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Predicting concentration changes via discrete receptor sampling
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To successfully navigate chemical gradients, microorganisms need to predict how the ligand concentration
changes in space. Due to their limited size, they do not take a spatial derivative over their body length but rather
a temporal derivative, comparing the current signal with that in the recent past over the so-called adaptation time.
This strategy is pervasive in biology, but it remains unclear what determines the accuracy of such measurements.
Using a generalized version of the previously established sampling framework, we investigate how resource
limitations and the statistics of the input signal set the optimal design of a well-characterized network that
measures temporal concentration changes: the Escherichia coli chemotaxis network. Our results show how an
optimal adaptation time arises from the trade-off between the sampling error, caused by the stochastic nature
of the network, and the dynamical error, caused by uninformative fluctuations in the input. A larger resource
availability reduces the sampling error, which allows for a smaller adaptation time, thereby simultaneously
decreasing the dynamical error. Similarly, we find that the optimal adaptation time scales inversely with the
gradient steepness, because steeper gradients lift the signal above the noise and reduce the sampling error. These
findings shed light on the principles that govern the optimal design of the E. coli chemotaxis network specifically,
and any system measuring temporal changes more broadly.
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I. INTRODUCTION

Organisms ranging from bacteria to mammals have learned
to navigate their environment in order to find food and
avoid threats. Successful navigation requires an organism to
predict the spatial structure of its surroundings, which necessi-
tates measuring and storing relevant environmental properties.
Therefore, how accurately these signals are sensed can funda-
mentally limit the success of navigation [1]. This in turn raises
the question how accurately such signals can be transduced.

Microorganisms that navigate chemical gradients need to
determine the correct direction to move in, which entails pre-
dicting the change in concentration that they will encounter,
rather than its value. Because these organisms are typically
small relative to the gradient length, the measurement error
is large compared with the concentration difference over their
body length [2]. Therefore, they cannot directly measure the
gradient. Instead, these microorganisms only have access to
the local concentration. Yet, they can also store past con-
centrations. How these cells should integrate the current and
past information to predict the concentration change remains,
however, unclear. In principle, cells can combine the concen-
tration value with its derivative to predict the concentration
change, and the optimal strategy for combining this infor-
mation depends on the statistics of the environment. If the
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range of background concentrations is large compared with
the typical concentration change over the signal correlation
time as set by the organism’s own motion, then the optimal
system for predicting the concentration change is one that
exhibits perfect adaptation [3]. It means that the organism
bases its prediction on the concentration change only.

Interestingly, various organisms have indeed been shown
to employ this strategy. A canonical example is the bacterial
chemotaxis system, which is widely conserved across species
[4–8]. But also eukaryotic sperm cells measure temporal
changes when navigating towards an egg [9–11], and even
the multicellular nematode Caenorhabditis elegans depends
on temporal derivatives in a range of taxis behaviors [12].

Even though measuring temporal changes appears to be
a common and important function, it is not clear what
sets the accuracy of such measurements. The fundamen-
tal information-processing devices that allow living cells to
measure concentration changes are biochemical signaling net-
works. Like any device, the accuracy of such networks is
limited by the physical resources required to build and operate
them, such as energy, components, and time. Here, we inves-
tigate how these resources limit the accuracy with which cells
can predict changes in the encountered concentration during
navigation. Specifically, we ask what determines the optimal
design of the signaling network under limited resource avail-
ability.

To measure a temporal change, cells subtract from the most
recent signal the signal further back into the past. The latter
is performed via the adaptation system. Crucially, to yield a
response of nonzero amplitude, which is necessary to lift the
signal above the inevitable biochemical noise, the system can-
not adapt instantly; it therefore cannot take an instantaneous
derivative. On the other hand, the adaptation time should not
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be too long, because then the temporal derivative is taken over
a larger window stretching further back into the past, which
is less informative about the current or future derivative that
the cell needs to predict. We thus expect that there exists an
optimal adaptation time that arises from this trade-off between
a derivative that is most recent and one that is most reliable
[3]. However, what precisely controls the optimal adaptation
time and how this depends on the statistics of the input and
the available resources such as receptor and readout copies,
remains unknown.

An intuitive perspective that is ideally suited to answer
these questions is the previously established sampling frame-
work [13–15]. This framework views the signaling network
downstream of the receptor as a device that discretely samples
the state of the receptor. From this starting point, it enables
identification of the different contributions that comprise the
full sensing error: the sampling error, caused by fluctuations in
the number of samples, the binary nature of the receptor state,
and receptor-level noise; and the dynamical error, resulting
from uninformative fluctuations in the input. While previous
work has used the sampling framework to investigate sensing
the current signal, we here generalize and extend it to include
the prediction of signal properties a specified time into the
future. We then apply this generalized sampling framework to
the Escherichia coli chemotaxis network, a well-characterized
example of a network which measures temporal changes. We
model the input signal after the experimentally measured in-
put for E.coli chemotaxis in shallow gradients [1].

Our results distinctly show how an optimum for the adapta-
tion time arises from its opposing effects on the sampling error
and the dynamical error. While the former decreases with
adaptation time, the latter increases with it. Given the adapta-
tion time, a larger number of receptor and readout molecules
reduces the sampling error, shifting the balance between
the sampling and dynamical error. Therefore, increasing the
resource availability reduces the optimal adaptation time.
Similarly, we find that the optimal adaptation time scales
inversely with the steepness of the chemical gradient in which
the organism navigates. The reason is that, in a steeper gra-
dient, the signal is more easily distinguished from the noise
under the same resource availability. This again means that
the sampling error decreases relative to the dynamical er-
ror, reducing the optimal adaptation time to decrease the
latter. Finally, if the dynamics of the concentration change
are Markovian, the optimal adaptation time is independent
of the prediction interval. These findings likely extend well
beyond E. coli and have implications for the optimal design
of any system that measures temporal changes, be it natural or
man-made.

II. RESULTS

A. Theory: Sampling framework

In general, the function of a biochemical signaling network
is to estimate the value of a signal of interest, which typically
varies in time. Sensing entails estimating the value of the
signal at the current time t0, while predicting the future state
of the environment, implies estimating the value a time τ into
the future. To extend the sampling framework to be applicable

to prediction as well as sensing we define the signal of interest
as sτ ≡ s(t0 + τ ) with τ � 0. In this work we consider a
time-varying input signal described by stationary Gaussian
statistics (see Sec. II B).

In biochemical signaling networks, the activity state of
receptor proteins is altered by the ligand molecules that bind
them. In turn, downstream readout proteins stochastically
sample the receptor state n ∈ {0, 1}. From these samples the
signal of interest must then be inferred. A canonical motif
that samples the activity state of upstream receptor proteins
is the push-pull network [16]. In this network a sample of the
receptor state is stored in the chemical modification state of
a readout protein, which decorrelates from the receptor state
over the response time τr [Fig. 1(a)].

To estimate the signal value sτ a time τ into the future, the
cell integrates the receptor activity over a time τr, leading to
an estimate p̂τr of the average receptor activity pτr over the
integration time τr [Fig. 1(b)]. However, during this past time
τr, the input signal varies over its own timescale τv , which
leads to changes in the receptor activity on this timescale as
well [14,15]. On top of variation on the timescale of the input
dynamics, the receptor activity fluctuates on the timescale of
ligand binding and unbinding, and on the timescale of the
adaptation mechanism τm. In the linear regime, the dynamic
input-output relation between the average receptor activity pτr

and the signal of interest sτ is given by

pτr (sτ ) ≡ E[〈n(ti)|sτ 〉]ti = p + g̃sτ , (1)

where the angle brackets denote an ensemble average over all
receptors, E[. . . ]ti is an average over all sampling times ti,
which are exponentially distributed over the integration time
τr [Eq. (A4)], and p ≡ E[〈n(ti)〉]ti is the average receptor ac-
tivity over all signal values. The dynamic input-output relation
thus gives the average receptor activity pτr over the response
time τr given that the future signal is sτ ; pτr is thus an average
over all sources of noise, arising from receptor-ligand binding
and receptor methylation, readout activation, and fluctuations
in the past input that are not informative because they map
onto the same future signal sτ (see Fig. 2). The slope of the
mapping between sτ and pτr is the dynamic gain g̃ [Fig. 1(c)]
[17].

The accuracy of any signaling device can be quantified us-
ing the signal-to-noise ratio (SNR), which is a measure for the
number of distinct signal values the system can distinguish.
For systems with Gaussian statistics, as studied here, the SNR
is given by the ratio of the signal variance σ 2

sτ
over the error

in the cell’s estimate of the signal (δŝτ )2 ≡ E[Var(ŝτ |sτ )]sτ
,

i.e., the variance of the cell’s signal estimate ŝτ under a fixed
signal sτ , averaged over all sτ :

SNR ≡ σ 2
sτ

(δŝτ )2
= g̃2σ 2

sτ

σ 2
p̂τr

. (2)

The cell estimates the signal sτ from the average receptor
activity over the integration time, pτr , via the dynamic input-
output relation, see Eq. (1) and Fig. 1(c). Using the rules
of error propagation, the error in the signal estimate is thus
given by

(δŝτ )2 = σ 2
p̂τr

/g̃2, (3)
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FIG. 1. A push-pull motif samples the binary state of the chemotaxis receptor cluster. (a) Ligand binding affects the probability of a
chemotaxis receptor cluster to reside in its active or inactive conformation. This binary cluster state n controls the methylation dynamics of its
constituent receptors, leading to negative feedback on the adaptation timescale τm. The cluster state is sampled by the readout molecules X on
the response timescale τr. (b) We consider an input signal defined by its concentration �(t ) and concentration derivative v(t ), with correlation
time τv [Eqs. (12)–(14)]. The instantaneous cluster activity n ∈ {0, 1} switches fast relative to the input correlation time, response time τr, and
adaptation time τm. Due to the negative feedback, the mean cluster activity reflects the change in concentration over the past adaptation time
τm. The network makes an estimate p̂τr of the cluster activity over the past response time τr by discretely sampling the instantaneous cluster
state via the push-pull motif [panel (a)]. The estimate p̂τr = x∗/N is given by the current number of active readout molecules x∗, reflecting
the number of samples of active receptor clusters during the past integration time τr, over the mean number of samples N during this time τr

[Eq. (5c)]. For linear Gaussian systems the future signal sτ maps onto a current mean cluster activity over the response time pτr via the dynamic
input-output relation of Eq. (1). The variance in the estimate p̂τr given a signal value sτ is the prediction error σ 2

p̂τr
. Mapping the prediction

error back onto the signal gives the network’s error in the signal estimate (δŝτ )2. The ratio between the total variance in the signal σ 2
sτ

and the
error in the signal estimate (δŝτ )2 is the signal-to-noise ratio [Eq. (2)].

where the error in the estimate of the receptor activity p̂τr over
the integration time τr is defined as

σ 2
p̂τr

≡ E[Var( p̂τr |sτ )]sτ
. (4)

t0 time

dynamical
error

sampling
error

FIG. 2. The total error in the cell’s estimate of the receptor ac-
tivity can be decomposed into the dynamical error and the sampling
error. For linear signaling systems, a given current or future signal
sτ (red dot) maps onto a single mean receptor activity pτr at the
current time t0 (black dot) via the dynamic input-output relation of
Eq. (1) [Fig. 1(c)]. However, the past input and thus receptor activity
on which the estimate p̂τr (blue dot) is based varies in time, leading to
a dynamical error. This error arises because different past trajectories
of the signal map onto a common future value sτ , leading to uninfor-
mative variations in p̂τr . Even for a given input trajectory the receptor
noise, which in this work is only caused by receptor methylation,
and the stochastic nature of the sampling process downstream of
the receptor, lead to deviations in the estimate p̂τr (gray dots) which
constitute the sampling error.

