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Exploring the full spectrum of novel behaviors that a system can produce can be an intensive task. Sampling
techniques developed in response to this exploration challenge often require a predefined metric, such as distance
in a space of known order parameters. However, order parameters are rarely known for nonequilibrium systems,
especially in the absence of a diverse set of example behaviors, creating a chicken-and-egg problem. Here, we
combine active and unsupervised learning for automated exploration of nonequilibrium systems with unknown
order parameters. We iteratively use active learning based on current order parameters to expand the library
of behaviors and relearn order parameters based on this expanded library. We demonstrate the utility of this
approach in Kuramoto models of increasing complexity. In addition to reproducing known phases, we reveal
previously unknown behavior and related order parameters, and we demonstrate how to align search with human
intuition.
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I. INTRODUCTION

One of the first exciting things to do with a new physical
system is to go exploring—to tune parameters and see what
unexpected behaviors the system is capable of. Through open-
ended exploration, we build intuition for the right variables to
describe the system, which can subsequently be used for more
systematic investigation.

In many contexts, for example in driven materials with
space- and time-dependent activity [1–6], parameter spaces
are growing increasingly high-dimensional, and the output
behaviors increasingly complex. Methods to automate ex-
ploration of such novel high-dimensional systems, including
active learning [7–9], evolutionary searches [10,11], and
Bayesian optimization [12–15], require predefined metrics,
such as distances in a space of known order parameters, to
characterize system behavior. However, methods to construct
order parameters typically assume data sets with sufficient
diversity of behaviors [16–23], which are difficult to gather
without using automated exploration methods.

This leads to a chicken-and-egg problem; exploring be-
haviors in high-dimensional systems requires good order
parameters, but finding good order parameters means ob-
serving behaviors of sufficient diversity. If we choose bad
order parameters, we potentially miss rich behaviors that were
not anticipated by the metric choice, a particular concern
in nonequilibrium many-body systems with generically un-
known order parameters [23–26].
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Is it possible to perform automated exploration of high-
dimensional parameter spaces without assumptions on what
the order parameters are for an interesting output behavior?
Data-driven dimensionality reduction techniques and, sep-
arately, active learning have addressed components of that
challenge, but they are individually not sufficient to tackle the
challenge as a whole.

Here, we demonstrate how a curiosity-driven search al-
gorithm can efficiently explore nonequilibrium many-body
systems, even in the absence of previously known order pa-
rameters. We adapt methods that combine the strengths of
both active learning and dimensionality reduction [27–30].
We learn order parameters through unsupervised dimension-
ality reduction on a library of currently known behaviors; we
then sample in the space of current order parameters to reveal
new behaviors and iterate. Crucially, we search in the learned
low-dimensional latent space trained on dynamical behaviors
rather than the high-dimensional parameter space; in this way,
active learning efficiently samples richer parts of parameter
space.

We apply this framework to a paradigmatic class of dynam-
ical systems—the Kuramoto model of coupled oscillators and
its variants [31,32]. We first use curiosity search to benchmark
against known results on simple Kuramoto model variants
with one or two parameters, which are nevertheless capable
of producing rich nonequilibrium behaviors. We then explore
a three-population Kuramoto model with 10 adjustable pa-
rameters, and we reveal previously uncharacterized behavior
and corresponding order parameters. Finally, we demonstrate
how curiosity search can be formulated to naturally align with
human intuition in order to target multipopulation behaviors
in a 10-population Kuramoto model with 100 parameters.

II. METHOD

The curiosity sampling algorithm has three key compo-
nents shown in Fig. 1: a high-dimensional parameter space,
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FIG. 1. Overview of the curiosity-driven search for novel behav-
iors. We consider a system with a high-dimensional parameter space
(yellow) whose potential behaviors and order parameters are initially
unknown. Search is initialized by collecting behaviors corresponding
to a uniform sampling of parameter space. These dynamical behav-
iors are used to train an autoencoder to obtain a low-dimensional
latent space of behaviors (purple) parametrized by putative order
parameters. We then seek a new behavior by randomly sampling the
learned latent space (open red circle). We map the target new latent
space point back to parameter space (solid red circle), evaluate the
resulting behavior, and thus expand our library of known behaviors.
Autoencoder is retrained every K training rounds on a random subset
of previously sampled behaviors, thus improving the learned latent
space and order parameters. (Green, purple, and blue regions of
parameter and latent spaces indicate qualitatively distinct behaviors.)

a high-dimensional space of raw system behaviors, and a
low-dimensional latent space of behaviors whose axes func-
tion as order parameters.

We begin from a small library of randomly sampled param-
eters and their associated dynamical behaviors. We then train
a dimensionality reduction method on the assembled library of
behaviors, creating a latent space characterizing those behav-
iors. Next, we search for new target behaviors in this emergent
latent space of behaviors created by dimensionality reduction.
The new target behaviors are mapped back to new points in
parameter space to sample. We evaluate the behaviors at these
parameters, thereby expanding our library of known behav-
iors. Finally, we retrain the dimensionality reduction so the
latent space can incorporate information from the expanded
library of behaviors, and we begin the whole cycle again.

As the cycles of exploration and dimensionality reduction
repeat, more behaviors are observed, and the latent space
becomes a more refined and accurate representation of those
behaviors.

The protocol outlined above has several choices in the
details of how different steps are implemented for a given sys-
tem. For example, in the Kuramoto models we will study here,
each behavior takes the form of N time series of oscillator
phase with M subsampled time steps, where N is the number
of oscillators. For each subsampled time, we construct the
phase space density across the N oscillators and mean-center
it, thereby accounting for permutation invariance and global
mean rotations.

For dimensionality reduction, we use a convolutional vari-
ational autoencoder [33] (VAE) with relatively simple encoder
and decoder architectures. In part to guard against cherry-
picking model architectures and latent space dimensionality,
we also compare the results of the VAE-based reduction to
other non-neural net methods. See Appendix C for further
details.

Additionally, the sampling and backmapping of latent
space points to parameter space can occur through several
different methods. In what follows, we choose a particularly
simple implementation of the backmapping; when sampling
a new latent space goal, we look to the nearest previously
sampled latent space point, and we identify its associated
parameter space point. We can then make a random step from
this nearest-neighbor parameter space point. In this way, we
make a guess at what points in parameter space are likely
to produced a dynamical behavior with our targeted latent
space goal. Our choice for latent space sampling is similarly
simple; we uniformly sample the bounding hypercube of the
current set of collected latent space points. For further details,
see Appendix B, and refer to the subsection Limitations and
Extensions for a discussion of other latent space and backmap-
ping methods.

Relation to other methods

There is a long history of methods to explore and optimize
in high-dimensional design spaces with known order parame-
ters. These include evolutionary algorithms [10] and Bayesian
optimization [12–15], which define auxiliary functions based
on desired structural properties in order to direct parameter
sampling. Excitingly, active learning [7,34] has been used
for exploration in autonomous chemical laboratories [8,9,35],
though again within a space of predetermined metrics of inter-
est. These methods are complementary to the curiosity search
described in our paper as ways for exploring the latent space
of order parameters once it is constructed.

For data-driven order parameter construction in physi-
cal systems, there has been an explosion of work within
the past five years. Beginning with canonical lattice models
[17,36,37] and more recently in systems hosting topological
[38], MBL [39], complex crystalline [19], or activity-driven
phases [23,24], deep-learning-based dimensionality reduction
has been employed to extract order parameters from a diverse
set of system microstates. In the straightforward approach to
order-parameter construction, a data set of sufficient richness
is required for training.

Our approach applies iterative algorithms originally devel-
oped in the field of intrinsically motivated robotics [27,40],
which have been used more recently in the context of cellular
automata [29] and gene regulatory networks [30].

