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Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish
this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI)
in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate
that these canonical examples are instances of a larger class of phase estimation protocols, which we call
reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one
to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits
and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE
belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which
allows one to tune the circuit to be optimal for a specific application.
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I. INTRODUCTION

For over a century, physics has benefited greatly from
exploiting interference effects between waves [1,2]. In par-
ticular, the accurate estimation of a relative phase between
parts of a wave function is a pivotal task in numerous fields of
quantum physics and quantum computing. For example, the
central goal of quantum metrology is to construct experimen-
tal platforms capable of making high-precision measurements
of the quantum phase that correspond to a physical parameter
[3–5]. Progress in this area has led to the development of
quantum sensors that have then been used in a wide range
of groundbreaking technologies, from atomic clocks [6,7] to
medical devices [8,9]. In quantum information science, there
exist important algorithms that seek to calculate the quan-
tum phase as precisely as possible in a single measurement.
This can be used to find the eigenvalues of a unitary oper-
ator, thereby allowing one to perform computations such as
matrix inversion and modular multiplication with a quantum
advantage [10–12]. For example, it is a crucial step in the
Harrow-Hassidim-Lloyd linear system of equations algorithm
[13,14] as well as the crux of Shor’s algorithm for prime
factorization [10,15].

Due to the far-reaching impact of estimating a quantum
phase, various techniques have been developed to accomplish
this task. For example, in quantum metrology the standard
method is Ramsey interferometry (RI) [16]. In RI, with
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a direct correspondence to optical interferometers, a sin-
gle qubit is split into a coherent superposition, undergoes
unitary encoding of a phase, and is then recombined [see
Fig. 3(a)]. The alternate approach used in quantum computa-
tion is founded on Kitaev’s quantum phase estimation (QPE)
algorithm [10,17,18], which aims to determine the correct
phase from a discrete set of possibilities in a single run of
a multiqubit quantum circuit. The QPE algorithm consists
of conditional rotations to estimate the quantum phase over
small intervals of the Bloch sphere’s equator, and the inter-
vals become exponentially smaller as the number of qubits
increases.

Many quantum algorithms have a phase estimation subrou-
tine that ideally estimates an encoded phase θ after a single
run of the circuit. This can be accomplished for phases where
every qubit in the circuit has unit probability of being in
one of the computational basis states (i.e., the bare eigen-
states). The canonical QPE algorithm consisting of n qubits
can discriminate between a set of 2n phases evenly distributed
throughout the interval [0, 2π ). However, there are important
problems in quantum hypothesis testing [19–23], a central
pillar of modern quantum information science research, where
one wants to discriminate between a certain discrete set of
phases starting with a flat prior probability distribution. In
these situations, the QPE circuit is excessive with potentially
many unneeded qubits performing unnecessary rotations, in-
creasing the chance of errors to occur during the algorithm
through both quantum and classical noise. Furthermore, there
are simple situations in which QPE would actually require an
infinite number of qubits to distinguish between two phases
with certainty after a single run of the circuit, such as the case
with θ = 0 and π/3.

In this paper, we present an algorithm that generates a
phase estimation circuit capable of perfectly discriminating
between any set of phases with certainty after a single run,
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ALGORITHM 1. Steps of the circuit generating algorithm. Note
that the set theory notation ignores repeated elements.

Step 1. Set Gi as the greatest common divisor (GCD) of the
numerators Si

Step 2. Set Qi as {y = x
Gi

: x ∈ Si}
Step 3. Set Ai as the mode of the differences ye − yo for all even

ye ∈ Qi ∩ 2Z and odd yo ∈ Qi ∩ (2Z + 1) integers. If there
are no even integers, Qi ∩ 2Z = ∅, Ai is the minimum
of Qi

Step 4. Set Si+1 equal to Qi with Ai added to the resulting odd
integers: Si+1 = {ye : ∀ye ∈ Qi ∩ 2Z} ∪ {yo + Ai : ∀yo ∈ Qi

∩ (2Z + 1)}
Step 5. Iterate S1–S4 by incrementing i until Si+1 = {0}

given the phases are rational multiples of π . This allows one
to design a phase estimation circuit with fewer qubits and
unitary gates than QPE in many cases. Notably, special cases
of this are seen in the canonical examples of RI and QPE,
where RI has a flat prior across two discrete phases, and
QPE has a flat prior across 2n discrete phases. Similarly to
these canonical examples, these generated circuits may be
run many times to estimate an unknown, continuous phase
between the discrete phases. This algorithm therefore devel-
ops a more general class of phase estimation circuits that we
call reductive quantum phase estimation (RQPE), of which
RI and QPE are special cases. We demonstrate that RQPE
circuits have a tradeoff between phase measurement precision
for higher distinguishability of phases, which we show is an
interpolation between the canonical RI and QPE circuit. This
allows one to tune a phase estimation circuit to be optimized
for a specific task.

The paper is organized as follows. In Sec. II, we introduce
an algorithm that produces RQPE circuits and demonstrate its
use for two illustrative examples. Then in Sec. III, we analyze
how to compare different RQPE circuits with a cost-benefit
analysis. We show relevant calculations for our analysis of
RQPE circuits in Appendix F.