The signal-to-noise ratio of Eq. (2) also specifies the Gaussian
mutual information between the signal and the network output
[18].

To quantify the error in the cell’s estimate of the receptor
activity [Eq. (4)], we have to consider how the cell makes
this estimate. As a model system to investigate networks that
measure changes in the input we use the E. coli chemotaxis
network. In this network, the activity of a receptor cluster
reflects the change in signal concentration over the past adap-
tation time τm (see Sec. II C for details). Downstream of the
cluster, its activity state is sampled via a push-pull motif
[Fig. 1(a)] [16]. The cell’s estimate of the fraction of active
clusters is given by (also see Ref. [13])

p̂τr = 1

N

N∑
i=1

ni(ti ) = x∗

N
, (5)

where ni(ti ) ∈ {0, 1} is the outcome of sample i at sampling
time ti, which is set by the binary activity state of the receptor
cluster that was sampled at time ti [Fig. 1(b)]. The physi-
cal readout of the network is the number of active readout
molecules x∗ = ∑N

i=1 ni(ti ), which have been phosphorylated
by an active receptor cluster. Since readout phosphorylation is
driven by ATP hydrolysis, we consider the sampling process
in the irreversible limit.

The number N of samples is set by the rate r of sampling
and the timescale over which samples remain correlated with
the receptor state, which is set by the integration, or response
time τr. In the push-pull motif the sampling rate is set by the
forward rate constant k f , the number RT of receptor clusters,
and the number X of available readout molecules: r = k f xRT

[Fig. 1(a)]. We assume that N is Poisson distributed with mean
N = r̄τr. This mean number of samples can be expressed in
terms of the steady-state fraction of phosphorylated readouts
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f = k f pRTτr and the total number of readouts XT [15],

N = f (1 − f )XT/p. (6)

The steady-state flux of readout molecules is given by r̄ p =
f (1 − f )XT/τr.

Using the definition of the cell’s estimate of the receptor
activity [Eq. (5)] the error in this estimate [Eq. (4)] can be
decomposed into independent parts in a very general manner.
We set out this decomposition in the section that follows. After
the decomposition of the error we describe the dynamics and
statistics of the input of the chemotaxis network (Sec. II B).
Subsequently we introduce the chemotaxis network in more
detail and compute the dynamic gain g̃ [see Eq. (1)], and the
different contributions to the error in terms of the parameters
of the system (Sec. II C). We then compute the full expression
for the SNR and investigate its behavior as a function of the
prediction interval, the resource availability, and the adapta-
tion time (Secs. II D–II F). We compare the predictions of our
theory to available experimental data on the E. coli chemotaxis
network in Sec. II G. Finally, we illustrate the effect of the
signal statistics on our results by computing the relative error
for a different set of statistics (Sec. II H).

1. The error in the estimate of the receptor activity

We can derive a general expression for the prediction error,
σ 2

p̂τr
, which shows how the complete error decomposes into

independent parts. We start from the definition of the error
[Eq. (4)], which we rewrite using the law of total variance:

σ 2
p̂τr

= Var( p̂τr ) − Var(E[ p̂τr |sτ ])

= Var(E[ p̂τr |N]) + E[Var( p̂τr |N )] − Var(E[ p̂τr |sτ ]),
(7)

where in the first line we use that the total variance in the
estimate of the activity, Var( p̂τr ), is the sum of the variance in
the mean of p̂τr given sτ , Var(E[ p̂τr |sτ ]), and the mean of the
variance in p̂τr conditional on sτ , E[Var( p̂τr |sτ )], which is the

error σ 2
p̂τr

[Eq. (4)]. Indeed, the error in the estimate is its total
variance minus the part which is informative about the signal
of interest sτ . Subsequently, in the second line, we split the
total variance in the estimate p̂τr into a part that arises from
fluctuations in the number of samples N , the first right-hand
side (RHS) term, and the mean variance in p̂τr when N is fixed,
the second RHS term.

In Appendix A we show how each term of Eq. (7) can be
simplified further using the definition of the cell’s estimate p̂τr

[Eq. (5)]. The first term, the error caused by fluctuations in the
number of samples, is given by

Var(E[ p̂τr |N]) = p2

N
, (8)

with the average cluster activity p ≡ E[〈n(ti )〉]ti . As shown
in previous work, this error would be zero if the sampled
cluster functions bidirectionally, i.e., if inactive clusters would
dephosphorylate readout molecules [13]. In contrast, in the
chemotaxis network deactivation is not driven by inactive
receptor clusters but rather by an enzyme (CheZ) independent
of the receptor state, and then this term is nonzero. The fluctu-
ations under a fixed number of samples, the second RHS term
of Eq. (7), can be decomposed further into three parts:

E[Var( p̂τr |N )] = p(1 − p)

N
+ E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s

+ Var(E[〈n(ti)|s〉]ti ), (9)

where the first part reflects the instantaneous variance of each
sampled cluster, the second part is the cluster covariance under
a fixed past signal trajectory s ≡ {s(t )}t�t0 , and the third part
quantifies the effect of the signal history s on the activity of the
cluster. Finally, the variance that is informative of the future
signal value, i.e., the third RHS term of Eq. (7), is given by

Var(E[ p̂τr |sτ ]) = Var(E[〈n(ti)|sτ 〉]ti ) = g̃2σ 2
sτ
, (10)

which follows directly from the dynamic input output relation
in Eq. (1). Substituting Eqs. (8)–(10) into Eq. (7) yields the
full prediction error:

σ 2
p̂τr

= p2

N
+ p(1 − p)

N
+ E[Cov(ni(ti), n j (t j )|s)]ti,t j ,s︸ ︷︷ ︸

sampling error

+ Var(E[〈n(ti )|s〉]ti ) − g̃2σ 2
sτ︸ ︷︷ ︸

dynamical error

. (11)

The first three terms together make up the sampling error.
This error arises due to the stochastic nature of the sampling
process downstream of the receptor, receptor-ligand binding
and unbinding, and the adaptation mechanism. In this work
we integrate out ligand binding, and we therefore find that
receptor methylation constitutes the only noise source on the
receptor level. The sampling error quantifies all variability
in the output under a constant input, as in Ref. [13] (see
Fig. 2). The final two terms constitute the dynamical error;
this is the error that arises from fluctuations in p̂τr that are
caused by differences between past signal trajectories that
map onto the same future signal of interest. These fluctu-
ations contribute to the error in p̂τr because they do not

provide any information on the future signal of interest [14]
(Fig. 2).

Equation (11) reflects that, in general, the error for a lin-
ear sensing system can be decomposed into a contribution
that arises from the stochastic sampling of the signal and
a contribution that comes from the fact that not all signal
fluctuations in the past correspond to the signal which the
cell aims to predict. More specifically, Eq. (11) holds for
any cellular sensing system in which the signal is inferred
from the receptor activity, estimated using the downstream
signaling system as a sampling device, as in Eq. (5). Yet,
to derive the sensing error SNR−1 [see Eqs. (2)–(4)] for the
chemotaxis network, we need to evaluate the sampling error
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and the dynamical error, as well as the dynamic gain g̃ [see
Eq. (3)]. These quantities depend on the specific characteris-
tics of the sensing system and the signal statistics, discussed
next.

B. Signal statistics

In general, it is hard to know what the natural input statis-
tics are that an organism experiences, and these may vary
widely. We can start from the observation that microorganisms
in dilute environments are faced with chemical gradients that
are exceedingly shallow compared with their own length. In
such environments, the only signal property that the cell can
measure is the local concentration. But to determine if it is
moving in the right direction, the cell must predict the change
in concentration over time. So, while the cell can only measure
concentrations, it is interested in the concentration’s temporal
derivative.

An ideal model system to study networks that can pre-
dict temporal changes is the E. coli chemotaxis network. E.
coli swims in its environment with a speed which exhibits
persistence. This leads to an autocorrelation function for the
concentration change which does not decay instantaneously
[1]. To model a signal which is characterized by both the
concentration and its derivative, and in which correlations
in the derivative persist over the correlation time set by the
motion of the cell, we use the classical model of a particle in
a harmonic well [3],

δ�̇ = v(t ), (12)

v̇ = −ω2
0δ�(t ) − v(t )/τv + ηv (t ). (13)

Here, δ�(t ) ≡ [c(t ) − c0]/c0 is the relative deviation of the
concentration c(t ) from its background value c0. The deriva-
tive of this relative concentration is v(t ), and ηv (t ) is a
Gaussian white-noise process that drives the stochastic fluctu-
ations in the signal. The parameter ω0 sets the variance in the
concentration σ 2

� relative to that in its derivative σ 2
� = σ 2

v /ω2
0,

where the variance in the derivative σ 2
v is set by the swimming

behavior of the cell. The relaxation time τv is set by the run
duration because this is the timescale over which the input
fluctuations decorrelate.

The range of ligand concentrations which E. coli might
encounter is very large, based on the dissociation constants
of the inactive and active receptor conformations. For the Tar-
MeAsp receptor ligand combination these are, respectively,
K I

D = 18 µM and KA
D = 2900 µM [19–21]. This suggests that

the total variance in the ligand concentration is much larger
than the concentration change over the course of a run, i.e.,
σ� � τvσv and thus ω0 � τ−1

v . In this regime, the correlation
function of v(t ) becomes a simple exponential with variance
σ 2

v and decay time τv:

〈δv(t )δv(t ′)〉 = σ 2
v e−|t−t ′|/τv . (14)

The correlation function of Eq. (14) corresponds to what
has been observed experimentally for E. coli cells swimming
in shallow exponential concentration gradients [1]. When
cells swim in shallow gradients, i.e., with a characteristic
length much longer than the length of a run, they swim
as if there is no gradient. The correlation function of the

positional velocity vx(t ) in the absence of a gradient has
been measured to be an exponential with variance σ 2

vx
and

decay time τv set by the duration of a run [1]. This can
be mapped onto the correlation function of Eq. (14), where
v(t ) ≡ c−1

0 dc/dt , when we consider that the concentration
gradient is given by c(t ) = c0 exp[gx(t )] with the gradient
steepness g. We find for the absolute concentration change
over time dc/dt = (dc/dx)( dx/dt ) = gc(t )vx(t ), and thus
we have for variance of the relative concentration change v(t ):

σ 2
v = g2σ 2

vx
. (15)

Experimental measurements provide the relaxation time
τ−1
v = 0.86 s−1 and the variance of the positional derivative

σ 2
vx

= 157 µm2 s−2 [1].

