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Global sampling of Feynman’s diagrams through normalizing flow
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Normalizing flows (NF) are powerful generative models with increasing applications in augmenting Monte
Carlo algorithms due to their high flexibility and expressiveness. In this work we explore the integration of NF
in the diagrammatic Monte Carlo (DMC) method, presenting an architecture designed to sample the intricate
multidimensional space of Feynman’s diagrams through dimensionality reduction. By decoupling the sampling
of diagram order and interaction times, the flow focuses on one interaction at a time. This enables one to construct
a general diagram by employing the same unsupervised model iteratively, dressing a zero-order diagram with
interactions determined by the previously sampled order. The resulting NF-augmented DMC method is tested on
the widely used single-site Holstein polaron model in the entire electron-phonon coupling regime. The obtained
data show that the model accurately reproduces the diagram distribution by reducing sample correlation and
observables’ statistical error, constituting the first example of global sampling strategy for connected Feynman’s
diagrams in the DMC method.
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I. INTRODUCTION

The investigation of many-body effects in interacting sys-
tems has long presented a significant challenge in the physics
community. A modern approach to address this challenge
centers on the strategic use of Feynman’s diagrams for per-
turbative assessments of key quantities like self-energies
and correlation functions [1,2]. These evaluations provide
insights into the intricate ways in which single-particle
properties are impacted by interactions. Consequently, this ap-
proach establishes a comprehensive framework with versatile
applications extending to thermodynamics and quasiparti-
cle properties, thereby attracting interest from a variety of
fields [3].

The diagrammatic quantum Monte Carlo (DMC) method
is a powerful numerical method to obtain approximation-
free estimates of diagrammatic perturbative expansions [4,5].
A target quantity, usually the interacting Matsubara Green’s
function G(k, τ ), is sampled stochastically through the
Markov chain Monte Carlo (MCMC) exploration of the
Feynman’s diagrams contributing to its power series. This
approach has been widely used in condensed-matter physics
to accurately solve a wide range of physical systems de-
scribed in terms of effective Hamiltonians. Representative
examples are given by polarons [4–10] and excitons [11,12],
thermodynamics of spin systems [13,14], and correlation of
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electron gas [15]. While considered to be numerically ex-
act, the DMC method becomes progressively less efficient
with the increasing complexity of the diagram’s phase space,
which rapidly scales when approaching real materials. For
example, the incorporation of ab initio material-specific band
dispersions and electron-phonon coupling introduces distinc-
tive features in the phase space, leading to a sluggish MCMC
exploration with increased autocorrelation between samples,
inducing critical slowing down effects [16]. Other Monte
Carlo algorithms tackle this issue by employing global sam-
pling strategies, which enhance the exploration of phase
space within the MCMC procedure [17]. These approaches,
however, are not yet present in the DMC literature [18]. Nev-
ertheless, recent advancements in generative machine learning
(GML) have demonstrated the potential for such architectures
to serve as effective global updates in various physics-related
scenarios [19–25].

From a broader perspective, the integration of machine
learning techniques in many-body physics has gathered sub-
stantial interest in recent years [26]. Noteworthy successes in
performance enhancement have been achieved across various
contexts, encompassing density functional theory [27–29],
numerical renormalization groups [30,31], and interacting
spin models [32]. Particularly relevant to the current context is
the integration of GML models into Monte Carlo schemes to
refine sampling from high-dimensional, intricate probability
distributions [33,34]. Various GML algorithms have proven
effective as global updates [17,35,36], enhancing MCMC pro-
cedures [23–25]. This enables the generation of uncorrelated
samples within the chain and mitigates the critical slowing
down problem.