II. RQPE GENERATION ALGORITHM

We begin by presenting an algorithm that generates RQPE
circuits. We consider circuits consisting of a set of n qubits,
each prepared in the state |0〉. We label the qubit states |qj〉
with index j, we assume that one can perfectly perform instan-
taneous noiseless gates and measurements, and we assume
no experimental imperfections. The gates used in the RQPE
algorithm are the Z gate Zj = |0〉〈0| j − |1〉〈1| j , powers of the
Z gate Z p

j = |0〉〈0| j + eiπ p|1〉〈1| j , the Hadamard gate Hj =
(|0〉〈1| j + |1〉〈0| j + Zj )/

√
2, and powers of the controlled Z

gate with target |q j〉 controlled by |qk〉: CZ
p
j,k = I j ⊗ |0〉〈0|k +

Z p
j ⊗ |1〉〈1|k .

The objective of quantum phase estimation is to accurately
estimate an unknown quantum phase θ using minimal re-
sources. In this paper, we assume the phase is encoded by
Z rotations, such that Uj = e−iθZj/2. Note that we consider
circuits that apply the phase shift directly onto the control
qubits through Uj , but our results extend to methods that

apply the phase shift using any controlled unitary acting on
an ancillary register, as is typically done in QPE [10].

We now present an algorithm that generates a circuit that,
given some set of phases, � with |�| = T , which is some
subset of {π fi = πxi

d : 0 � xi < 2d, xi ∈ Z} where Z is the set
of integers, allows one to determine the encoded phase θ ∈ �

with certainty after a single run. Here, all fi are rational and
can therefore be rewritten with a common integer denominator
d and a set of numerators S0 = {xi}. Starting with i = 0, the
circuit generating algorithm consists of the sequence enumer-
ated in Algorithm 1.

To construct the circuit that distinguishes phases in �

with certainty after a single run, the gate sequence (see
Appendix A)

Hj

⎛
⎝ j−1∏

k=0

CZ

Ak∏ j
�=k+1 G�

j,k

⎞
⎠U

d∏ j
�=0 G�

j Hj |q j〉 (1)

is applied on each |q j〉. Here, the application of the H and CZ

gates across all qubits after the unitary applications is reminis-
cent of the QFT† gate (see Appendix H), QFT standing for the
quantum Fourier transform, which can be found in Ref. [10].
Performing a measurement on |qj〉 produces a measurement
outcome mj ∈ {0, 1}, and the measurement of all n qubits
produces a binary string m0 . . . mn−1. This binary string gives
an estimation of θ (see Appendix B):

θest = −π

d

n−1∑
j=0

mjAj

j∏
k=0

Gk . (2)

We note that RQPE circuits can be run sequentially on a
single qubit that is reset to |0〉 after performing each line of
the circuit, and each measurement effectively modifies the
encoded phase in subsequent unitary applications. The se-
quential approach is explored in more depth in Refs. [24,25]
and is effectively equivalent to the multiqubit, parallel circuits
presented here. In Appendix C we analyze the time and space
complexity of the generated circuits from Eq. (1) as well as
Algorithm 1. Here, we find that the circuit generating algo-
rithm runs in polynomial time with respect to T and log2 h,
where h = max[S0], and the number of qubits needed is upper
bounded by O(min[T, log2 h]).

A common situation in which the RQPE circuits of Eq. (1)
can be very useful for hypothesis testing is systems where
an external perturbation splits degenerate energy levels. As
an example, we consider a system in which |1〉 is physi-
cally a F = 1 hyperfine state while |0〉 is F ′ = 0. Therefore,
a magnetic field will cause a Zeeman energy shift of the
|F = 1, mF = ±1〉 states by ±h̄δB. Each qubit thus under-
goes an additional rotation exp[imF δBZit/2] for a run time t ,
such that θ = θ ′ + mF δBt . We therefore may wish to distin-
guish between three locations on the Bloch sphere’s equator
to determine which transition is being driven, as shown in
Fig. 1(a). We thus use Algorithm 1 to create a circuit that can
distinguish the set � = {πxi

64 : xi ∈ {21, 22, 64, 65, 107, 108}}
with certainty after a single run. In Fig. 1(b), we show the
outcome of the iterations of Algorithm 1 for this particular set
of phases.

In the first iteration, i = 0, Algorithm 1 steps S1 and S2
ensure some odd numerators, enabling |q0〉 to distinguish
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FIG. 1. (a) Visualization of � = { πx
64 : x ∈ {21, 22,

64, 65, 107, 108}} around the equator of the Bloch sphere.
(b) Application of Algorithm 1 to find Gi and Ai for all iterations.
(c) The circuit generated by Algorithm 1 by way of Eq. (1).

between all θ0,e from all θ0,o within the set {πG0x
64 : 0 � x <

128
G0

, x ∈ Z}. Here, j in θi, j indicates whether x is even or
odd so that all θi,e measure zero with certainty while all
θi,o measure 1 with certainty on |qi〉. This is accomplished by
the unitary rotation U d/G0

0 as it becomes exp[−ixiπZj/(2G0)]
with xi/G0 ∈ Z. The goal of step S3 is to pick an addition A0

such that it reduces the size of the set of integers as much as
possible, i.e., it converts the maximum amount of odd integers
to even integers in the set. This addition dictates the controlled
rotation on subsequent qubits. Step S4 then returns a new set
of integers S1 from which one finds a new GCD, G1, in the
next iteration. This allows one to distinguish between all θ1,e

from all θ1,o within the set {πG1G0x
64 : 0 � x < 128

G1G0
, x ∈ Z}.

Step S5 iterates this process such that each iteration corre-
sponds to a qubit in the generated circuit.

Using this reduction process in conjunction with Eq. (1),
we produce the circuit displayed in Fig. 1(c) to distinguish the
phases in �, where the final symbol stands for an individual
qubit measurement in the Z basis. Note that only four qubits
are used to distinguish the desired phases in RQPE with cer-
tainty after a single run. This can be compared to seven qubits
needed in QPE, since 2d = 27, demonstrating the utility of
our circuit generation algorithm. Furthermore, while running
it once can determine which θ ∈ � is encoded, running it
many times and using some statistical analysis such as Bayes
theorem [26–28] reliably estimates any continuous θ within
the desired ranges.

