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Clogging transition of granular flow in porous structures
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The clogging transition of granular flow through a disordered porous structure is investigated by three-
dimensional discrete element simulations. Results reveal the existence of an intermittent flow state, which has
been already observed for active particles or agitated grains, but is absent in single-pore flows of passive particles.
Interestingly, the analysis of the intermittent dynamics shows similar attributes to the bottleneck flow of active
grains, i.e., exponential distribution of flowing intervals and power-law tails for the clogging times. Precisely,
based on the exponent of the power-law tail, a clogging phase diagram for porous structures is proposed in the
plane of the scaled pore size D/dp and the friction coefficient μs. Then, we demonstrate that the intermittency
arises from a delay in the dissipation of particles’ kinetic energy after clogging imposed by the porous structure.
Finally, the maximum achievable particle flow rate driven by gravity is predicted from the Froude number Frm,
which linearly scales with the pore size and the friction coefficient.
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I. INTRODUCTION

A group of discrete bodies passing through a narrowing
often experiences clogging, which halts the flow. This phe-
nomenon has been observed in various systems, including
the discharge of grains from a silo [1–4], aerosol filtration
[5,6], wastewater treatment [7], and pedestrian room evacu-
ation [8,9]. For simplicity, extensive research has focused on
the clogging transition for granular passing through a single
outlet. In this system, a critical outlet size exists delimitat-
ing clogging and no-clogging regions [10–12]. The clogging
process occurs when a group of particles coincides above the
outlet in a stable configuration (an arch) [13,14] and resists
until the kinetic energy of the system is dissipated. When this
occurs, the system remains clogged unless an external vibra-
tion is applied to break the arch. It is precisely in this vibrated
scenario where flow intermittency emerges characterized by
alternating periods of clogging and flowing. Statistically, the
duration of flowing intervals displays an exponential distribu-
tion, implying a constant probability of clog formation [15].
Distinctly, the duration of temporary clogs displays a power-
law tail, p(τ ) ∼ τ−a. The system is considered clogged when
the exponent a is smaller than 2 and the average clog dura-
tion 〈τ 〉 diverges [15–17]. Based on this feature, a qualitative
representation of the clogging state diagram for single-outlet
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flow has been proposed, grouping all relevant variables into
three generic parameters [15].

Compared to granular flow through a single outlet, little is
known about the flow-clogging transition in porous structures,
a system that is gaining increasing attention because of its
related applications. For instance, metallic porous blocks have
been employed in particle solar receivers to regulate particles’
residence time and enhance heat transfer [18–20]. However,
an improper choice of porous size can lead to clogging of
granular flow, a phenomenon also observed in subsurface-flow
wetlands [7]. Unfortunately, despite the importance of these
applications, the mechanisms that determine the transition
between continuous flow and clogged states, as well as the
maximum achievable flow rate, have not been thoroughly
investigated. Indeed, although there are some recent related
works on the flow of particles in 2D obstacle arrays [21–27],
significant distinctions in problem dimensionality and par-
ticle driving mechanisms point out the necessity of further
investigating the flow of discrete systems in disordered porous
structures.

II. EMERGENCE OF INTERMITTENT FLOW STATE

In this study, we implement numerical simulations using a
three-dimensional discrete element method. The porous struc-
ture [Fig. 1(a)] is constructed using Voronoi tessellation [28]
(see Appendix A for details) in a domain with dimensions
Lx × Ly × Lz of 6 mm × 3 mm × 20 mm. The selection of
these values stems from moving-bed particle heat exchangers
[29,30] but larger porous structures have also been investi-
gated (see Appendix C). Note that similar confined particle
flows are also encountered in diverse industrial scenarios
[31–33]. The pore size is characterized by D, the diameter of
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FIG. 1. (a) Simulation setup of granular flow in a porous struc-
ture. (b) The temporal evolution of the particle mass flow rate at the
bottom of the porous structure Q for four scaled pore sizes D/dp as
indicated in each panel.

a sphere with a volume equivalent to the average pore volume.
All the porous structures in the simulation have a minimum of
three pores in all directions, ensuring that the minimum image
convention was not violated. It is worth noting that the porous
frame lacks periodicity in the y direction. However, additional
simulations, which utilize a periodic structure generated from
a Voronoi lattice and periodic images, demonstrate that this
mismatch has a negligible effect on the flow (see Appendix C).

At the bottom (z = 0) of the porous structure there is
a flat plate, two sidewalls are set at x = 0 and Lx, and
periodic boundary conditions are implemented in the y di-
rection. The combination of wall and periodic boundary
condition is commonly employed in systems that possess a
finite dimension in the wall-normal direction and a signif-
icantly larger dimension in another direction [34–36]. The
particles used are monodisperse spheres with a diameter dp

that interact via contacts including four terms: an elastic

normal force FNE ,i j = 4
3 E

√
Rδ

3
2
n , a damping normal force

FND,i j = ηNvi j · ni j , a sliding friction FS,i j = min[kT δT +
ηT vi j · ξS, μs(FNE ,i j + FND,i j )], and a rolling torque MR,i j =
−μr (FNE ,i j + FND,i j )RξR. Here, E is the equivalent Young’s
modulus, R the reduced radius, δn the deformation of par-
ticles in the normal direction, and δt the relative tangential
displacement. ηN and ηT are the damping coefficients, which
are related to the coefficient of restitution (e = 0.6 although
results for other values are presented in Appendix D). μs and
μr are the sliding and rolling friction coefficients. Details on
the simulation are given in Appendix B.