C. Chemotaxis model

In the E. coli chemotaxis network, receptors coopera-
tively control the activity of the kinase CheA, which controls
the phosphorylation of the readout protein CheY [Fig. 1(a)]
[22–25]. The receptor cooperativity has been successfully de-
scribed using the Monod-Wyman-Changeux (MWC) model,
where individual receptors are assumed to form clusters
in which all receptors must reside in the same activity
state [1,21,24,26–30]. Furthermore, inactive receptors are
methylated by the enzyme CheR, which increases the prob-
ability for the cluster to be active, and active receptors are
demethylated by CheB. These methylation dynamics ensure
that the network exhibits perfect adaptation with respect
to the background concentration [5,20,31–34]. Therefore,
the activity state of the cluster only responds transiently
to changes in the input, and reflects the recent change in
concentration.

Because both ligand binding and switching between the
active and inactive state of the cluster are fast compared with
the input, methylation, and phosphorylation dynamics, it is
instructive to take a quasi-equilibrium approach and consider
the average cluster activity given the methylation level of the
cluster and the extracellular ligand concentration. In the linear
noise approximation we have for the activity (see Appendix B)

a(t ) ≡ 〈n(t )|δm, δ�〉 = p + αδm(t ) − βδ�(t ), (16)

where p is the mean activity, δm(t ) represents the methy-
lation level of the cluster, and δ�(t ) represents the ligand
concentration, both defined as deviations from their mean.
The constants α and β respectively depend on the free-energy
cost of methylation, α̃, and on the dissociation constants K I

D
and KA

D and background concentration c0. The methylation
dynamics are given by,

˙δm = −δa(t )/(ατm) + ηm(t ), (17)

where τm is the adaptation time, and ηm is Gaussian white
noise [see Eq. (B7)].

The dynamic gain of the network maps the signal of in-
terest onto the receptor activity [Eq. (1), Fig. 1(c)]. For the
purpose of navigation, we define the signal of interest to be the
change in concentration vτ ≡ v(t0 + τ ) some time τ � 0 into
the future. The autocorrelation of the change in concentration
is given by Eq. (14). The dynamic gain of the chemotaxis
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network with respect to this signal of interest is [Eqs. (B10)–
(B13)]

g̃ = gv→pe−τ/τv

(1 + τm/τv )(1 + τr/τv )
= −τmβe−τ/τv

(1 + τm/τv )(1 + τr/τv )
,

(18)

where τv is the signal correlation time, τr is the network
response time, τm is the adaptation time, and the static gain
from the input signal derivative v to the steady-state activity p
is given by

gv→p ≡ ∂v p = −τmβ. (19)

Equation (18) shows that the dynamic gain g̃ is maximized
for a fast response τr � τv , and slow adaptation τm � τv .
A longer adaptation time increases the dynamic gain via the
static gain [Eq. (19)], because the absolute difference between
sequential inputs is on average larger over this longer time.
Yet, the dynamic gain saturates as τm increases:

lim
τm→∞ g̃ = −τvβe−τ/τv

1 + τr/τv

. (20)

In this limit, considering that typically τ � τv and τr � τv ,
the dynamic gain is approximately proportional to the signal
correlation time τv . The reason is that fluctuations further than
τv in the past cannot affect the mapping from the current
signal, which is most correlated to the signal of interest vτ ,
to the current receptor state. Finally, increasing the prediction
interval τ reduces the dynamic gain because the correlation
between future signal and sensed input decreases.

To determine the sampling error of the chemotaxis net-
work, we require the cluster covariance under a fixed input
signal, which is the third RHS term in Eq. (11). In our
chemotaxis model, this covariance is a consequence of the
methylation noise only and it is given by [Eqs. (B14)–(B19)]

E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s = αp(1 − p)

RT(1 + τr/τm)

≈ αp(1 − p)/RT. (21)

Here, p is the mean cluster activity and RT is the total number
of independent receptor clusters. Substitution of Eq. (21) into
Eq. (11) yields the full sampling error of the chemotaxis
network,

σ
2,samp
p̂τr

= p2

N
+ p(1 − p)

N I
, (22)

with the number of independent samples

N I ≡ fIN = N

1 + N/RI
, (23)

where fI = 1/(1 + N/RI ) is the fraction of independent sam-
ples and

RI = RT(1 + τr/τm)/α (24)

is the number of independent receptor states during an inte-
gration time τr.

In contrast with previous work [14,15], the sampling error
does not depend on the correlation time τc of receptor-ligand
binding because here we have assumed that ligand binding is

much faster than the response time τr. Still, the cluster state
remains correlated over time due to receptor methylation, and
this means that the expression for the sampling error of the
chemotaxis network studied here is almost identical to that
of the push-pull network studied in Refs. [14,15]. However,
unlike ligand binding noise, the methylation noise cannot be
averaged out because the methylation timescale τm is longer
than the response time τr, i.e., 1 + τr/τm ≈ 1 in Eq. (21).
Moreover, because the methylation noise affects the receptor
activity via the factor α [Eqs. (16) and (17)], which controls
how strongly methylation changes the receptor activity, the
cluster covariance also increases with α, since it increases the
temporal covariance within each cluster.

Equation (23) reflects that the number of receptor sam-
ples N , which is proportional to the number of readouts XT

[Eq. (6)], and the number of independent receptor states RI,
proportional to the number of receptor clusters RT [Eq. (24)],
are fundamental resources that limit the sensing accuracy like
weak links in a chain [13]: when N � RI the number of
independent samples is limited by the number of receptor
states and N I ≈ RI, and vice versa, when RI � N the total
number of samples is limiting and N I ≈ N (also see Fig. 5
and Appendix C).

Finally, to compute the dynamical error, we derive the
variation in the network output that is caused by the past input
trajectory [Eqs. (B20)–(B25)]:

Var(E[〈n(ti)|s〉]ti ) = g2
v→pσ

2
v

(1 + τm/τv )(1 + τr/τv )

×
(

1 + τmτr

τv (τm + τr )

)
, (25)

with the static gain gv→p given by Eq. (19). Just like the
dynamic gain [Eq. (18)] this variation is maximized for a
fast response τr � τv and slow adaptation τm � τv . Indeed,
in the regime that τm � τv we have Var(E[〈n(ti)|s〉]ti ) ∝ τm.
Therefore, unlike the dynamic gain, Eq. (25) does not saturate
for an increasing adaptation time. The reason is that more and
more values of the historical input contribute to the variance in
the output as long as the system does not adapt. Clearly, not all
of the variation quantified by Eq. (25) will carry information
about the signal of interest vτ . Substituting Eq. (25) in Eq. (11)
yields the dynamical error, which is the total uninformative
variation caused by the past input trajectory

σ
2,dyn
p̂τr

= g̃2σ 2
v

[
e2τ/τv

(
1 + τm

τv

)(
1 + τr

τv

)

×
(

1 + τmτr

τv (τm + τr )

)
− 1

]
, (26)

with the dynamic gain g̃ of Eq. (18). Even though Eq. (26)
is the dynamical error in predicting the concentration change
(rather than the value), its form is strikingly similar to the dy-
namical error of a push-pull network that predicts the current
concentration, derived in Refs. [14,15]. The reason for this
similar form is that both the concentration considered in these
previous works and the concentration derivative considered
here are Markovian signal properties. Indeed, if we consider
a non-Markovian signal concentration and derivative, the dy-
namic gain and dynamical error change (see Sec. II H).
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D. Relative prediction error

The central result of this work is the relative error, i.e.,
SNR−1, made by the E. coli chemotaxis network when it pre-
dicts the future concentration change. Using the definition of

the signal-to-noise ratio [Eq. (2)], with the dynamic gain given
in Eq. (18), and the prediction error σ 2

p̂τr
= σ

2,samp
p̂τr

+ σ
2,dyn
p̂τr

given by Eqs. (22) and (26), we obtain

SNR−1 = e2τ/τv

τ 2
mβ2σ 2

v

(
1 + τm

τv

)2(
1 + τr

τv

)2( p2

N
+ p(1 − p)

N I

)
︸ ︷︷ ︸

sampling error

+ e2τ/τv

(
1 + τm

τv

)(
1 + τr

τv

)(
1 + τmτr

τv (τm + τr )

)
− 1︸ ︷︷ ︸

dynamical error

. (27)

This expression is similar in structure to the relative error of
the push-pull network without adaptation, which was derived
in earlier work [Eq. (6) of Ref. [14] ]. The reason is that,
while the adaptation system affects the receptor dynamics,
the downstream push-pull motif still acts as a device that
discretely samples the receptor state. As a result, the rela-
tive error has two contributions: the sampling error, which
arises from the stochasticity in sampling the state of the
receptor, and the dynamical error, which arises from the
dynamics of the input signal (see Fig. 2). However, while
this expression for the relative error has a form that is sim-
ilar to that for the push-pull network, there are also key
differences.

First of all, both the sampling and the dynamical error de-
pend on the forecast interval. In general, the dynamical error
arises because while the system aims to predict the current
or future derivative, it measures the change in concentration
over the timescale τm on the level of the receptor, and reads
out the receptor activity over the timescale τr (Fig. 2). The
network thus only measures an instantaneous concentration
change when both τm and τr go to zero. Still, even in this
limit, the dynamical error remains finite as long as the forecast
interval is larger than zero, due to the inherent unpredictability
of the future signal.

Perhaps surprisingly, the relative sampling error also de-
pends on the forecast interval τ . While the absolute sampling
error of the network is independent of the forecast interval
[Eq. (22)], the dynamic gain does depend on it [Eq. (18)].
When the forecast interval increases, the dynamic gain de-
creases, reducing the effect of the signal of interest on the
receptor activity. Therefore, while the absolute sampling er-
ror remains constant, the relative sampling error increases
with the forecast interval. In short, for a larger forecast in-
terval it becomes harder to lift the signal above the sampling
noise.

The second notable difference with the result on the push-
pull network concerns the role of adaptation. It reflects the fact
that the chemotaxis system takes a temporal derivative at the
receptor level on a timescale set by the adaptation time. The
dynamical error increases monotonically with the adaptation
time τm, because for a longer adaptation time the system
compares the current concentration to concentrations further
in the past. Consequently, this change in concentration is less
informative about the current derivative, which is the signal
property most correlated to the future derivative [Eq. (14)].
In fact, when τm → ∞, the system does not adapt and the
chemotaxis network therefore reduces to a push-pull network,
which does not measure the derivative but rather the signal

value. In this limit, the dynamical error diverges because
the signal value is not correlated with the future derivative
that the cell aims to predict. In contrast, the sampling error
decreases monotonically with τm, because a longer adaptation
time increases the dynamic gain [Eq. (18)]. How the optimal
adaptation time that arises from these antagonistic effects
depends on other parameters, such as the gradient steepness
and the resource availability, is discussed in Sec. II F.