Normalizing flows (NFs) represent an emerging fam-
ily of generative models, standing out as one of the most
promising techniques in GML. NFs provide a method to
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approximate invertible maps to desired probability distri-
butions [37,38]. The NF architecture facilitates both rapid
sampling and inference of target distributions, exhibiting sig-
nificant versatility in representing complex objects. It has
found successful applications across a wide spectrum, in-
cluding image and video generation, reinforcement learning,
and in the Monte Carlo integration of quantum lattice field
models [19–22]. The prospect of designing a flow-based
model to capture the features of the Feynman diagram’s phase
space within a DMC framework is highly appealing. How-
ever, the added complexity in this case lies in the fact that
the sample’s dimensionality is a variable of the distribution,
rendering standard NF architectures unsuitable for address-
ing the problem. In this paper, we introduce an approach
to circumvent such limitations by proposing a model that
generates a diagram iteratively, focusing on individual in-
teractions. To evaluate the feasibility and efficiency of this
hypothesis, we employ the single-site polaron Holstein model
as a test case, a paradigmatic electron-phonon (el-ph) effective
Hamiltonian [39].

Our designed NF-augmented DMC approach yields a sig-
nificant reduction in sample correlation within the Markov
chain across a broad spectrum of electron-phonon cou-
pling strengths. This reduction translates into a diminished
number of samples required to achieve convergence. The
proposed data-driven global updates enhance statistical con-
vergence, leading to a roughly 50% reduction in both
statistical errors associated with observed polaron proper-
ties and sample autocorrelation compared to the standard
DMC local procedure. Since the code developed in this
study was designed to enhance the exploration of Feyn-
man’s diagram space rather than to optimize performance,
the actual sampling cost is higher compared to the standard
approach.

The article is organized as follows. In the next section, we
introduce the NF-augmented DMC architecture tailored for
the Holstein polaron model in the atomic limit. Subsequently,
we present and analyze the performance of the developed code
in estimating specific polaron quantities.

II. NORMALIZING FLOW DIAGRAMMATIC
MONTE CARLO METHOD

A. Diagram representation

The single-site Holstein model is expressed as

H = −εĉ†ĉ + �
∑

q

b̂†
qb̂q + g√

N

∑
q

ĉ†ĉ(b̂†
−q + b̂q), (1)

consisting of a single nondispersive electronic band with en-
ergy ε, interacting with an Einstein-like phononic branch of
frequency �. The electron-phonon coupling is characterized
by a quadratic term with a constant interaction vertex g, and
N represents the number of possible phonon states.

We are interested in the quasiparticle properties of the
model, which are encoded in the interacting Green’s function.
For polaronic systems the Green’s function can be expressed
as a sum over diagrams having an increasing number of
phonons, as sketched in Fig. 1(a). Using Feynman’s rules we
can translate such an expansion in a mathematical expression

FIG. 1. (a) Graphical representation of the Green’s function ex-
pansion for the single-site Holstein model. (b) Vector description of
a general diagram used in this work. The interaction times are stored
in two separate vectors collecting the beginning and the end of the
phonon lines while τ encodes the length of the electron one, defining
the diagram’s length.

that, in the Matsubara formalism, takes the form

G(τ ) = e−ετ

∞∑
n=0

∫ τ

0
dx1

∫ τ

x1

dx2 · · ·
∫ τ

x2n−1

dx2nW (x). (2)

The ordered integration accounts for every diagram having n
phonons, each described by a vector of 2n interaction times
x. The contribution of each diagram is expressed by the zero-
temperature electronic and phononic propagators, resulting in
the following diagram’s weight:

W (x) = g2n
n∏

i=1

e−�(ei−bi ), (3)

where x is divided in the phonon’s creation, b, and annihi-
lation, e, times, allowing the diagram to be represented by a
vector [τ, b, e] [see Fig. 1(b)].

