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The entropic uncertainty principle in the form proven by Maassen and Uffink yields a fundamental inequality
that is prominently used in many places all over the field of quantum information theory. In this paper, we
provide a family of versatile generalizations of this relation. Our proof methods build on a deep connection
between entropic uncertainties and interpolation inequalities for the doubly stochastic map that links probability
distributions in two measurement bases. In contrast to the original relation, our generalization also incorporates
the von Neumann entropy of the underlying quantum state. These results can be directly used to bound the
extractable randomness of a source-independent quantum random number generator in the presence of fully
quantum attacks, to certify entanglement between trusted parties, or to bound the entanglement of a system with
an untrusted environment.
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I. INTRODUCTION

Uncertainty relations express the limits imposed by quan-
tum mechanics on our ability to either prepare a state with
given properties, or measure the properties of a state to a given
precision [1–4]. The study of uncertainty inequalities dates
back to some of the most famous works of the early days of
quantum theory [5–9] and has since then remained a topic of
ongoing research [10–17]. Besides being an attractive rabbit
hole on its own [18–27], having the right uncertainty relation
at hand often proved to be a powerful tool [28–33], e.g., to
build a worst-case model. For example, uncertainty relations
commonly serve as an easy-to-establish estimate that allows
determining, from measured data, properties such as the pres-
ence of entanglement [34–39], or the amount of extractable
secure randomness [28,40–44].

In quantum information theory, uncertainty is typically
quantified in terms of entropies. The prototype uncertainty
relation of this type is due to an idea of Deutsch [45] and a
conjecture by Kraus [46] proven by Maassen and Uffink [47]:
Let X and Y denote two projective measurements, then the
possible values of the Shannon entropies of their measurement
outcomes, H (X ) and H (Y ), (measured on copies of a state ρ)
are constraint by

H (X ) + H (Y ) � S(ρ) + cKMU. (1)

Here, cKMU [see Eq. (7)] is a non-negative constant that de-
pends on the overlap between the measurement bases of X
and Y , and S(ρ) is the von Neumann entropy of ρ.
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In this paper, we establish a generalization of (1) to a family
of entropic uncertainty relations of the form

λH (X ) + μH (Y ) � αS(ρ) + cXY (α, λ, μ), (2)

with parameters μ, λ, α ∈ [0, 1]. More precisely, we are inter-
ested in finding a constant cXY (α, λ, μ) such that (2) holds for
all states ρ. Our main result, Theorem 1, provides this constant
by drawing a connection to the norm of the doubly stochastic
map that links the probability distributions in the X and the Y
bases.

The von Neumann entropy term on the right-hand side
(rhs) of (1) was not present in the original formulation of this
inequality. It was however noted by Frank and Lieb [48,49]
and Berta et al. [28], that it can be added without changing
the constant cKMU. An interesting consequence, which is often
overlooked, is that a state that minimizes the gap of this
inequality will not necessarily be pure. We extend this by
including a weight α for the entropy term on the rhs of (2).
The factor α sets the degree of mixedness that a state that
minimizes the gap has. This goes from pure states that mini-
mize the left-hand side (lhs) of (2) for α = 0 (see Ref. [23])
to the maximally mixed state that saturates (2) for α = 2 and
μ + λ = 1 with cXY = 0. By this, we get a natural notion of a
family of most certain (i.e., minimally uncertain) mixed states
for measurements X and Y .

An uncertainty relation such as (2) can also be used to
estimate the von Neumann entropy of an unknown state with
given values of H (X ) and H (Y ), obtained, e.g., from mea-
surement data. This has various practical applications. For
example, consider the scenario in which a local system A,
with a reduced state ρA, has interacted with an uncharacter-
ized environment E . Here, (2) becomes handy for estimating
correlations, since S(ρA) describes the corresponding entan-
glement entropy. Building on this perspective, we demonstrate
how to use our results for bounding the securely extractable
randomness of a source-independent quantum random num-
ber generator, for attesting entanglement between two trusted
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parties, and between two trusted parties and an uncharacter-
ized environment.

