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Deterministic discrete-time quantum walk search on complete bipartite graphs
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Searching via quantum walk is a topic that has been extensively studied. Most previous results provide
approximate solutions, while in this paper we prove an algorithm that can find a marked vertex certainly.
We adopt the coined discrete-time quantum walk (DTQW) model with adjusted operators and prove that, on
complete bipartite graphs, when parameters are set properly, coined DTQW can deterministically find a marked
vertex, i.e., the success probability is exactly 1. Before this paper there have been results of an alternating
continuous-time quantum walk method that achieve deterministic spatial search, but this paper provides a
deterministic quantum spatial search result via DTQW, while maintaining a quadratic speedup compared to
classical algorithms. We also provide the quantum circuit implementation.
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I. INTRODUCTION

Quantum computation has drawn a lot of attention in com-
puter science since it can provide efficient algorithms in many
problems [1–4]. The quantum walk, the quantum analog of
random walk, is a widely used model in quantum algorithm
design. Applications of quantum walk include search [5–8],
state transfer [9,10], element distinctness [11], triangle finding
[12], etc. There are two kinds of quantum walk: continuous-
time quantum walk (CTQW) and discrete-time quantum walk
(DTQW). In CTQW, the Childs and Goldstone algorithm [5,6]
is often used, which define the walk with the Schrödinger
equation and the Hamiltonian could be Laplacion or the adja-
cency matrix of the graph [13]. Foulger et al. present analysis
of CTQW on graphene lattice based on spectral gap [14,15].
A variant of CTQW is the alternating CTQW [16], which
alternatively uses two Hamiltonians. For DTQW, many mod-
els have been brought up, such as the coined DTQW [17],
Szegedy’s quantum walk [18], and the staggered quantum
walk [19].

Quantum walk has been applied on the spatial search
problem, i.e., finding a marked vertex on a given graph.
Both CTQW [5,6,8] and DTQW [7,20,21] have been
used for spatial search, and all these results have a
quadratic speedup compared with classical algorithms. How-
ever, these algorithms are probabilistic, i.e., performing
these algorithms does not guarantee to output a marked
vertex.
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The study of deterministic search begins with determinis-
tic Grover search. The original Grover’s algorithm can find
a marked vertex with high probability but still has a small
probability to fail. Grover’s algorithm is based on reflection
operators about the initial state and the marked state [2], while
researchers have found that, if we could replace the reflection
operators with rotation operators, we can achieve a deter-
ministic search while still maintaining a quadratic speedup
compared to classical algorithms [22–24]. In recent years, fur-
ther improvements on deterministic Grover’s algorithm have
been proposed, claiming that either the rotations about the
initial state or the rotations about the marked state can have
a fixed angle, so we may choose to only adjust parameters in
one side [25,26].

Naturally, we are also interested in the deterministic spatial
search. In 2021, Marsh and Wang proposed an algorithm
called the alternating CTQW and proved that it can deter-
ministically find the marked vertex on a class of complete
identity interdependent networks (CIIN) [16]. Then in 2022,
Qu et al. performed research on star graphs and give an ex-
perimental demonstration for deterministic spatial search via
alternating CTQW [27]. In 2023, Wang et al. proved a rather
strong result, claiming that if eigenvalues of the adjacency
matrix of a graph are all integers, then alternating CTQW can
find the marked vertex deterministically [28]. See Table I for
a summary.

Until now all previous results on deterministic spatial
search are based on the alternating CTQW model. It is natural
to ask: can we perform a deterministic spatial search with
other models, especially DTQW? This paper explores this
topic.

In this paper, we propose a deterministic search algorithm
on complete bipartite graphs based on the coined DTQW
framework, maintaining a quadratic speedup compared to
classical algorithms. Typically the coined DTQW uses the
Grover coin and the reflection oracle about marked vertices,
while in this work we assume that we are accessible to the
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TABLE I. Comparison of previous results and our result on the
deterministic spatial search.

Author Graph Model

Marsh & Wang [16] CIIN CTQW
Qu et al. [27] Star graph CTQW
Wang et al. [28] Integer eigenvalue CTQW
Our result Complete bipartite graph DTQW

generalized Grover coin and phase oracle, then by setting
proper parameters, a marked vertex is guaranteed to be found.
See Theorem 1 for our main result.

In practice, approximate search is enough in most situa-
tions, but deterministic quantum search still has theoretical
significance, because it is related to a key problem about
quantum computation: is quantum computation essentially
probabilistic? Our results indicate that the answer may be
no. Besides its own interest, when it is used as a subprocess,
being deterministic makes the error analysis simpler because
the error of search process can be eliminated.

This paper is organized as follows. Section II illustrates
some basic settings about the graph and quantum walk model.
Our algorithm is put in Sec. III, then in Secs. IV and V, the
correctness of our algorithm is proved, and a key lemma is
proved in Sec. VI using Bloch sphere. Section VII provides
a quantum circuit implementation of our algorithm. Finally,
Sec. VIII summarizes our work.

II. PRELIMINARY

A. Graph definition

This article works on complete bipartite graphs. Let G =
(V, E ) be a bipartite graph, then vertices of G are divided into
two parts, V = V1 ∪ V2 and V1 ∩ V2 = ∅. The complete bipar-
tite graph is defined by E = {{v, u} | v ∈ V1 and u ∈ V2}, i.e.,
every vertex in V1 is connected to each vertex in V2. Let N1 and
N2 be the number of vertices in V1 and V2, N1 > 0 and N2 >

0, let N � |V | = N1 + N2. Suppose there are some marked
vertices which we want to find, let M be the set of marked
vertices and n1, n2 be the number of marked vertices in V1 and
V2, i.e., n1 � |V1 ∩ M|, n2 � |V2 ∩ M|, let n � |M| = n1 + n2.
Figure 1 shows an example of complete bipartite graphs.