The DMC method directly integrates Eq. (2) by randomly
sampling the expansion’s diagrams from a distribution propor-
tional to their weight function. Detailed information on how
the MCMC procedure is implemented in the diagram space
can be found in Refs. [40,41], while the observable estimators
for polaron quantities are introduced by Mishchenko et al.
[5]. Here we focus our attention on G(τ ) and the polaron
binding energy Ep. The Green’s function is evaluated by the
histogram collecting the distribution of the variable τ , while
Ep is evaluated through the ground-state energy estimator [5]:

Ep = lim
τ→∞

〈
�

∑
(ei − bi ) − 2n

τ

〉
. (4)

Analytical expressions for both observables can be found in
the literature [2], making them a suitable choice for testing
the convergence properties of a new algorithm.

B. Flow architecture

Normalizing flows transform a simple starting probability
distribution, pZ , into a more complex desired density, pX ,
through a series of invertible and smooth transformations.
This is achieved using invertible networks [42–44] to con-
struct a variational map Tθ : RD → RD that, when applied to
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FIG. 2. Representation of the NF-DMC workflow. The model
takes as input the diagram’s length τ , which is used as conditional
parameter to sample both the order n and phonon interaction times
b and e. n is initially sampled from a suited distribution (e.g., the
Poisson distribution shown in histogram form in the inset). Then an
increasing number of phonon lines are added to the initial zero-order
diagram (n = 0) defined by τ by transforming Gaussian samples
z using the τ -conditioned NF transform Tθ . Finally, for each τ an
n-order diagram (i.e., with n phonon lines) is obtained, as sketched
in the bottom.

samples {zi}N
i=0 drawn from pZ , generates a set xi = Tθ (zi )

distributed as [37]

pθ (x) = pZ ◦ T −1
θ (x)

∣∣∣det JT −1
θ

(x)
∣∣∣, (5)

with JT −1
θ

being the Jacobian of the invertible map. This pro-
vides fast sampling and density estimation of a parametrized
distribution pθ (x), which can be fitted to the target pX (x)
by minimizing the Kullback-Leibler (KL) divergence. For
DMC the target pX (x) is the diagram’s weight distribution
proportional to the weight W (x), with x being the diagram’s
vector representation introduced in Eq. (3) and Fig. 1(b). The
complexity of approximating the full pX (x) in a NF frame-
work lies in the dimensionality of the vector space spanned
by the different diagrams. In fact, x changes dimensions based
on the number of phonons, described by n [see Eq. (2)],
typically referred to as the diagram’s order. Approaching this
problem with standard NF architectures would mean creating
a different model for every possible dimension n, leading to
the impossibility of covering the entire space. Here, we avoid
such restriction by decoupling the sampling of the diagram’s
order and the interaction times with the approach schematized
in Fig. 2.

The strategy relies on sampling single phonons using a
conditional NF model Tθ [20], with specifics reported in
Appendix A, trained to fit a two-dimensional (2D) distribu-
tion ( p̃X ) describing b and e statistics based on the current
diagram’s length τ , thus allowing the generation of a new
diagram by multiple use of Tθ to dress the zero-order di-
agram, defined by τ , with a random number of phonons

independently sampled from a preselected integer distribution
pn(n|τ ). In this way, the entire diagram space at different τ

can be explored using a single model possessing the following
final density:

pW (x) = pn(n|τ )

[
n!

n∏
i=1

pθ (bi, ei|τ )

]
, (6)

where the n! is needed since every permutation of the
phonons’ indices leads to the same diagram. The combination
of this density with Eq. (5) can be used to completely define
an update in the DMC chain.

Finally, the model was completed by selecting pn(n|τ ) as a
Poisson distribution exhibiting a mean value λ dependent on
both τ and the el-ph coupling strength g. The form of λ was
chosen to best fit the order statistic collected on pre-existing
runs at different values of τ with varying g (see Appendix A
for details). This leads to a final pn conditioned also by the
coupling constant g. For instance, sampling from different
coupling regimes comes at no additional increase in the NF
complexity due to the g dependence being completely con-
tained in the simpler order distribution.