A third difference resides in the number of independent
samples N I [Eq. (23)]. For a push-pull network driven by
a simple receptor, the number of independent samples is
given by N̄PPN

I = f PPN
I Neff, where the number of effective

samples Neff = N in the irreversible limit, as we also study
here [13–15]. For the push-pull network the fraction of inde-
pendent samples can be expressed as f PPN

I = 1/(1 + N/RPPN
I )

with the number of independent receptor states during an inte-
gration time RPPN

I = RT(1 + τr/τc), where τc is the correlation
time of the receptor binding state [13–15]. In our treatment of
the chemotaxis model we consider the limit where τc � τr,
in which case RPPN

I diverges and f PPN
I ≈ 1. However, the

fraction of independent samples does not become unity for
the chemotaxis network because the receptor state remains
correlated due to the slow methylation dynamics, τm � τr.
Therefore, the number of independent receptor states becomes
limited by the number of receptor clusters and their covariance
RI ≈ RT/α [Eq. (23)].

The sampling error can be mitigated in a number of ways.
One is to increase the number of receptors per cluster Nr ,
because this increases the magnitude of the static gain [see
Eq. (19) where β ∝ Nr]. Another is to simultaneously increase
the total number N of samples and the number N I of indepen-
dent samples, which requires increasing both the number XT

of readout molecules and the number RT of receptor clusters
[Eqs. (6) and (23)]. Indeed, as observed for the push-pull
network in earlier work [13,14], these resources limit sensing
and hence prediction like weak links in a chain [also see
Fig. 5] and Appendix C. However, increasing the cluster size,
the number of clusters, or the number of readout molecules all
require a larger number of proteins to be used by the network,
which are resources that come at a physical cost.

E. Optimal resource allocation

To investigate how resources should be optimally allocated
to minimize the sampling error [Eq. (27)] we define a simple
cost function, as in Ref. [3]:

C = XT + NrRT, (28)
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(a) (b) (c)

FIG. 3. The relative error is set by the resource availability, adaptation time, and gradient steepness. (a) The relative error [SNR−1, Eq. (27)]
as a function of the resource availability C = XT + NrRT and the adaptation time τm/τv . The relative error decreases monotonically with higher
resource availability. The error is minimized for the optimal adaptation times indicated by the red line, which decreases with the resource
availability. The ratio of readouts to receptors XT/RT obeys Eq. (29). (b) The relative dynamical error, sampling error, and their sum, the total
relative error [SNR−1, Eq. (27)], as a function of the adaptation time τm/τv . The optimal adaptation time arises from a trade-off between the
sampling error, which decreases with the adaptation time, and the dynamical error, which increases with the adaptation time. The minimal total
error (black dot) occurs close to the point where the sampling error saturates as a function of τm/τv . The minimal sampling error is proportional
to 1/g2. (c) The predictive information I (x∗

0 ; vτ ) = I ( p̂τr ; vτ ) = 0.5 log(1 + SNR), with the SNR of Eq. (27), between the current number of
phosphorylated readouts x∗

0 = N p̂τr [Eq. (5)] and the future input derivative vτ , for various adaptation times τm. Along the black curve, the
adaptation time has been optimized; τ

opt
m /τv as a function of the gradient steepness is shown in the inset. Experiments show that for E. coli

the adaptation time is τ
expt
m /τv ≈ 8 [1,5,24], which is close to optimal for g � 4 mm−1 (red curve). Reducing the adaptation time reduces the

accuracy in shallow gradients and increases it in steeper gradients (blue curve), while increasing the adaptation time reduces the accuracy in
steeper gradients but does not markedly increase the accuracy in shallow gradients (yellow curve). This suggests that the system has been
been optimized for sensing shallow gradients. Inset shows the optimal adaptation time τ

opt
m /τv scales inversely with the gradient steepness g,

numerical result (solid black line), and analytical approximation [dashed gray line, Eq. (31)]. In panels (a) and (b) g = 2 mm−1, in panels
(b) and (c) XT = 104 and RT = 8 [1,3,35]. Other parameters are Nr = 12, p = 0.3, f = f opt = 0.5, τr = 0.1 s, τ = τv = 1.16 s, c0 = 100 µm,
σvx = 157 µm2 s−2 [1,3,24,35]; α̃ = 2kBT [24]; K I

D = 18 µm and KA
D = 2900 µm [19–21]. Code to reproduce this figure is available [36].

where XT is the number of readout molecules, RT is the num-
ber of independent receptor clusters, and Nr is the number of
receptors per cluster. This cost function captures the idea that
a cell must choose whether it spends its resources on making
more readout molecules on the one hand, or more receptors on
the other. In general, the prediction error [Eq. (27)] depends
not only on the number of receptors and readout proteins, but
also on the energy to drive the network [3,13,14]. These two
constraints can be treated on the same footing by recognizing
that the energy to synthesize the required proteins scales lin-
early with their copy number, with a proportionality constant
set by the protein length. Here, we focus on the bound on the
predictive information as set by the number of proteins, also
because the effects of the energetic cost of driving the phos-
phorylation and methylation cycles on the optimal prediction
strategy are relatively minor [3]. While the precise functional
form of the constraint is somewhat arbitrary, the linear form
of Eq. (28) is natural because the prediction error depends on
the number of receptor and readout molecules, not on higher
powers thereof.

Given a total resource availability C and a fixed number of
receptors per cluster, the cell can tune the ratio of receptors
to readouts. To determine what the optimal ratio is that mini-
mizes the sampling error, we express both RT and XT in terms
of their ratio and the total resource availability C, and we use
that we can express the mean number of samples as in Eq. (6).
Subsequently taking the derivative of Eq. (27) with respect to

XT/RT and equating to zero then gives the optimal ratio,(
XT

RT

)opt

= σX

σR

p
√

1 + τr/τm

f (1 − f )
≈ σX

σR

p

f (1 − f )
, (29)

where we have used that the adaptation time must be larger
than the response time and thus

√
1 + τr/τm ≈ 1. We have

further defined the noise per receptor σ 2
R ≡ αp(1 − p)/Nr =

α̃p2(1 − p)2 [see also Eqs. (B3), (B5), and (B19)], and the
noise per readout molecule σ 2

X ≡ f (1 − f ). In terms of N ,
using Eq. (6), we find that Eq. (29) yields an intuitive relation
for optimal networks,

N = σX

σR
RT. (30)

This relation shows that for equal noise magnitudes per pro-
tein, the average number of samples should equal the total
number of receptor clusters. This simple relation arises from
the fact that the methylation noise cannot be averaged out, and
a minimally redundant design is therefore one in which each
receptor cluster is sampled once.

Given the optimal ratio of readouts to receptors in Eq. (29)
we can compute the relative error [Eq. (27)] as a function
of the total resource availability C and the adaptation time
τm [Fig. 3(a)]. As expected, we find that the error decreases
monotonically with the resource availability. More interesting
is that we find a clear optimum for the adaptation time τm.
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F. Optimal adaptation time

The optimal adaptation time τm, given by the red line in
Fig. 3(a), arises from the antagonistic effect of the adaptation
time on the sampling error and the dynamical error [Fig. 3(b)].
The sampling error decreases monotonically with the adap-
tation time because a longer adaptation time increases the
change in the receptor activity upon the same change in the
current or future signal derivative, i.e., it increases the (dy-
namic) gain [Eqs. (18), (19), and (27)]. However, increasing
the adaptation time means that the derivative is taken over a
longer time further back into the past, and this derivative will
be less informative about the future derivative that the cell
aims to predict: the dynamical error increases monotonically
with τm [Eq. (27)]. The minimal total error occurs for the
smallest adaptation time that is sufficiently large to lift the
signal above the noise, i.e., reduce the sampling error, while
minimizing the dynamical error [Fig. 3(b)].

The value of the adaptation time for which the total error
is minimized depends on the resource availability C and the
gradient steepness g: these parameters set the magnitude of
the sampling error [Eqs. (15) and (27)]. To obtain analytical
insight into the optimal adaptation time τ

opt
m , we exploit that

the response time τr must be smaller than the adaptation time
τm to mount a nonzero response to transient input changes.
We further consider that the relevant regime for E. coli is
likely that where gradients are shallow relative to the length
of a run (see also Sec. II G). This means that the sampling
error dominates over the dynamical error, although the latter
is not negligible [see Eq. (27) with σ 2

v = g2σ 2
vx

, Eq. (15)]. To
minimize the prediction error [Eq. (27)] in this regime, the
adaptation time must be large relative to the signal correlation
time τm � τv , which is set by the duration of a run. We obtain
for the optimal adaptation time (see Appendix C)

τ opt
m ≈

√
2

βgσvx

√
p2

N
+ p(1 − p)

N I
for τm � τv, τr, (31)

where the number of independent samples N I is given by
Eq. (23) with RI = RT/α. The inset of Fig. 3(c) shows that
Eq. (31) is a good approximation of the optimal adaptation
time over a large range of the gradient steepness g.

Equation (31) shows how the optimal adaptation time de-
creases when we increase the total number of receptor samples
N ∝ XT [Eq. (6)] or the number of independent receptor
samples N I, which depends on both XT and RT [Eq. (23)].
This is because increasing these resources reduces the sam-
pling error: decreasing the adaptation time then decreases the
dynamical error more than it increases the relatively small
sampling error. In Appendix C, we discuss in more detail how
the optimal adaptation time varies with XT and RT separately.
Equation (31) also shows that the optimal adaptation time
decreases as the gradient steepness increases. The reason is
that a steeper gradient generates a stronger signal with a
larger variance [Eq. (15)], which reduces the sampling error
[Eq. (27)].

G. Comparison with experiment

To check whether the uncovered design principles
[Eqs. (29) and (31)] are relevant to real world biochemical

networks, we evaluate the design of the E. coli chemotaxis
network in this light.

To assess the design principle of Eq. (29), we use the
definitions of σX and σR given below it. For p and f of order
1/2 and α̃ = 2, based on experiment [24], Eq. (29) predicts an
optimal number of readout molecules per receptor cluster of
XT/RT ≈ 3. This is in good agreement with earlier predictions
[13] and the experimental data of Li and Hazelbauer [37], as-
suming a cluster consists of two trimers of receptor dimers and
two CheA dimers [38]. With XT ≈ 103–104 readout molecules
depending on the growth rate [37], this result, i.e., XT/RT ≈ 3,
suggests that the number of receptor clusters is in the range
RT ≈ 102–103. On the other hand, fitting more recent exper-
imental data with an MWC-based chemotaxis model as we
use here suggests a much smaller number of receptor clusters
of RT ≈ 8 [1,3,35]. However, this estimate for the number of
receptor clusters was based on fitting the noise amplitude of
the model [3,35] to the experimental data of Ref. [1]. Recent
experiments indicate that the receptor array is poised to a crit-
ical point [39], where receptor switching becomes correlated
over long distances, and it is conceivable that this small value
of RT ≈ 8 corresponds to the small number of domains over
which the receptors effectively switch in concert. More work
is needed to understand whether receptor switching near a
critical point can effectively be described by an MWC model
and whether the design rule unveiled here [Eq. (29)], also
generalizes to a receptor array near a critical point. Lastly,
further study is necessary to understand whether information
transmission in this system is maximized near a critical point
[40].