III. BENCHMARK RESULTS IN KNOWN SYSTEMS

As a first benchmark for performance of a curiosity-driven
search in a simple, well-characterized setting, we turn to the
original formulation of the Kuramoto model [31]:

θ̇i = ωi + K

N

N∑
j=1

sin(θi − θ j ), (1)
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FIG. 2. Curiosity search efficiently reveals all known phases and order parameters for the uniformly connected Kuramoto model. (a) In the
canonical Kuramoto model, N oscillators are coupled to favor alignment (coupling strength K). Number of oscillators N = 33. (b) Compared
to a random search of K space, our algorithm samples a less common desynchronized state at small K more frequently. A vertical line indicates
phase boundary Kc computed for N → ∞. Behaviors and the associated colors are computed from latent space. (c) Autoencoder latent space
at the start and end of curiosity search; the final latent space identifies a one-dimensional structure for oscillator behavior, indicating one useful
order parameter. Clustering in latent space helps to parse collective behaviors, corresponding to distinct regions of parameter space. (d) Phase
coherence examples from dynamical states identified through latent space clustering. Examples are chosen by identifying the samples closest
to the cluster median in latent space. (e) Curiosity search increasingly focuses on sampling lower K as training proceeds. (f) Curiosity search
works with other dimensionality reduction methods, consistently generating better parameter sampling than random sampling (no latent space).
Error bars indicate variance over 10 replicates.

where the ωi are drawn independently from a distribution
N (0, 0.1), and the coupling strength K > 0 is the one tunable
parameter [Fig. 2(a)]. We set N = 33 for our simulations.

In the limit of infinite N , this model is characterized by a
critical coupling strength [32], which is Kc = 0.16 for our pa-
rameters. For K < Kc, the oscillators move independently of
each other, creating a desynchronized behavior. For K > Kc,
the oscillators begin to synchronize and move together with
the same phase.

Let us pretend that we are approaching this system without
prior knowledge about the behaviors that can arise, and where
these transitions occur. In other words, the only information
we have about the system is that there is one parameter that
we can manipulate, which is K . One way to approach explo-
ration of this system would be to randomly sample values
of K at values of O(1), and observe the behavior at these
sampled values. With this approach, only a small fraction of
the observed behaviors would be desynchronized, since Kc is
O(0.1).

As a test case that should be easy, we perform curiosity
search in the one-dimensional parameter space of coupling
strength. We find that, in the final ensemble of collected
parameters, samples are drawn with frequencies weighted
towards couplings of O(0.1), where we expect the infinite-N
synchronization transition to occur [Fig. 2(b)]. We can inter-
pret this weighted sampling as the curiosity search having
learned to distinguish the synchronized and desynchronized
phases. The latent space also provides evidence for learning of

the Kuramoto model order parameter, as the final latent space
is a 1D manifold with the same ordering as the parameter
space. Hierarchical agglomerative clustering, as a post-data-
collection step, readily reveals this ordering by showing how
contiguous regions of latent space are mapped to parameter
space [Fig. 2(c)].

Individual examples of dynamical behaviors from different
regions of latent space provide additional support for the idea
that distance along the latent space manifold has physical sig-
nificance [Fig. 2(d)]. Plotting the traditional Kuramoto phase
coherence | 1

N

∑N
j=1 eiθ j |, we see that desynchronized (behav-

ior 1) and synchronized (behavior 3) patterns are located on
opposite ends of latent space, with partially synchronized
(behavior 2) patterns in between. These examples are repre-
sentative of each cluster, and they are chosen by identifying
the parameters that generate the samples closest to the cluster
median in latent space. Finally, we see that sampling bias
towards the desynchronized region increases as sampling pro-
gresses, indicating that the curiosity search is changing its
latent space over time to better reflect the relevant behaviors
[Fig. 2(e)].

To test whether other algorithms could have performed
the same task, we considered multiple variants of the dimen-
sionality reduction technique: PCA, a random autoencoder
that was never trained, and a random linear projection (see
Appendix C for further details). As we have access to a
prior understanding of the dynamical behaviors present in
the model, we can compare the distribution of sampling
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FIG. 3. Curiosity search efficiently reveals the full phase diagram for a two-population Kuramoto model. (a) Kuramoto model with two
populations of oscillators considered by Ref. [41], with intrapopulation coupling μ, interpopulation coupling ν, and shifted phase offset β,
with number of oscillators N = 32. (b) Curiosity search focuses sampling on the small region where rare chimera behaviors occur. Inset:
Clustering in latent space reveals that this region has the structure of the chimera stability diagram identified by Ref. [41] (interior dashed
lines). (c) Latent space at the start and end of curiosity search. (d) Phase coherence examples from each of the states identified through latent
space clustering. Examples are chosen by identifying the samples closest to the cluster median in latent space. (e) As training proceeds,
curiosity search increasingly focuses on the parameter space region where desynchronized states are found. (f) Curiosity search works with
other dimensionality reduction methods, consistently generating better parameter sampling than random sampling (no latent space). Error bars
indicate variance over 10 replicates.

postcollection to an ideal distribution that samples the known
behaviors equally [Fig. 2(f)]. All latent space-based searches
consistently outperformed random sampling of parameter
space. We note the surprising result that random projec-
tion outperformed even iteratively trained methods, indicating
there was enough structure present in the raw system output
such that a random low-dimensional projection was able to
separate the various accessible behaviors.

While the uniformly connected Kuramoto model is an ideal
testing ground, the range of dynamical behaviors it can pro-
duce is fairly simple. We extend our approach to a Kuramoto
model variant whose phase diagram has been equally well-
characterized, but is capable of producing a wider range of
behaviors, including chimera states.

Specifically, we investigate a two-population Kuramoto
model with a coupling K11 = K22 = μ between all oscillators
within the same population, and a coupling K12 = K21 = ν

between all oscillators in different populations. Subscripts
indicate the oscillator population index. We allow a phase
offset α to the coupling between any two oscillators, and we
write the model as

θ̇ σ
i = ω +

2∑
σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′

j − θσ
i − α

)
. (2)

This model was introduced by Ref. [41], where the pa-
rameter space was given by the variables β = π

2 − α and
A = μ − ν [Fig. 3(a)], with μ + ν = 1. Here, we investigate
the case ω = 0 and total N = 32, with equal population sizes.

We term this model the “chimera” model, as it hosts chimera
states, where two identical populations of oscillators exist
with one population synchronized and the other desynchro-
nized [42–45].

Employing curiosity search in this two-dimensional pa-
rameter space results in a distribution of samples that is
concentrated on a narrow strip of the parameter space, roughly
in the area with A > 0 and θ < 0.25 [Fig. 3(b)]. This is the
region of parameter space that is known to support the emer-
gence of chimeras. In fact, the latent space order parameter
trained through our curiosity sampling procedure is able to
distinguish between the two types of chimeras originally iden-
tified by Ref. [41] [Figs. 3(b) (inset) and 3(c)].

Visualizations of the dynamical behaviors provide addi-
tional evidence that automated curiosity sampling is capturing
a wide variety of behaviors in the chimera model [Fig. 3(d)],
and the temporal changes in sampling indicate that the param-
eter regions that contain the richest dynamical behaviors are
preferentially sampled as the latent space is trained [Fig. 3(e)].
Behaviors 3 and 4 correspond to the breathing and stable
chimeras identified by Ref. [41], respectively. Examples for
each cluster are chosen by identifying samples closest to the
corresponding cluster median in latent space.

As we have access to a prior understanding of some of the
dynamical behaviors present in the model, we can compare
the distribution of sampling postcollection to an estimated
ideal distribution that samples the known behaviors equally
[Fig. 3(f)]. All latent space-based searches consistently out-
performed random sampling of parameter space.