The same contact models are adopted to describe the inter-
action between the porous structure (or the plate) and particles
by introducing the effective radius of the contact surface. An
important parameter in the interaction is the particle-particle
friction coefficient μs, so its effect on the dynamics will be
explored here together with the scaled pore size D/dp.

The simulations begin by randomly adding particles above
the bottom plate until reaching a bed height h satisfying
h � Lz. This ensures that the particle motion in the porous

media is independent of the packing height [37,38]. After the
packing reaches a mechanically stable state, the bottom plate
is moved along the −z direction with a constant velocity U0.
Depending on the magnitude of U0, there are two possible
scenarios. (1) For slow plate velocities, the grain motion is
constrained by the plate so it strongly depends on U0; (2)
with a sufficiently large U0, the granular flow reaches its
maximum achievable flow rate under the influence of gravity,
in a scenario analogous to removing the piston or opening a
gate at the bottom.

We start focusing on this second scenario and computing
the particle mass flow rate exiting the porous structure Q.
The temporal evolution of Q is depicted in Fig. 1(b) for four
distinct scaled pore sizes D/dp. For D/dp = 3.04, the flow
rate remains essentially zero after an initial release of a few
particles, representing a clogged state. As D/dp increases to
3.51, an intermittent flow regime emerges, characterized by
alternating flowing and arrested intervals. When D/dp in-
creases to 4.50 flowing intervals become more frequent, and
then a transition to a continuous flow state occurs for D/dp =
5.60. Remarkably, the transition from clogged to flowing state
through a region of intermittent flow is normally observed
when particles are active [15] or, for passive particles, if there
is an external perturbation [16,39,40]. The reason is that inter-
mittency only appears when arches are formed and destroyed,
a process for which a source of energy (either internal or
external) is necessary. Here, we show that an intermittent flow
state for passive particles can be induced by the porous struc-
ture without applying external perturbations, highlighting the
unique features introduced by this geometry.

III. A CLOGGING PHASE DIAGRAM
FOR POROUS STRUCTURE

We then analyze the properties of the intermittent flow
looking at (i) the avalanche size s, defined as the number of
particles released from the outlet during a flowing interval,
and (ii) the clogging lifetime τ , which is the duration of a
blockage. As shown in Fig. 2(a), the distributions of normal-
ized avalanche size s/〈s〉 are exponential for all D/dp values
explored. For cases with D/dp � 4.25, the data points locate
around the line with a slope of −1, as reported for single-pore
flows [15]. When D/dp increases to 4.5, the granular flow
enters the semicontinuous regime and burst events with a
particularly large s are observed. This leads to a second peak at
s/〈s〉 ≈ 3.5 on the curve of D/dp = 4.5 and a faster decrease
of n(s/〈s〉) (with a slope −1.73) at small s/〈s〉 values. The
average avalanche size 〈s〉 is displayed in the inset of Fig. 2(a)
evidencing that, as D/dp increases, the system approaches
the continuous flow state and the average avalanche size 〈s〉
diverges.

In Fig. 2(b), the complementary cumulative distribution
function (CCDF), P(T > τ ), of the clogging lifetime τ is
represented for different pore sizes (note that for D/dp > 4.5
there are no distributions represented as the flow becomes
continuous). In all cases, the CCDF is heavy-tailed and can
be fitted to a power law P(T > τ ) ∼ τ−α . Clearly, as the pore
size reduces, the decay of P(T > τ ) becomes slower indicat-
ing that the blockages last for a longer period. The exponent
α can be related to the exponent of the probability density
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FIG. 2. (a) Probability density function of the scaled avalanche
size s/〈s〉 in semilogarithmic scale. The friction coefficient is fixed at
μs = 0.3 and different pore sizes D/dp are implemented as indicated
in the legend. The two dashed lines are guides to the eye with slopes
of −1 and −1.73, respectively. Inset: Average avalanche size 〈s〉 as
a function of the pore size. (b) CCDF of the clogging lifetime τ for
the same experiments as in (a). Lines represent power-law fittings
with τ−α . (c) Clogging diagram in the plane of the relative pore
size D/dp and friction coefficient μs. The gray squares represent the
clogged state, the orange triangles the intermittent flow, and the green
diamonds the continuous flow.

function of the clogging lifetime [p(τ )] by α = a − 1. There-
fore, when the exponent α � 1 (or a � 2), the mean clogging
lifetime 〈τ 〉 = ∫ ∞

0 τ × p(τ )dτ diverges, and the granular flow
is said to be in a clogged state [15,17]. On the contrary, if α>1,
the flow remains intermittent and no permanent clogging
occurs. As the pore size decreases and the system approaches
the clogging threshold, the statistics are constrained by the
limited occurrence of clogging events. This limitation arises
from the prolonged duration of individual clogging events and
the associated high computational cost. Consequently, there is
an inherent uncertainty associated with the fitted value of the
exponent. Nonetheless, this uncertainty does not significantly
impact the key findings presented in this study because the
exponent α consistently decreases as D/dp decreases.