Another interesting feature of Algorithm 1 can be demon-
strated with the example shown in Fig. 2. Here, we use the
circuit generation algorithm to distinguish the phases � ∈
{πxi

70 : xi ∈ {66, 93, 108, 123, 138}} with certainty after a sin-
gle run. As shown in Fig. 2(b), we find a set of only odd
numerators in the line for |q2〉. This ensures that, for all phases
in �, the qubit |q2〉 will always be in the |1〉 state when the
measurement is performed. Therefore, this qubit can be re-
moved from the circuit while CZ

p
j,2 gates can be replaced with

uncontrolled Z p
j gates. When estimating the original theta,

consider this qubit as if it had existed and measured 1, i.e.,
m2 = 1. We label |q2〉 as a “phantom” qubit and display the

FIG. 2. (a) Visualization of � = { πx
70 : x ∈ {66, 93, 108,

123, 138}} around the equator of the Bloch sphere. (b) Application
of Algorithm 1 to find Gi and Ai for all iterations. (c) The circuit
generated by Algorithm 1 by way of Eq. (1) and removing phantom
qubits.

reduced circuit where we have removed the phantom qubit
|q2〉 in Fig. 2(c). One can see that the last qubit in Fig. 1 is a
phantom qubit as well.

Removing a phantom qubit from a circuit does not decrease
distinguishability of the discrete phases in � and does not
necessarily decrease distinguishability of continuous phase
estimation. We see, for example, that it does not affect dis-
tinguishability within the desired ranges in Fig. 1. Precision,
on the other hand, will be affected due to Eq. (5).

III. TRADEOFF BETWEEN PRECISION AND
DISTINGUISHABILITY

Interestingly, the extremes of the RQPE circuit generation
algorithm create circuits for both RI and QPE, and these serve
as perfect examples to showcase these comparable proper-
ties. RI will be automatically generated from Algorithm 1
when |�| = 2, the smallest possible size, while QPE will be
automatically generated when |�| = 2d , the largest possible
size. We display the circuit diagrams for these procedures in
Figs. 3(a) and 3(c). This motivates the comparison of the two
extremes, RI and QPE, and the general RQPE algorithm.

RQPE circuits can be compared by three key properties:
the number of unitary applications, distinguishability, and
precision. We use the total number of unitary applications,
r, during a single run as the constrained resource in order to
make a general comparison. This can be written as a sum over
all qubits, r =∑n−1

j=0 u j , where u j represents the number of
applications of Uj to |q j〉. In this way, QPE has rQPE = 2n − 1,
and RI has rRI = u0. One way to compare an RI circuit to QPE
would then be to set rRI = rQPE, thereby applying (U0)rQPE on
the qubit in RI, and compare the resulting precision and dis-
tinguishability. We consider an optimal circuit to be one that
minimizes the number of unitary applications while achieving
some desired precision and distinguishability, as discussed in
more detail in Appendix F.

Let Mk be the measured binary string corresponding to
the n-qubit measurement outcome in the measurement ba-
sis M = {Mk : k ∈ Z, 0 � k < 2n}. If, for each θi ∈ �, there
exists a unique measurement outcome Mk with conditional
probability P(Mk|θi ) = 1, and for all θ j ∈ � with θ j �= θi the
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FIG. 3. Canonical phase estimation procedures. (a) RI circuit
with the corresponding Bloch sphere rotations. (b) The perfectly
distinguishable phases of RI with seven unitary applications. (c) QPE
circuit. (d) The perfectly distinguishable phases of QPE with three
qubits.

same measurement outcome Mk has conditional probability
P(Mk|θ j ) = 0, then we say the circuit perfectly distinguishes
the set of phases �, i.e., distinguishes them with certainty after
a single run of the circuit. Conditional probability, here, is the
likelihood of each measurement outcome given a phase [29].

In general, every phase estimation circuit has a unique set
of phases which it can perfectly distinguish. In RI, one can
perfectly distinguish exactly T = 2 phases, � = {0, π

rRI
}, as

these are the points where the Ramsey fringes reach their
extremum values [see Fig. 4(a)]. For the example circuits we
consider, this corresponds to θ ∈ {0, π

7 } on the equator of the
Bloch sphere as shown in Fig. 3(b). Conversely, the QPE
algorithm can perfectly distinguish the phases � = { πx

2n−1 : x ∈
Z, 0 � x < 2n}, such that T = 2n. This feature of QPE can be
seen in Fig. 4(b), where one has T = 8 perfectly distinguish-
able phases corresponding to the eight possible measurement
outcomes for n = 3 qubits. These perfectly distinguishable
phases are shown on the equator of the Bloch sphere in
Fig. 3(d).

Using quantum state geometry [adapted from Eq. (1.57) in
Ref. [30]], one can define the distance between two phases, θa

and θb, using the l2 distance between conditional probabilities
in a measurement basis M:

DM(θa, θb) =
√√√√1

2

2n−1∑
k=0

[P(Mk|θa) − P(Mk|θb)]2. (3)

When DM(θa, θb) = 1, this is the maximum distance cor-
responding to two perfectly distinguishable phases, whereas
DM(θa, θb) = 0 corresponds to two phases which cannot
be distinguished. In this way, distinguishability denotes the
amount of overlap between probability distributions of two
phases. In Figs. 4(c) and 4(d), we compare RI and QPE using
the distance metric in Eq. (3) and measurements in the Z basis.