II. PARAMETRIZED UNCERTAINTY RELATIONS

Including weights, such as α, λ, μ in (2), is a natural way
of strengthening an existing relation. This has to be contrasted
with many proposed improvements of the Maassen and Uffink
relation that merely add more and more ρ-dependent terms to
the rhs of (1).

One typical primordial question, preceding the use of an
uncertainty relation, is to characterize the set of possible
triples �XY := {(H (X ), H (Y ), S(ρ))}ρ that could be attained
by a not further specified state ρ. Our result (2) directly
serves this purpose by giving bounds on an arbitrary linear
combination of H (X ), H (Y ), and S(ρ). Given a valid value
of cXY for all parameters (α,μ, λ) allows for reconstructing a
convex outer approximation to �XY by performing a Legendre
transformation [50] of cXY with respect to α, λ, μ.

Another typical use of an uncertainty relation is to bound
the value of one quantity given access to the others. The esti-
mation of S(ρ), mentioned above, is an example of this. Here,
a given value of cXY for a whole parameter range directly pays
off when we use (2) to obtain the estimate

S(ρ) � inf
λ,μ

λH (X ) + μH (Y ) − cXY (1, λ, μ). (3)

In general, this gives stronger estimates than (1), which cor-
responds to evaluating the minimization above on the single
point λ = μ = 1.

The main result of this paper is the following theorem,
which provides a closed form for cXY in terms of operator
norms:

Theorem 1. For measurements X and Y given by projectors
{X1, . . . , XnX } and {Y1, . . . ,YnY }, consider the nX × nY matrix
C(2) with entries C(2)

i j = Tr(XiYj ). For 0 � λ,μ � α, we have

cXY (α, λ, μ) � −α log ‖C(2)‖ α
μ
→ α

α−λ
. (4)

The norm appearing in the theorem is defined by

‖C(2)‖r→s := sup
φ∈CnY

‖C(2)φ‖s

‖φ‖r
, (5)

where ‖ · ‖p denotes the usual p-norm.
Plugging Eq. (4) in Eq. (2), we find

λH (X ) + μH (Y ) � αS(ρ) − α log ‖C(2)‖ α
μ

α
α−λ

. (6)

A. Evaluating the norm

In principle, the operator norm in the above can be
computed numerically. A discussion on this with a focus on
known hardness results for general matrices can be found
in Refs. [51,52]. An easy-to-use and in most instances also
robust seesaw method can be found in Chap. 6.2 of Ref. [51].
However, this method does not come with an accuracy guaran-
tee. In critical applications such as cryptography we therefore
have to employ other methods such as hierarchies of semidef-
inite programming (SDP) relaxations [53] or the algorithm
described in Ref. [54]. In any case, computing (5) for large
system sizes and an unstructured C(2) may likely turn out
to be challenging in practice. Therefore, we provide some

FIG. 1. Allowed regions of [S(ρ ), H (X ) + H (Y )] tuples deter-
mined by random sampling over the state space (green dots), for
d = 2 and measurements X and Y with a relative angle of 17◦. The
family of inequalities (2) determines linear bounds on this region
(green lines). The uncertainty relation (1) from Ref. [47] corresponds
to the blue line. Optimizing over our linear bounds (orange line) gives
much stronger bounds.

analytical results and a conjecture that drastically simplify this
computation.

At one end of the parameter range, we have the limit μ →
α. In this case (r = 1), computing the norm in (6) becomes
straightforward since Eq. (5) is a convex optimization over a
polytope. Moreover, an additional limit λ → α will recover
the well-known result of Kraus, Maassen, and Uffink (KMU)
[46,47],

‖C(2)‖1→∞ = max
i j

C(2)
i j . (7)

At the other end of the parameter range we have the limit
λ,μ → 0 for α fixed. Here, the lhs of (2) will vanish and the
optimal bound is attained for the maximally mixed state with
a constant cXY = −α log(d ), which also coincides with the
bound given by Theorem 1.