C. Loss function

In the considered Holstein model, comparing Eq. (6) with
the target weight in Eq. (3) shows that the model distribu-
tion pθ should be trained to fit the un-normalized density
pX (b, e) = e−(e−b), where � is set as the unit of measure
for the energies. Also, to generate a physical phonon the
flow sampling needs to take into account that the annihila-
tion e must happen after the creation b and both of them
need to be placed before the end of the diagram. We found
that the most flexible way that allows e and b to satisfy
such a constraint is to multiply the target pX by steep
sigmoid functions to create a new τ -dependent target p̃X

with vanishing contributions in the unphysical regions of
the domain:

p̃X (b, e; τ ) = pX (b, e)σ (b)σ (e − b)σ (τ − e), (7)

where the sigmoids used were defined as

σ (x) = 1

e−αx + 1
, (8)

with the α hyperparameter controlling the steepness of the
function, recovering the exact form of the distribution for
large values. Therefore, we selected an α value of 50 in
order to obtain a smooth enough p̃X that still presents all
the main features of the real distribution, as can be seen
in Fig. 3. This allowed us to train an autoregressive neu-
ral spline model [45] to map a 2D diagonal Gaussian into
p̃X by minimizing the standard reverse KL divergence of
the model,

L(θ) = 〈
ln

∣∣ det JTθ

∣∣ − ln pX ◦ Tθ + S ◦ Tθ

〉
pZ

, (9)

where S(x) is a sum of softplus functions rising from the
sigmoid contributions. We obtained the final Tθ (z; τ ) by an
unsupervised training where new samples were generated,
at every step, from a set of τ ’s uniformly distributed in the
interesting domain of G and used to estimate L as an average.
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FIG. 3. Target density p̃X and the obtained reconstruction us-
ing the NF model pθ . Both are plotted for a selected value of the
conditional parameter τ of 10, while the hyperparameter α was set
to 50.

Finally, the loss minimization was carried out using standard
stochastic gradient descent methods using a learning rate of
10−4, reduced to 10−5 after 30 000 steps.

III. APPLICATION AND DISCUSSION

The developed NF-based architecture was integrated into
the set of local updates in the Holstein model, establishing
an NF-augmented Markov chain. Subsequently, the statisti-
cal properties of this augmented chain were systematically
compared against those of the standard one. Extensive data
on observables and correlation times were gathered for var-
ious coupling strengths (g). Each run involved a set of
13 parallel chains, accumulating 107 steps. The utilization
of separate chains facilitated the extraction of uncorrelated
estimates, enabling the assessment of errors on individual
observable values. This approach offered a direct means of
comparing the performance of the two methodologies by an-
alyzing the evolution of mean values and errors throughout
the chain.

A. Statistical performances

The evolution of the polaron energy (Ep) for a specific cou-
pling strength (g), as depicted in Fig. 4(a), clearly illustrates
that the NF global update reduces the error in the estimate by
approximately a factor of 2 compared to the local updates in
the standard DMC method. Additionally, the Green’s function
presented in Fig. 4(b) exhibits nearly identical performance
for both types of updates across the entire interaction spec-
trum. This outcome is anticipated since the diagram’s length
τ , serving as the correlated variable in G(τ ), is taken as input
from pW and is not sampled. Consequently, the correlation in
the τ channel remains consistent with the standard case, with
improvements primarily observed in phonon-related quanti-
ties. To quantitatively evaluate the performance of the NF
global updates, we present the effective sample size (ESS)
as a function of the coupling strength g in Fig. 5. The NF-
based updates exhibit a noticeable reduction in the overall
sample correlation, leading to an increase in the ESS across
all coupling regimes. This result underscores the effective-
ness of the proposed model in accurately reconstructing the
target density, thereby enhancing the overall performance
of the NF-augmented Markov chain. However, a decrease

FIG. 4. Comparison between standard and NF-augmented DMC
procedures for the estimate of Ep and G(τ ). (a) Ep at g = 0.7 as a
function of the chain’s steps. The bold line marks the mean value
evolution, the colored area represents the error, and the black dashed
line indicates the exact value. (b) Green’s function estimate (in log-
arithmic scale) as a function of τ for different coupling strengths g.
Lines and colors have the same meanings as in panel (a).