While QPE has a larger range of distinguishable phases
than RI, this is not the only figure of merit that one wishes

FIG. 4. The conditional probability of (a) RI with seven unitary
applications and (b) QPE with three qubits. The distance between
phases θa and θb calculated by Eq. (3) for (c) RI with seven unitary
applications and (d) QPE with three qubits.

to optimize when performing phase estimation. In the con-
text of quantum metrology, one performs many runs of the
circuit to measure θ from a continuous set of phases, �c =
{x ∈ R, 0 � x < 2π}, with greater and greater accuracy (see
Fig. 6). Therefore, another important metric of phase estima-
tion circuits is the precision. This is nicely encapsulated by
the classical Fisher information (CFI) [31] with a given mea-
surement basis I (θ |M), as the maximal achievable precision
over R runs of the circuit is given by the Cramér-Rao bound
[32]:

�θ2 = 1√
R
√
I (θ |M)

. (4)

FIG. 5. Using an RQPE circuit with one and six unitary appli-
cations on two qubits, shown are (a) the conditional probability and
(b) the distance calculated by Eq. (3) between two phases.
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FIG. 6. The results of Bayesian reconstruction, Eq. (6), for the three circuits used in Figs. 4 and 5. Here, we choose the actual unknown
phase to be θ = 13π/12 and run each circuit Rmax = 1000 times. (a) The final posterior distribution P(θa| �Mk ) from Eq. (6) using an initial
flat prior across the range [0, 2π ). We also display the ranges of optimal RQPE distinguishability (i.e., regions without aliasing issues) in the
shaded gray regions. The inset zooms in on the region near θ , which we show as a dotted black line. (b) The standard deviation, (�θa)2, of the
posterior distribution P(θa| �Mk ) after R runs of the circuit with an initial flat prior across the range [π, 7π/6]. In general, RQPE circuits should
be compared by the number of unitary applications r × R; here, we have r = 7 for all three circuits. We show that for all three circuits in the
large run limit R 
 1, the standard deviation converges to the respective Cramér-Rao bound (CRB) [dashed black lines], given by Eq. (4).

For the circuits we consider, the CFI for the Z basis is given
by (see Appendix E)

I (θ |M) =
n−1∑
j=0

u2
j . (5)

One can see that the CFI is dominated by the qubit that has the
largest number of unitary applications. This max[uj] in QPE
is only on the order of half of max[uj] in RI when rRI = rQPE

because RI has all of its unitary applications acting on a single
qubit. Therefore, QPE will have on the order of half as much
precision given the same number of unitary applications. This
can be seen in Figs. 4(a) and 4(b) by the width of the fringes.

In a general RQPE circuit with n qubits, one can per-
fectly distinguish T � 2n phases. However, the phases need
not be evenly distributed around the equator of the Bloch
sphere, as is the case with QPE, since the exponentials on
the unitary gate applications over subsequent qubits are not
restricted to powers of 2. Therefore, there is a tradeoff be-
tween distinguishability and precision that can be tuned for
a given parameter estimation objective by employing differ-
ent RQPE circuits. As with the canonical examples, RQPE
circuits can either be run once for perfect distinguishability
between the phases in � or can be run multiple times to
estimate a continuous phase. We consider an example circuit
in Fig. 5, which is a two-qubit circuit with |q0〉 and |q1〉.
We use the unitaries U 6

0 and U1 to match the number of
unitary applications used in the canonical circuits studied in
Fig. 3. The probability distribution for different phases is
displayed in Fig. 5(a). Since the CFI is dominated by max[u j],
we expect this RQPE circuit, having max[uj] = 6, to have a
higher precision than QPE with max[uj] = 4, but lower than
RI with max[u j] = 7. This is confirmed in Fig. 5(a) where we

compare the width of the first fringe to that of the canonical
circuits.

Meanwhile, the opposite relationship is true when compar-
ing the circuit’s distinguishability. We show this in Fig. 5(b)
where we calculate Eq. (3) for our RQPE circuit. We say that
a circuit is more distinguishable if it has a greater number of θi

having a distance of zero to only itself rather than additionally
having a distance of zero to some other θ j . Then, this RQPE
circuit can be compared to Figs. 4(a) and 4(b) for the canoni-
cal examples to see that it is more distinguishable than RI but
less distinguishable than QPE.

There are two notable features of distinguishability in
RQPE circuits, further analyzed in Appendix G. One is the
repetition of probability distributions. This is determined by
the qubit with the lowest number of unitary applications caus-
ing the probability distributions over the range [0, 2π

min[u j ]
)

to repeat over the full 2π range, being truncated after 2π .
The second distinguishability feature is the distinguishabil-
ity within this repeated range, which is determined by the
distribution of unitary applications over the qubits. The gen-
eration algorithm that we have presented in this paper utilizes
these two features with the goal of optimizing the distribu-
tion of unitary applications for any given �. To demonstrate
these properties when estimating an unknown continuous
phase, we now implement Bayesian reconstruction [26,27]
of a nonperfectly distinguishable phase θ = 13π/12 /∈ � in
Fig. 6 for the three circuits considered in Figs. 4 and 5. This
takes into account nondeterministic wave-function collapse,
and closer represents traditional phase estimation used by,
for example, atomic clocks. Here, we run the complete cir-
cuit R times which produces a measurement record �Mk =
[M (1)

k , M (2)
k , . . . , M (R)

k ], where M ( j)
k is the total measurement

outcome of the jth run of the circuit. We then iterate the Bayes
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theorem to find