In this paper, we use v ∼ u to denote {v, u} ∈ E . Let dv be
the degree of v, i.e., the number of vertices connected to v,
then for v ∈ V1, dv = N2; for v ∈ V2, dv = N1.

B. Discrete-time quantum walk

In this paper, the coined DTQW model is adopted. The
state space is

H = span{|v, u〉 | v ∈ V, u ∼ v}.

For the basis state |v, u〉, v represents the current position of
the walker and u represents the next position that the walker
will go to.

FIG. 1. An example of complete bipartite graphs. Red dots rep-
resent marked vertices. Here N1 = 4, N2 = 3, n1 = 1, n2 = 2.

Next we define the walk operator. Let

U (α, β ) = SC(α)Q(β ). (1)

The shift operator S is defined as

S |v, u〉 = |u, v〉 ;

the coin operator C(α) is

C(α) |v, u〉 = |v〉 ⊗ Gv (α) |u〉 ,

where Gv (α) = (1 − e−iα ) |sv〉 〈sv| − I and |sv〉 =
1√
dv

∑
w∼v |w〉; the oracle operator Q(β ) is defined as

Q(β ) |v, u〉 =
{

eiβ |v, u〉 if v ∈ M
|v, u〉 if v /∈ M

.

The initial state is the uniform superposition of all basis
states in H, i.e.,

|�0〉 = 1√
2N1N2

∑
v∈V,u∼v

|v, u〉 .

After performing the quantum walk t steps
U (α1, β1),U (α2, β2), · · · ,U (αt , βt ), the state becomes

|�t 〉 = U (αt , βt ) · · ·U (α1, β1) |�0〉 .

Then, we measure the state |�t 〉. In this paper both registers
are measured, then the probability of finding a marked vertex
is

Pt =
∑

v∈M or u∈M,u∼v

|〈v, u|�t 〉|2.

A global phase on a quantum state can be ignored. We write
|ψ〉 ∼ |φ〉 when |ψ〉 = eiγ |φ〉. For quantum operators A and
B, we also write A ∼ B iff they only differ on a global phase,
i.e., A = eiγ B.
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III. ALGORITHM

In this section, we show an algorithm that can deterministi-
cally find a marked vertex in complete bipartite graphs, which
can be seen in Algorithm 1.

ALGORITHM 1: Deterministic search.

Input: A complete bipartite graph G = (V, E ), an oracle
operator Q(β ) marking a set M ⊆ V , N1, N2, n1 with
n1 > 0.
Output: A marked vertex v ∈ M.
//calculate parameters

1 ω1 ← 2 arcsin
√

n1
N1

2 set p be the smallest odd integer in [ π

3ω1
, π

ω1
]

3 x ← cos3 ω1
2 −cos π

2p

cos
ω1
2 sin2 ω1

2
, φ2 ← arccos( x−1

2 ), t ← 3p + 1

4 For i = 1 to p do
5 set ϕ3i−2, ϕ3i, ψ3i−2, ψ3i to be 0
6 set ϕ3i−1, ψ3i−1 to be φ2

7 ψt+1 ← − π

2 , ψt ← π

2
8 α1 ← 0, α2 ← π − ψ3 + ψ2

9 For i = 2 to t/2 do
10 α2i−1 ← π − ϕ2i−1 + ϕ2i−2

11 α2i ← π − ψ2i+1 + ψ2i

12 For i = 1 to t/2 − 1 do
13 β2i−1 ← −π − ψ2i + ψ2i−1

14 β2i ← −π − ϕ2i + ϕ2i−1

15 βt−1 ← −π − ψt + ψt−1, βt ← 0
//perform quantum walk

16 construct the initial state:
|�0〉 ← 1√

2N1N2

∑
v∈V,u∼v |v, u〉

17 perform quantum walk with operator (1):
|�t 〉 ← U (αt , βt ) · · ·U (α1, β1) |�0〉

18 measure |�t 〉 and get |v, u〉
19 If v ∈ M then
20 Return v

21 else
22 Return u

Our main result is as follows:
Theorem 1. In the complete bipartite graph, let N1, N2 be

the number of vertices in each part and n1, n2 be the number
of marked vertices in each part. If n1 > 0 and n1 is known,
Algorithm 1 outputs a marked vertex with certainty and the
number of steps t is O(

√
N1
n1

).

Remark. If n2 > 0 and n2 is known, by symmetry we can
also deterministically find a marked vertex in O(

√
N2
n2

) rounds.
Furthermore, if both n1 and n2 are greater than 0 and known,
we can find a marked vertex in min{O(

√
N1
n1

), O(
√

N2
n2

)} =
O(

√
N
n ) steps, where n = n1 + n2 is the number of marked

vertices.
We believe that knowing n1 or n2 is necessary. Indeed

for deterministic Grover’s algorithm it has been proved that
knowing n is necessary to deterministically find a marked
vertex with quadratic speedup [29].

Theorem 1 is proved with two separate cases. When all
marked vertices are in one part, it is proven in Sec. IV; oth-
erwise it is proven in Sec. V. Combining two cases together,
Theorem 1 is proven.

IV. CASE 1: ALL MARKED VERTICES IN ONE PART

The first case is when all marked vertices are in one part.
Without loss of generality, we assume that n1 > 0, n1 is known
and n2 = 0, i.e., all marked vertices are in V1.

Suppose n1 < N1, otherwise the initial state already satis-
fies P0 = 1. The quantum walk can be analyzed in an invariant
subspace of the walk operator U (α, β ). The four basis vector
are defined as

|ψ1〉 = 1√
n1N2

∑
v∈M,u∈V2

|v, u〉 ,

|ψ2〉 = 1√
(N1 − n1)N2

∑
v∈V1\M,u∈V2

|v, u〉 ,

|ψ3〉 = 1√
n1N2

∑
v∈V2,u∈M

|v, u〉 ,

|ψ4〉 = 1√
(N1 − n1)N2

∑
v∈V2,u∈V1\M

|v, u〉 .