After conducting extensive simulations, a clogging phase
diagram is depicted in the plane of the scaled pore size D/dp

and friction coefficient μs [Fig. 2(c)]. As the friction coeffi-
cient increases and the pore size decreases, the system transits
from continuous to intermittent, and then to clogged states.
When comparing with the single bottleneck case, where an
abrupt transition occurs from continuous flow to clogged in
the region of D/dp going from 5 to 8 [12,41], two main
features of the flow in porous structures should be explained:
(1) once a clog is formed, it may be shattered leading to
intermittent flow; (2) formation of clogs is more difficult as the
transition from continuous to intermittent occurs in the region
of D/dp going from 4 to 5.25.

FIG. 3. (a) Granular flow at the bottom of the porous structure
(left) and in a single-pore system (right). The walls are indicated by
gray lines and the vertical black dashed line signals the centerline of
the system. Particles are colored according to the velocity fluctuation
�u. Here, D/dp = 5.6 and μs = 0.3. (b) Granular temperature Tg and
the packing fraction φ in the near-outlet region as a function of the
scaled pore size D/dp. (c) Evolution of the particle’s mean kinetic
energy 〈Ek〉 after a blockage event for porous flow with D/dp = 3.25
and a single orifice with D/dp = 4.05. Different D/dp values are
adopted to achieve a similar extent of blockage. Here, 〈Ek0〉 is the
particle mean kinetic energy at the moment of blockage (at �t = 0).

The reduced susceptibility to clogging in porous structures
can be attributed to random collisions between particles and
the porous structure, which leads to frequent changes in parti-
cle velocity and intensifies the randomness of particle motion.
In addition, the porous structure can create void space above
the bottlenecks, thereby reducing the pressure that particles
experience in the downstream direction, a behavior similar
to the one observed when suitably placing an obstacle above
the bottleneck in a silo [42,43]. To test this idea, we measure
the volume fraction (φ) and the velocity fluctuation (�u)
at the bottom of the system for both the porous structure and
the single bottleneck [see Fig. 3(a)]. Here, �u is calculated
as �u = √

(vx − v̄x )2 + (vy − v̄y)2 + (vz − v̄z )2, with v̄x rep-
resenting the spatial average velocity in the x direction in the
near-outlet region. The near-outlet region here is defined as
the area within 2D above the outlet, and only the right half
of the system is considered due to its symmetry. We observe
greater velocity fluctuations in the porous structure compared
to the single pore. Additionally, the distribution of veloc-
ity fluctuations is relatively uniform in the porous structure,
whereas large �u values only appear above the bottleneck
in the single-pore case. In Fig. 3(b), we plot the granular
temperature Tg, defined as Tg ≡ (m/3)〈(vx − 〈vx〉)2 + (vy −
〈vy〉)2 + (vz − 〈vz〉)2〉 [44–46] with 〈vx〉 being the temporal
and spatial average velocity, and the particle volume fraction
φ in the near-outlet region for different D/dp. Remarkably,
the porous structure leads to higher granular temperatures and
lower volume fractions than the single pore, hence preventing
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arch formation. The differences, which are rather important
when D/dp is small, become significantly reduced as D/dp

increases and the flow becomes continuous.
On the origin of the intermittency, we have discovered

that the porous structure prevents the quick dissipation of the
energy observed in single bottlenecks right after an arch ob-
structs the outlet. This phenomenon is illustrated in Fig. 3(c),
which presents the evolution of the mean value of the par-
ticle’s kinetic energy 〈Ek〉 when a blockage event occurs (at
�t = 0) for both single-pore flow and porous granular flow.
In the single-pore flow, the kinetic energy decreases by two
orders of magnitude in approximately 0.1 s, whereas in the
porous structure the process takes much longer (≈3 s). De-
spite the bottom part of the porous system being blocked, the
flow remains nonarrested in other regions due to the geometri-
cal hindrance for the flow in the vertical direction imposed by
the porous structure and the low associated volume fractions.
Therefore, particles with finite kinetic energy can impact the
arches formed at the bottom and shatter them, hence resuming
the flow. This argument is further supported by the fact that
particles with lower values of e are more susceptible to clog
(see Appendix D). Overall, the findings reported in Fig. 3
elucidate how the interaction between particles and the porous
structure reduces the occurrence of clogging and provides
insight into the mechanism underlying the apparition of the
intermittent state in passive granular flows through porous
media.