By inspecting the typical behavior of linear uncertainty
inequalities (2) for further parameters starting from this point
(μ = λ = 0), it becomes clear that there is in fact a large
part of the parameter range where an optimal linear bound
is saturated by the maximally mixed state.

Note that the resulting bounds are nevertheless nontrivial
and can actually provide a quite good characterization of the
set �XY . This can be seen for example by the fact that the
well-known bound (1) falls into this category when X and Y
are mutually unbiased. A solid geometrical intuition for this
observation can be drawn from a diagram as in Fig. 1. Here,
the bounds given by (2) correspond to lines whose slopes are
determined by the ratios between the parameters α, μ, and
λ. The intercepts of these lines are determined by the value
of cXY (α, λ, μ). A line with an optimal constant cXY (α, λ, μ)
will touch the set of attainable points (here sampled by green
dots). For an almost triangular-shaped set (as in the example)
it is typical that most optimal lines will “touch” the most upper
right point. This point corresponds to the maximally mixed
state and has coordinates [(λ + μ) log(d ), α log(d )].
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In the Supplemental Material (SM) [55] we check that our
bound (6) is indeed tight for states in a small environment
around the maximally mixed state and will therefore give
the optimal uncertainty bound when a relation is saturated in
this parameter regime. Furthermore, computing the norm in
Theorem 1 becomes easy in this situation (see Sec. C in SM
[55])

Under the assumption that the set �XY is star shaped with
the point ((λ + μ) log(d ), α log(d )) as the center, we can give
a characterization of the parameter range for which (2) will
saturate on the maximally mixed state [55]. This leads us to
the following statement:

Conjecture 1. Let σ2 denote the second largest singular
value of C(2). For parameters obeying

α − μ

μ

α − λ

λ
� σ 2

2 , (8)

we have the optimal uncertainty relation

λH (X ) + μH (Y ) � αS(ρ) − (α − λ − μ) log d. (9)

Strong evidence supporting this conjecture is given in SM
[55]. In particular, notice that the conjecture certainly holds
for mutually unbiased bases (MUBs), and can be easily proven
for λ + μ � α and for qubits. Note that the part of this con-
jecture that could break down is (8). As a consequence (9) will
still hold, but in a smaller parameter range. One can use the
result of Sec. D in SM [55] to obtain numerically an upper
bound on this range without invoking the conjecture.

Below, we will consider different applications of Eq. (6),
and use the analytical expression given by Eq. (9) to find
optimal values for μ and λ. For critical applications, such as
security proofs, one has however to check the validity of the
analytical expression, for that specific point, by numerically
evaluating the norm.

B. Comparison to existing uncertainty relations

In this section, we compare (6) with two other known
existing uncertainty relations (EURs): that of Ref. [28], which
we denote BCCRR,

H (X ) + H (Y ) � S(ρ) − log c1, (10)

and the inequality RPZ2 from Ref. [18],

H (X ) + H (Y ) � S(ρ) − log[c1C
2 + c2(1 − C2)]. (11)

Here, following Ref. [18], c1 and c2 denote the first and second
largest elements of C(2), and C ≡ (1 + √

c1)/2.
To compare with these inequalities, which give equal

weights to H (X ) and H (Y ), we set μ = λ and α = 1. Using
Conjecture 1 and setting μ to saturate Eq. (8), we find

H (X ) + H (Y ) � (1 + σ2)S(ρ) + (1 − σ2) log d. (12)

The entropy term in Eq. (12) is always larger than in both
BCCRR and RPZ2. Therefore, in our comparison, we consider
only the second, state-independent, term.