Then, it can be verified that the subspace spanned by |ψi〉 (i =
1, 2, 3, 4) is an invariant subspace of S,C(α), Q(β ), thus
is also an invariant subspace of U (α, β ). With the base
|ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉, we could compute the matrix repre-
sentation of these operators as follows. For the computation
of C(α), see Appendix A. We get

S =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠, Q(β ) =

⎛
⎜⎜⎝

eiβ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

and

C(α) =

⎛
⎜⎜⎜⎜⎝

−e−iα 0 0 0

0 −e−iα 0 0

0 0 (1 − e−iα ) sin2 ω
2 − 1 (1 − e−iα ) sin ω

2 cos ω
2

0 0 (1 − e−iα ) sin ω
2 cos ω

2 (1 − e−iα ) cos2 ω
2 − 1

⎞
⎟⎟⎟⎟⎠,

where ω = 2 arcsin
√

n1
N1

.
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Inspired by Ref. [30], we can decompose C(α) and use
some equations to make the expression of |�t 〉 easier to cal-
culate and analyze.

Lemma 1 (Ref. [30]). Define

A(θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos ω

2 −ieiθ sin ω
2

0 0 −ie−iθ sin ω
2 cos ω

2

⎞
⎟⎟⎠

and

R(θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 1

⎞
⎟⎟⎠,

then the following equations can be used to decompose our
walk operators:

C(α) ∼ A
(π

2

)
R(α)A

(
−π

2

)
, (2)

Q(β ) = SR(β )S, (3)

I = SS = R(0) = A
(
−π

2

)
A
(π

2

)
, (4)

A(α + β ) = R(β )A(α)R(−β ), (5)

R(α)R(β ) = R(α + β ). (6)

The initial state |�0〉 can also be expressed as

|�0〉 = A
(π

2

)
SA

(π

2

)
|0̄〉 , (7)

where |0̄〉 = 1√
2
(0, 1, 0, 1)T .

An observation is that suppose D1 = ∏l1
i=1 E1i and D2 =∏l2

i=1 E2i, where l1, l2 are arbitrary positive integers and
E1i, E2i ∈ {A(θ ), R(θ ) | θ ∈ R}, then

SD1SD2S = D2SD1. (8)

Using Lemma 1, |�t 〉 can be reduced to a neater form.
Without loss of generality, we always let t be even, then
inspired by Ref. [30], we have the following lemma:

Lemma 2. Given an even integer t and parameters
ϕ1, ϕ2, · · · , ϕt−1 and ψ1, ψ2, · · · , ψt+1, there exists a set of
parameters αi, βi (i = 1, 2, · · · , t ) such that

|�t 〉 = SC(αt )Q(βt ) · · · SC(α1)Q(β1) |�0〉
∼ R(∗)[A(ϕt−1) · · · A(ϕ1)]R(∗)SR(∗)

× [A(ψt+1) · · · A(ψ1)]R(∗) |0̄〉 ,

where R(∗) means the argument may be arbitrary.
Furthermore, the following is one solution of parameters:

αi =
⎧⎨
⎩

arbitrary i = 1
π − ϕi + ϕi−1 i is odd and i > 1
π − ψi+1 + ψi i is even

,

βi =
⎧⎨
⎩

−π − ψi+1 + ψi i is odd
−π − ϕi + ϕi−1 i is even and i < t
arbitrary i = t

.

Since Lemma 2 is a little different from Ref. [30], for the
completeness of the article, the proof of Lemma 2 is given in
Appendix B.

In order to achieve deterministic search, a key lemma is
needed.

Lemma 3. Let ω ∈ (0, π ),

B(θ ) =
(

cos ω
2 −ieiθ sin ω

2−ie−iθ sin ω
2 cos ω

2

)
,

then there is an odd integer t ′ = O( 1
ω

) and parameters
ϕ1, ϕ2, · · · , ϕt ′ such that

B(ϕt ′ )B(ϕt ′−1) · · · B(ϕ1)

(
0
1

)
∼

(
1
0

)
.

Lemma 3 is proved in Sec. VI. The B(θ ) in Lemma 3 is the
right-bottom part of A(θ ), so with a set of carefully designed
parameters, successively applying A(θ ) can map (0, 0, 0, 1)T

to (0, 0, 1, 0)T . This is the key component of our deterministic
searching algorithm.

Now we can prove the main result of case 1.
Theorem 2. Suppose M ⊆ V1 and n1 > 0, n1 is known.

There are a number t = O(
√

N1
n1

) and parameters αi, βi (i =
1, 2, · · · , t ) such that after t steps, the success probability Pt

is exactly 1.
Proof. Recall that from Lemma 2, |�t 〉 can be reduced to

|�t 〉 ∼ R(∗)[A(ϕt−1) · · · A(ϕ1)]R(∗)SR(∗)

[A(ψt+1) · · · A(ψ1)]R(∗) |0̄〉 .

Let ϕ1, ϕ2, · · · , ϕt−1 be the parameters in Lemma 3 (t ′ =
t − 1). Notice that

A(θ ) =
(

I O
O B(θ )

)
,

so

A(ϕt−1) · · · A(ϕ1) =
(

I O
O B(ϕt−1) · · · B(ϕ1)

)
. (9)

Define

Bcom � B(ϕt−1)B(ϕt−2) · · · B(ϕ1), (10)

then from Eqs. (9) and (10),

A(ϕt−1)A(ϕt−2) · · · A(ϕ1) =
(

I O
O Bcom

)
. (11)

From Lemma 3,

Bcom

(
0
1

)
=

(
eiθ1

0

)

for some θ1. Here t = O( 1
ω

), and since ω = �(
√

n1
N1

), t =
O(

√
N1
n1

).
Set ψi = ϕi,∀i = 1, 2, · · · , t − 1, and set ψt+1 =

−π
2 , ψt = π

2 . Since B(−π
2 )B( π

2 ) = I , we have

Bcom = B(ψt+1)B(ψt )B(ψt−1) · · · B(ψ1).