The adaptation time of the E. coli chemotaxis system has
repeatedly been shown to be ≈10 s, yielding τ

expt
m /τv ≈ 8

[1,5,24]. Given the estimated resource allocation in the effec-
tive MWC description, XT = 104 and RT = 8 with Nr = 12
[1,3,35], this adaptation time is close to optimal for a gra-
dient steepness g � 4 mm−1 [Fig. 3(c)]. In particular, while
decreasing the methylation time improves the prediction accu-
racy in steeper gradients, it reduces information transmission
in shallower gradients. On the other hand, while increasing
the methylation time beyond the measured one decreases the
accuracy in steeper gradients, the improvement in shallow gra-
dients is only very minor because the system is already very
close to the fundamental bound on the predictive information
as set by the resource constraint and the gradient steepness
[Fig. 3(c)]. These arguments show that the methylation time
of E. coli is indeed optimal for sensing shallow gradients
with g � 4 mm−1. It suggests that the chemotaxis system has
been optimized for navigating weak gradients. To get an idea
of what this gradient steepness means we can compare it to
the length of an E. coli cell, which is ≈1 µm. To cover a
gradient length scale g−1 = 1/4 mm thus requires the cell
to move at least 250 times its body length, corresponding to
approximately ten runs in the same direction [41–43]. This
illustrates how extremely shallow the gradients that E. coli
can encounter likely are. Moreover, it suggests that it is most
important to maximize accuracy in shallow gradients, where
it is hard to distinguish signal from noise. In steeper gradients,
E. coli would be further from the optimal design, but the total
information it obtains about the signal of interest is still larger
because the input fluctuations are bigger. Clearly, a network

033049-9



AGE J. TJALMA AND PIETER REIN TEN WOLDE PHYSICAL REVIEW RESEARCH 6, 033049 (2024)

(a) (b)

FIG. 4. Two distinct regimes appear for the chemotaxis network
predicting a future derivative when the signal concentration varia-
tions are of the same order as the change in concentration during a
run: σ� = 2τvσv as opposed to σ� � τvσv (Fig. 3). (a) The correlation
of the current signal derivative v(t0) [red curve, Eq. (D1)] and of
the current signal concentration �(t0 ) [blue curve, Eq. (D2)] with
the future derivative vτ . (b) The SNR−1 is shown [Eq. (D12)] as a
function of the adaptation time τm/τv and the forecast interval τ/τv

for the chemotaxis network sensing a signal with statistics shown
in panel (a). The optimal adaptation time in the regime of short
forecast intervals and adaptation times (red curve) was computed
by numerically minimizing Eq. (D12). The error diverges where the
dynamical gain is zero [Eq. (D7)], because the correlation between
the network output and the future derivative vanishes (dashed black
curve). Parameters other than σ� are as in Fig. 3 and the code to
reproduce the figure is available [36].

that would adapt the adaptation time to the steepness of the
gradient, would probably perform better over a broader range
of gradient steepness. However, such a network would be
(much) more complicated with a higher resource cost. It thus
appears that evolution has optimized the network for sensing
those gradients that are most difficult to detect.

H. Changing the signal statistics

Up to this point we have assumed that the cell navigates
environments in which the nutrient concentration varies much
more widely than the change in concentration over the du-
ration of a run (Sec. II B). Indeed, we expect that this is the
most natural regime for many microorganisms, and especially
for E. coli, because it is clear that E. coli can indeed measure
concentration changes over a wide range of background con-
centrations based on the dissociation constants of the receptor
in its active and inactive state, which differ by two orders of
magnitude [19–21]. However, to illustrate the effect that the
choice of signal statistics has on our results, we here consider
a scenario in which the concentration and its change during a
run are of the same order. We may view this as a scenario in
which the cell remains close to a constant nutrient peak.

Specifically, we consider a signal with the dynamics given
in Eqs. (12) and (13), but with a concentration standard devia-
tion σ� = 2τvσv , yielding ω0 = (2τv )−1. For these parameters,
both the current concentration and the current derivative can
be informative of the future derivative vτ , depending on the
forecast interval [Fig. 4(a), Eqs. (D1) and (D2)].

Previous work has shown that in this scenario, where both
the current concentration value and the current concentration
derivative are informative about the future derivative, the op-
timal network is one that bases its prediction on both the

concentration and the derivative, proportional to the mag-
nitude of their correlations with the signal of interest [3].
Our model of the chemotaxis network does not allow this
because it is set up to exhibit perfect adaptation, and thus only
measures the concentration change. However, in the limit of
infinitely slow adaptation, τm → ∞, the network effectively
becomes a push-pull network and measures the concentration
only. Therefore, it is still interesting to investigate the optimal
adaptation time that minimizes the relative error (SNR−1)
under these markedly different signal statistics.

To compute the SNR−1, we derive the dynamic gain and
the dynamical error for this signal, with σ� = 2τvσv [Eqs. (D6)
and (D11)]. Since we only change the signal statistics, the
sampling error in estimating the receptor activity [σ 2,samp

p̂τr
,

Eq. (22)] and optimal resource allocation [Eq. (29)] remain
unchanged. We can then compute the relative prediction error
(SNR−1) of the chemotaxis network under the new signal
statistics in the same manner as before [via Eqs. (2) and (11)].

Figure 4(b) reveals that the prediction error now exhibits
two distinct regions as a function of the adaptation time τm and
the forecast interval τ , separated by a boundary on which the
error diverges (dashed black line). These two regions reflect
two distinct prediction strategies. For short forecast intervals
the future derivative vτ is more correlated with the current
derivative v(t0) than with the current value �(t0), i.e., ρvv (τ ) >

|ρ�v (τ )| [Fig. 4(a)]. In this regime, a short adaptation time
allows the network to predict the future derivative vτ based on
the current, i.e., instantaneous, derivative v(t0). As the fore-
cast interval increases, the contribution from the dynamical
error rises more strongly than that from the sampling error
[Eq. (D12)], which tends to decreases the optimal adaptation
time. Simultaneously however, the future derivative also starts
to become more strongly correlated to the current concentra-
tion value �(t0) as the forecast interval increases [Fig. 4(a),
blue curve]. As a result, in the regime of large forecast inter-
vals beyond the dashed black curve in Fig. 4(b), the optimal
adaptation time diverges: the network effectively becomes a
push-pull network and bases its prediction on the concentra-
tion value rather than its derivative.

Figure 4(b) shows that the forecast interval at which the
error diverges becomes shorter for longer adaptation times
(black dashed line). The prediction error diverges when the
dynamic gain [Eq. (D6)], which quantifies the covariance
between the current network output and the future signal
derivative, becomes zero [Eq. (D7)]. The point at which the
dynamic gain becomes zero depends on the forecast interval τ

via the signal correlation function ρvv (τ ) [red curve Fig. 4(a),
Eq. (D1)], which quantifies how much the current concentra-
tion derivative v(t0) is correlated with the future concentration
derivative vτ at the forecast interval τ . It also depends on
the adaptation time τm, because that determines the degree to
which the signal derivative taken by the network reflects the
current derivative. When τm → 0, the system takes an instan-
taneous derivative; the prediction error then diverges when
the forecast interval τ = 2τv , precisely because the current
derivative is then not correlated with the future derivative at
that later time τ [ρvv (2τv ) = 0, see Fig. 4(a), red curve]. For
a longer adaptation time, the network takes a derivative over
the signal further back into the past, i.e., a derivative centered
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around a time t ≈ t0 − τm, which, as can be inferred from
ρvv (τ ) in Fig. 4(a) exploiting stationarity, is uncorrelated with
the future derivative at a time τ ≈ t0 − τm + 2τv .

III. DISCUSSION

Microorganisms that navigate chemical gradients need to
predict the concentration change that they will encounter. For
simple input signals where the change in concentration is
Markovian, the optimal way to achieve this is to measure the
current time derivative of the concentration [3]. Measuring
such temporal concentration changes requires perfect adap-
tation. Moreover, to measure the most recent concentration
change, the adaptation time must be short relative to the cor-
relation time of the input. However, building and maintaining
a biochemical network costs physical resources. When the
resource availability is limited, the signal is obscured by noise
in the network. The only way to lift the signal above the noise
in this regime, is to increase the adaptation time. This trade-off
between lifting the signal above the noise, and measuring a
concentration change which is informative of the future input,
sets the optimal adaptation time.

The optimal adaptation time depends on the amount of re-
sources available to maintain the network, and the magnitude
of changes in the input. The latter is set by the swimming
behavior of the cell and the steepness of the chemical gra-
dient it navigates. In steeper gradients the input changes more
strongly, which reduces the sampling error and increases the
signal-to-noise ratio. A smaller sampling error allows for a
shorter adaptation time, which mitigates the dynamical error
and maximizes the overall accuracy. Therefore, the optimal
adaptation time to predict the concentration change scales
approximately inversely with the gradient steepness. Inter-
estingly, simulations show that the optimal adaptation time
that maximizes navigational performance also increases as the
gradient becomes more shallow [44,45]. This indicates that
predicting the concentration change is indeed important for
successful navigation, in line with results of agent-based sim-
ulations on the interplay between prediction and navigation
[46].

Our results provide a possible explanation for a puzzling
observation. During chemotaxis, E. coli performs subsequent
runs of approximately one second in different directions. Runs
in the correct direction relative to the gradient are extended,
and vice versa, such that the cell moves up a gradient of
attractant on average. To implement this strategy, E. coli must
predict how the concentration will change while it navigates
the gradient. To this end, it seems natural to measure the
change in concentration over the course of one run, i.e., over
approximately one second. However, the adaptation time of E.
coli is around ten seconds [1,5,24]. This raises the question,
why would E. coli measure concentration changes over a
timescale that is much longer than that of a run? Our work
shows that the adaptation time must be this long to discern
the signal from the inevitable biochemical signaling noise in
shallow gradients.

Our analysis highlights that the optimal design of any
sensing system depends on the signal statistics. In our previ-
ous work [3] we argued that (a) E. coli aims to predict the
future derivative, (b) it can measure concentration changes

over a range of background concentrations that is much larger
than the typical concentration change during a run, (c) in
this regime, the optimal signaling system for predicting the
derivative is a perfectly adaptive system, as E. coli has, and
(d) its long adaptation time of τm ≈ 10 s is optimal for sensing
shallow gradients. In fact, in this regime the predictive power
of the E. coli chemotaxis system becomes exceedingly close
to that of the optimal system. These observations together
strongly suggest that E. coli has been optimized to sense
shallow gradients, which is perhaps not so surprising since
these gradients are the hardest to detect. Our previous analysis
[3] also showed that, since in this regime of shallow gradients
the dynamics of the concentration derivative is Markovian,
the optimal design does not depend on the forecast interval.
Our current analysis of a different input signal (Fig. 4) shows,
however, that in general, the optimal design depends on the
signal statistics and the forecast interval. What the relevant
signal statistics and forecast interval are depends on the dy-
namics of the environment and on how the organism navigates
the environment [47,48]. We leave these questions for future
work.