IV. MAXIMUM FLOW RATE

Finally, we focus on the continuous flow state, for which
the mass flow rate and its maximum achievable value are the
most important parameters. Here, we measure the flow rate, Q,
while varying the bottom plate velocity, U0. Figure 4(a) shows
that, for all pore sizes, Q initially increases linearly with U0

until a value U0,max, where the flow rate reaches its maximum
value Qm and remains constant afterward. Interestingly, D/dp

does not affect the linear growth rates of Q but strongly deter-
mines the transition plate velocity, U0,max, and therefore, the
maximum flow rate, Qm. The flow rate Q can be described by

Q =
{

0.0207 × U0, U0 < U0,max,

Qm, U0 � U0,max,
(1)

where, as expected, the coefficient 0.0207 approximately
equals LxLyρpφ, with ρp = 2000 kg/m3 and φ = 0.575 be-
ing the particle density and the volume fraction of particles
in the bed, respectively. The goodness of this expression is
proved by the nice collapse of all the data after normalization,
i.e., representing Q/Qm versus U0/U0,max as in the inset of
Fig. 4(a).

Next, to predict the maximum mass flow rate Qm, we group
the parameters that affect it into three dimensionless numbers:
the Froude number Frm ≡ Qm/(SPρpg0.5d0.5

p ), where SP =
LxLy is the area of the bottom plane; the size ratio D/dp; and
the friction coefficient μs. The dependence of Frm on D/dp

is reported in Fig. 4(b) for three friction coefficients. When
D/dp is small, Frm ≈ 0, indicating a clogged state. As D/dp

increases, Frm undergoes a nonlinear growth (approximately
in the region of intermittent flow) and then increases linearly

FIG. 4. (a) Mass flow rate Q as a function of the bottom plate
velocity U0 for μs = 0.3 and different values of D/dp. The inset
is the dimensionless flow rate Q/Qm versus dimensionless bottom
plate velocity U0/U0,max. Here, Qm and U0, max are, respectively, the
maximum flow rate and maximum bottom plate velocity when the U0

curve enters the plateau. (b) Dimensionless maximum flow rate Frm

as a function of D/dp for particles with different friction coefficients
μs = 0.2, 0.3, and 0.4. The vertical lines separate the intermittent
and continuous flow states. The dashed lines are fitting results using
Eq. (2). Inset: Frm versus D/dp − χμs − ξ .

with D/dp as the flow becomes continuous (right side of the
vertical lines). The results in Fig. 4(b) are then fitted according
to

Frm = �(D/dp − χμs − ξ ), (2)

where the fitting constants �, χ , and ξ are 0.057, 8.72, and
1.35, respectively. Note that this formula applies only to the
continuous flow state (controlled by gravity with Frm < 1)
and no longer holds when the particle flow is intermittent. To
verify the effectiveness of Eq. (2), in the inset of Fig. 4(b)
we represent Frm versus D/dp − χμs − ξ for different fric-
tion coefficients and pore sizes. Using the same values of
the fitting constants, all data points collapse on top of the
curve of Eq. (2), indicating that the ability of particles to
flow through a porous medium under the action of gravity
is mostly determined by the gravity itself, the size ratio,
and the friction coefficient. The effect of other parameters,
including the coefficient of restitution and thickness of the
porous structure backbone, on the dimensionless maximum
bed flow rate was also investigated (see Appendixes C and D).
The dimensionless maximum flow rate is not strongly affected
when the mean cross-sectional area of the backbone increases
from S = 0.0104 mm2 to S = 0.0164 mm2. In contrast, the
coefficient of restitution has a non-negligible effect on the
flow rate. Specifically, particles with higher values of e, indi-
cating lower energy dissipation during collisions, demonstrate
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an enhanced maximum flow rate, given fixed values of D/dp

and μs.

V. CONCLUSIONS

In summary, we have performed simulations of granular
flow through disordered porous structures. We discover that,
for a range of pore sizes, this geometry leads to the emer-
gence of intermittent flow without vibration or any other kind
of external input of energy. The physical mechanism behind
this intermittency is the temporal decorrelation between out-
let blockage and energy dissipation inside the porous media.
Moreover, as in the case of active particles passing through
a single pore, the power-law tail distribution for clogging
times allows distinguishing between the clogged and the in-
termittent flow states. From this, a clogging phase diagram
is constructed in the plane of the scaled pore size D/dp and
friction coefficient μs, revealing that the porous structure also
prevents clog formation compared with the single bottleneck.
This phenomenon is justified by the higher granular temper-
ature and lower particle volume fraction developed in the
porous structure. Finally, the maximum reachable flow rate
in the continuous flow regime is predicted from the Froude
number Frm, which is expressed as a linear function of the
scaled pore size D/dp and the friction coefficient μs.