We first consider d = 2. In this case, the most general C(2)

matrix is given by

C(2) =
(

cos2θ sin2θ

sin2θ cos2θ

)
, θ ∈ [0, π/4], (13)

FIG. 2. Comparison of the state-independent bound provided by
BCCRR. RPZ2, and Eq. (12) for d = 2. The angle θ parametrizes
C (2), as in Eq. (13).

where θ = 0 corresponds to X = Y , and θ = π/4 to the MUB
case. The bounds provided by BCCRR, RPZ2, and Eq. (12)
are compared in Fig. 2. The bounds are equivalent for θ = 0
and θ = π/4, while in between our bound is stronger.

For d > 2, the matrices C(2) have too many parameters,
and we cannot scan them all, as we did in Fig. 2. Instead,
we compare our bound, Eq. (12), to BCCRR and RPZ2 for
some random C(2), generated by setting C(2)

i j = |Ui j |2, where
U is a Haar random unitary. In Fig. 3, we plot the per-
centage of C(2) for which our bound is better than BCCRR
or RPZ2 as a function of d . As expected, for d = 2, our
bound is always at least as good as both BCCRR and RPZ2.
The percentage of C(2) for which our bound is better de-
creases for d = 3, 4, but then starts increasing. For d 	 1,
our bound is equivalent or better with a probability that
approaches 1.

III. PRACTICAL APPLICATIONS

From the comparison above, we know that Eq. (6), for
μ = λ, provides stronger constraints compared to other EURs
for many observables X and Y [Eq. (12)]. Therefore, it can
be useful in all applications of other EURs. However, im-
posing μ = λ we lose part of the power of Eq. (6), i.e.,
that of giving different weights to H (X ) and H (Y ). This
is often beneficial in practical applications, as we show

FIG. 3. Percentage of C (2) for which our bound is better than
BCCRR or RPZ, as a function of d . We have used a sample of 105

random C (2).
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in three examples: bounding extractable randomness, en-
tanglement detection, and bounding entanglement with an
eavesdropper.

A. Bounding extractable randomness

Quantum random number generators will likely be one
of the first competing market-ready quantum devices. How-
ever, proving their security without imposing too strong
assumptions is still under development. A promising class
of protocols are source-independent random number gener-
ators. Their basic security mechanism can be traced back
to the use of the uncertainty relation (1). Our results can
be directly used to get stronger bounds on the extractable
randomness.

In a basic protocol [56], we are provided with a state ρ,
emitted by an untrusted source, from which we want to extract
random numbers. We are allowed to perform measurements
X and Y . By convention, the X measurement will be used for
generating a secret number. The entropy H (Y ) of the other
measurement, in this context usually referred to as the phase-
error rate, will be used to certify properties of ρ. We consider
fully quantum attacks, modeled by granting an adversary E
full access to the purification of ρ.

It was shown in Refs. [57,58] that the single-shot quantity
that has to be bounded for estimating the rate of securely ex-
tractable randomness (both asymptotically and finite) is given
by the conditional entropy H (X |E ), which in our case can
equivalently [59] be computed by H (X ) − S(ρ). Using (6),
we can bound this expression as

H (X |E ) � max
μ,λ

(1 − λ)H (X ) − μH (Y ) − log ‖C(2)‖. (14)

The main advantage of using Eq. (6) is that we can optimize
over μ and λ to obtain improved bounds compared to other
symmetric EURs. The optimal value can be found by numer-
ically evaluating the norm.

Using Conjecture 1, we can avoid numerics and get an ana-
lytical bound. Let 
X ≡ log d − H (X ), 
Y ≡ log d − H (Y ),
then one can show that, as long as (8) is satisfied, the optimal
bound is [55]

H (X |E ) �
{

(
√


Y −σ2
√


X )2

1−σ 2
2

, γ � σ2,


Y − 
X , γ < σ2,
(15)

where γ ≡ √

X /
Y . Notice that without loss of generality

we can assume that γ � 1 (swap X and Y if this is not the
case).