More generally, our results provide insight into the optimal
design of adaptive signaling networks. First and foremost,
this improves our understanding of navigation behavior of
microorganisms. But the uncovered principles might well hold
more generally and shed light on other adaptive signaling
networks as well, e.g., that of rod cells in the vertebrate eye
[49]. Moreover, our theory facilitates the optimal design of
microrobots that need to navigate environments without a
map.
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APPENDIX A: THE PREDICTION ERROR

Here we derive the general expression for the prediction
error σ 2

p̂τr
, which shows how the complete error decomposes

into independent parts caused by fluctuations in the number
N of samples, the error of a sampling process with a fixed
number of samples and a constant input, and uninformative
fluctuations from the input signal. Our starting point is the
decomposition of the error in Eq. (7).

The first term of Eq. (7) is straightforward to compute,
using the definition of p̂τr from Eq. (5) we obtain

Var(E[ p̂τr |N]) = Var

⎛
⎝E

[
1

N

N∑
i=1

ni(ti )|N
]

ti,ni

⎞
⎠

N

(A1)

= 1

N
2 Var(NE[〈n(ti )〉]ti )N (A2)

= p2

N
, (A3)
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where the subscripts after the expected values and variances
denote the random variables over which the expectation is
taken. For instance, in Eq. (A1) the expected value is taken
under a fixed number of samples N over the state ni ∈ {0, 1}
of each cluster, later also denoted with angle brackets as an
ensemble average, and over all sampling times ti, which are
exponentially distributed with the probability density function
[13]

f (ti ) = 1

τr
e−(t0−ti )/τr . (A4)

From Eq. (A2) to Eq. (A3) we use that the average number of
active receptor clusters is defined as p ≡ E[〈n(ti )〉]ti , which is
constant with respect to N . The variance is subsequently taken
over the Poisson distributed number N of samples, with both
mean and variance N . The resulting expression [Eq. (A3)] is
the error that arises because the network cannot distinguish
between those readout molecules that sampled an inactive
cluster, and those that did not sample a cluster at all [13,15].

We decompose the second term of Eq. (7) in two steps.
First, we use the definition of p̂τr [Eq. (5)] and split the self-
and cross-terms in the covariance of the kinase activity:

E[Var( p̂τr |N )] = E

⎡
⎣Var

(
1

N

N∑
i=1

ni(ti )|N
)

ni,ti

⎤
⎦

N

(A5)

= 1

N
2 E[NVar(ni(ti )) + N (N − 1)Cov(ni(ti ), n j (t j ))]N (A6)

= p(1 − p)

N
+ Cov(ni(ti ), n j (t j )). (A7)

From Eq. (A6) to Eq. (A7) we used that both the variance
of each cluster and the covariance between clusters are inde-
pendent of the number N of samples, and that for a Poisson
distributed number of samples, N , we have E[N (N − 1)] =
N

2
. To continue, the covariance between different kinases at

different times can be decomposed into contributions from the
receptor noise, and fluctuations in the full history of the input
signal, the trajectory s,

Cov(ni(ti )n j (t j )) = E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s

+ Cov(E[〈ni(ti )|s〉]ti ,E[〈n j (t j )|s〉]t j )s (A8)

= E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s + Var(E[〈n(ti )|s〉]ti )s, (A9)

where we use that E[〈ni(ti )|s〉]ti = E[〈n j (t j )|s〉]t j . The two
terms on the RHS of Eq. (A9) respectively describe the
covariance between clusters when the input is fixed, and
the variance that is caused by input fluctuations. The first
term is the receptor-level noise, which for the chemotaxis
model considered in this work arises only from methylation
Eqs. (B14)–(B19). The second term is the variance of the
mean activity conditional on the input, which is the signal-
induced variance. This signal induced variance comprises all
variance caused by the input, so both the dynamical error and
the variance that is informative of the signal of interest g̃2σ 2

sτ

[Eqs. (B20)–(B25)].

Combining Eqs. (A7) and (A9) gives

E[Var( p̂τr |N )] = p(1 − p)

N
+ E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s

+ Var(E[〈n(ti)|s〉]ti )s. (A10)

Finally, the third term of Eq. (7) is the contribution of the
signal of interest to the output variance:

Var(E[ p̂τr |sτ ]) = Var

⎛
⎝E

[
1

N

N∑
i=1

ni(ti )|sτ

]
ti,ni,N

⎞
⎠

sτ

(A11)

= Var(E[〈n(ti )|sτ 〉]ti )sτ
(A12)

= g̃2σ 2
sτ
, (A13)

where in the last step we have used the dynamic input output
relation of Eq. (1). The dynamic gain g̃ of the chemotaxis
network is derived in Eqs. (B10)–(B13). Substituting the
equalities of Eqs. (A3), (A10), and (A13) in Eq. (7) of the
main text gives the complete prediction error given in Eq. (11)
in the main text.

We note that this derivation deviates from that of Malaguti
and Ten Wolde [15] in that Eq. (A5) includes the contributions
from all signal variations, including the informative signal
variations [which are then subtracted from the full variance
in Eq. (7)], while in Ref. [15] the corresponding term does not
contain these informative signal fluctuations. While the final
result is identical, the derivation presented here is arguably
easier.

APPENDIX B: THE CHEMOTAXIS NETWORK

In the E. coli chemotaxis network, receptors cooperatively
control the activity of the kinase CheA, and the activity
is adaptive due to the methylation of inactive receptors
[5,22–25,34]. We here follow the widely used approach to
describe the effects of receptor cooperativity and methylation
on kinase activity via the Monod-Wyman-Changeux (MWC)
model [1,20,21,24,26–30]. In this model, each receptor can
switch between an active and inactive conformational state n
and receptors are partitioned into clusters of equal size Nr . In
the spirit of the MWC model, receptors within a cluster switch
conformation in concert, so that each cluster is either active or
inactive [26]. Furthermore, it is assumed that receptor-ligand
binding and conformational switching are faster than the other
timescales in the system, such that the activity state of the
receptor can effectively be described by its equilibrium prob-
ability to be active, given the methylation level of the cluster
m and the external ligand concentration �. The probability for
the receptor cluster to be active is then described by

a(�, m) ≡ 〈n|�, m〉 = {1 + exp[�FT (�, m)]}−1, (B1)

where �FT (�, m) = −�E0 + Nr[�F�(�) + �Fm(m)] is the
free-energy difference between the active and inactive state,
which is a function of free-energy difference arising from
ligand binding and methylation:

�F�(�) = ln
(
1 + �(t )/K I

D

) − ln
(
1 + �(t )/KA

D

)
, (B2)

�Fm(m) = α̃[m̄ − m(t )]. (B3)
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Between the two states the cluster has an altered dissociation
constant, which is denoted K I

D for the inactive state, and KA
D

for the active state. The free-energy difference due to methyla-
tion has been experimentally shown to depend approximately
linearly on the methylation level [24]. We assume that inac-
tive receptors are irreversibly methylated, and active receptors
irreversibly demethylated, with zero-order ultrasensitive ki-
netics [21,50,51]. The methylation dynamics of a receptor
cluster is then given by

ṁ =[1 − a(�, m)]kR − a(�, m)kB + Bm(a)ξ (t ), (B4)

with Bm(a) = √
[1 − a(�, m)]kR + a(�, m)kB, and unit white

noise ξ (t ). These dynamics indeed give rise to perfect adap-
tation, since from this equation we find that the steady-state
cluster activity is given by p ≡ ā = 1/(1 + kB/kR), thus in-
deed independent of the ligand concentration.

In this work we consider linear dynamics, we therefore
employ a linear noise approximation [52]. The deviation of the
equilibrium cluster activity from its mean δa(t ) = a(t ) − p is
then given by

δa(t ) ≡ 〈n(t )|δ�, δm〉 − p = αδm(t ) − βδ�(t ), (B5)

with α = α̃Nr p(1 − p) and β = κNr p(1 − p), with κ = (1 +
K I

D/c0)−1 − (1 + KA
D /c0)−1. For the methylation dynamics on

one cluster we then obtain

˙δm = −δa(t )/(ατm) + ηm(t ), (B6)

where we have introduced the adaptation time τm = [α(kR +
kB)]−1 and ηm(t ) is Gaussian white noise on a single cluster
with correlation function

〈ηmi (t )ηmj (t
′)〉 = δi jδ(t − t ′)

2p(1 − p)

ατm
(B7)

between the ith and jth receptor cluster, where δi j is the
Kronecker delta. Combining Eqs. (B5) and (B6) yields the
change in activity over time

δ̇a = −δa(t )/τm − βv(t ) + αηm(t ), (B8)

where we have the change in concentration over time v(t ) ≡
δ̇�. Using Eq. (B8) we can also express the instantaneous
activity as

δa(t ) =
∫ t

−∞
dt ′[αηm(t ′) − βv(t ′)]e−(t−t ′ )/τm . (B9)

This expression shows that the cluster activity, when we
average out the methylation noise, reflects the change in con-
centration weighted exponentially over the past adaptation
time τm.

1. Dynamic gain

The dynamic gain of the network can be obtained by
deriving the average response of the network to the signal
of interest sτ . In general we have the expression given in
Eq. (1) for the dynamic input output relation of linear sig-
naling networks. In our case the signal of interest is the future
concentration derivative sτ = vτ . Using Eqs. (B5) and (B9),

we find for the average conditional activity

〈n(ti )|vτ 〉 = E[〈n(ti )|vτ , δ�, δm〉]δ�,δm (B10)

= p − β

∫ ti

−∞
dt〈v(t )|vτ 〉e−(ti−t )/τm (B11)

= p − e−(t0+τ−ti )/τv
τmβvτ

1 + τm/τv

, (B12)

where we used that the conditional mean derivative is
〈v(t )|vτ 〉 = vτ exp[−(t0 + τ − t )/τv], also see Eq. (14). Av-
eraging over all sampling times, distributed as in Eq. (A4),
gives

E[〈n(ti)|vτ 〉]ti = p − τmβe−τ/τv vτ

(1 + τm/τv )(1 + τr/τv )
. (B13)

Comparison to Eq. (1) yields the dynamic gain g̃ given in
Eq. (18).