The current work presents an attempt to forecast the
clogging transition of granular flow within porous structures
confined in a narrow channel. Preliminary findings demon-
strate that enlarging the size of the porous media induces a
shift of the transitions toward smaller values of D/dp. So,
questioning how the dynamics would be in a hypothetical
system of infinite size seems like an obvious extension of
this work. In the same way, further extensive research is
required to elucidate the impact of walls, analyze correlations
in particle movement, and investigate the segregation/mixing
behavior of binary samples.
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APPENDIX A: CONSTRUCTION
OF THE POROUS STRUCTURE

To construct a porous media, various techniques are avail-
able, such as the cell unit method [47,48], the implicit surfaces
method [49,50], the packing of spheres, and the Voronoi
tessellation method. Among these, we have chosen Voronoi
tessellation as it presents several notable advantages, such
as simplicity of the process, controllable pore shapes, and
close resemblance to actual metal foams. Indeed, this tech-
nique has been previously implemented in experiments to
construct porous structures in which several parameters, in-
cluding porous irregularity, have been modified [28,51].

The generation process is as follows: First, a cuboid region
with dimensions of Lx × Ly × Lz = 6 mm × 3 mm × 20 mm
was created, which represents the space occupied by the

porous structure. Next, an ordered cube lattice containing n
layers along the z direction was generated within this re-
gion. The coordinates of the lattice points were denoted as
Pi = (xi, yi, zi ), where the distances between adjacent points
in the x and y directions were b and c, respectively, and the dis-
tance between adjacent layers was denoted as a. Subsequently,
a spherical region with a radius of Rm, termed a probability
sphere, was generated centered at each lattice point Pi. Within
each probability sphere, a new point P′

i = (x′
i, y′

i, z′
i ) was ran-

domly generated to replace the original point Pi, giving rise to
a series of irregular lattices. The relationship between points
Pi and P′

i is as follows:

x′
i = x + Rm×(2×R − 1),

y′
i = y + Rm×(2×R − 1),

z′
i = z + Rm×(2×R − 1). (A1)

Here, Rm is the radius of the probability sphere, which is set
as Rm = min[a/3, b/3, c/3] in this work, and R is a random
number uniformly distributed within the range [0,1].

Voronoi cells are generated around irregular lattice points
P′

i, also known as seed points. Each Voronoi cell represents
the region of space that is closest to a particular seed point in
comparison to the other seed points. The neighboring points
associated with each seed point are identified, and subse-
quently, edges are constructed that bisect the line segments
connecting the seed point to its neighboring points. These
edges act as the boundaries of the corresponding Voronoi
cell. By connecting the Voronoi edges, closed polyhedra are
formed, enclosing the regions surrounding each seed point. In
cases where a seed point is close to the simulation domain
boundaries, these edges are modified to align with the shape
of the boundary. This process partitions the space into distinct
cells, as depicted in Fig. 5(a) (shown in a two-dimensional
representation, although the actual implementation is in three
dimensions).

The intersections of Voronoi edges are then selected as the
centerlines for the porous structure. Around these centerlines,
cylinders are generated with an average cross-sectional area
of S = 0.0104 mm2. The average effective diameter (thick-
ness) of the cylinder corresponds to 0.115 mm. To mimic the
characteristics observed in actual foam metal structures [18],
the cylinders have a smaller cross-sectional area in the middle
(referred to as Smin) and larger cross-sectional areas at the ends
(referred to as Smax), with a ratio of Smin/Smax ≈ 0.6. Together,
these cylinders constitute the backbone of the porous structure
[Fig. 5(b)]. Note that, in the numerical implementation, the
curved surfaces are subsequently discretized using a dense
grid of points. Each grid point stores coordinates and local
curvature information, which is utilized when calculating the
contact forces within the framework of the discrete element
method (DEM).

The dimension and shape of cells in the porous structure
can be adjusted by varying the number of seed points and
the value of parameters a, b, and c, which ranged from
1 mm to 1.5 mm. In the main text, the majority of the
numerical cases feature a fixed size for the porous medium
of 6 mm × 3 mm × 20 mm including Np = 360 cells. There
are, however, some exceptions to this in the results of Fig. 6
in Appendix C where the porous frame is enlarged (see
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FIG. 5. (a) Illustration of Voronoi tessellation in two-
dimensional form. The solid black line stands for the edges.
(b) Detail of the backbone of the porous structure. The intersections
of Voronoi edges (black lines) and cylinders are generated around
the centerlines, which have been discretized using a dense grid
of points. (c) Probability density function of the volume of each
cell in the porous structure Vp. The solid red line depicts a normal
distribution.

FIG. 6. (a) CCDF of the clogging lifetime τ for Lx = 6 mm,
12 mm, and 18 mm with a fixed aspect ratio Lx/Ly = 2 of the cross
section. Here, D/dp = 3.51 and μs = 0.3. Lines represent power-law
fittings with τ−α . (b) Clogging diagram in the plane of the scaled pore
size D/dp and system size Lx .

TABLE I. Parameters of particle properties in the DEM simulation.