FIG. 5. Effective sample size of the two different Markov chains
compared at different coupling constants. The algorithm using the
NF global update remains superior along the whole line, showing a
reduction in performances only upon reaching g close to the model
instability given by G(τ ) becoming the identity.
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in the performance of the NF model is observed in the
strong-coupling regime (g = 0.9). It is important to note that
this anomalous behavior is attributed to a peculiarity of the
physical model rather than the NF architecture itself. Specif-
ically, the single-site Holstein Green’s function tends to a
constant as g approaches unity, leading to a flattening of the
Green’s function with increasing g in Fig. 4(b). This causes
every value of τ to have the same statistical weight, resulting
in very large τ values appearing in the chain. Consequently,
the model enters an extrapolation regime, which reduces its
performance. This is a system-specific issue that does not
undermine the applicability of the NF model. It is always
possible to adjust parameters, such as increasing ε (currently
set to 1), to artificially make high τ values less probable
without altering the observable estimate.

B. Computational aspects

The C++ package is constructed on top of the C++ API of
PYTORCH [46], while the plots were produced using NUMPY

[47] and MATPLOTLIB [48]. The training was carried out on a
single Nvidia GeForce GTX 1650 GPU and took a little less
than an hour of computer time. The code is openly available in
GitHub [49]. Additional details on the NF-DMC architecture
are given in Appendix B.

As mentioned in the Introduction, our code was not
optimized for performance since the focus was placed on ex-
ploring the possible statistical advantages of the methodology.
Therefore, no parallelization or batching was implemented,
and GPUs were only utilized for training, leading to longer
sampling times at higher orders. As a result, at present, the
cost of our approach is approximately three times higher
compared to the standard one at g = 0.1, where an ∼40%
gain in effective sample size is observed, and becomes worse
at larger g.

IV. CONCLUSIONS

In conclusion, we presented a global sampling strategy
for connected Feynman diagrams based on the use of nor-
malizing flows, while integrating it into an NF-augmented
diagrammatic Monte Carlo framework. Our devised proce-
dure was tested on the Holstein polaron model, demonstrating
superior statistical performance when compared to the con-
ventional DMC method, albeit at an increased computational
cost. Diagrams are constructed using a bottom-up approach
that sequentially samples interactions from a single unsuper-
vised NF model trained solely utilizing the weight function
of the desired diagram type. This strategy represents an ini-
tial attempt to enhance DMC procedures using generative
machine learning. It could potentially be extended to other
model Hamiltonians by designing NF networks capable of
representing the distinctive features of the targeted diagrams.
For instance, potential future developments include the in-
corporation of phonon momenta to account for dispersion
and the utilization of multiple NF models to describe sys-
tems with combined interactions [12,14]. Moreover, its high
flexibility, stemming from the ever-growing variety of NF
architectures, the freedom to choose the order distribution,
and the option to train without the need for a database

may attract interest from the broader quantum Monte Carlo
community, facilitating its application to other perturbative
methods.
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APPENDIX A: DESCRIPTION OF
THE ORDER DISTRIBUTION

The form of the distribution used to sample the order
pn(n|τ, g) was selected to best fit the order statistic collected
from a set of DMC runs performed at different electron-
phonon coupling strengths g. The data collected showed a
form nearly identical to the one of a Poisson distribution for
all the τ and g values investigated, leading us to the following
choice for the density used during the work:

pn(n|τ, g) = λ(τ, g)n

n!
e−λ(τ,g). (A1)

To complete the distribution we noticed how the normaliza-
tion constant eλ(τ,g) must coincide with the final result of the
integration in Eq. (2) reported here:

G(τ ) = e−ετ

∞∑
n=0

∫ τ

0
dx1

∫ τ

x1

dx2 · · ·
∫ τ

x2n−1

dx2nW (x)