033052-4



CURIOSITY-DRIVEN SEARCH FOR NOVEL … PHYSICAL REVIEW RESEARCH 6, 033052 (2024)

(a)

(b) (d)

parameters:

K, 3 x 3 coupling matrix
α, phase offset

ф ={

1
2
3
4
5
6
7
8
9
10

behaviors

latent dimension 1

la
te

nt
 d

im
en

si
on

 2

0.0 1.0
0.0

1.0

0.0 1.0
0.7

1.4

random autoencoder
PCA

naive parameter
space sampling

random projection

overall
within-
population

(c)

initial
0 46

0

1

1 2 3

4 5 6

7 8 9

10

time

ph
as

e 
co

he
re

nc
e

θ, α
K ij

latent space methods comparison

examples of behavior

0 3000
0

400

700

number of samples

di
ve

rs
ity

 m
ea

su
re

FIG. 4. Curiosity search in a three-population Kuramoto model reveals a previously unknown phase. (a) A three-population Kuramoto
model with nine positive couplings Ki j and one phase offset α. Number of oscillators N = 30. (b) Latent space at the start and end of
curiosity search. (c) Phase coherence examples from each of the states identified through latent space clustering. Solid lines represent overall
phase coherence, dashed lines are phase coherence of individual populations. Examples are chosen by identifying the samples closest to the
cluster median in latent space. (d) All dimensionality reduction variants of the curiosity search algorithm generate more diversity than random
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IV. RESULTS IN NEW SYSTEMS

Having investigated the utility of automated curiosity sam-
pling in a nontrivial but still thoroughly explored model, we
now turn to unexplored models. We define a 10-dimensional
variant of the chimera model, with three populations and a
global phase offset [Fig. 4(a)]:

θ̇ σ
i = ω +

3∑
σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′

j − θσ
i − α

)
, (3)

with ω = 0 and total N = 30 divided equally among individ-
ual populations. The coupling matrix between the populations
is not restricted to be symmetric, though we require all matrix
elements to be positive.

To explore the four-dimensional latent space constructed
through the curiosity search, we select the two dimensions in
latent space that contribute the most to the largest two princi-
pal components of the trained latent space, and we project our
data on these order-parameter axes [Fig. 4(b)].

To understand the behavior regimes in this latent space,
we can visualize cluster-median representatives of each group
for qualitative analysis. We examine both the overall phase
coherence as well as the phase coherence of each individ-
ual population [Fig. 4(c)]. We find a variety of behaviors,
most of which can be interpreted in light of previous behav-
iors uncovered in Kuramoto models—fully synchronized [31]
(behaviors 6, 7), chimera [41] (behaviors 1, 9), chiral [46] (be-
haviors 2, 8), antialigned [46] (behavior 4), and combination
chiral + chimera phases (behaviors 5, 10).

Finally, to conclude our automated analysis of the three-
population Kuramoto model, we quantitatively confirm the
relative diversity of samples compared to a random sampling
baseline. In contrast to the uniformly connected and chimera
models, we lacked any prior knowledge of the phase behavior
in parameter space. We therefore adopted a model-agnostic

measure of diversity corresponding to the total volume of
trained autoencoder latent space occupied by another sam-
pling distribution [Fig. 4(d)]. See Appendix E 2 for further
details.

In our exploration of the three-population Kuramoto
model, we identified a particular set of parameters that led
to an unexpected behavior [Fig. 4(c), behavior 3], where the
phase coherence of each individual oscillator population was
saturated, but the overall phase coherence displayed periodic
variability. We were particularly interested in understanding
this behavior, as it did not neatly fit into any categories that
we had previously encountered, resembling a chiral phase
identified in Fruchart et al. [46], but with periodic breathing.

We took a closer look at these “chiral breather” dynamics,
and we found that the behavior came as a result of two popula-
tions completely synchronizing with each other, while a third
population internally synchronized but moved at a different
period relative to the other populations [Fig. 5(a)].

To understand the chiral breather, we looked for solutions
with internally synchronized populations with an externally
desynchronized phase in a simpler system. We chose to inves-
tigate a two-population version of the three-population model
[Fig. 5(b)], which is identical to Eq. (2), without the inter- and
intrapopulation coupling symmetry assumptions:

θ̇ σ
i = ω +

2∑
σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′

j − θσ
i − α

)
. (4)

Following the procedure outlined in Ref. [41], we derive a
set of coupled differential equations for the phase difference
and coherence of the two oscillator populations in the limit of
infinite population size Nσ → ∞ for σ = 1, 2. In this limit,
the governing continuity equation becomes

∂ f σ

∂t
+ ∂

∂θ
( f σvσ ) = 0, (5)
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where f σ (θ, t ) is the per-population oscillator density and
vσ (θ, t ) is the oscillator density velocity:

vσ (θ, t ) = ω +
2∑

σ ′=1

Kσσ ′

∫
sin(θ ′ − θ − α) f σ ′

(θ ′, t )dθ ′.

(6)
Equations (5) and (6) have solutions following the remark-

able Ott-Antonsen ansatz [47]:

f σ (θ, t ) = 1

2π

[
1 +

∞∑
n=1

{[aσ (t )eiθ ]n + c.c.}
]
, (7)

where c.c. denotes the complex conjugate of the nth term,
and aσ (t ) are amplitudes that define the full time-dependent
solution for the oscillator population densities.

Returning to Eqs. (5) and (6) with this solution form, we
arrive at the equations for the population amplitudes as in
Eq. (9) in Ref. [41]:

0 = ȧ1 + 1
2 a2

1(K11a∗
1 + K12a∗

2 )e−iα − 1
2 (K11a∗

1 + K12a∗
2 )eiα,

(8)

with the equation for ȧ2 being identical under the interchange
of subscripts 1 and 2.

Note that, since Eq. (7) is a rewriting of a Poisson kernel,
the amplitudes aσ provide a key physical interpretation of
the time evolution of the oscillator densities. If we write am-
plitudes aσ = ρσ e−iφσ , the ρσ (t ) reflect the phase coherence
of the population oscillator densities, while the φσ (t ) repre-
sent the center of the oscillator densities. Inspired by their
observations, Ref. [41] looked for amplitude solutions with
a synchronized population (ρ1 = 1) and a desynchronized
population (ρ1 < 1).

Our observations suggested that we should employ a differ-
ent amplitude ansatz in order to capture the behavior exhibited
in Fig. 5(a), with internally synchronized populations and a
desynchronized phase. We look for solutions where ρσ = 1
for both σ . In this case, for aσ = e−iφσ , Eq. (8) reduces to

0 = φ̇1 + K11 sin α + K12 sin(α + φ1 − φ2), (9)

with the associated equation for index 2 simply involving the
exchange of subscripts for 1 and 2. We can define ψ = φ1 −
φ2, in which case we have one equation:

ψ̇ = −[(K11−K22) sin α+K12 sin(α + ψ ) − K21 sin(α − ψ )].
(10)

Integrating yields

ψ (t ) = 2 tan−1

[
D tan

(− Dt
2
√

2
+ c0

) − A

B

]
,

A = (K12 − K21) cos α,

B =
√

2 sin α[(K11 − K22) − (K12 − K21)]

D = {
(K11 − K22)2 − 2

(
K2

12 + K2
21

)
− [(K11 − K22)2 + 4K12K21] cos 2α

} 1
2 , (11)

where c0 is a constant of integration.
We note that there are two behaviors embedded in this

solution, depending on Im(D). When D is real, ψ continues to
change over time as t → ∞, indicating a chiral breather. If D
is imaginary, then because of the relation between tan and tanh
for imaginary arguments, ψ goes to a constant in the long-
time limit, indicating a stable chiral phase. In the case where
K12 = K21 = Kinter and we define Kintra = (K11 − K22)2, the
boundary between these two behaviors simplifies to

K2
intra = 4K2

inter tan2 β, (12)

where β = π
2 − α is the shifted phase offset.

Therefore, using our ansatz inspired from our data-driven
exploration in Fig. 4, we were able to compute the steady-state
behavior of the oscillators as a function of the model pa-
rameters [Fig. 5(c) (left)]. Indeed, when we simulate specific
parameters with N = 32 oscillators [Fig. 5(c) (right)], we find
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this transition from chiral breather to stable chiral behavior, as
predicted from the infinite-N analysis.

V. DISCUSSION

A. Limitations and extensions

While our method is successful in identifying novel phases
and order parameters with minimal human effort, there are
limitations on the effectiveness of our curiosity search as cur-
rently implemented. Many of these limitations can be traced to
the geometry of the parameter space-to-behavior space map.