Parameter Symbol Value Unit

Particle diameter dp 0.135 ∼ 0.4 mm
Particle density ρp 2000 kg/m3

Young’s modulus of particles Ei 107 Pa
Poisson ratio of particle νi 0.3
Coefficient of sliding friction μs 0.2 ∼ 0.4
Coefficient of rolling friction μr 0.3
Coefficient of restitution e 0.3, 0.6, 0.9

Table II). By employing Monte Carlo methods, one can
obtain the volume Vp of each cell (excluding the volume
of the backbone). The probability density function of Vp is
illustrated in Fig. 5(c), which is close to a normal distribution
(depicted by the solid red line). The average pore volume
〈Vp〉 is 0.937 mm3. The average equivalent pore diameter, D,
defined as the diameter of a sphere with the same volume as
the average pore volume, is calculated through

D =
(

6〈Vp〉
π

)(1/3)

=
[

6 × (V − VF )

π × ND

](1/3)

, (A2)

where V represents the volume of space occupied by the
porous structure (V = Lx × Ly × Lz), VF is the volume of
the porous frame, and ND is the number of pores within the
porous structure.

In this study, our primary focus is to investigate the impact
of the scaled pore size D/dp on the flow behavior of granular
particles within a porous structure. To achieve this, several
variables are kept constant: the average equivalent pore di-
ameter D, the dimensions of the porous structure (Lx, Ly, and
Lz), and the thickness of the skeleton. Meanwhile, we vary the
particle size dp to obtain different values of D/dp. However, as
said before, in Fig. 4(b) of the main text, we modify the value
of D while keeping Lx/D constant, to validate the universality
of the scaling for the maximum bed flow rate Qm. Also in
Appendix C, the effect of changing several parameters is
investigated.

APPENDIX B: DISCRETE ELEMENT METHOD

In the discrete element method, the motion of every particle
is simulated following Newton’s laws. Moreover, the interac-
tions between contact particles or between particles and the
porous structure are modeled based on soft-sphere contact
models. The linear and angular momentum equations of par-
ticles are expressed as

mi
dvi

dt
= FC,i + Fg,i, (B1a)

Ii
dωi

dt
= MC,i, (B1b)

where mi and Ii are the mass and the moment of inertia of
particle i, vi and ωi are the translational and angular velocities
of the particle, FC,i and MC,i are the contact force and torque
acting on particle i from other particles or walls that are in
contact with particle i, and Fg,i is the gravitational force acting
on particle i.
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TABLE II. Simulation condition for each figure in the main text and Appendixes.

Equivalent pore Particle diameter, Dimensions of porous structure, Coefficient of Coefficient of
diameter, D (mm) dp (mm) Lx, Ly, Lz (mm) sliding friction, μs restitution, e

In main text:
Fig. 1(b) 1.21 0.217 ∼ 0.4 6, 3, 20 0.3 0.6
Figs. 2(a) and 2(b) 1.21 0.135 ∼ 0.4 6, 3, 20 0.3 0.6
Fig. 2(c) 1.21 0.135 ∼ 0.4 6, 3, 20 0.2 ∼ 0.4 0.6
Fig. 3(a) 1.21 0.217 6, 3, 20 0.3 0.6
Fig. 3(b) 1.21 0.135 ∼ 0.25 6, 3, 20 0.3 0.6
Fig. 4(a) 1.21 0.135 ∼ 0.25 6, 3, 20 0.3 0.6

1.21 0.135 ∼ 0.4 6, 3, 20 0.2, 0.3, 0.4 0.6
Fig. 4(b) 1.40 0.18 ∼ 0.25 6.9, 3.45, 23 0.2, 0.3, 0.4 0.6

1.89 0.2 ∼ 0.25 9.2, 4.61, 30.7 0.2, 0.3, 0.4 0.6

In Appendixes:
Fig. 6(b) 1.21 0.19 ∼ 0.4 6, 3, 20 0.3 0.6

1.21 0.19 ∼ 0.4 12, 6, 20 0.3 0.6
1.21 0.19 ∼ 0.4 18, 9, 20 0.3 0.6

Fig. 7 1.21 0.135 ∼ 0.35 6, 3, 20 0.3 0.6
Fig. 8 1.21 0.135 ∼ 0.4 6, 3, 20 0.3 0.3, 0.6, 0.9

For two touching particles (i and j), we consider the normal
elastic force FNE ,i j , the normal damping force FND,i j , the
sliding friction FS,i j , and the rolling torque MR,i j acting on
particle i from particle j, which are expressed as

FNE ,i j = 4
3 E

√
Rδ

3
2
n , (B2a)

FND,i j = ηNvi j · ni j, (B2b)

FS,i j = min[kT δT + ηT vi j · ξS, FSC,i j], (B2c)

MR,i j = −μrFN,i jRξR. (B2d)

The elastic normal force FNE ,i j is derived from Hertzian
contact theory [52], where δn is the deformation of particles
in the normal direction. FN,i j = FNE ,i j + FND,i j is the overall
normal force. The equivalent Young’s modulus E and the
reduced radius R are given by

1

E
=

(
1 − v2

i

)
Ei

+
(
1 − v2

j

)
Ej

, (B3a)

1

R
= 1

rp,i
+ 1

rp, j
. (B3b)

Here, Ei is the Young’s modulus, νi the Poisson ratio, and
rp,i the radius of particle i. The damping force is propor-
tional to the normal component of the relative velocity vi j · ni j

[53]. Here, vi j = vi − v j is the relative velocity and ni j is
the unit vector pointing from the centroid of particle j to
the centroid of particle i. The damping coefficient ηN is
given by