= e−ετ−λ(τ,g)
∞∑

n=0

pn(n|τ, g). (A2)

Therefore, by substituting the known result for G(τ ) [2] and
using the fact that pn is normalized, one would obtain

exp[−ετ − g2(τ − 1 + e−τ )] = exp[−ετ − λ(τ, g)], (A3)

where � is set as the unit of measure for the energy. At the
end, a form of the function λ(τ, g) was obtained that respected
perfectly the behavior of the distribution

λ(τ, g) = g2(τ − 1 + e−τ ), (A4)

which avoided the need to interpolate the means found by fit
of the collected statistics to get an approximated version of the
exact distribution. A representative test is displayed in Fig. 6.

APPENDIX B: DESCRIPTION OF THE NORMALIZING
FLOW ARCHITECTURE

The model employed in this study is a conditional nor-
malizing flow architecture using rational quadratic splines
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FIG. 6. Test of the obtained pn(n|τ, g) (red triangles) on the collected DMC distribution (blue histograms) at different τ and g values. A
perfect overlap of the analytic form used in this work and the raw data is clearly seen.

(RQS) [45] parametrized by the output of a masked multilayer
perceptron used as an autoregressive layer [50]. To elucidate
this architecture in greater detail, we present the mathematical
formulation of Tθ in an introductory way.

The parametric transformation constituting the flow is de-
fined by its action on the components of the two-dimensional
input vector z, which is represented as follows:

Rφ j
(z j ) =

{
gφ j

(z j ), z j ∈ [−B, B],
z j, otherwise,

(B1)

where the function gφ j
is an invertible RQS parametrized by

φ j containing the coordinates and derivatives, strictly positive,
of each node. Based on the number of nodes, Rφ j

is capa-
ble of representing more complex invertible transformations
within the boundaries defined by B, which was fixed to 22

in order to operate within the Green’s function’s domain of
interest [0, 20]. Generally, the transformation is completed
by employing specialized neural networks to compute the
appropriate φ j , based on the input z and our conditional pa-
rameter τ , leading to the specific transformation mapping the
initial distribution pZ to the target p̃X . Our model employed a
multilayer perceptron (MLP) to evaluate positions and deriva-
tives of 5 nodes per spline, leading to two φ j composed of
15 entries each for the 2D model used in the work. In partic-
ular, a masked MLP (MMLP) was constructed based on the
implementation of the Masked Autoencoder for Distribution
Estimation (MADE) [42], shown in Fig. 7, to compute φ j as a
function of τ and z< j as follows:

[φ1(τ ),φ2(τ, z1)] = MMLP(x, θ), x = concat(τ, z).

(B2)

FIG. 7. Graphical description of the masked MLP used in this work adapted from the idea in the MADE implementation [42]. A fully
connected network, on the left, gets truncated by multiplying the weight matrices W with masks MW. The result is a simpler network, as can
be seen on the right, where the jth output, φ j , clearly possesses the wanted dependence on the inputs τ and z< j .
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Once Eqs. (B1) and (B2) are coupled together they form a
map acting on R2 parametrized by the network weights θ and
conditioned by τ that constitutes the following conditional
flow transform:

Rθ (z, τ ) = [
Rφ1(τ )(z1),Rφ2(τ,z1 )(z2)

]
, (B3)

det JRθ
(z, τ ) = R′

φ1(τ )(z1)R′
φ2(τ,z1 )(z2), (B4)

where we can see how the determinant of the Jacobian,
det JRθ

(z, τ ), takes a simple form since the matrix is triangular.
The final transformation Tθ (•, τ ), presented as our model in
Sec. II B, was given by a composition of two Rθ , giving the
following variational map:

Tθ (z, τ ) = Rθ1

[
Rθ2 (z, τ ), τ

]
, θ = [θ1, θ2]. (B5)

The Jacobian determinant can then be evaluated using the
chain rule of differentiation.
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