One set of issues comes from the strength of gradients in
behavior as a function of design parameters. If the behavior
is constant in a region of parameter space, then our choice
to randomly sample locally to previously explored parameter
values can result in search dynamics that are equivalent to dif-
fusion in that region of parameter space. This local diffusion
can result in a heavy dependence upon the behaviors initially
sampled to seed the curiosity search. The problem becomes
more acute as the dimension of parameter space increases.

This limitation suggests that finite-size systems, away from
thermodynamic limits with sharp transitions in behaviors,
may be more amenable to methods of curiosity search that
operate in the space of behaviors. There may be hints of one
type of behavior hidden in examples of another behavior, and
hence our method can follow changes in behavior, rather than
relying solely on diffusion to randomly find a phase boundary.
However, in the case of both diffusive and gradient-following
dynamics, we expect that whenever a new behavior is dis-
covered, the curiosity search algorithm will sample it with
elevated frequency.

A key part of the curiosity search framework is the
backmapping from behavior space to parameter space. Our
nearest-known-neighbor choice was particularly simple, and
as discussed, potentially introduces a decrease in exploration
efficiency and an increased dependence on initial condi-
tions when sampling in higher dimensions. One possibility
for decreasing the reliance on previously sampled param-
eters is to translate geometrical information in behavior
space back into parameter space. For example, if a tar-
get behavior sampled in behavior space lies between two
points, we might sample between the two corresponding
points in parameter space. Another possibility would be to
learn the backmapping as a supervised deep-learning prob-
lem, iteratively updating the backmapping as latent space
changed.

Another key component of the curiosity search framework
for which we made a simple choice was in latent space
sampling policy. While our current methodology samples la-
tent space uniformly, it might be more efficient to explicitly
sample in regions of latent space which have lower sample
densities, or to sample specifically on the boundaries of those
latent space regions.

Finally, we made choices in the analysis of our latent space
post-data collection, in particular performing agglomerative
clustering on these data. We emphasize that the cluster-
ing is a computational device to render the latent space
more human-interpretable, but is not crucial for the suc-
cess of the algorithm; we could equally well have simply

binned latent space. However, to check to make sure that the
choice of clustering algorithm does not significantly change
the interpretation of the latent space and associated behav-
iors identified, we performed clustering with HDBSCAN
[48] on all data sets generated, and we were able to de
novo discover the same interesting behaviors as identified in
postprocessing with agglomerative clustering (Fig. 6). Addi-
tionally, while agglomerative clustering requires us to specify
a number of expected phases, we found that HDBSCAN
automatically chose similar numbers of phases when the min-
imum cluster size was set to 2% of the total data-set size
(Fig. 6).

In cases with only partial observations, time-delay em-
bedding can be used to capture the full structure of
the attractor. However, questions of time and resource
cost of experimental iterations and the effectiveness of
our method with only partial observations remain to be
explored.

A final extension, which we demonstrate more fully in Ap-
pendix F, is the iterative incorporation of human-in-the-loop
feedback in order to guide sampling towards more subjec-
tively interesting behaviors.

B. Conclusion

We have demonstrated that it is feasible to explore dy-
namical systems despite not knowing how to characterize
the salient features of their behaviors (e.g., in terms of order
parameters). This curious exploration enables us to learn the
metrics that characterize a novel system without having a
predefined target or goal [27,49]. We achieved this curious ex-
ploration by combining the complementary strengths of active
learning and dimensionality reduction; dimensionality reduc-
tion enables the iterative construction of a low-dimensional
latent space of behaviors, while searching in latent space im-
proves the efficiency of data collection. While active learning
and dimensionality reduction have individually been applied
in the context of physical systems, this approach allows us
to solve a qualitatively new challenge that has yet to be con-
fronted in a physical domain.

While we applied curiosity search to a canonical but in
silico model of a complex system, our algorithm can instead
directly interface with a physical system by taking control of
experimental knobs. This direction will allow us to discover
functional behaviors that exploit unmodeled or unexpected
effects in experimental systems such as nonlinearities [50] or
feedback. Much like reservoir computing [51] or model-free
control [52], our work here provides a systematic way of re-
vealing behaviors that exploit complex unmodellable effects,
rather than discovering them through serendipity.

Natural applications along these lines include active matter
systems with spatial structure. Recent experimental advances
increasingly allow for the control of activity [1,4] and
particle interactions [5,6] in a space-time-dependent man-
ner, allowing for detailed density- and orientation-dependent
motility. These experimental methods have opened up com-
plex high-dimensional spatiotemporal design spaces; since
order parameters are typically not available a priori for these
systems, the methods in this work provide exciting opportuni-
ties for revealing novel behaviors.

033052-7



FALK, ROACH, GILPIN, AND MURUGAN PHYSICAL REVIEW RESEARCH 6, 033052 (2024)

(a) ii
behaviors

iiilatent space

−1 0 1
latent dimension 1

−0.1

0.1

la
te

nt
 d

im
en

si
on

 2

0.0 0.5 1.0 1.5 2.0 2.5
coupling strength

0

100

nu
m

be
r o

f s
am

pl
es 0

1

0

1

0

1

examples of behavior

time0 115

ph
as

e 
co

he
re

nc
e

−2 −1 0
latent dimension 1

−0.1

0.1

la
te

nt
 d

im
en

si
on

 2

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.1

0.2

0.3

0.4

0.5

cr
os

s-
co

up
lin

g 
st

re
ng

th

0

1

0

1

0

1

0

1

0

1

i

(b) ii iiilatent space examples of behaviori

0

1

2

3

4

5

0

1

2

3

behaviors

ph
as

e 
co

he
re

nc
e

time0 230

time0 230

parameter space

parameter space

−2 −1 0 1 2

−1

0

1

2

0
1
2
3
4
5
6
7
8
9

(c) i latent space

behaviors

ii examples of behavior

0

1

ph
as

e 
co

he
re

nc
e

time0 10latent dimension 1

la
te

nt
 d

im
en

si
on

 2

1 2 3

4 5 6

7 8 9

within-
population

overall

model

model

model

uniformly-
connected

2-population

3-population

transition

FIG. 6. Clustering with HDBSCAN on curiosity search data reveals novel dynamical behaviors in Kuramoto model variants. In all cases,
examples of behaviors are chosen to be closest to latent space cluster medians. (a) Clustering with HDBSCAN in the latent space of the
uniformly connected model identifies three clusters (i), which map to regimes of low, intermediate, and high synchronization in parameter
space (ii,iii). (b) Clustering with HDBSCAN in the latent space of the chimera model identifies five clusters (i) which can roughly distinguish
between chimeric and fully synchronized phases (ii,iii). (c) Clustering with HDBSCAN in the latent space of the three-population model
identifies nine clusters (i), which reveal similar behaviors to those identified in the main text (ii), including the chiral breather behavior
(behavior 6).

ACKNOWLEDGMENTS

The authors thank M. Fruchart, M. Han, W. Irvine, M.
Koch-Janusz, J. Lin, S. Nagel, S. Seshan, T. Witten, and the
Flowers Lab at INRIA, for discussions. This work was in
part completed with resources provided by the University of
Chicago’s Research Computing Center. M.J.F. is supported
by the Eric and Wendy Schmidt AI in Science Postdoctoral
Fellowship, a Schmidt Sciences program. This work was sup-
ported through the NSF Center for Living Systems (Grant
No. 2317138). A.M. acknowledges support from the NSF
DMR-2239801 and the NIGMS of the NIH under Award No.
R35GM151211.

APPENDIX A: SIMULATION DETAILS

Our primary goal is to investigate and discover novel dy-
namical behaviors in variants of the Kuramoto model, all of

which can be compactly written in the following form:

θ̇i = ωi +
N∑

j=1

Ki j sin(θ j − θi − α), (A1)

where Ki j is the matrix of couplings between oscillators,
α is a global phase offset, the intrinsic frequencies ωi are
(potentially) drawn from a distribution, and N is the number
of oscillators. In all figures, N is generally on the order of
30, and ωi = 0 except for in the uniformly connected model
considered in Fig. 2. In the uniformly connected model, ωi

is drawn from the distribution N (0, 0.1). Additionally, in the
uniformly connected model, α = 0.