ηN = −2

√
5

6
β
√

knm∗, (B4)

where m∗ = (m−1
i + m−1

j )−1 is the equivalent mass, β is the
damping factor, which is related to the coefficient of restitu-
tion by β = − ln e/

√
ln2 e + π2, and kn is the normal stiffness

given by kn = 2E
√

Rδn. The friction force FS,i j is the product
of the tangential displacement δT = ∫ t

t0
vi j (τ ) · ξSdτ and the

tangential stiffness kT [54,55]. Here, ξS is the unit vector in the

tangential direction and kT is given by kT = 8G
√

Rδn, where
G is the equivalent shear modulus. From the value of kT , we
obtain the damping coefficient in the tangential direction ηT

using an expression analogous to Eq. (B4).
The Coulomb friction limit FSC,i j is set as the maximum

value of the sliding friction, which is expressed as FSC,i j =
μsFN,i j with μs being the coefficient of the static friction [56].
When the sliding friction FS,i j reaches the Coulomb limit,
the particle will irreversibly slide relative to its neighboring
particle.

The rolling friction MR,i j in Eq. (B2d) is a function of the
rolling friction coefficient μr , the normal force FN,i j , the dis-
tance Rr between the contact point and the center of mass of
particle i, and the unit angular velocity vector ξR [57]. The pa-
rameters in DEM are summarized in Table I. The time step �t
used to solve the equations of motion [Eq. (B1)] is sufficiently
small to prevent excessive overlaps between contact particles
and to ensure realistic force transmission. The DEM model
has been applied to simulate dense granular flow around an
immersed cylindrical tube [58] and has been validated by
comparing the simulation results with the experimental data
from Ref. [59].

As said, the current work focuses on the effect of the scaled
particle size D/dp and the friction coefficient μs. The pore size
D is fixed as D = 1.21 mm and the dimension of the porous
structure is fixed as Lx = 6 mm, Ly = 3 mm, and Lz = 20 mm
for results in Figs. 1(b), 2, 3, and 4(a). Only in Fig. 4(b),
the pore size D was varied while keeping D/Lx constant to
verify the universality of the scaling of the maximum bed flow
rate. The values or variation ranges of dp, D, and L for each
figure are summarized in Table II.

APPENDIX C: EFFECT OF GEOMETRIC PARAMETERS
OF THE POROUS STRUCTURE

The role of the scaled pore size D/dp has been discussed in
the main text. In this section, the influence of the dimensions
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of the porous structure and the thickness of the backbone of
the porous frame are investigated.

1. Size of the porous structure

The cross-sectional area of the porous structure for all
experiments reported in the main text is Lx × Ly = 6 mm ×
3 mm. Here, we present extensive simulations with en-
larged cross-sectional areas of Lx × Ly = 12 mm × 6 mm and
18 mm × 9 mm, corresponding to four and nine times the
original value, respectively. The coefficient of restitution is
e = 0.6 and the coefficient of friction is μs = 0.3. All the
outcomes are condensed in Fig. 6(b), where we present the
clogging diagram in the plane of the scaled pore size D/dp

and system size Lx. Clearly, when the cross-sectional area
increases, the transitions from clogging to intermittent state
and from intermittent to continuous state tend to occur at
smaller values of D/dp. This can be attributed to the fact
that achieving a clogged state in the porous structure neces-
sitates the blockage of all pores in the proximity of the outlet.
Consequently, enlarging the system size leads to an increased
number of pores, making it more challenging for all pores
to be simultaneously obstructed. This phenomenon can be
quantified by the exponent of the power-law tail in the clog-
ging lifetime distribution [Fig. 6(a)], where an increase in the
cross-sectional area results in an increase in the exponent α,
indicating shorter duration of individual blockages. Notably,
from Fig. 6(b) we also detect that the width of the intermittent
regime on the phase diagram only exhibits a small decrease,
if any, as Lx increases from 6 mm to 18 mm.

2. Thickness of the porous structure backbone

The mean cross-sectional area of the backbone is fixed
at S = 0.0104 mm2 in the simulations presented in the main
text. To preliminarily assess the influence of this parameter,
it is increased to S = 0.0164 mm2, which is approximately
1.6 times its original value. The dimensionless maximum
bed flow rate Frm is plotted as a function of the scaled pore
size D/dp in Fig. 7. One can see that, within the range of
S explored, the flow characteristics (both the dimensionless
maximum flow rate and the transition from clogged, intermit-
tent, to continuous states) are not strongly affected.

In the main text simulations, the porous frame lacks period-
icity in the y direction. To examine the potential impact of this
mismatch on the flow, additional simulations were conducted
using a periodic structure generated from a Voronoi lattice and
periodic images. Figure 7 illustrates that the dimensionless
maximum flow rate (Frm) values are essentially identical for
granular flows in both periodic and nonperiodic frames.

