model

The first step in developing a general model is to bridge the
gap between theoretical assumptions and real-world condi-
tions. An adjustment is made to the existing model to account
for the actual dimensions of the 3D-printed resistors. These
resistors have rectangular cross sections, which differ from the
cylindrical cross sections assumed in the earlier model (see the
Supplemental Material [34]).

A systematic approach involving superposition can be
employed to create a comprehensive model accommodating
N resistors/neurons within a reservoir. This method enables
the derivation of a generalized model capable of address-
ing diverse configurations and scenarios. Specifically, this
model considers a range of neurons within the reservoir,
each contributing to the overall temperature distribution. For
resistors/neurons situated in the top layer, the temperature

distribution in the region where ri <

√
(y − Rl,i )2 + z2 < tPLA

can be expressed as follows:

�Ti(y, z) = ρe J2
i r2

i

kPLA
ln

⎛
⎜⎝ tPLA√

(y − Rl,i )2 + z2

⎞
⎟⎠. (20)

In this equation, Rl,i signifies the lateral distance of the neu-
ron from a coordinate system’s origin. For resistors/neurons
located deeper within the PLA piece, at a distance Rd,i from
the top surface, the temperature distribution in the region

where ri <

√
(y − Rl,i )2 + (z − Rd,i )2 < tPLA − Rd,i is deter-

mined as

�Ti(y, z) = ρe J2
i r2

i

kPLA

⎡
⎢⎣ln

⎛
⎜⎝

√
tPLA

2 − Rd,i
2√

(y − Rl,i )2 + (z − Rd,i )2

⎞
⎟⎠

+ ln

⎛
⎜⎝

√
tPLA

2 − Rd,i
2√

(y − Rl,i )2 + (z + Rd,i )2

⎞
⎟⎠

⎤
⎥⎦. (21)

These definitions are depicted in Fig. 5 for a sample
reservoir configuration. Their spatial arrangement and ther-
mal interactions then determine the temperature distribution
within the reservoir.

III. RESULTS AND DISCUSSION

Evaluation of the static response. This analysis focused
on simulating a reservoir consisting of four resistors/neurons,
as illustrated in Fig. 3, with specific dimensions outlined in
Table I. For reference, we used specific material properties
compiled in Table II. To carry out these simulations, we
utilized COMSOL Multiphysics® 5.5 software. Simulating the

TABLE II. Material characteristics.

Material PLA Conductive PLA

Tm (K) 60–65 60–70
Tg (K) 180–220 170
ρm (kg/m3) 1210–1240 1220
Cp (J/kg K) 1180–1210 1180
κ (W/m K) 0.12–0.15 0.18–0.2
εr 2.88–3.48
ρe (� cm) 30–115
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FIG. 6. Comparing analytic model and simulations for resistors 1 and 3. �T of (a) resistor 1 and (d) resistor 3 in z direction when y = 0.
Simulated temperature distribution for resistor 1 (b) compared to its analytic model (c). Simulated temperature distribution for resistor 3 (e)
compared to its analytical model (f).

phenomenon of self-heating in a resistor requires the integra-
tion of multiple physics modules including electric currents
from the AC/DC module, heat transfer in solids from the heat
transfer module, and a coupled physics module known as
electromagnetic heating. Current densities (Ji) were applied
through the resistors/neurons, with each having a value of Ji =
0.127 ( µA

(µm)2 ) for i = 1, 2, 3, 4. Figure 6 compares the results
of numerical simulations against the analytic model derived
earlier, illustrating good agreement between the two models.
To further validate the analytical model, the simulation results
for the temperature distribution within the reservoir were also
studied. This comparison revealed a consistent temperature
distribution in both the y and z directions, further affirming
our analytical model’s reliability.

Evaluation of the dynamic response. Reservoir dynam-
ics when all resistors are self-heated is illustrated in Fig. 7.
To study how systems react over time, we use MATLAB to
process simulation data. This involves using a combination
of two exponentials in our computations, which helps us
automatically calculate thermal time constants. It is worth
noting that resistors within the same layer tend to exhibit
similar time constants, but there can be noticeable differ-
ences in dynamics between neurons located in distinct layers.