2. Receptor noise

The variance that is caused by receptor-level (here methy-
lation) noise is the covariance between clusters under a fixed
input trajectory, i.e., the first term of Eq. (A9). We can write
this covariance in terms of the equilibrium activity as follows,
using Eq. (B5) and noting that δ�(t ) is contained in s for
t � t0:

E[Cov(ni(ti ), n j (t j )|s)]ti,t j ,s

= E[〈ni(ti)n j (t j )|s, δm〉]ti,t j ,s,δm − p2 (B14)

= E[〈ni(ti)|s, δm〉〈n j (t j )|s, δm〉 − p2]ti,t j ,s,δm (B15)

= E[〈δai(ti )δa j (t j )|s〉]ti,t j ,s,δm. (B16)

In Eq. (B14) we condition on and average over δm to make the
connection between the instantaneous cluster state ni and the
cluster activity ai [Eq. (B5)]. Then in Eq. (B15) we use the fact
that when conditioned on both the signal and the methylation
level, the cluster states are independent. The covariance in the
cluster activity conditioned on the full past input trajectory
[Eq. (B16)] depends only on the methylation noise, using
Eqs. (B9) and (B7) and keeping the sampling times fixed,

E[〈δai(ti )δa j (t j )|s〉]s,δm = E

[
α2

∫ ti

−∞
dt

∫ t j

−∞
dt ′〈ηmi (t )ηmj

× (t ′)〉e−(ti−t )/τm e−(t j−t ′ )/τm
]

s,δm

(B17)

= 〈δi j〉2αp(1 − p)

τm

∫ t−

−∞
dte−(t−−t )/τm e−(t+−t )/τm (B18)

= αp(1 − p)

RT
e−|ti−t j |/τm , (B19)

where t+ ≡ max(ti, t j ) and t− ≡ min(ti, t j ), and the number
of receptor clusters RT arises as the average Kronecker delta
over all clusters: 〈δi j〉 = 1/RT. Averaging over the exponen-
tially distributed sampling times ti and t j [both following
Eq. (A4)], yields the receptor noise given in Eq. (21).

3. Signal-induced correlations

The covariance in the output caused by the variation in the
past input signal is given by the second term of Eq. (A9).
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It describes all variance in the output caused by input fluc-
tuations, so it comprises both the dynamical error and the
informative part g̃2σ 2

sτ
. We rewrite the instantaneous activity

to the equilibrium activity using Eq. (B5) and considering that
δ�(t ) is contained in s for t � t0:

Var(E[〈n(ti )|s〉]ti )s = Var(E[〈n(ti)|s, δm〉]ti,δm )s (B20)

= Var(p + E[〈δa(ti)|s〉]ti,δm )s (B21)

= Var

(
−β

τr

∫ t0

−∞
dti

∫ ti

−∞
dtv(t )e−(ti−t )/τm e−(t0−ti )/τr

)
,

(B22)

where in Eq. (B20) we again condition on and average over δm
to make the connection between n(t ) and a(t ) [Eq. (B5)]. In
Eq. (B22) we used Eq. (B9) and the sampling time distribution
of Eq. (A4). Using the correlation function of the concentra-
tion derivative, Eq. (14), we continue from Eq. (B22) to obtain

Var
(
E[〈n(ti )|s〉]ti

)
s

= σ 2
v β2

τ 2
r

∫ t0

−∞
dti

∫ t0

−∞
dt j

×
( ∫ ti

−∞
dt

∫ t j

−∞
dt ′e−|t−t ′ |/τv e−(ti−t )/τm e−(t j−t ′)/τm

)
× e−(t0−ti )/τr e−(t0−t j )/τr . (B23)

First we perform the integrals over t and t ′, which yields

Var(E[〈n(ti)|s〉]ti )s = σ 2
v β2/τ 2

r

1/τ 2
v − 1/τ 2

m

∫ t0

−∞
dti

∫ t0

−∞
dt j

×
(

τm

τv

e−|ti−t j |/τm − e−|ti−t j |/τv

)
e−(t0−ti )/τr e−(t0−t j )/τr . (B24)

Finally, computing the integrals over the sampling times ti and
t j gives

Var
(
E[〈n(ti )|s〉]ti

)
s

= τ 2
mβ2σ 2

v (1 + τr/τm + τr/τv )

(1 + τm/τv )(1 + τr/τv )(1 + τr/τm)
, (B25)

which is equivalent to the expression in main text Eq. (25)
with the static gain of Eq. (19).

APPENDIX C: OPTIMAL ADAPTATION TIME

Here we give a comprehensive derivation of the approxi-
mate optimal adaptation time. To gain analytical insight into
the optimal adaptation time we first consider that the adapta-
tion time τm must be larger than the response time τr to yield
a nonzero response to transient input changes. Subsequently
taking the derivative of Eq. (27) with respect to τm then gives

∂SNR−1

∂τm
= e2τ/τv

τv

(
1 + τr

τv

)2[
1 − 2(1 + τv/τm)

(τmβgσvx )2

×
(

p2

N
+ p(1 − p)

N I

)]
for τm � τr, (C1)

where the number N I of independent samples is given by
Eq. (23) with RI = RT/α. Now considering that for E. coli
the adaptation time is much larger than the signal correlation
time gives, up to the prefactor,

∂SNR−1

∂τm
∝ 1 − 2

(τmβgσvx )2

(
p2

N
+ p(1 − p)

N I

)
, (C2)

for τm � τr, τv . Equating Eq. (C2) to zero and solving for τ
opt
m

yields one positive solution, given in Eq. (31).
Inspection of Eq. (31) also reveals that the limiting re-

source of the network will set the optimal adaptation time.
This becomes apparent when we express N [Eq. (6)] and N I

[Eq. (23)] in terms of the number of readout molecules, XT,
and receptor clusters, RT. Substitution in Eq. (31) then yields
for the analytical approximation of the optimal adaptation
time

τ opt
m ≈

√
2

βgσvx

√
p2

XT f (1 − f )
+ αp(1 − p)

RT
. (C3)

When RT � XT the receptor noise [final RHS term in
Eq. (C3), also see Eq. (21)] becomes negligibly small, and
the adaptation time is set by the number of readout molecules
XT, which set the number of receptor samples N [Eq. (6)] and
thus the first two terms of the sampling error in Eq. (11). Fig-
ure 5(a) illustrates how the optimal adaptation time becomes
independent of RT when XT is limiting. Vice versa, when
XT � RT, the optimal adaptation time is set by the receptor
noise [Fig. 5(b)]. The panels of Fig. 5 show that the receptors
and the readout molecules limit sensing like weak links in
a chain: the prediction error, and concomitantly the optimal
adaptation time, is set by the limiting resource; the error
cannot be lowered by increasing the other resource [13–15].

The observation that the limiting resource sets the optimal
adaptation time can be understood when we consider that
the optimal adaptation time arises from a trade-off between
the sampling error and the dynamical error [Eq. (27)]. To
minimize the dynamical error, the adaptation time τm must

(a) (b)

FIG. 5. The limiting resource sets the optimal adaptation time.
(a) The optimal adaptation time, determined by numerically mini-
mizing Eq. (27), as a function of the number of receptor clusters
RT, for different numbers of readout molecules XT. (b) The optimal
adaptation time as a function of the number of readout molecules XT,
for different numbers of receptor clusters RT. The panels show that
XT and RT limit the prediction error like weak links in a chain, as ob-
served for a simple push-pull network without methylation feedback
[13–15]. Parameters are as in Fig. 3, and the code to reproduce the
figure is available [36].
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be zero, such that the network output reflects the most recent
signal derivative. This is analogous to the dynamical error for
the push-pull network studied by Malaguti and Ten Wolde
[14], which is minimized by reducing the integration time τr

to zero such that the network output reflects the most recent
signal concentration. Importantly, unlike the sampling error,
the dynamical error does not depend on RT and XT, but only
on timescales. To reduce the sampling error of the chemotaxis
network, the adaptation time must increase. Again, this seems
similar to the role of the integration time in the push-pull
network, where an increase in the integration time can also
reduce the sampling error [14]. However, in the push-pull net-
work, increasing the integration time can reduce the sampling
error because it enables the network to time-average the noise
arising from receptor-ligand binding. This also means that in
the push-pull network, the optimal integration time reduces to
zero when RT � XT, because time averaging means that more
receptor samples or concentration measurements are taken per
receptor, which requires XT > RT. This is markedly different
from the chemotaxis network [Fig. 5(a)], because the role of
the adaptation time is fundamentally different from that of
the integration time. Indeed, increasing the adaptation time
reduces the sampling error because it increases the dynamical
gain [Eq. (18)]. This enables the network to lift the signal
above the noise.

APPENDIX D: CHANGING SIGNAL STATISTICS

To illustrate the effect of the signal statistics on the pre-
diction error we consider a signal with the dynamics given in
Eqs. (12) and (13), but with a concentration standard deviation
σ� = 2τvσv , yielding ω0 = (2τv )−1. These statistics describe
a critically damped harmonic oscillator. For such a signal,
both the current concentration value and its derivative can
be correlated to the future derivative vτ , depending on the
forecast interval:

〈δv(t0)δv(τ )〉 = σ 2
v

(
1 − τ

2τv

)
e−τ/(2τv ), (D1)

〈δ�(t0)δv(τ )〉 = −σ 2
v τe−τ/(2τv ). (D2)

These correlation functions are shown in Fig. 4(a).
The dynamic gain quantifies the covariance between the

network output and the signal of interest, and therefore natu-
rally depends on the signal statistics. To derive the dynamic
gain under the new signal statistics we follow the same proce-
dure as before, starting from Eq. (B10) and using that now

〈v(t )|vτ 〉 = vτ [1 − τ/(2τv )] exp[−τ/(2τv )] [see Eq. (D1)],
we obtain

〈n(ti )|vτ 〉 = p − β

∫ ti

−∞
dt〈v(t )|vτ 〉e−(ti−t )/τm (D3)

= p − e−(t0+τ−ti )/(2τv ) τmβvτ

1 + τm/(2τv )

×
(

1 − (t0 + τ − ti )/(2τv ) − 1

1 + 2τv/τm

)
. (D4)

Averaging over all sampling times ti [Eq. (A4)] yields

E[〈n(ti )|vτ 〉]ti = p + g̃vτ , (D5)

with the dynamic gain

g̃ = −τmβe−τ/(2τv )

[1 + τm/(2τv )][1 + τr/(2τv )]

×
(

1 − τ

2τv

− 1

1 + 2τv/τm
− 1

1 + 2τv/τr

)
. (D6)

From this expression we can see that the dynamic gain goes
to zero when

τ

τv

= 2

(
1 − 1

1 + 2τv/τm
− 1

1 + 2τv/τr

)
. (D7)

When this relation holds, the current network output and the
future signal derivative are not correlated. When τm → 0 the
network takes an instantaneous derivative; indeed, in this limit
the dynamical gain is zero when τ = 2τv (assuming τr � τv),
because the current derivative is not correlated with the future
derivative vτ for this forecast interval τ , under these signal
statistics [Eq. (D1)]. The dependence on the adaptation time
arises because the adaptation time determines to what extent
the current network output reflects the most recent derivative,
or an exponentially weighted average of derivatives further
in the past [Eq. (B9)]. Similarly, τr sets the timescale over
which the receptor activity is averaged on the level of the
readout, potentially introducing an additional delay. However,
for the chemotaxis network typically τr � τv , such that the
contribution of the final RHS term in Eq. (D7) is relatively
minor.