Therefore,

A(ψt+1)A(ψt ) · · · A(ψ1) =
(

I O
O Bcom

)
. (12)
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According to Lemma 2, Eqs. (11) and (12), the final state |�t 〉 can be derived by the following process:⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ R(∗)−−→

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ A(ψt+1 )···A(ψ1 )−−−−−−−−→

⎛
⎜⎜⎝

0
1

eiθ1

0

⎞
⎟⎟⎠ R(∗)SR(∗)−−−−−→

⎛
⎜⎜⎝

eiθ2

0
0
1

⎞
⎟⎟⎠ A(ϕt−1 )···A(ϕ1 )−−−−−−−→

⎛
⎜⎜⎝

eiθ2

0
eiθ1

0

⎞
⎟⎟⎠ R(∗)−−→

⎛
⎜⎜⎝

eiθ2

0
eiθ3

0

⎞
⎟⎟⎠. (13)

We can verify each step of Eq. (13), where the θ2 and θ3

comes from R(∗). Therefore, |�t 〉 = 1√
2
(eiθ2 |ψ1〉 + eiθ3 |ψ3〉)

and the success probability is exactly 1.

V. CASE 2: MARKED VERTICES IN BOTH PARTS

The second case is when both parts have marked vertices.
Suppose n1 < N1 and n2 < N2, otherwise the initial state al-
ready satisfies P0 = 1. The quantum walk can be analysed in
an invariant subspace of the walk operator U (α, β ). Define
M1 � M ∩ V1 �= ∅, M2 � M ∩ V2 �= ∅, the eight basis vector
are defined as

|ψ1〉 = 1√
n1n2

∑
v∈M1,u∈M2

|v, u〉 ,

|ψ2〉 = 1√
n1(N2 − n2)

∑
v∈M1,u∈V2\M2

|v, u〉 ,

|ψ3〉 = 1√
(N1 − n1)n2

∑
v∈V1\M1,u∈M2

|v, u〉 ,

|ψ4〉 = 1√
(N1 − n1)(N2 − n2)

∑
v∈V1\M1,u∈V2\M2

|v, u〉 ,

|ψ5〉 = 1√
n1n2

∑
v∈M2,u∈M1

|v, u〉 ,

|ψ6〉 = 1√
(N1 − n1)n2

∑
v∈M2,u∈V1\M1

|v, u〉 ,

|ψ7〉 = 1√
n1(N2 − n2)

∑
v∈V2\M2,u∈M1

|v, u〉 ,

|ψ8〉 = 1√
(N1 − n1)(N2 − n2)

∑
v∈V2\M2,u∈V1\M1

|v, u〉 .

Then, it can be verified that the subspace spanned
by |ψi〉 (i = 1, 2, · · · , 8) is an invariant subspace of
S,C(α), Q(β ), thus is also an invariant subspace of U (α, β ).
With the base |ψ1〉 , |ψ2〉 , · · · , |ψ8〉, we could compute
the matrix representation of these operators as follows.
We get

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q(β ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβ 0 0 0 0 0 0 0
0 eiβ 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 eiβ 0 0 0
0 0 0 0 0 eiβ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

C(α) =

⎛
⎜⎜⎝

C2(α) O O O
O C2(α) O O
O O C1(α) O
O O O C1(α)

⎞
⎟⎟⎠,

where

C1(α)

=
(

(1 − e−iα ) sin2 ω1
2 − 1 (1 − e−iα ) sin ω1

2 cos ω1
2

(1 − e−iα ) sin ω1
2 cos ω1

2 (1 − e−iα ) cos2 ω1
2 − 1

)
,

C2(α)

=
(

(1 − e−iα ) sin2 ω2
2 − 1 (1 − e−iα ) sin ω2

2 cos ω2
2(

1 − e−iα
)

sin ω2
2 cos ω2

2 (1 − e−iα ) cos2 ω2
2 − 1

)
,

ω1 = 2 arcsin
√

n1
N1

and ω2 = 2 arcsin
√

n2
N2

.

Similar to case 1, we can decompose C(α) and get a differ-
ent expression of |�t 〉.
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Lemma 4 (Ref. [30]). Define

B1(θ ) =
(

cos ω1
2 −ieiθ sin ω1

2−ie−iθ sin ω1
2 cos ω1

2

)
,

B2(θ ) =
(

cos ω2
2 −ieiθ sin ω2

2−ie−iθ sin ω2
2 cos ω2

2

)
,

A′(θ ) =

⎛
⎜⎜⎝

B2(θ ) O O O
O B2(θ ) O O
O O B1(θ ) O
O O O B1(θ )

⎞
⎟⎟⎠, (14)

R′(θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiθ 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 eiθ 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 eiθ 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 eiθ 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then similar to case 1, the following equations are satisfied:

C(α) ∼ A′
(π

2

)
R′(α)A′

(
−π

2

)
,

Q(β ) = SR′(β )S,

I = SS = R′(0) = A′
(
−π

2

)
A′

(π

2

)
,

A′(α + β ) = R′(β )A′(α)R′(−β ),

R′(α)R′(β ) = R′(α + β ),

|�0〉 = A′
(π

2

)
SA′

(π

2

)
|0̄〉 ,

where |0̄〉 = 1√
2
(0, 0, 0, 1, 0, 0, 0, 1)T .

Furthermore, let D1 = ∏l1
i=1 E1i and D2 = ∏l2

i=1 E2i,
where l1, l2 are arbitrary positive integers and E1i, E2i ∈
{A′(θ ), R′(θ ) | θ ∈ R}, then

SD1SD2S = D2SD1.