To investigate these dynamical systems, we need to in-
tegrate Eq. (A1) for specific Ki j and α, for which we use
the SciPy odeint function. We supply a regular time grid of
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domain [0, 750] with step size dt = 0.05. Initial oscillator
phases are drawn from a uniform distribution from [0, 2π ].

Traditionally, the output of these models has been inves-
tigated using a “phase coherence” order parameter, which
can be defined as | 1

N

∑N
j=1 eiθ j |. There is also the associated

complex phase arg[ 1
N

∑N
j=1 eiθ j ], but we focus on this less in

our current work.
Instead of interpreting and processing the output of our

dynamical system with these traditional metrics, we allow
unsupervised dimensionality reduction techniques (see Ap-
pendix C) to extract the relevant order parameters. To pass
the raw output of the dynamical systems integration to the
dimensionality reduction technique, we sample the last 3% of
the raw output time series in seven evenly spaced intervals. At
each sample, we use the NumPy arctan2 function to compute
the mean oscillator phase, and then we compute the distri-
bution of sines of oscillator angles relative to the mean. The
sine values are subsequently binned in the range [−1, 1] with
seven bins, and the histogram is normalized by the number of
oscillators. Having done this for seven time points, we have
transformed our raw dynamical output into a 7 × 7 gray-scale
image, which is the input to a dimensionality reduction tech-
nique. Note that by mean-centering at each time point, and
binning, we imposed invariance to the oscillation index, as
well as invariance to global rotations. In the context of coupled
oscillator models, these assumptions seem relatively benign,
but they may not be appropriate for other systems.

APPENDIX B: ACTIVE LEARNING DETAILS

Having described how we compute the behavior for a given
set of Kuramoto model parameters, we can now turn to the
active learning procedure by which we sample model parame-
ters. Our explorations are seeded by collecting 200 (uniformly
connected and chimera models) or 800 (three-population
model) samples randomly throughout parameter space. Each
parameter space axis has an upper and lower bound: for phase
offsets, this is [0, π

2 ]; for oscillator couplings, this is [0, 1]
in the chimera and three-population models, and [0, 2] in the
uniformly connected model.

The parameters are then used to integrate the dynamical
equation described in Appendix A. We note that, for the
chimera and three-population models, initial oscillator phases
are sampled once at the beginning of the active learning
procedure, and subsequently fixed for the duration of the
exploration. In contrast, for the uniformly connected model,
the initial oscillator phases and the intrinsic frequencies are
resampled with each new parameter selected. The output of
these initial simulations is passed through a dimensionality
reduction technique (Appendix C). If the employed tech-
nique requires training, training is also performed before the
dynamical behaviors are converted to their latent space repre-
sentations.

We have now initialized our active learning exploration
by creating a collection of tuples containing all our relevant
information (parameters, dynamic behaviors, latent space rep-
resentation). Following initialization, we now select a “target”
behavior in latent space that we wish to explore. While there
are many possible options for performing this latent space

sampling, we pick a particularly simple one; we construct the
hyper-rectangle that contains all the currently sampled latent
space representations, and then uniformly sample within that
hyper-rectangle.

With this target behavior in hand, we now seek a point in
parameter space that will ideally lead us to this target point
in latent space. Again, there are many possible options for
implementing this parameter point selection, and we choose
a simple one. In this case, we return to our dictionary of all
previously sampled parameters, and we select the parameter
whose latent space representation is closest to our target. We
then “mutate” this selected parameter by adding a random
amount along each parameter space axis. The magnitude of
this random step along each parameter space axis is bounded
by 10% (uniformly connected and chimera models) or 20%
(three-population) of the allowed domain length of that axis.
Within these bounds, the step length is sampled uniformly. If
the mutated parameter falls outside the lower or upper bound
of any of the parameter axes, we resample the mutation until
the mutated parameter falls within the allowed ranges.

We can continue this process, collecting more (parameter,
dynamic behavior, latent space representation)-tuples. We can
also iteratively train the associated dimensionality reduction
techniques with this newly collected data. For the uniformly
connected and chimera model explorations, we updated the
dimensionality reduction technique once every 100 samples
collected until we had a total of 1600 collected samples, in-
clusive of the initial samples. For the three-population model
exploration, we updated the dimensionality reduction tech-
nique once every 400 samples collected until we collected
a total of 4000 samples. When we select samples for train-
ing, we utilize 50% from the most recent samples, and 50%
randomly chosen from the previous samples. All latent space
values correspond to the most recent version of the dimen-
sionality reduction technique.

APPENDIX C: DIMENSIONALITY REDUCTION DETAILS

For each coupled oscillator model exploration, we con-
sider four dimensionality reduction techniques in the paper: a
convolutional variational autoencoder (VAE), a random VAE,
PCA, and random projection. All the neural network code was
run using PyTorch, and the linear models were implemented
with Scikit-learn.

The convolutional VAE has a relatively simple encoder
architecture: (i) a 2D convolutional layer with two to four
filters, followed by ReLU activation and flattening; and then
(ii) a fully connected layer into a latent space of dimension
2–4. The decoder follows analogously: (i) a fully connected
layer that expands from the latent space, followed by unflat-
tening, and ReLU activation; and then (ii) a transposed 2D
convolution followed by sigmoid activation. For the chimera
and uniformly connected models, we use two filters and two
latent dimensions, whereas for the three-population model we
use four filters and four latent dimensions. Every time the
VAE is trained, it is trained on a batch size of 200 or 800
(chosen as described in Appendix B) for 2000 epochs. We
train with ADAM using a learning rate of 1 × 10−3 and weight
decay 1 × 10−5. Weights are initialized with PyTorch standard
initialization, which in linear and convolutional layers with
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ReLU activation is the normalization. The random VAE is
constructed in exactly the same architecture and initialization
as the corresponding trained VAE, but it is never trained over
the course of the active learning.

PCA is performed using the Scikit-learn PCA method, and
we utilize the same number of dimensions as used for the
VAEs in order to construct the PCA latent space. Random
projection is performed using the Scikit-learn GaussianRan-
domProjection function, projected onto the same number of
dimensions as used for the VAE latent spaces.

APPENDIX D: CLUSTERING AND BEHAVIOR
EXAMPLE SELECTION

To interpret latent space, we employ agglomerative clus-
tering as implemented in the scikit-learn AgglomerativeClus-
tering function with Ward linkage and a Euclidean metric. We
choose three, six, and ten clusters for Figs. 2, 3, and 4, respec-
tively. To gain a qualitative understanding of these clusters,
we select the sample closest to the cluster median (in latent
space), and then we assess the resulting dynamics for the
corresponding point in parameter space. The precise values of
the selected parameters are presented in supplemental Table
1 [53]. Note that in the three-population model, the listed
couplings are normalized to 1 before being used as model
input.

To evaluate the robustness of our clustering-related con-
clusions, we also perform clustering using HDBSCAN [48]
on the same data set analyzed in the main figures. In contrast
to agglomerative clustering, HDBSCAN does not require the
number of desired clusters as a hyperparameter. Hence as
a first check on the consistency of our results, we checked
whether our chosen agglomerative cluster numbers could
be reproduced with reasonable values of the HDBSCAN
hyperparameter min_cluster_size, which sets the minimum
allowable cluster size. For the uniformly connected model,
we were most interested in coarse features, so we set a mini-
mum cluster size of 100 (out of 1600 samples) to select three
clusters [Fig. 6(a), i]. For the chimera model, we were more
interested in fine-grained distinctions, so we set a minimum
cluster size of 20 (out of 1600 samples) to select five clusters
[Fig. 6(b), i]. For the three-population model, we were again
interested in fine-grained distinctions, so we set a minimum
cluster size of 80 (out of 4000 samples) to select nine clusters
[Fig. 6(c), i].