To determine the dynamical error under the new sig-
nal statistics [Eqs. (D1) and (D2)], we first derive the total
variance in the output caused by input fluctuations [second
term of Eq. (A9)]. We follow the same procedure as in
Eqs. (B20)–(B25), starting from Eq. (B22) and using the
derivative autocorrelation of Eq. (D1) yields

Var(E[〈n(ti)|s〉]ti )s = Var

(
−β

τr

∫ t0

−∞
dti

∫ ti

−∞
dtv(t )e−t (ti−t )/τm e−(t0−ti )/τr

)

= σ 2
v β2

τ 2
r

∫ t0

−∞
dti

∫ t0

−∞
dt j

(∫ ti

−∞
dt

∫ t j

−∞
dt ′e−|t−t ′|/(2τv )

[
1 − |t − t ′|

2τv

]
e−(ti−t )/τm e−(t j−t ′ )/τm

)

× e−(t0−ti )/τr e−(t0−t j )/τr . (D8)
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First we perform the integrals over t and t ′, which yields

Var(E[〈n(ti )|s〉]ti )s = σ 2
v β2/τ 2

r

1/τ 2
m − 1/(2τv )2

∫ t0

−∞
dti

∫ t0

−∞
dt j

×
(

τm/τv

τ 2
m/(2τv )2 − 1

e−|ti−t j |/τm + e−|ti−t j |/(2τv )

[
1 − |ti − t j |

2τv

− 2

1 − (2τv )2/τ 2
m

])
e−(t0−ti )/τr e−(t0−t j )/τr . (D9)

Finally, computing the integrals over the sampling times ti and t j gives

Var(E[〈n(ti)|s〉]ti )s = τ 2
mβ2σ 2

v

[1 + τm/(2τv )]2[1 + τr/(2τv )]2

(
1 + τmτr

τv (τm + τr )

)
, (D10)

which describes all variance in the output caused by variations in the past input signal, i.e., it comprises both the dynamical error
and the informative part g̃2σ 2

v . Equation (D10) happens to be very similar to the variance caused by a signal that is Markovian
in its derivative [Eq. (B25)], the differences are that now the denominator of the prefactor is squared and the timescale τv has
become 2τv in the prefactor. Using Eq. (D10) in Eq. (11) we obtain for the dynamical error

σ
2,dyn
p̂τr

= σ 2
v τ 2

mβ2

[1 + τm/(2τv )]2[1 + τr/(2τv )]2

(
1 + τmτr

τv (τm + τr )

)
− g̃2σ 2

v . (D11)

This dynamical error for a signal with σ� = 2τvσv increases monotonically in τm but, in contrast with the dynamical error for a
signal with σ� � τvσv [Eq. (26)], it saturates as τm � τv .

The absolute prediction error is σ 2
p̂τr

= σ
2,samp
p̂τr

+ σ
2,dyn
p̂τr

, with the unchanged sampling error [Eq. (22)] and the dynamical error

of Eq. (D11). Dividing the absolute prediction error by the dynamic gain [Eq. (D6)] and the signal variance σ 2
v yields the relative

error, or SNR−1 [see also Eq. (2)]:

SNR−1 = eτ/τv

τ 2
mβ2σ 2

v

(
1 + τm

2τv

)2(
1 + τr

2τv

)2( p2

N
+ p(1 − p)

N I

)/(
1 − τ

2τv

− 1

1 + 2τv/τm
− 1

1 + 2τv/τr

)2

+ eτ/τv

(
1 + τmτr

τv (τm + τr )

)/(
1 − τ

2τv

− 1

1 + 2τv/τm
− 1

1 + 2τv/τr

)2

− 1. (D12)

The relative error is shown as a function of the forecast interval τ and the adaptation time τm in Fig. 4(b). When the dynamic
gain vanishes [Eq. (D7)] the relative error diverges, which reflects that the network output then no longer contains information
about the signal of interest.

[1] H. H. Mattingly, K. Kamino, B. B. Machta, and T. Emonet,
Escherichia coli chemotaxis is information limited, Nat. Phys.
17, 1426 (2021).

[2] H. C. Berg and E. M. Purcell, Physics of chemoreception,
Biophys. J. 20, 193 (1977).

[3] A. J. Tjalma, V. Galstyan, J. Goedhart, L. Slim, N. B. Becker,
and P. R. Ten Wolde, Trade-offs between cost and informa-
tion in cellular prediction, Proc. Natl. Acad. Sci. USA 120,
e2303078120 (2023).

[4] R. M. Macnab and D. E. Koshland Jr., The gradient-sensing
mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA
69, 2509 (1972).

[5] J. E. Segall, S. M. Block, and H. C. Berg, Temporal compar-
isons in bacterial chemotaxis., Proc. Natl. Acad. Sci. USA 83,
8987 (1986).

[6] R. Lux and W. Shi, Chemotaxis-guided movements in bacteria,
Crit. Rev. Oral Biol. Med. 15, 207 (2004).

[7] M. D. Baker, P. M. Wolanin, and J. B. Stock, Systems bi-
ology of bacterial chemotaxis, Curr. Opin. Microbiol. 9, 187
(2006).

[8] C. V. Rao, G. D. Glekas, and G. W. Ordal, The three adaptation
systems of bacillus subtilis chemotaxis, Trends Microbiol. 16,
480 (2008).

[9] U. B. Kaupp, J. Solzin, E. Hildebrand, J. E. Brown, A. Helbig,
V. Hagen, M. Beyermann, F. Pampaloni, and I. Weyand, The
signal flow and motor response controlling chemotaxis of sea
urchin sperm, Nat. Cell Biol. 5, 109 (2003).

[10] B. M. Friedrich and F. Jülicher, Chemotaxis of sperm cells,
Proc. Natl. Acad. Sci. USA 104, 13256 (2007).

[11] M. Abdelgalil, Y. Aboelkassem, and H. Taha, Sea urchin sperm
exploit extremum seeking control to find the egg, Phys. Rev. E
106, L062401 (2022).

[12] S. R. Lockery, The computational worm: spatial orientation and
its neuronal basis in C. elegans, Curr. Opin. Neurobiol. 21, 782
(2011).

[13] C. C. Govern and P. R. ten Wolde, Optimal resource allocation
in cellular sensing systems, Proc. Natl. Acad. Sci. USA 111,
17486 LP (2014).

[14] G. Malaguti and P. R. ten Wolde, Theory for the optimal detec-
tion of time-varying signals in cellular sensing systems, eLife
10, e62574 (2021).

[15] G. Malaguti and P. R. ten Wolde, Receptor time integration via
discrete sampling, Phys. Rev. E 105, 054406 (2022).

[16] A. Goldbeter and D. E. Koshland, An amplified sensitiv-
ity arising from covalent modification in biological systems,
Proc. Natl. Acad. Sci. USA 78, 6840 (1981).

033049-16

https://doi.org/10.1038/s41567-021-01380-3
https://doi.org/10.1016/S0006-3495(77)85544-6
https://doi.org/10.1073/pnas.2303078120
https://doi.org/10.1073/pnas.69.9.2509
https://doi.org/10.1073/pnas.83.23.8987
https://doi.org/10.1177/154411130401500404
https://doi.org/10.1016/j.mib.2006.02.007
https://doi.org/10.1016/j.tim.2008.07.003
https://doi.org/10.1038/ncb915
https://doi.org/10.1073/pnas.0703530104
https://doi.org/10.1103/PhysRevE.106.L062401
https://doi.org/10.1016/j.conb.2011.06.009
https://doi.org/10.1073/pnas.1411524111
https://doi.org/10.7554/eLife.62574
https://doi.org/10.1103/PhysRevE.105.054406
https://doi.org/10.1073/pnas.78.11.6840


PREDICTING CONCENTRATION CHANGES VIA DISCRETE … PHYSICAL REVIEW RESEARCH 6, 033049 (2024)

[17] F. Tostevin and P. R. ten Wolde, Mutual information in time-
varying biochemical systems, Phys. Rev. E 81, 061917 (2010).

[18] W. Bialek, Biophysics: Searching for Principles, edited by
P. E. A. Inc. (Princeton University Press, Woodstock, Oxford-
shire, 2012), pp. 378–381.

[19] V. Sourjik and H. C. Berg, Binding of the Escherichia coli
response regulator CheY to its target measured in vivo by fluo-
rescence resonance energy transfer, Proc. Natl. Acad. Sci. USA
99, 12669 (2002).

[20] B. A. Mello and Y. Tu, Effects of adaptation in maintaining high
sensitivity over a wide range of backgrounds for Escherichia
coli chemotaxis, Biophys. J. 92, 2329 (2007).

[21] Y. Tu, T. S. Shimizu, and H. C. Berg, Modeling the chemotactic
response of Escherichia coli to time-varying stimuli, Proc. Natl.
Acad. Sci. USA 105, 14855 (2008).

[22] J. R. Maddock and L. Shapiro, Polar location of the chemore-
ceptor complex in the Escherichia coli cell, Science 259, 1717
(1993).

[23] T. A. J. Duke and D. Bray, Heightened sensitivity of a lattice
of membrane receptors, Proc. Natl. Acad. Sci. USA 96, 10104
(1999).

[24] T. S. Shimizu, Y. Tu, and H. C. Berg, A modular gradient-
sensing network for chemotaxis in Escherichia coli revealed
by responses to time-varying stimuli, Mol. Syst. Biol. 6, 382
(2010).

[25] J. M. Keegstra, K. Kamino, F. Anquez, M. D. Lazova, T.
Emonet, and T. S. Shimizu, Phenotypic diversity and temporal
variability in a bacterial signaling network revealed by single-
cell FRET, eLife 6, e27455 (2017).

[26] J. Monod, J. Wyman, and J. P. Changeux, On the nature of
allosteric transitions: A plausible model, J. Mol. Biol. 12, 88
(1965).

[27] V. Sourjik and H. C. Berg, Functional interactions between
receptors in bacterial chemotaxis, Nature (London) 428, 437
(2004).

[28] B. A. Mello and Y. Tu, An allosteric model for heterogeneous
receptor complexes: Understanding bacterial chemotaxis re-
sponses to multiple stimuli, Proc. Natl. Acad. Sci. USA 102,
17354 (2005).

[29] J. E. Keymer, R. G. Endres, M. Skoge, Y. Meir, and N. S.
Wingreen, Chemosensing in Escherichia coli: Two regimes of
two-state receptors, Proc. Natl. Acad. Sci. USA 103, 1786
(2006).

[30] K. Kamino, J. M. Keegstra, J. Long, T. Emonet, and T. S.
Shimizu, Adaptive tuning of cell sensory diversity without
changes in gene expression, Sci. Adv. 6, eabc1087 (2020).

[31] N. Barkai and S. Leibler, Robustness in simple biochemical
networks to transfer and process information, Nature (London)
387, 913 (1997).

[32] T. M. Yi, Y. Huang, M. I. Simon, and J. Doyle, Robust perfect
adaptation in bacterial chemotaxis through integral feedback
control, Proc. Natl. Acad. Sci. USA 97, 4649 (2000).

[33] B. A. Mello and Y. Tu, Perfect and near-perfect adaptation in a
model of bacterial chemotaxis, Biophys. J. 84, 2943 (2003).

[34] J. S. Parkinson, G. L. Hazelbauer, and J. J. Falke, Signaling and
sensory adaptation in Escherichia coli chemoreceptors: 2015
update, Trends Microbiol. 23, 257 (2015).
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