Then, |�t 〉 has another expression using Lemma 4.
Lemma 5. Given an even integer t and parameters

ϕ1, ϕ2, · · · , ϕt−1 and ψ1, ψ2, · · · , ψt+1, there exists a set of
parameters αi, βi (i = 1, 2, · · · , t ) such that

|�t 〉 = SC(αt )Q(βt ) · · · SC(α1)Q(β1) |�0〉
∼ R′(∗)[A′(ϕt−1) · · · A′(ϕ1)]R′(∗)SR′(∗)

× [A′(ψt+1) · · · A′(ψ1)]R′(∗) |0̄〉 ,

where R′(∗) means the argument may be arbitrary.
Furthermore, the following is one solution of parameters:

αi =
⎧⎨
⎩

arbitrary i = 1
π − ϕi + ϕi−1 i is odd and i > 1
π − ψi+1 + ψi i is even

,

βi =
⎧⎨
⎩

−π − ψi+1 + ψi i is odd
−π − ϕi + ϕi−1 i is even and i < t
arbitrary i = t

.

The proof of Lemma 5 is in Appendix B.
Now we state our result of case 2. We will prove that when

n1 is known, we can find a marked vertex in V1 in O(
√

N1
n1

)

steps. When n2 is known, the proof is similar.
Theorem 3. Suppose n1 > 0 and n1 is known. There are a

number t = O(
√

N1
n1

) and parameters αi, βi (i = 1, 2, · · · , t )

such that after t steps, the success probability Pt is exactly 1.
Proof. Let ϕ1, ϕ2, · · · , ϕt−1 be the parameters in Lemma

3 (t ′ = t − 1), where ω = ω1. From Eq. (14), multiplication
of A′(θ ) can be reduced to multiplication of B1(θ ) and B2(θ ).
Define

B(1)
com � B1(ϕt−1)B1(ϕt−2) · · · B1(ϕ1), (15)

and

B(2)
com � B2(ϕt−1)B2(ϕt−2) · · · B2(ϕ1), (16)

then from Lemma 3,

B(1)
com

(
0
1

)
=

(
eiθ1

0

)

for some θ1. Here t = O( 1
ω1

), and since ω1 = �(
√

n1
N1

), t =
O(

√
N1
n1

).

Set ψi = ϕi,∀i = 1, 2, · · · , t − 1, and set ψt+1 =
−π

2 , ψt = π
2 , since B1(−π

2 )B1( π
2 ) = I , B2(−π

2 )B2( π
2 ) = I ,

we have

B(1)
com = B1(ψt+1)B1(ψt ) · · · B1(ψ1) (17)

and

B(2)
com = B2(ψt+1)B2(ψt ) · · · B2(ψ1). (18)

From Eqs. (14), (15), (16), (17), and (18), we get

A′(ϕt−1)A′(ϕt−2) · · · A′(ϕ1)

=

⎛
⎜⎜⎝

B(2)
com O O O
O B(2)

com O O
O O B(1)

com O
O O O B(1)

com

⎞
⎟⎟⎠ (19)

and

A′(ψt+1)A′(ψt ) · · · A′(ψ1) =

⎛
⎜⎜⎝

B(2)
com O O O
O B(2)

com O O
O O B(1)

com O
O O O B(1)

com

⎞
⎟⎟⎠.

(20)
Set

(
a
b

)
� B(2)

com

(
0
1

)
.
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According to Lemma 5, Eqs. (19) and (20), the final state |�t 〉 can be derived by the following process:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R′(∗)−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A′(ψt+1 )···A′(ψ1 )−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
a
b
0
0

eiθ1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R′(∗)SR′(∗)−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
eiθ2

0
0
0

aeiθ3

0
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A′(ϕt−1 )···A′(ϕ1 )−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aeiθ2

beiθ2

0
0

aeiθ4

0
beiθ1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R′(∗)−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aeiθ5

beiθ2

0
0

aeiθ6

0
beiθ7

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

We can verify each step of Eq. (21), where the
θ2, θ3, θ4, θ5, θ6 and θ7 comes from R(∗). Therefore,

|�t 〉 = 1√
2

(aeiθ5 |ψ1〉 + beiθ2 |ψ2〉 + aeiθ6 |ψ5〉 + beiθ7 |ψ7〉)

and the success probability is exactly 1. �

VI. PROOF OF LEMMA 3

In this section we prove Lemma 3, a crucial step of our
work. Since in Lemma 3 we are dealing with 2 × 2 matrices,
which is equivalent to operators in a single-qubit system, we
can utilize a tool called Bloch sphere.

For a single-qubit quantum system, Bloch sphere represen-
tation is a useful tool to visualize states and operations. Let

|ψ〉 = α |0〉 + β |1〉 , |α|2 + |β|2 = 1

be a state, then it can be rewritten as

|ψ〉 = eiγ

(
cos

θ

2
|0〉 + eiϕ sin

θ

2
|1〉

)

(θ ∈ [0, π ] and γ , ϕ ∈ [0, 2π )), i.e.

|ψ〉 ∼ cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 .

We can treat θ, ϕ as parameters of spherical coordinates, then
|ψ〉 corresponds to a point (cos ϕ sin θ, sin ϕ sin θ, cos θ ) on a
unit sphere. Figure 2 illustrates the correspondence.

FIG. 2. Bloch sphere representation of a quantum state. The lines
in the figure shows how our state moves.

Unitary operations can also be visualized by Bloch sphere.
Recall that the Pauli matrices are

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

then
Lemma 6 (Ref. [31]). Any unitary operation on a single-

qubit quantum system can be expressed as

U ∼ R�n(θ ),

where �n = (nx, ny, nz ) is a real unit vector and

R�n(θ ) = cos
θ

2
I − i sin

θ

2
(nxX + nyY + nzZ )

is a rotation on unit sphere with �n being the rotation axis and
θ being the rotation angle.