P(θa| �Mk ) = P(θa)
R∏

j=1

P
(
M ( j)

k |θa
)

P
(
M ( j)

k

) , (6)

where P(M ( j)
k |θa) is from the forward problem [i.e., the rows

of Figs. 4(a), 4(b), and 5(a)], P(θa) is the prior knowledge,
and P(M ( j)

k ) is a normalization factor. The results for all three
circuits are shown with Rmax = 1000 in Fig. 6(a), where we
choose the prior as a flat distribution. The posterior distribu-
tion P(θa| �Mk ) of the three schemes shows that the peak of
RQPE is higher than QPE and RI, signifying greater confi-
dence in estimates of θ . Both RQPE and QPE do not suffer
from the aliasing problems that RI has for this value of θ (i.e.,
the many green peaks). The inset confirms that the posterior
distribution is converging to the correct value of θ (dotted
black line) for RQPE. We also display the ranges where the
RQPE circuit does not have aliasing problems in the shaded
gray regions of Fig. 6(a), and so for a θ in the nonshaded
regions, one would expect RQPE to have two peaks in the two
nonshaded regions due to indistinguishability [see Fig. 5(b)].
Note that this gray region corresponds to the prior that gener-
ates the RQPE circuit corresponding to Fig. 5.

To compare the sensitivity of the three circuits, we choose
a flat prior between [π, 7π/6] and again iterate the Bayes
theorem Eq. (6) for Rmax = 1000 runs in Fig. 6(b). We calcu-
late the standard deviation of the posterior distribution (�θa)2

after each run of the circuits which we show on a log-log plot.
To keep the three circuits on the same footing, we use the total
number of unitary applications r × R rather than just the num-
ber of runs of the circuit R on the x axis. Here, this distinction
is superfluous as we have chosen rRI = rQPE = rRQPE = 7, but
this is not true for general RQPE circuits. We display the
Cramér-Rao bound Eq. (4) as a dashed black line for each
respective circuit, and one can see that all three circuits con-
verge to the Cramér-Rao bound in the large run limit R 
 1.
This would not be true for RI with a flat prior across the
whole [0, 2π ) range, as was done in Fig. 6(a), unless one fit
the posterior distribution to multiple Gaussian functions. We
also note that the standard deviation converges from below the
Cramér-Rao bound in all three cases due to our choice in prior,
which has a width initially below the Cramér-Rao bound. In
all three cases, we asymptotically converge to the Cramér-Rao
bound and match the analysis of the different CFIs.

IV. CONCLUSION AND OUTLOOK

In this paper, we have demonstrated that a general class
of quantum phase estimation algorithms, which we labeled as
RQPE, exists that encompasses the canonical examples of RI
and QPE. Furthermore, by casting these canonical examples
into the language of RQPE we are able to compare these
distinct algorithms on equal footing. The figures of merit
that we considered were precision, determined by the CFI in
Eq. (5), and the distinguishability, determined by the distance
in Eq. (3). The figures of cost that we considered were the
number of unitary applications and the number of qubits. We
found that RI is more sensitive than QPE when constrained
to the same number of unitary applications, but QPE is more

distinguishable than RI. We demonstrated that these are two
extremes of RQPE circuits, and so one can find a middle
ground between these examples by tuning a tradeoff between
these two figures of merit.

While the presented circuit generation algorithm can be
used to improve current phase estimation standards, it is not
necessarily optimal in all cases. Future work may therefore
be directed towards either reducing complexity in the gen-
eration algorithm or increasing optimality in the generated
circuits. Future work will also explore how to best implement
RQPE in contexts beyond quantum computing circuits, such
as quantum optics systems that have, so far, primarily utilized
RI for phase estimation [33–35]. Of particular interest, these
systems will offer the opportunity to study the interplay of
experimental errors with the algorithm, and the opportunity to
benefit from error correction.
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APPENDIX A: GATES ON A QUBIT

In this section, we derive the formula to calculate the gates
applied to each qubit based on the reductions in Algorithm
1. First, we assume the phase can be written as θ = πxa

d for
integers xa and d . The goal is to perform some operations
to change θ so that the jth qubit measures e−iπx jZ , where x j

is the numerator from the set F j = { x
Gj

: x ∈ S j} to which xa

transforms. For x0, the algorithm only needs to divide by G0,
resulting in the following gate:

e−iπx0Z = e−iπ xa
G0

Z

= e−iπ xad
G0d Z

= (e−iπ xa
d Z )

d
G0

= U
d

G0
i . (A1)

Now doing the same process for x1, the previous reduction
applies as well as A0 and G1, adding A0 only if the numerator
at F0 is odd, which happens when q0 = 1. This results in

x1 =
(

xa

G0
+ q0A0

)
1

G1

= xa

G0G1
+ q0A0

G1

= xad

G0G1d
+ q0A0

G1

= xa

d

d

G0G1
+ q0A0

G1
, (A2)
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and so

e−iπx1Z/2 = exp

[
−iπ

(
xa

d

d

G0G1
+ q0A0

G1

)
Z

2

]

= (e−iπ xa
d

Z
2 )

d
G0G1 e−iπ q0A0

G1
Z
2

= U
d

G0G1
j Z

q0A0
G1

j

= Z
q0A0

G1
j U

d
G0G1
j . (A3)

One can thus see that this pattern results in the following gates
for qubit q j :

Hj
(
Z

q0A0
G1 ...Gi
j Z

q1A1
G2 ...G j

j . . . Z
q j−1A j−1

G j

j

)
U

d
G0 ...G j

j Hj

= Hj

⎛
⎝ j−1∏

k=0

CZ

Ak∏ j
�=k+1 G�

j,k

⎞
⎠U

d∏ j
�=0 G�

j Hj . (A4)