As a second check on the robustness of our results, we
asked whether we could identify the same interesting phases
we found using agglomerative clustering in an HDBSCAN-
derived clustering. Note that HDBSCAN identifies a category
of points as noise, which in all panels we color as gray, and we
label as behavior 0. For the uniformly connected model, we
again recovered the low (behavior 3), intermediate (behavior
2), and fully synchronized (behavior 1) regimes [Fig. 6(a), iii].
For the chimera model, we were able to distinguish chimeric
(behaviors 4 and 5) from fully synchronized regimes (behav-
ior 1) [Fig. 6(b), ii]. There is also some distinction between
breathing and stable chimeras, though the splitting is less
clean than in the agglomerative clustering case. This suggests
that the latent space is capable of distinguishing between the
two chimera variants, but that this particular clustering is too

coarse to cleanly find the dividing line. Finally, we again
discover a similar range of behaviors in the three-population
model to that under the agglomerative clustering analysis:
fully synchronized (behaviors 1, 3), chimera (behaviors 4,
8), chiral (behaviors 7, 5), antialigned (behavior 2), chiral
breathers (behavior 6), as well as behaviors with some com-
bination of chimeric and chiral characteristics (behavior 9)
[Fig. 6(c), iii].

APPENDIX E: ALGORITHM PERFORMANCE METRICS

1. Ideal sampling comparison incorporating prior
model knowledge

To assess the performance of the various parameter explo-
ration schemes outlined in the main text, we want to quantify
the quality of the sampling distributions they generate in pa-
rameter space. In particular, an ideal benchmarking measure
would compare curiosity searches against a known, desired,
sampling distribution.

In the uniformly connected Kuramoto model, we have prior
knowledge about the various phases we expect to see. In
the infinite-N limit, we know that there are two well-defined
phases: a fully incoherent phase in which the Kuramoto
order parameter r = 0, and above a critical coupling Kc a
synchronized parameter regime in which r > 0. With this
prior knowledge, we would ideally like our sampling to be
evenly distributed, with half the samples coming from above
Kc and half below. However, our simulations are performed
with finite N , and hence we should not expect such cleanly
delineated phases.

Instead, we define an ideal sampling by the computation
of r in our simulations as a function of K . We select three
regimes: one phase for which r < 0.3, with the correspond-
ing parameter values K < 0.13; one for which r > 0.95, and
hence K > 0.34; and the phase intermediate to those two.
Since we have chosen to sample latent space uniformly, we
posit that the ideal sampling distribution should be evenly
distributed between these three regimes in parameter space.

To quantitatively make the comparison between our sam-
pled distributions and the ideal distribution, we use the
scipy.special.kl_div function to compute the KL divergence
DKL (sampled|ideal) between the two distributions. This is
the number we use as our performance metric for a particular
sampling distribution.

We also have ground truth knowledge in the case of the
chimera model, allowing us to compare the quality of sam-
pling distributions analogously. We identify three phases as
stable chimeras, breathing chimeras, and synchronized phases
outside of the previous two regions. These phases, and their
boundaries in parameter space, were identified by Abrams
et al. [41]; while other phases might in principle exist, we do
not incorporate this possibility into the analysis.

Based on the work of Abrams et al. [41], we
can estimate these boundaries using the shapely
python package to define points that lie within the
triangle [(0, 0), (0, 0.2679), (0.2239, 0.3372)] to be
stable chimeras; points that lie within the triangle
[(0, 0.2679), (0.2239, 0.3372), (0, 0.5)] to be breathing
chimeras; and points outside these triangles to be
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synchronized phases. Given this procedure of computing
phases in parameter space, we follow the same procedure
as we did for the uniformly connected Kuramoto model; we
assume ideal sampling is even across the three phases, and
then we compute the KL divergence between each sampling
distribution and ideal sampling.

2. Model-agnostic diversity and entropy measures

Running the curiosity algorithm with different dimen-
sionality reduction techniques (see Appendix C) generates
different distributions of samples. We would like to compare
the performance of each technique in terms of generating
a more diverse collection of samples, relative to a random
parameter sampling baseline.

To compare sampling distributions, we must construct
a measure of diversity. For the uniformly connected and
chimera models, we have prior knowledge of how many
phases exist, so we can simply characterize how well the
different techniques sample these known phases. However,
for the three-population model, we do not have this prior
knowledge. We want to construct a diversity measure that does
not depend on prior knowledge.

One way to do this is to construct a measure that captures
the diversity of sampling in latent space, as latent space is
a representation of the system behaviors. However, each di-
mensionality reduction technique constructs a different latent
space. We make the assumption that the trained autoencoder
latent space is the most relevant latent space, and so to
create comparable representations, we run each distribution
of collected dynamical behaviors through the same trained
autoencoder. For this diversity measure analysis, we take
only the two dimensions that contribute the most to the first
two principal components of the latent space data. We then
normalize the autoencoder latent-space based on the full col-
lection of latent-space representations from all distributions,
so that the dimension with the largest span lies from 0 to 1;
the other dimension is scaled by the same factor.

Finally, to calculate a measure of diversity for a distribution
of samples, we divide each dimension of the normalized latent
space into 50 bins. This divides the latent space into squares,
the size and number of which are determined by the bin num-
ber. Each latent space value fits into one of these cubes. We
subsequently define our measure of diversity for our sample
distribution as the number of unique cubes occupied by all
samples. Note that the number of samples that lie in each
cube is not considered, only the number of unique cubes filled.
This essentially amounts to the diversity measure being the
area each data set occupies in the latent space of Fig. 4(b)
(right). To generate Fig. 4(d), we repeat this calculation over
10 replicates; the averages are shown. Initial random sampling
is removed for diversity measure calculation.

3. Temporal sampling of the uniformly connected model

To construct a representation of how the uniformly con-
nected model sampled over time with a periodically retrained
autoencoder, we divided the parameter space (coupling
strength) into eight bins, and then normalized each bin in-
dividually from 0% to 100%. Since the samples were saved

in the order in which they were collected, dividing the array
of samples into quartiles is equivalent to dividing it into four
sequential temporal bins. We plotted what percentage of the
samples in each parameter space bin lay in each quartile. This
method of visualization shows where the algorithm preferen-
tially sampled over time.

APPENDIX F: HUMAN-ALIGNED CURIOSITY SEARCH

To demonstrate the flexibility and capacity of our curiosity
search framework, we present an algorithmic extension that
naturally incorporates human insight [Fig. 7(a)]. We employ
this human-aligned approach to explore a 100-dimensional
model.

In particular, we define a 10-population Kuramoto model
with global phase offset α [Fig. 7(b)]:

θ̇ σ
i = ω +

10∑
σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′

j − θσ
i − α

)
, (F1)

with ω = 0, and total N = 100 divided equally among 10
individual populations. We restrict all elements of Kσσ ′ to be
positive, and further require them to sum to 1. This model
is therefore 100-dimensional. Initial exploration of the 10-
population model through our non-human-aligned procedure
identified several interesting behaviors, but many of the non-
trivial dynamics were confined to a single population. Having
previously discovered such behaviors in the three-population
Kuramoto model, we no longer considered these behaviors
to be novel, and we decided to prioritize the discovery of
behaviors involving multiple populations.

To focus sampling on multipopulation behaviors, we in-
troduce the concept of human evaluation of latent spaces,
inspired by the HOLMES algorithm [54]. Our human-aligned
curiosity search relies on the construction of an initial la-
tent space following the procedure outlined in Fig. 1. We
first performed a naive curiosity search with an autoencoder
with eight latent dimensions and eight filters in the initial
convolutional layer. Input to the autoencoder was constructed
as before, but with 13 bins for computing oscillator phase
space density as opposed to the original 7. These densities
were computed at 13 time points as opposed to 7. In this
initial search, we collected a total of 4000 samples, and we
updated the dimensionality reduction technique once every
400 samples.

We subsequently freeze the initial latent space and as-
sign acceptance probabilities to each cluster, based on a
human evaluation of the cluster’s interest. We now perform
curiosity-driven search in a new latent space, but with sampled
behaviors filtered through the initial latent space; samples are
rejected or accepted based on the accepted probability of the
cluster they are best associated with in the initial latent space
[Fig. 7(c), right].