Now we have the tools to prove Lemma 3.
Proof. It can be verified that

B(θ ) =
(

cos ω
2 −ieiθ sin ω

2

−ie−iθ sin ω
2 cos ω

2

)

satisfies

B(θ ) = cos
ω

2
I − i sin

ω

2
(cos θ · X − sin θ · Y ), (22)

then from Lemma 6, B(θ ) = R�n(ω) where the axis �n =
(cos θ,− sin θ, 0) is on the xy plane. We are to prove that

B(ϕt ′ )B(ϕt ′−1) · · · B(ϕ1)

(
0
1

)
∼

(
1
0

)

with t ′ = O( 1
ω

), which means to rotate (0, 0,−1) to (0, 0, 1)
on Bloch sphere.

We define three parameters φ1, φ2, φ3 and set B∗ =
B(φ3)B(φ2)B(φ1). We will achieve our goal by repeatedly
applying B∗. Suppose we apply B∗ for p times, then B∗ should
be equivalent to a rotation with axis on the xy plane and angle
π
p .

From Eq. (22), we express B(φ3), B(φ2), B(φ1) under
(I, X,Y, Z ) basis. According to Lemma 6, B∗ should satisfies
the following conditions:

(i) the coordinate of I should be cos π
2p ;

(ii) the coordinate of Z should be 0.
Then we get the following equations:

cos
π

2p
= cos3 ω

2
− cos

ω

2
sin2 ω

2
[cos(φ3 − φ2)

+ cos(φ3 − φ1) + cos(φ2 − φ1)], (23)
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FIG. 3. Quantum circuit implementation of one-step walk. (a) is the overall circuit of the operator U (α, β ); (b) is the circuit of S and (c) is
the circuit of G1(α), where the −α block means to add a phase e−iα under the condition.

sin(φ3 − φ2) + sin(φ3 − φ1) + sin(φ2 − φ1) = 0. (24)

Set φ1 = φ3 = 0, then Eq. (24) is satisfied. Then Eq. (23)
becomes

cos
π

2p
= cos3 ω

2
− cos

ω

2
sin2 ω

2
(1 + 2 cos φ2).

As φ2 varies, 1 + 2 cos φ2 varies from [−1, 3], then

cos
π

2p
∈

[
cos

3ω

2
, cos

ω

2

]
.

Depending on the range of ω, there are two cases:
• If ω ∈ (0, 2π

3 ], then cos x decreases in [ω
2 , 3ω

2 ], it only needs
p ∈ [ π

3ω
, π

ω
]. There always exists an odd integer p in the

interval.
• If ω ∈ ( 2π

3 , π ), then cos 3ω
2 < 0 and cos ω

2 > 0, we simply
set p = 1.
In both cases, p = O( 1

ω
).

Now we can calculate parameters in Lemma 3. Set p as the
smallest odd integer in [ π

3ω
, π

ω
], define x � 1 + 2 cos φ2, then

x =
cos3 ω

2 − cos π
2p

cos ω
2 sin2 ω

2

, φ2 = arccos

(
x − 1

2

)
.

Since we repeatedly apply B∗ = B(φ3)B(φ2)B(φ1) where
φ1 = φ3 = 0, the number of operators is

t ′ = 3p = O

(
1

ω

)

and

∀i = 1, 2, · · · , t ′, ϕi =
{

φ2 if i mod 3 = 2

0 otherwise
.

�

VII. QUANTUM CIRCUIT IMPLEMENTATION

In this section, we briefly talk about the quantum circuit
implementation of our algorithm. The walk operator U (α, β )
consists of S, C(α) and Q(β ), where Q(β ) is the oracle opera-
tor assumed by the algorithm, so in this section we implement
S and C(α).

For simplicity, in the following we assume N1 = 2m1 , N2 =
2m2 , m = max{m1, m2}, then a vertex can be expressed by
m + 1 qubits. If N1 or N2 are not powers of 2, we could
add imaginary vertices to create a complete bipartite graph
in which N1 and N2 become powers of 2 (these imaginary ver-
tices should not be marked). Let |v〉 = |v0〉 |v1〉 · · · |vm〉 be the
position register, where |v0〉 decides which side v is in (v0 = 1
means v ∈ V1 and v0 = 0 means v ∈ V2), and v1, · · · , vm is
the serial number of v in that side (if v ∈ V1 and m1 < m, we
only use the first m1 qubits v1, v2, · · · , vm1 and the rest qubits
are set arbitrarily; similar for v ∈ V2). Let |u〉 = |u1〉 · · · |um〉
be the coin register, where u1, · · · , um is the serial number
of u in the opposite side. The shift operator S is quite easy
to implement. Recall that S |v, u〉 = |u, v〉, so we flip |v0〉 to
change which part v is in (thus also change which part u is in),
and exchange the value of v1 · · · vm and u1 · · · um. See Fig. 3(b)
for the implementation of S.

The coin operator C is a bit more complicated. Recall that

C(α) =
∑
v∈V

|v〉 〈v| ⊗ Gv (α).

For v ∈ V1, Gv (α) = G2(α), where

G2(α) � (1 − e−iα ) |s2〉 〈s2| − I

and

|s2〉 � 1√
N2

∑
u∈V2

|u〉 ;

for v ∈ V2, Gv (α) = G1(α), where

G1(α) � (1 − e−iα ) |s1〉 〈s1| − I

and

|s1〉 � 1√
N1

∑
u∈V1

|u〉 .

Then C(α) can be simplified as

C(α) =
⎛
⎝∑

v∈V1

|v〉 〈v|
⎞
⎠ ⊗ G2(α) +

⎛
⎝∑

v∈V2

|v〉 〈v|
⎞
⎠ ⊗ G1(α)

= |1〉v0
〈1|v0

⊗ I ⊗ G2(α) + |0〉v0
〈0|v0

⊗ I ⊗ G1(α).