APPENDIX D: EFFECT OF COEFFICIENT
OF RESTITUTION

According to the results in Fig. 3 of the main text, the
porous structure prevents the quick dissipation of the parti-
cle’s kinetic energy observed in single bottlenecks. Therefore,
when arches obstruct the bottom part of the porous structure,
particles with finite kinetic energy can impact the arches and
shatter them, hence resuming the flow. To further elucidate
the role of energy dissipation on the clogging transition of

FIG. 7. Dimensionless maximum bed flow rate Frm as a function
of the scaled pore size D/dp for two different mean cross-sectional
areas of the backbone of the porous frame, S = 0.0104 mm2 and
0.0164 mm2. The results for the structure generated from Voronoi
lattice and periodic images are also plotted for comparison (circles).
The two vertical dashed lines divide the clogging, intermittent, and
continuous states. The friction coefficient is fixed at μs = 0.3.

granular flow in the porous structure, additional simulations
using varying values of the coefficient of restitution ( e ),
specifically e = 0.3, 0.6, and 0.9, are conducted. A smaller
value of e indicates a stronger energy dissipation upon colli-
sions.

Figure 8(a) depicts the complementary cumulative distri-
bution function (CCDF), P(T > τ ), of the clogging lifetime
τ for different values of restitution coefficient, while keeping
constant pore size (D/dp = 3.51). The tail of the CCDF is
fitted to a power law, P(T > τ ) ∼ τ−α . Notably, the exponent
α displays an increasing trend as e increases, indicating that
particles with lower e values are more susceptible to clog.
This observation aligns with the argument presented in the
main text. Furthermore, Fig. 8(b) presents the phase diagram
depicted in the plane of D/dp and e. The transition from clog-
ging to an intermittent state, as well as from an intermittent to
a continuous state, tends to occur at smaller D/dp values when
e increases. These results serve to validate the close relation-
ship between intermittency occurrence and the dissipation of
energy during particle–porous structure collisions.

Finally, to investigate the influence of energy dissipation on
the maximum flow rate reached in the system, in Fig. 8(c), we
present a plot of the dimensionless maximum flow rate (Frm)
as a function of D/dp for different e values. It is observed that
particles with a higher restitution coefficient (e), indicating
lower energy dissipation during collisions, display a greater
maximum flow rate for a given D/dp. However, as D/dp

increases, the disparity in Frm diminishes.
In summary, based on the findings in Fig. 8, we can deduce

that energy dissipation caused by the viscous damping force
influences the transition between clogging, intermittent, and
continuous states, but its impact on the flow rate is relatively
weak when the pore size is sufficiently large.

APPENDIX E: VELOCITY PROFILE

In the last part of the main text, we analyze the maxi-
mum flow rate at the exit of the bottom structure (bottom
plane) and we propose a generic expression in terms of three
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FIG. 8. (a) CCDF of the clogging lifetime τ with a fixed pore
size D/dp = 3.51 and coefficient of restitution e = 0.3, 0.6, and 0.9.
Lines represent power-law fittings with τ−α . (b) Clogging diagram in
the plane of the scaled pore size D/dp and coefficient of restitution
e. The gray squares represent the clogged state, the orange triangles
the intermittent flow, and the green diamonds the continuous flow.
(c) Froude number Frm that is calculated based on the maximum flow
rate as a function of D/dp.

dimensionless parameters. This analysis will be surely ex-
tended in the future looking at the connection of the flow rate
with microscopic quantities such as density or velocity that,
for the case of single outlets, display important gradients near
the orifice. Interestingly, we observe very different behavior
for the dynamics in the porous structure. In particular, we

FIG. 9. (a) Mean particle vertical velocity as a function of the
distance to the wall in the x direction (x = 0 corresponds to the wall).
The velocity is averaged over particles in vertical slices parallel to
the wall with 0 < y < 3 mm, 5 mm < z < 15 mm, and a thickness
of 0.05 mm; the scaled pore size is D/dp = 8.98. (b) Particle’s
vertical velocity (averaged over time) measured at the outlet plane
of the porous structure. Here, the scaled pore size is D/dp = 5.6, the
velocity of bottom plane satisfies U0 > U0,max, and the coefficient of
the sliding friction is μs = 0.3.

focus on analyzing the velocity profile in two regions: the
vicinity of the lateral wall and the bottom of the porous media.

Figure 9(a) displays the velocity profiles in the near lateral
wall region for both the porous structure and single-pore flow
with a scaled pore size of D/dp = 8.98. Notably, in the case of
single-pore flow, a low-velocity region induced by wall fric-
tion extends approximately 0.25 mm. In contrast, no distinct
low-velocity region near the wall is observed in porous flow,
indicating that the wall effect is limited in porous structure.
This behavior can be primarily attributed to the random colli-
sions between particles and the porous framework.

Furthermore, we computed the vertical velocity of particles
as they exit the porous media in the case with a pore size of
D/dp = 5.6 and U0 > U0,max. The averaged values at different
x and y coordinates are depicted in Fig. 9(b). Notably, we
observe relatively uniform velocity profiles across the outlet
plane, which justifies the utilization of the flow rate as a char-
acteristic parameter within the framework of Froude number
scaling.
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