In this particular case, we scored clusters based on the
presence of behaviors involving the simultaneous presence
of nontrivial dynamics in multiple oscillator populations.
Therefore, the new latent space is constructed solely from
sampled behaviors that have been screened through the
human-evaluated initial latent space. In particular, we clus-
tered our naive latent space using the scikit-learn KMeans
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FIG. 7. Human-aligned curiosity search discovers chaotic multipopulation behaviors in the 100-dimensional Kuramoto model. (a) Cu-
riosity search can naturally be aligned with human intuition with a single additional step, involving freezing the latent space of an initial
curiosity searcher. Behavior samples drawn for subsequent curiosity search can be screened through the frozen latent space, where samples
are accepted or rejected based on probabilities assigned to different parts of latent space by a human observer. Following screening through
this human-evaluated latent space, sampling proceeds as in Fig. 1, with a separate autoencoder for the new, human-aligned latent space. (b) A
10-population Kuramoto model with 100 positive couplings Ki j , and one global phase offset α. Number of oscillators N = 100. (c) Left:
Latent space following initial curiosity search without human alignment. Latent space clusters identified in initial search are human-evaluated
for interest, and assigned acceptance probabilities. Right: Final latent space at the end of human-aligned curiosity search. (d) Phase coherence
examples from each of the states identified through latent space clustering. Solid lines represent overall phase coherence, dashed lines are
phase coherence of individual populations. Examples are chosen by identifying the samples closest to the cluster median in latent space.

function with 15 clusters and default hyperparameters. We
visualized the behaviors present at the sample closest to
the median of each cluster, and we assigned an acceptance
probability to that cluster; if the cluster was synchronized or
nearly synchronized, it received an acceptance probability of
0; for nontrivial dynamics involving a single population, we
assigned a probability of 0.5; and for nontrivial dynamics
involving multiple populations, we assigned a probability of
1.

In the next, “human-aligned” portion of our search, we
initialize with the samples from clusters in the initial, naive
run, which received an acceptance probability of 1. Our new
autoencoder is initialized with weights from the trained au-
toencoder saved at the end of the naive run. Every time we
sample a new behavior, we run it through the old, naive
autoencoder. We determine which cluster the new sample
belongs to via the KMeans predict method. Based on the
acceptance probability of the predicted cluster, that sample is
accepted or rejected. If the sample is accepted, the algorithm
proceeds normally. If the sample is rejected, a new sam-
ple is taken in parameter space. We collect 3200 (accepted)
samples following this procedure. The new autoencoder was
retrained for 2000 epochs every 400 samples. Details concern-

ing integration of the dynamical system are identical to those
presented in Appendix A.

Following human-aligned curiosity search, we construct
a latent space of behaviors, and we cluster in that space
[Fig. 7(c), left]. We choose representatives of each cluster,
and we analyze the behaviors of those representatives by
integrating the phase coherence curves of the whole oscillator
ensemble, as well as the phase coherence curves for each of
the 10 individual populations.

We find a wide variety of behaviors with nontrivial multi-
population dynamics, in accordance with the human intuition
with which we aligned our curiosity searcher [Fig. 7(d)]. We
can qualitatively identify certain behaviors such as breathing
chimeras (behaviors 7, 14), nearly synchronized (behaviors
13, 15), and chiral phases (behavior 11). Many of the be-
haviors sampled involve multiple populations overlaying in
regular (behavior 1) or chaotic patterns (e.g., behaviors 3, 4,
5, 8, 9), aligning with our human-informed scoring criterion.
Even behaviors involving a single desynchronized population
can display subtle combinations of chiral and chimeric behav-
ior; note, for example, the way in which the overall coherence
is never complete in behavior 10, despite the periodic recur-
rence of coherence in all populations.

[1] T. D. Ross, H. J. Lee, Z. Qu, R. A. Banks, R. Phillips, and M.
Thomson, Controlling organization and forces in active matter
through optically defined boundaries, Nature (London) 572, 224
(2019).

[2] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C.
Bechinger, Microswimmers in patterned environments, Soft
Matter 7, 8810 (2011).

[3] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and
C. Bechinger, Active Brownian motion tunable
by light, J. Phys.: Condens. Matter 24, 284129
(2012).

[4] R. Zhang, S. A. Redford, P. V. Ruijgrok, N. Kumar,
A. Mozaffari, S. Zemsky, A. R. Dinner, V. Vitelli, Z.
Bryant, M. L. Gardel et al., Spatiotemporal control of

033052-12

https://doi.org/10.1038/s41586-019-1447-1
https://doi.org/10.1039/c1sm05960b
https://doi.org/10.1088/0953-8984/24/28/284129


CURIOSITY-DRIVEN SEARCH FOR NOVEL … PHYSICAL REVIEW RESEARCH 6, 033052 (2024)

liquid crystal structure and dynamics through activity pattern-
ing, Nat. Mater. 20, 875 (2021).

[5] T. Bäuerle, A. Fischer, T. Speck, and C. Bechinger, Self-
organization of active particles by quorum sensing rules,
Nat. Commun. 9, 1 (2018).

[6] G. Wang, T. V. Phan, S. Li, M. Wombacher, J. Qu, Y. Peng, G.
Chen, D. I. Goldman, S. A. Levin, R. H. Austin et al., Emergent
field-driven robot swarm states, Phys. Rev. Lett. 126, 108002
(2021).

[7] C. Dai and S. C. Glotzer, Efficient phase diagram sampling by
active learning, J. Phys. Chem. B 124, 1275 (2020).

[8] J. Grizou, L. J. Points, A. Sharma, and L. Cronin, A curious
formulation robot enables the discovery of a novel protocell
behavior, Sci. Adv. 6, eaay4237 (2020).

[9] Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin, and
L. Cronin, An artificial intelligence enabled chemical synthe-
sis robot for exploration and optimization of nanomaterials,
Sci. Adv. 8, eabo2626 (2022).

[10] N. Hansen, The CMA evolution strategy: A comparing review,
Towards a New Evolutionary Computation: Advances in the
Estimation of Distribution Algorithms (Springer, Berlin, Hei-
delberg, 2006), pp. 75–102.

[11] S. Whitelam and I. Tamblyn, Neuroevolutionary learning of
particles and protocols for self-assembly, Phys. Rev. Lett. 127,
018003 (2021).

[12] A. L. Ferguson and K. A. Brown, Data-driven design and
autonomous experimentation in soft and biological materi-
als engineering, Annu. Rev. Chem. Biomol. Eng. 13, 25
(2022).

[13] K. Shmilovich, R. A. Mansbach, H. Sidky, O. E. Dunne, S. S.
Panda, J. D. Tovar, and A. L. Ferguson, Discovery of self-
assembling π -conjugated peptides by active learning-directed
coarse-grained molecular simulation, J. Phys. Chem. B 124,
3873 (2020).

[14] B. Mohr, K. Shmilovich, I. S. Kleinwächter, D. Schneider, A. L.
Ferguson, and T. Bereau, Data-driven discovery of cardiolipin-
selective small molecules by computational active learning,
Chem. Sci. 13, 4498 (2022).

[15] K. Vaddi, H. T. Chiang, and L. D. Pozzo, Autonomous retrosyn-
thesis of gold nanoparticles via spectral shape matching, Digital
Discov. 1, 502 (2022).

[16] G. M. Coli, E. Boattini, L. Filion, and M. Dijkstra, Inverse
design of soft materials via a deep learning–based evolutionary
strategy, Sci. Adv. 8, eabj6731 (2022).

[17] J. Carrasquilla and R. G. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

[18] R. T. McGibbon, B. E. Husic, and V. S. Pande, Identification of
simple reaction coordinates from complex dynamics, J. Chem.
Phys. 146, 044109 (2017).

[19] R. Van Damme, G. M. Coli, R. Van Roij, and M. Dijkstra,
Classifying crystals of rounded tetrahedra and determining their
order parameters using dimensionality reduction, ACS Nano
14, 15144 (2020).

[20] W. Gilpin, Chaos as an interpretable benchmark for forecasting
and data-driven modelling, in Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track
(Round 2) (2021).