APPENDIX B: ESTIMATING θ

In this section, we derive the formula to estimate the phase
from the measurement results after running the circuit gener-
ated from Algorithm 1. Backtracking through the reductions
(i.e., subtracting the additions and multiplying by the GCDs)
reveals the value assigned to each qubit measurement, which
we call the bit value. For example, in a four-qubit circuit, the
original numerator will be

θ = π ({[(−m3A3)G3 − m2A2]G2

− m1A1} G1 − m0A0)G0

= π (−m3A3G3G2G1G0 − m2A2G2G1G0

− m1A1G1G0 − m0A0G0). (B1)

One can see the pattern that the bit value of each measured
bit bi, which is included in the final estimate if and only if
mj = 1, will be

b j = −π

d
Aj

j∏
k=0

Gk . (B2)

This allows for the transformation of the measurement results
m0, . . . , mn−1 into the unknown phase as

θ = −π

d

n−1∑
j=0

mjAj

j∏
k=0

Gk . (B3)

APPENDIX C: COMPLEXITY

In this section, we analyze the time and space complexity
of Algorithm 1 and the generated RQPE circuits. We define h
to be the greatest numerator in S0 and note that T � 2d and
h < 2d . Each qubit will ideally reduce the size of � by half,
imposing a lower bound of �log2(T )� on the number of qubits,
n. Additionally, the algorithm will always be able to reduce at
least one θ into another after each measurement, and the final
measurement distinguishes two distinct values of θ , and so
n � T − 1.

Moreover, any set of phase numerators is a subset of
{i : i ∈ Z and 0 � i < 2�log2 h�+1}, which can be distinguished

using A = [−1,−1,−1, . . . ] and G = [1, 2, 2, 2, . . . ] with
�log2 h� + 1 qubits. If one restricts the additions used in the
classical generation algorithm to negative values, then the
number of qubits will always be less than or equal to this.
However, allowing positive additions further optimizes many
circuits, and since we cannot guarantee this constraint in this
case, it can be trivially ensured by using these A and G values
if the generated circuit uses more qubits than this. This puts a
second upper bound on n, resulting in the following bounds:

�log2(T )� � n � min(T − 1, �log2 h� + 1). (C1)

In the worst case, the generation algorithm will produce this
G, resulting in the geometric sequence

ai = d
(

1
2

)i
, (C2)

where ai is the number of unitary applications on qi. This
series results in an upper bound on the total number of unitary
applications, r, in one run of the circuit as

r < 2d. (C3)

Each reduction in the generation algorithm is composed
of first finding the GCD of the set of values of θ . Finding the
GCD of two numbers a and b can be done using the Euclidean
GCD algorithm in O[log2 min(a, b)] time [36]. The algorithm
can then perform this iteratively for all the possible values of
θ in a set, achieving a time complexity of O(T log2 h).

The second phase of a reduction consists of finding a value
to add to the odd numerators which reduces the set size as
much as possible. The method described in this paper runs in
at most O(T 2) time, since in the worst case there will be an
equal number of even and odd numerators, T

2 , and each odd

will be added to each even, producing T 2

4 results. Each result

is then counted to find the mode, which results in a total of T 2

4
time in the worst case.

Each multiplication and addition can be considered to run
in constant time (assuming all numbers fit into the word size
of the hardware) over each θ , so the operations after finding a
GCD or addition can be done in time O(T ).

The combination of all of these steps within an iteration
multiplied by the number of iterations necessary results in a
total time complexity of O[(T 2 + T log2 h) min(T, log2 h)] to
generate the quantum circuit. Let us look at each case more
specifically. In the case that T � log2 h,

O[(T 2 + T log2 h)T ] = O(T 3 + T 2 log2 h)

= O[T 2(T + log2 h)]

= O(T 2 log2 h), (C4)

because log2 h is the larger term in (T + log2 h). In the case
that T � log2 h,

O[(T 2 + T log2 h) log2 h] = O[T 2 log2 h + T (log2 h)2]

= O[T log2 h(T + log2 h)]

= O(T 2 log2 h), (C5)

because T is the larger term in (T + log2 h). Therefore, both
cases end up being the same and produce a runtime of

O(T 2 log2 h). (C6)
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The algorithm stores the possible values of θ and two
arrays for the GCDs and additions in each reduction, which
are all on the order O(T ). In this paper’s method to find a
particular addition in a reduction step, however, the algorithm
stores O(T 2) possibilities to consider, which is the dominant
factor. This equates to a total space complexity of O(T 2).

APPENDIX D: BUILDING A CIRCUIT FROM BIT VALUES

In this section, we show how to reverse engineer Algorithm
1, deriving the A and G starting with bit values. The goal of
the circuit-building reductions is to find the A and G. If one is
given the bit values instead of a � set, thereby distinguishing
� consisting of all possible subset sums of these bit values,
one can find these values with much more simplicity. First,
one finds S0 and d , which can be done by first finding the
fraction forms using the continued fractions algorithm [37].
Then, set G0 = GCD(S0) and A0 = − S0,0

G0
, where S0, j is the

jth numerator corresponding to bj . Next, set G1 = GCD({ S0, j

G0
:

j � 1}) and A1 = − S0,1

G0G1
. Continue this way until all Gs and

As are found.
Note that all A must be odd valued and all G, except

G0, must be even valued for the presented circuit generation
to be sure to work correctly. If these do not hold, then the
presented circuit generation algorithm likely cannot be used
to distinguish a � set matching these bit values exactly.