FIG. 7. Dynamics of the reservoir under different conditions
when all resistors are self-heated together.
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FIG. 8. Flowchart of the MATLAB script implementing a sample reservoir using the developed general model in the previous sections along
with its step-by-step outcomes. The reservoir is configured first, isothermal contours are visualized, both static and dynamic weight matrices
are derived based on a specified input, and a comparison between the temperature across each resistor/neuron within the physical reservoir to
the corresponding temperatures obtained from COMSOL Multiphysics simulations are made.

Moreover, we expected a τth value of 225 s for a resistor
on the top layer and 234 s for a resistor situated 2 mm
below the top surface in a 10-mm-thick PLA. However, a
deviation from the calculated values for the thermal time
constants was observed. This deviation may be attributed
to the fact that, although the dynamics of an individual
neuron/resistor are defined by Eq. (13), the entire reser-
voir exhibits a dynamical behavior similar to predictions of
Eq. (15).

IV. MODEL UTILITY IN DEVELOPING PHYSICAL RC

Based on the model developed in the above, a MATLAB

script was developed to design and evaluate the perfor-
mance of various 3D-printed RCs. The code asks the user
for parameters necessary for constructing and developing
3D-printed physical reservoirs. These parameters include the
number of neurons, neuron locations (can be specified or will
be randomly assigned), neuron dimensions, and PLA reser-
voir dimensions. With these inputs, the script configures a
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FIG. 9. (a) Comparison of the reservoir built in MATLAB environment using the developed general model and the simulated reservoir in
COMSOL Multiphysics in response to a time series signal in the input. (b) Performance of the reservoir built in MATLAB environment using the
developed analytical model with the reservoir simulated in COMSOL Multiphysics in solving a nonlinear problem.

reservoir. Drawing from insights derived from the gen-
eral model, the script employs superposition to generate
isothermal contours, which visually represent the temperature
distribution within the reservoir. The script also generates both
static and dynamic weight matrices based on input signals.
This enables an evaluation of how the reservoir processes
information over time, offering insights into its computa-
tional behavior. To validate our theoretical model and ensure
its practical utility, the MATLAB script conducts a crucial
verification step. It compares temperature data across each
resistor/neuron within the developed physical reservoir using
the described model above in MATLAB with corresponding
data obtained from COMSOL Multiphysics simulations. This
verification process strengthens the theoretical foundation of
our model and validates its real-world applicability. The entire
process is shown in Fig. 8.

We introduced a time series as an input to the model and
simulations, allowing us to observe the dynamic response of
the reservoir system in real time. Temperature distribution
across the reservoir and individual neurons was monitored,
providing a comprehensive view of the system’s behavior
over time. The results, as demonstrated in Fig. 9(a), demon-
strated a high level of agreement between the simulation
and theoretical model, affirming the model’s ability to cap-
ture the reservoir computing system’s dynamics in real-world
scenarios.

Finally, we successfully addressed a nonlinear
problem with memory constraints, known as nonlinear
autoregressive moving average (NARMA), using the outlined
reservoir. NARMA is a discrete-time temporal task with an
nth-order time lag, given by [36]

y(t ) = α y(t − 1) + β y(t − 1)
n∑

i=1

y(t − i)

+ γ u(t − n) u(t − 1) + δ, (22)

where α = 0.3, β = 0.05, γ = 1.5, and δ = 0.1 [36].
Performance assessments were conducted, showcasing the
model’s comparability with reservoirs constructed in both
the MATLAB environment and simulations, as illustrated in
Fig. 9(b). This alignment underscores the practical applica-
bility and relevance of our theoretical model in real-world RC
applications.