B. Entanglement detection

Consider now a bipartite state ρAB, shared between two
parties, A and B, that can perform local measurements,
XAB = XA ⊗ XB, YAB = YA ⊗ YB, and exchange classical in-
formation. To use Eq. (6) for detecting entanglement, we
follow Ref. [32]; one can show that ρAB is entangled if
[55]

λH (XAB) + μH (YAB) < Smax − log
∥∥C(2)

A

∥∥∥∥C(2)
B

∥∥. (16)

Here, Smax = max[S(ρA), S(ρB)].

We can use Conjecture 1 to find a condition that is easier
to treat analytically. Let σ2 = max(σ2,A, σ2,B), where σ2,A and
σ2,B are the second largest singular values of C(2)

A and C(2)
B .

Then, as long as μ, λ obey Eq. (8), we find that ρAB is entan-
gled if

λ
X + μ
Y > log d − Smax. (17)

Here, 
X ≡ log d − H (XAB), 
Y ≡ log d − H (YAB), and d =
dAdB is the total size of the Hilbert space. Since both 
X and

Y are non-negative, the best we can do is to take μ and λ as
big as possible. However, the constraints (8) prevent us from
increasing μ and λ independently. The optimal value of (μ, λ)
for given 
X,Y is [55]

μ = 1 − σ2γ

1 − σ 2
2

, λ = 1 − σ2/γ

1 − σ 2
2

, γ ≡
√


X


Y
, (18)

if σ2 � γ � 1/σ2. When γ < σ2, the optimal choice is
(μ, λ) = (1, 0), and, when γ > 1/σ2, it is (μ, λ) = (0, 1). In
the original notation, in terms of H (X ) and H (Y ), we find that,
for σ2 � γ � 1/σ2, ρAB is entangled if

H (XAB) + H (YAB) <
(
1 − σ 2

2

)
Smax + (

1 + σ 2
2

)
× log d − 2σ2

√

X 
Y . (19)

We conclude that the freedom of keeping μ �= λ generally
helps.

C. Bound on entropy

Consider the same setup as in the entanglement detection
example; A and B are now interested in quantifying how much
entanglement they might share with an eavesdropper, E. Let
ρABE be the joint state of A, B, and E; in the worst case,
this state is pure, and S(ρE ) = S(ρAB). A direct application
of Eq. (6) gives the following bound:

S(E ) � min
μ,λ

λH (XAB) + μH (YAB) + log
∥∥C(2)

AB

∥∥. (20)

To obtain an analytic result, we can again use our con-
jecture, and proceed similarly to what we did above for
entanglement detection. As long as σ2 � γ � 1/σ2, we find
that the optimal choices for μ and λ are again given by
(18), where σ2 is now the second largest singular value
of C(2)

AB . We arrive at the following improved bound for
S(E ),

S(E ) � 1

1 − σ 2
2

[
H (X ) + H (Y ) + 2

√

X 
Y σ2

− (
1 + σ 2

2

)
log dAdB

]
. (21)

Notice that, for MUB, we find again that the best we can do is
to set μ = λ = 1.

IV. CONCLUSIONS

In this paper, we have introduced a class of EURs, Eq. (6),
which allows giving different weights to H (X ), H (Y ), and
S(ρ). We have shown that these EURs often provide better
bounds than other EURs known in the literature. Moreover,
we have shown in three examples that the freedom of giving
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different weights can be helpful in practical applications.
Equation (6) is expressed in terms of norms, which are dif-
ficult to estimate numerically. We have explored properties of
these norms, and formulated a conjecture that, if correct, leads
to an analytic result valid for most of the parameter space. In
particular, we have obtained Eq. (12), that provides a simple
alternative to Maassen-Uffink, where log cMU is replaced by
(1 − σ2) log d .

There are several directions in which this work could be
extended. Clearly, it would be nice to prove Conjecture 1.
Also, using Conjecture 1, we can analytically study Eq. (6)
for values of (μ, λ) satisfying Eq. (8). Close to μ = λ = 1,
the KMU result applies. It remains to explore Eq. (6) for inter-
mediate values of (μ, λ). Finally, for applications to quantum
key distribution, it would be interesting to extend Eq. (6) to
Renyi and conditional entropies.
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