For example, if one wanted to build a circuit that distin-
guishes phases in the range [0, 21π

d ] in even multiples of 3π
d ,

one could use the bit values b = [ 3π
d , 6π

d , 12π
d ]:

G0 = GCD(S0)

= 3, (D1)

A0 = −S0,0

G0

= −3

3

= −1, (D2)

G1 = GCD

({
S0,1

G0
,

S0,2

G0

})

= GCD

({
6

3
,

12

3

})

= GCD({2, 4}) = 2, (D3)

A1 = − S0,1

G0G1

= − 6

3 × 2

= −1, (D4)

G2 = GCD

({
S0,2

G0G1

})

= GCD

({
12

3 × 2

})

= 2, (D5)

A2 = − S0,2

G0G1G2

= − 12

3 × 2 × 2

= −1. (D6)

Since only the first G is odd and all the A are odd, this b is
valid, and these A and G may be used in the rest of the circuit
generation.

APPENDIX E: FISHER INFORMATION

In this section, we derive the formula to calculate the Fisher
information of an RQPE circuit. As explored in [24,25],
RQPE circuits may be equivalently run sequentially on a
single qubit, so each line in the circuit will be run separately
from each other. This means that each line of the circuit can
be considered an RI circuit with additional Z-rotation gates.
These rotation gates have the following effect:

H (Zz0 Zz1 . . . )U rH |0〉 = H (Zz0+z1...)U rH |0〉
= HZ jU rH |0〉

= 1

2

[
1 + ei(rθ+ j)

1 − ei(rθ+ j)

]
, (E1)

where zi is the power of the ith Z-rotation gate, and j is a
simplifying variable j =∑i=0 zi.

We now let E [a] be the ath element of Eq. (E1). The
classical Fisher information of Eq. (E1) is then (see Ref. [38])

I (θ |M)[RI] =
1∑

a=0

{
∂
∂θ

(E [a]E [a]∗)
}2

E [a]E [a]∗

=
{

∂
∂θ

[
cos( rθ+ j

2 )
]2}2

{
cos( rθ+ j

2 )
}2 +

{
∂
∂θ

[
sin( rθ+ j

2 )
]2}2

{
sin( rθ+ j

2 )
}2

=
{− r

2 sin(rθ + j)
}2

{
cos( rθ+ j

2 )
}2 +

{
r
2 sin(rθ + j)

}2

{
sin( rθ+ j

2 )
}2

= r2

4

⎧⎨
⎩ [sin(rθ + j)]2[

cos( rθ+ j
2 )
]2 + [sin(rθ + j)]2[

sin( rθ+ j
2 )
]2
⎫⎬
⎭

= r2

{[
sin(

rθ + j

2
)

]2

+
[

cos(
rθ + j

2
)

]2
}

= r2 (E2)

where r is the number of unitary applications on the qubit.
One can see that the Fisher information of an RI circuit is
irrespective of the embedded θ or j. Hence, additional ro-
tation gates on a Ramsey line have no effect on the Fisher
information of that line, and we may simply add the Fisher
information of all lines in the RQPE circuit to calculate the
full Fisher information with

I (θ |M)[RQPE] =
n−1∑
i=0

u2
i . (E3)
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APPENDIX F: EXAMPLES OF COMPARING OPTIMALITY

In this section, we compare RI, QPE, and RQPE circuits
in a more general manner to find conditions for which one
might be more optimal than the other. When one implements
a phase estimation circuit, one typically desires some preci-
sion, defined by the Cramér-Rao bound, while being able to
distinguish some range of phases 0 � θ � h in e−iθZ/2, where
h is the largest phase, after many runs. This is because if there
were separate ranges, RI would still need to distinguish one
large range that covers all the separate ranges. A more optimal
circuit achieves both of these things while using fewer unitary
application and qubits. Define precision as 1

p where p � 1 and
h = a

d . The precision is defined by the Cramér-Rao bound, so
p = √

R
√
I (θ |M), where R is the total number number of

runs and I is the classical Fisher information.
First, we see what RI requires. RI optimally satisfies these

requirements with r = 1
h = d

a unitary applications per run.
Increasing this shrinks the dynamic range to be less than
the required theta range, and distinguishability is lost, while
decreasing this exponentially increases the total number of
runs to achieve the same precision, resulting in more unitary
applications overall. Since the classical Fisher information is
( d

a )2 according to Eq. (5), we have

1

p
= a

d
√

R
, t =

⌈( pa

d

)2
⌉
. (F1)

Here, we take the ceiling because R is an integer, meaning RI
requires �( pa

d )2� runs to satisfy the requirements. Since each
RI run uses exactly one qubit, it requires the same number
of qubits. The total number of unitary applications it needs
across all runs is therefore

d

a
R � p2a

d
. (F2)

QPE always has full distinguishability over [0, 2π ) and
achieves at least the desired precision when its most precise
qubit reaches it, which happens after one run when

1

p
= 1√

I
, p � umax (F3)

where umax is the number of unitary applications on the most
precise qubit. Since the unitary applications for each qubit
in QPE follow powers of 2, the most precise qubit having
2�log2 p� � 2log2(p)+1 unitary applications satisfies the precision
requirement. This, in turn, results in less than 4p total unitary
applications across all qubits and �log2 p� + 1 total qubits.

We now have circuits for both RI and QPE that satisfy
the distinguishability requirement, so, in order for QPE to
outperform RI, we find a precision where the total number
of unitary applications for QPE is less than that of RI:

4p <
p2a

d
,

4p < p2h,

4

p
< h. (F4)

This means that QPE is guaranteed to use fewer unitary appli-
cations whenever the highest θ is at least four times the desired

precision, i.e., when you would like to estimate θ using at least
four bins of equal spacing.