Importance of sampling frequency. This study delves into
the utility of Eq. (16), which highlights the reliance of the
physical reservoir’s performance on the sampling frequency
fs. In Fig. 10(a), the developed model predicts the temper-
ature across each resistor under varying fs, while applying
the same time-series input current to the reservoir. Noticeably,
reducing fs provides the resistors with more time to heat up,
resulting in higher temperatures. This underscores the sig-
nificance of sampling frequency in time-series data analysis.
Fig. 10(b) presents the NARMA1 task under different fs. A
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FIG. 10. Impact of the sampling frequency on (a) temperature across the neurons and (b) NARMA1 performance. This also underscores
the model’s proficiency in capturing the time-dependent behavior of thermal reservoirs.

higher frequency captures less nonlinearity, leading to poorer
performance in predicting target values. However, at lower
frequencies, the resistors experience greater nonlinearity, ex-
celling in tracking the target signal. In addition, a memory
capacity task was conducted to evaluate the system’s ability
to retain information over time. Short-term memory capacity
in the RC systems is crucial for applications requiring recol-
lection of past events. This is based on the system’s capability
to recall past information using linear combinations of its
internal states. Short-term memory capacity (MC) is evalu-
ated by computing the td -delay memory capacity, MC(td ), as
introduced and derived in [27]:

MC(td ) = cov2[u(t − td ), ytd (t )]

σ 2[u(t )] σ 2[ytd (t )]
, (23)

where u(t − td ) is a delayed input and ytd = u(t − td ) is its
reconstruction at the output of the RC system. cov represents

the covariance of the two time series under study, and σ2

is the variance of the time-series signals, either the input or
the output of the linear readout layer. The overall short-term
memory capacity is then approximated as

MC =
∞∑

τ=1

MC(td ). (24)

The results in Fig. 11 demonstrate a direct correlation
between sampling frequency and memory capacity: increas-
ing the sampling frequency enhances the system’s memory
capacity, allowing it to retain more information from past
observations. Conversely, decreasing the sampling frequency
reduces the system’s memory capacity, limiting its ability to
preserve historical data.

Power consumption and speed. During our experiments, we
3D printed a reservoir with 18 neurons (∼324 weight values)
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FIG. 11. Memory capacity of the physical reservoir under dif-
ferent sampling frequencies. Note that this MC is for four neurons
solely. By increasing the number of recurrently connected neurons
inside the reservoir, the MC increases.

leveraging a thermal time constant of ∼60 s and average
power consumption of 7 mW/neuron (i.e., 0.4 mW/weight)
[28]. Since the reservoir is a passive network, it remains
inactive until an input signal is present. The average power
consumed by the network is measured by the amount of
power drawn from the input sources. Subsequently, the power
consumption per neuron is calculated by dividing the total

power by the number of neurons in the network. We em-
ployed a common 3D printer to fabricate a processor with
promising computing capabilities processing a sample ev-
ery 10 s. Exploring advanced 3D printing technologies like
microstereolithography (micro-SLA), with minimum feature
sizes in micrometers, holds promise. By reducing each dimen-
sion by a factor of 10 (from mm to sub-mm range), power
consumption could decrease by 3 orders of magnitude to 7
µW/neuron (i.e., 0.4 µW/weight), and thermal time constant
decreases by 2 orders of magnitude to ∼600 ms, offering
a processing speed of ∼10 samples/s. Transitioning from a
3D-printed reservoir to silicon offers a remarkable leap, due
to smaller feature sizes and better thermal properties reducing
the thermal time constant by at least 5 orders of magnitude,
resulting in a maximum timescale of ∼0.6 ms and a minimum
processing speed of 10 000 samples/s. An average power con-
sumption of 7 nW/neuron (i.e., 0.4 nW/weight) is achievable
by dimension reduction from a range of mm to tens of µm
using readily available microfabrication technologies, which
can be translated to 0.4 pJ/weight for silicon reservoirs. This
shift underscores the pivotal advantages of silicon reservoirs
compared to a standard feedforward neural network running
on the most efficient supercomputer on the Green500 list
consuming 15 pJ/weight [37].
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