[21] M. Ricci, N. Moriel, Z. Piran, and M. Nitzan, Phase2vec:
Dynamical systems embedding with a physics-informed con-
volutional network, arXiv:2212.03857.

[22] C. Miles, R. Samajdar, S. Ebadi, T. T. Wang, H. Pichler, S.
Sachdev, M. D. Lukin, M. Greiner, K. Q. Weinberger, and
E.-A. Kim, Machine learning discovery of new phases in pro-
grammable quantum simulator snapshots, Phys. Rev. Res. 5,
013026 (2023).

[23] T. N. Thiem, M. Kooshkbaghi, T. Bertalan, C. R. Laing, and
I. G. Kevrekidis, Emergent spaces for coupled oscillators, Front.
Comput. Neurosci. 14, 36 (2020).

[24] A. R. Dulaney and J. F. Brady, Machine learning for phase
behavior in active matter systems, Soft Matter 17, 6808
(2021).

[25] K. Kottmann, P. Huembeli, M. Lewenstein, and A. Acín, Un-
supervised phase discovery with deep anomaly detection, Phys.
Rev. Lett. 125, 170603 (2020).

[26] J. Venderley, V. Khemani, and E.-A. Kim, Machine learn-
ing out-of-equilibrium phases of matter, Phys. Rev. Lett. 120,
257204 (2018).

[27] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, Intrinsic motiva-
tion systems for autonomous mental development, IEEE Trans.
Evol. Comput. 11, 265 (2007).

[28] A. Baranes and P.-Y. Oudeyer, Active learning of inverse
models with intrinsically motivated goal exploration in robots,
Robot. Auton. Syst. 61, 49 (2013).

[29] C. Reinke, M. Etcheverry, and P.-Y. Oudeyer, Intrinsically
motivated discovery of diverse patterns in self-organizing sys-
tems, International Conference on Learning Representations
(2020).

[30] M. Etcheverry, C. Moulin-Frier, P.-Y. Oudeyer, and M. Levin,
AI-driven automated discovery tools reveal diverse behav-
ioral competencies of biological networks, eLife 13, RP92683
(2024).

[31] Y. Kuramoto, Self-entrainment of a population of coupled
non-linear oscillators, in International Symposium on Mathe-
matical Problems in Theoretical Physics: January, 1975, Kyoto
University, Kyoto/Japan (Springer, Berlin, Heidelberg, 1975),
pp. 420–422.

[32] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.
Spigler, The Kuramoto model: A simple paradigm for synchro-
nization phenomena, Rev. Mod. Phys. 77, 137 (2005).

[33] D. P. Kingma and M. Welling, Auto-encoding variational bayes,
arXiv:1312.6114.

[34] Y.-H. Liu and E. P. Van Nieuwenburg, Discriminative cooper-
ative networks for detecting phase transitions, Phys. Rev. Lett.
120, 176401 (2018).

[35] C. W. Coley, N. S. Eyke, and K. F. Jensen, Autonomous discov-
ery in the chemical sciences part II: outlook, Angew. Chem., Int.
Ed. 59, 23414 (2020).

[36] L. Wang, Discovering phase transitions with unsupervised
learning, Phys. Rev. B 94, 195105 (2016).

[37] S. J. Wetzel, Unsupervised learning of phase transitions: From
principal component analysis to variational autoencoders, Phys.
Rev. E 96, 022140 (2017).

[38] J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying topolog-
ical order through unsupervised machine learning, Nat. Phys.
15, 790 (2019).

[39] E. P. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning
phase transitions by confusion, Nat. Phys. 13, 435 (2017).

[40] A. Prabhakar and T. Murphey, Mechanical intelligence for
learning embodied sensor-object relationships, Nat. Commun.
13, 4108 (2022).

033052-13

https://doi.org/10.1038/s41563-020-00901-4
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1103/PhysRevLett.126.108002
https://doi.org/10.1021/acs.jpcb.9b09202
https://doi.org/10.1126/sciadv.aay4237
https://doi.org/10.1126/sciadv.abo2626
https://doi.org/10.1103/PhysRevLett.127.018003
https://doi.org/10.1146/annurev-chembioeng-092120-020803
https://doi.org/10.1021/acs.jpcb.0c00708
https://doi.org/10.1039/D2SC00116K
https://doi.org/10.1039/D2DD00025C
https://doi.org/10.1126/sciadv.abj6731
https://doi.org/10.1038/nphys4035
https://doi.org/10.1063/1.4974306
https://doi.org/10.1021/acsnano.0c05288
https://openreview.net/forum?id=enYjtbjYJrf
https://arxiv.org/abs/2212.03857
https://doi.org/10.1103/PhysRevResearch.5.013026
https://doi.org/10.3389/fncom.2020.00036
https://doi.org/10.1039/D1SM00266J
https://doi.org/10.1103/PhysRevLett.125.170603
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1016/j.robot.2012.05.008
https://openreview.net/forum?id=rkg6sJHYDr
https://doi.org/10.7554/eLife.92683.2
https://doi.org/10.1103/RevModPhys.77.137
https://arxiv.org/abs/1312.6114
https://doi.org/10.1103/PhysRevLett.120.176401
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1038/s41567-019-0512-x
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/s41467-022-31795-2


FALK, ROACH, GILPIN, AND MURUGAN PHYSICAL REVIEW RESEARCH 6, 033052 (2024)

[41] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley,
Solvable model for chimera states of coupled oscillators, Phys.
Rev. Lett. 101, 084103 (2008).

[42] Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and
independently synchronizable clusters, Phys. Rev. Lett. 119,
084101 (2017).

[43] Z. G. Nicolaou, D. Eroglu, and A. E. Motter, Multifaceted
dynamics of Janus oscillator networks, Phys. Rev. X 9, 011017
(2019).

[44] Y. Zhang, Z. G. Nicolaou, J. D. Hart, R. Roy, and A. E. Motter,
Critical switching in globally attractive chimeras, Phys. Rev. X
10, 011044 (2020).

[45] D. M. Abrams and S. H. Strogatz, Chimera states for coupled
oscillators, Phys. Rev. Lett. 93, 174102 (2004).

[46] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Non-
reciprocal phase transitions, Nature (London) 592, 363 (2021).

[47] E. Ott and T. M. Antonsen, Low dimensional behavior of
large systems of globally coupled oscillators, Chaos 18, 037113
(2008).

[48] L. McInnes, J. Healy, and S. Astels, hdbscan: Hierarchical
density based clustering, J. Open Source Softw. 2, 205 (2017).

[49] C. Moulin-Frier and P.-Y. Oudeyer, Curiosity-driven phonetic
learning, in 2012 IEEE International Conference on Develop-
ment and Learning and Epigenetic Robotics (ICDL) (IEEE,
Piscataway, NJ, 2012), pp. 1–8.

[50] G. Gatti, M. Brennan, and B. Tang, Some diverse examples of
exploiting the beneficial effects of geometric stiffness nonlin-
earity, Mech. Syst. Sign. Proc. 125, 4 (2019).

[51] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent ad-
vances in physical reservoir computing: A review, Neural Netw.
115, 100 (2019).

[52] M. Fliess and C. Join, Model-free control, Int. J. Control 86,
2228 (2013).

[53] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.033052 for additional details.

[54] M. Etcheverry, C. Moulin-Frier, and P.-Y. Oudeyer, Hierar-
chically organized latent modules for exploratory search in
morphogenetic systems, in Advances in Neural Information
Processing Systems, edited by H. Larochelle, M. Ranzato, R.
Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc.,
2020), Vol. 33, pp. 4846–4859.

033052-14

https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevLett.119.084101
https://doi.org/10.1103/PhysRevX.9.011017
https://doi.org/10.1103/PhysRevX.10.011044
https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1063/1.2930766
https://doi.org/10.21105/joss.00205
https://doi.org/10.1016/j.ymssp.2018.08.024
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1080/00207179.2013.810345
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.033052
https://proceedings.neurips.cc/paper/2020/hash/33a5435d4f945aa6154b31a73bab3b73-Abstract.html