033042-8
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With the promise that u ∈ V1, G1 acts on |u1〉 |u2〉 · · · |um1〉
and can be easily implemented. Notice that

|s1〉 = H⊗m1 |0〉⊗m1 ,

we get

G1(α) = H⊗m1 [(1 − e−iα ) |0〉⊗m1 〈0|⊗m1 − I]H⊗m1 .

Then G1(α) can be realized as in Fig. 3(c). The implementa-
tion of G2(α) is similar.

The walk operator U (α, β ) is the combination of
Q(β ), G(α), and S, see Fig. 3(a) for the overall circuit. The
number of qubits is O(m) = O(log N ); for the number of
gates, the cost of each step of walk is the sum of these
three operators. S only takes O(m) gates, with m = O(log N );
G1(α) and G2(α) each needs a controlled phase gate, which
takes O(m2) basic gates [32]; together with O(m) Hadamard
gates, G(α) needs O(m2) = O(log2 N ) basic gates. Suppose
the cost of oracle is q, then the cost of each step U (α, β ) is
q + O(log2 N ).

VIII. SUMMARY

In this paper, we propose a deterministic search algorithm
on complete bipartite graphs by DTQW and provide the
quantum circuit implementation. The calculation is reduced
to a single-qubit quantum system, then Bloch sphere repre-
sentation provides a tool to precisely analyze the composition
of operators. This paper allows us to gain insights about
the deterministic quantum algorithm, and determinacy makes
error analysis easier in application. This approach exploits
the specific structure of complete bipartite graphs, so we will
need more inspirations if we hope to explore other classes of
graphs. In the future we are interested in performing determin-
istic quantum search on more graphs via DTQW, and trying to
find a universal pattern for various graphs.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China Grants No. 62325210 and No.
62301531, the Strategic Priority Research Program of Chinese
Academy of Sciences Grant No. XDB28000000, and China
Postdoctoral Science Foundation Grant No. 2022M723209.

APPENDIX A: COMPUTATION OF C(α)

This section computes the matrix representation of C(α) in case 1. The computation of case 2 is similar.
Recall that C(α) |v, u〉 = |v〉 ⊗ Gv (α) |u〉, where Gv (α) = (1 − e−iα ) |sv〉 〈sv| − I and |sv〉 = 1√

dv

∑
w∼v |w〉. For v ∈

V1, |sv〉 = 1√
N2

∑
w∈V2

|w〉. Then,

C(α) |ψ1〉 = 1√
n1N2

∑
v∈M,u∈V2

C(α) |v, u〉 = 1√
n1N2

∑
v∈M

|v〉 ⊗
⎛
⎝∑

u∈V2

Gv (α) |u〉
⎞
⎠

= 1√
n1

∑
v∈M

|v〉 ⊗ Gv (α) |sv〉 = 1√
n1

∑
v∈M

|v〉 ⊗ (−e−iα |sv〉) = −e−iα |ψ1〉 .

Similarly,

C(α) |ψ2〉 = 1√
(N1 − n1)N2

∑
v∈V1\M,u∈V2

C(α) |v, u〉 = 1√
(N1 − n1)N2

∑
v∈V1\M

|v〉 ⊗
⎛
⎝∑

u∈V2

Gv (α) |u〉
⎞
⎠

= 1√
N1 − n1

∑
v∈V1\M

|v〉 ⊗ Gv (α) |sv〉 = 1√
N1 − n1

∑
v∈V1\M

|v〉 ⊗ (−e−iα |sv〉) = −e−iα |ψ2〉 .

For v ∈ V2, |sv〉 = 1√
N1

∑
w∈V1

|w〉. Then,

C(α) |ψ3〉 = 1√
n1N2

∑
v∈V2,u∈M

C(α) |v, u〉 = 1√
n1N2

∑
v∈V2

|v〉 ⊗
(∑

u∈M

Gv (α) |u〉
)

,

where

Gv (α) |u〉 = (1 − e−iα ) |sv〉 〈sv|u〉 − |u〉 = (1 − e−iα )
1√
N1

|sv〉 − |u〉 ,

|v〉 ⊗
(∑

u∈M

Gv (α) |u〉
)

= (1 − e−iα )
n1√
N1

|v〉 ⊗ |sv〉 −
∑
u∈M

|v, u〉 ,

∑
v∈V2

|v〉 ⊗ |sv〉 = 1√
N1

∑
v∈V2,u∈V1

|v, u〉 = 1√
N1

(
√

n1N2 |ψ3〉 +
√

(N1 − n1)N2 |ψ4〉),
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∑
v∈V2,u∈M

|v, u〉 = √
n1N2 |ψ3〉 ,

we get

C(α) |ψ3〉 = 1√
n1N2

[
(1 − e−iα )

n1√
N1

· 1√
N1

(
√

n1N2 |ψ3〉 +
√

(N1 − n1)N2 |ψ4〉) − √
n1N2 |ψ3〉

]

=
[

(1 − e−iα )
n1

N1
− 1

]
· |ψ3〉 + (1 − e−iα )

√
n1(N1 − n1)

N1
|ψ4〉 .

Since sin ω
2 =

√
n1
N1

and cos ω
2 =

√
N1−n1

N1
, we have

C(α) |ψ3〉 =
[
(1 − e−iα ) sin2 ω

2
− 1

]
· |ψ3〉 + (1 − e−iα ) sin

ω

2
cos

ω

2
|ψ4〉 .