We do a similar analysis for RQPE. If one wanted to split
the range between some positive integer k and k + 1 bins, we
have

1

p
= b

c
h

= ba

cd
, (F5)

where c
k+1 < b < c

k . One could, for example, run the Al-

gorithm 1 with � = { baxi
cd : xi ∈ Z, 0 � xi � k + 1}, which

satisfies the precision and distinguishability requirements af-
ter a single run. We will compare the optimality of this circuit,
which uses

rRQPE = cd

ba

(
1 + 1

2
+ 1

4
+ · · · + 1

2�log2 k�

)

= cd

ba

(
2 − 1

2�log2 k�

)
. (F6)

Since RI requires

t =
⌈( pa

d

)2
⌉

=
⌈(

cda

bad

)2
⌉

=
⌈(c

b

)2
⌉

> k2

� k2 + 1 (F7)

runs to reach the desired precision, RI is more optimal than
this RQPE circuit when⌈(c

b

)2
⌉(

d

a

)
<

cd

ab

(
2 − 1

2�log2 k�

)
⌈(c

b

)2
⌉

<
c

b

(
2 − 1

2�log2 k�

)

k2 + 1 <
c

b

(
2 − 1

2�log2 k�

)

b <
c

k2 + 1

(
2 − 1

2�log2 k�

)
. (F8)

When k = 0, the given RQPE circuit simply returns RI, so
they are equally optimal. For k = 1, we see that RI is more
optimal when b < 3c

4 , i.e., one wants a precision of 3
4 h. For

k = 2, b < 3c
10 , which violates b > c

3 . This violation persists
for all k > 1. Therefore, this RQPE circuit is always more
optimal than RI except in the very specific case when one
wants 3

4 h < 1
p � h.

APPENDIX G: FEATURES OF INDISTINGUISHABILITY

In this section, we explain two key types of distinguisha-
bility that can be seen in RQPE circuits. For all reductive
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quantum phase estimation circuits, a single qubit can dis-
tinguish between a phase of zero and π

ui
with certainty.

However, it also creates a range [0, 2π
max[1,min[u j ]]

) where each
θ within it results in an identical Bloch sphere position as
θ + j 2π

max[1,min[u j ]]
: j ∈ N, j < max[1, ui], where N are the

natural numbers. That is, on the full 2π range of possible
phases, there will be max[1, ui] sets of physically indistin-
guishable phases after the unitary applications. We call this
range the repeated range, S , and we call this principle of
indistinguishable sets “indistinguishability due to repetition.”
This can be extended to a multiqubit RQPE circuit, where

S = 2π

max[1, min[u j]]
, (G1)

as min[u j] has the largest repeated range, and no repetition
occurs until repetition over this largest repeated range occurs.

Another type of indistinguishability, which we refer to
as “indistinguishability due to measurement basis,” is due
to identical measurement probability distributions for phases
within the repeated range itself. This means that the state may
lie on different points in the Bloch sphere after the unitary ap-
plications but have identical probability distributions given the
measurement basis. This is the type of distinguishability that
can be increased by distributing unitary applications across
multiple qubits in certain ways. This is also the type that is
plotted in our distance graphs, since this distinguishability is
simply repeated as the repeated range repeats.

APPENDIX H: RQPE AS A GATE

In the same way that the H and CZ gates after the unitary
applications of a QPE circuit can be viewed as a QFT† gate,

one can view the H and CZ gates after the unitary applications
of an RQPE circuit as (RQPEG,A)† gates. In the following
definitions, we include SWAP gates to reverse the order of
qubits as the final step in the (RQPEG,A)† gate, while keep-
ing the definition of bi unchanged, in order to more closely
match the traditional definition of the QFT gate. However, to
match the circuit given in the paper, i.e., without final SWAP

gates, ũ (defined below) should be exchanged with u in the
following equations.

The RQPEG,A gate, given some GCDs G and additions A,
maps a quantum state |x〉 =∑2n−1

k=0 xk|k〉 to a state
∑2n−1

k=0 yk|k〉
according to the formula

yk = 1√
2n

2n−1∑
j=0

x j exp[i(b · j)(ũ · k)] (H1)

where the · operation of two operands p and q is p · q =∑n−1
i=0 piqi, p̃i = pn−1−i, qi is the ith bit of the binary repre-

sentation of q, bi is the ith bit value of the RQPE procedure,
and ui is the number of unitary applications on the ith qubit,
given by

ui = d∏i
k=0 Gk

. (H2)

When |x〉 is a basis state, the RQPEG,A gate can be expressed
as the map

RQPEG,A : |x〉 → 1√
2n

2n−1∑
k=0

exp[i(b · x)(ũ · k)]|k〉. (H3)

The unitary matrix of the RQPEG,A gate acting on quantum
state vectors is then

1√
2n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1
1 eib0 ũ0 eib1u0 ei(b0+b1 )ũ0 . . . eicũ0

1 eib0 ũ1 eib1ũ1 ei(b0+b1 )ũ1 . . . eicũ1

1 eib0(ũ0+ũ1 ) eib1(ũ0+ũ1 ) ei(b0+b1 )(ũ0+ũ1 ) . . . eic(ũ0+ũ1 )

...
...

...
...

...

1 eib0r eib1r ei(b0+b1 )r . . . eicr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (H4)

where c =∑n−1
i=0 bi and r =∑n−1

i=0 ũi.
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