Similarly,

C(α) |ψ4〉 = 1√
(N1 − n1)N2

∑
v∈V2,u∈V1\M

C(α) |v, u〉 = 1√
(N1 − n1)N2

∑
v∈V2

|v〉 ⊗
⎛
⎝ ∑

u∈V1\M

Gv (α) |u〉
⎞
⎠,

where

|v〉 ⊗
⎛
⎝ ∑

u∈V1\M

Gv (α) |u〉
⎞
⎠ = (1 − e−iα )

N1 − n1√
N1

|v〉 ⊗ |sv〉 −
∑

u∈V1\M

|v, u〉 ,

∑
v∈V2,u∈V1\M

|v, u〉 =
√

(N1 − n1)N2 |ψ4〉 ,

we get

C(α) |ψ4〉 = 1√
(N1 − n1)N2

[
(1 − e−iα )

N1 − n1√
N1

1√
N1

(
√

n1N2 |ψ3〉 +
√

(N1 − n1)N2 |ψ4〉) −
√

(N1 − n1)N2 |ψ4〉
]

= (1 − e−iα )

√
n1(N1 − n1)

N1
|ψ3〉 +

[
(1 − e−iα )

N1 − n1

N1
− 1

]
|ψ4〉 .

Since sin ω
2 =

√
n1
N1

and cos ω
2 =

√
N1−n1

N1
, we have

C(α) |ψ4〉 = (1 − e−iα ) sin
ω

2
cos

ω

2
|ψ3〉 +

[
(1 − e−iα ) cos2 ω

2
− 1

]
|ψ4〉 .

Above all, the matrix representation of C(α) with respect to |ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉 is

C(α) =

⎛
⎜⎜⎜⎝

−e−iα 0 0 0
0 −e−iα 0 0

0 0
(
1 − e−iα

)
sin2 ω

2 − 1 (1 − e−iα ) sin ω
2 cos ω

2

0 0 (1 − e−iα ) sin ω
2 cos ω

2 (1 − e−iα ) cos2 ω
2 − 1

⎞
⎟⎟⎟⎠.

APPENDIX B: PROOF OF LEMMA 2 AND LEMMA 5

This section provides the proof of Lemma 2 and Lemma 5.
Proof. Recall that

|�t 〉 = SC(αt )Q(βt ) · · · SC(α1)Q(β1) |�0〉 ,

from Eqs. (2), (3), (7) and SS = I , we get

|�t 〉 ∼ SA
(π

2

)
R(αt )A

(
−π

2

)
SR(βt )A

(π

2

)
R(αt−1)A

(
−π

2

)
SR(βt−1)

· · · A
(π

2

)
R(αt/2+1)A

(
−π

2

){
SR(βt/2+1)A

(π

2

)
R(αt/2)A

(
−π

2

)
SR(βt/2)A

(π

2

)
R(αt/2−1)A

(
−π

2

)
S
}

R(βt/2−1)

· · · A
(π

2

)
R(α1)A

(
−π

2

)
SR(β1)SA

(π

2

)
SA

(π

2

)
|0̄〉 ,
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then by applying Eq. (8),

|�t 〉 ∼ SA
(π

2

)
R(αt )A

(
−π

2

)
SR(βt )A

(π

2

)
R(αt−1)A

(
−π

2

)
SR(βt−1)

· · · A
(π

2

)
R(αt/2+1)A

(
−π

2

){
R(βt/2)A

(π

2

)
R(αt/2−1)A

(
−π

2

)
SR(βt/2+1)A

(π

2

)
R(αt/2)A

(
−π

2

)}
R(βt/2−1)

· · · A
(π

2

)
R(α1)A

(
−π

2

)
SR(β1)SA

(π

2

)
SA

(π

2

)
|0̄〉 ,

when t is even, by repeatedly applying Eq. (8) and using A(−π
2 )A( π

2 ) = I , we finally get

|�t 〉 ∼ R(βt )A
(π

2

)
R(αt−1)A

(
−π

2

)
· · · R(β2)A

(π

2

)
R(α1)S

× A
(π

2

)
R(αt )A

(
−π

2

)
R(βt−1)A

(π

2

)
· · · R(α2)A

(
−π

2

)
R(β1)A

(π

2

)
|0̄〉 .

Then, from Eq. (5), we have

A
(π

2

)
= R

(π

2
− θ

)
A(θ )R

(
−π

2
+ θ

)
and

A
(
−π

2

)
= R

(
−π

2
− θ

)
A(θ )R

(π

2
+ θ

)
for arbitrary θ . Together with Eq. (6),

|�t 〉 ∼ R
(
βt + π

2
− ϕt−1

)
A(ϕt−1)R(αt−1 − π + ϕt−1 − ϕt−2)A(ϕt−2) · · · R(β2 + π + ϕ2 − ϕ1)A(ϕ1)R

(
α1 − π

2
+ ϕ1

)
S

× R
(π

2
− ψt+1

)
A(ψt+1)R(αt − π + ψt+1 − ψt )A(ψt ) · · · R(β1 + π + ψ2 − ψ1)A(ψ1)R

(
−π

2
+ ψ1

)
|0̄〉 .

By setting

αi =
⎧⎨
⎩

arbitrary i = 1
π − ϕi + ϕi−1 i is odd and i > 1
π − ψi+1 + ψi i is even

,

βi =
⎧⎨
⎩

−π − ψi+1 + ψi i is odd
−π − ϕi + ϕi−1 i is even and i < t
arbitrary i = t

.

and using R(0) = I , we get

|�t 〉 ∼ R
(
βt + π

2
− ϕt−1

)
A(ϕt−1)A(ϕt−2) · · · A(ϕ1)R

(
α1 − π

2
+ ϕ1

)
S

× R
(π

2
− ψt+1

)
A(ψt+1)A(ψt ) · · · A(ψ2)A(ψ1)R

(
−π

2
+ ψ1

)
|0̄〉 .

�
Proof. Since the proof of Lemma 2 only relies on Eqs. (2)–(8) in Lemma 1 and in case 2 the same equations also hold in

Lemma 4 and the proof of Lemma 2 also works for Lemma 5. �
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