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Reconciling mean-squared radius differences in the silver chain through improved
measurement and ab initio calculations
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Nuclear charge radius differences in the silver isotopic chain have been reported through different combina-
tions of experiment and theory, exhibiting a tension of two combined standard errors. This study investigates this
issue by combining high-accuracy calculations for six low-lying states of atomic silver with an improved mea-
surement of the 5s 2S1/2 − 5p 2P3/2 transition optical isotope shift. Our calculations predict measured electronic
transition energies in Ag I at the 0.3% level, the highest accuracy achieved in this system so far. We calculate
electronic isotope shift factors by employing analytical response relativistic coupled-cluster theory and find that
a consistent charge radius difference between 107,109Ag is returned when combining our calculations with the
available optical isotope shift measurements. We therefore recommend an improved value for the mean-squared
charge radius difference between 107Ag and 109Ag as 0.207(6) fm2, within one combined error from the value
derived from muonic Ag experiments, and an updated set of charge radii differences across the isotopic chain.
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I. INTRODUCTION

The mean-squared nuclear charge radius difference be-
tween isotopes with nuclear mass numbers A and A′, δr2

A,A′ ≡
r2

A′ − r2
A, is a unique probe of structural changes in isotopic

chains [1], complementary to the binding energy per nu-
cleon. As described in Ref. [2], δr2

A,A′ values can be inferred
from measured isotope shifts (ISs) δνA,A′ ≡ νA′ − νA using the
relation

δνA,A′ � KμA,A′ + Fδr2
A,A′ , (1)

where μA,A′ = 1/MA − 1/MA′ is the difference between the
inverse nuclear masses of isotopes, K denotes the mass shift
(MS) factor, and F the field shift (FS) factor of a given transi-
tion with frequency ν. The validity and refinements to Eq. (1)
are discussed in Sec. II.

When δr2
A,A′ of two or more isotopic pairs have been

measured, usually via muonic atom cascade x-ray spec-
troscopy [3], the atomic factors K and F of Eq. (1) can be
directly extracted from a linear fit called a calibrated King
Plot (CKP) [4], having two or more data points. Using this
information, δr2

A,A′ can then be extracted across a chain of
isotopes via optical isotope shift measurements, and without
further muonic atom experiments. This is the case for most
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elements with an even number of protons (Z) [2]. For the
odd-Z elements, there are not three or more stable isotopes
available that are needed for carrying out traditional cascade
spectroscopy measurements (see, however, Refs. [5,6]). So,
in order to apply Eq. (1) to extract δr2 values in a chain of
isotopes, one has to rely on the calculation of the IS factors F
and K .

For elements in which δr2
A,A′ for a pair of isotopes has

been determined, it is sufficient to calculate or estimate one
of the two IS factors, and extract the other factor via Eq. (1).
It is convenient to calculate the F values as they are less
susceptible to electron correlation effects as compared to K .
This method is sometimes referred to as a partial CKP. It
is used in odd-Z elements with at least two stable isotopes
(see, e.g., [7–9]). It is also useful for light even-Z elements
in which a CKP yields larger uncertainties (e.g., [10–14]).
The partial CKP method has been considered to give both
precise and accurate results for δr2

A,A′ , as it relies on a cal-
culation of F , much easier than of K , and the use of δr2 from
muonic cascade measurements which are considered reliable
at a few attometer level. Nevertheless, with tremendous ad-
vancement in the development of atomic many-body methods,
as well as the availability of ever-increasing computational
power, it is possible today to precisely calculate the K values
in some systems. This enables the extraction of all optical
δr2

A,A′ beyond the accuracy obtained in either a partial or a
full CKP approach [15–23], which are forever limited by
complex nuclear corrections to the muonic energy levels. A
particularly interesting case is that of silver (Ag, Z = 47),
having two stable isotopes with a similar natural abundance,
107Ag and 109Ag. ISs of three transitions in Ag with unstable
nuclei have been measured. In 1975, the 5s 2S1/2 −5p 2P1/2

338 nm and the 5s 2S1/2 −5p 2P3/2 328 nm lines were
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FIG. 1. Mean-squared charge radius difference, δr2
109,A, of ground-state silver nuclei as given in Table VI. Error bars show 68% confidence

intervals taking into account both statistical and systematic uncertainties. The results of a density-functional-theory (DFT) calculation from
Ref. [24] are also shown. The results of this work are in disagreement with the GSI [25] and LISOL [26] measurements and analysis, and agree
with recent work in IGISOL [24], though with significantly reduced uncertainties.

measured with a hollow-cathode Fabry-Pérot interferometer
using neutron-irradiated targets of 108mAg and 110mAg [27].
The first online experiment was performed at the Gesellschaft
für Schwerionenforschung (GSI) accelerator facility, where
ISs in the 4d95s2 2D5/2 −6p 2P3/2 548 nm line were mea-
sured for neutron-deficient isotopes and isomers [25]. Further
neutron-deficient isotopes were measured with the 328 nm
line at the Leuven Isotope Separator On Line (LISOL) fa-
cility [26]. Recently, at the Ion Guide Isotope Separation
On-Line (IGISOL) facility, ISs of a long chain of isotopes,
extending from 96Ag to 121Ag, were measured, again using
the 328 nm line [24]. The center-of-gravity ISs resulting from
these efforts have been interpreted via partial CKPs, with dif-
ferent choices for δr2

109,107 and F , yielding inconsistent results
for δr2

109,A, as shown in Fig. 1.
In this work, we resolve the tension in δr2 of Ag re-

ported thus far. To do this, we have performed state-of-the-art
ab initio calculations of IS factors in low-lying levels of Ag I.
Our results indicate that semiempirical estimations of K and
F , used in previous studies of Ag, deviate by two combined
standard errors. We also provide an improved optical isotope
shift of the 328 nm transition in naturally abundant Ag, and
perform a global analysis of the result with the available liter-
ature data. Our calculations of K and F for these transitions
in Ag, combined with the data, produce a consistent value for
δr2

109,107 within a few percent. This checks the consistency of
our calculations.

Having validated our calculation, we use the available op-
tical IS data to provide δr2

109,A for the silver isotope chain
spanning A = 96–105, A = 114–121, and six long-lived iso-
mers. These results reduce the uncertainty in δr2

109,A by up to
a factor of seven. A comparison with prior works pinpoints
the reasons for past inconsistencies. Finally, the recommended
δr2

109,A of the Ag isotopes are compared with state-of-the-
art nuclear theory calculations. While the overall trend of
the nuclear calculations agrees with the data extracted by

combining our atomic calculations with the IS measurements,
a few interesting deviations are noticed.

II. VALIDITY OF LINEAR APPROXIMATION

Before calculating the IS factors, we discuss refinements
to Eq. (1), in light of our aim of extracting δr2 in a long chain
of isotopes, in which the charge radius is expected to vary
significantly. As seen in Fig. 1, the isotopic difference in the
mean-squared radius can be as large as 2.6 fm2, so that the
root-mean-squared radii span the range R = 4.37–4.64 fm. In
this work, we take into account a possible dependency of K
and F on R by repeating their calculation for different values
of R in a range larger than that spanned by the experimental
values.

Another refinement of Eq. (1) is due to variation of the
nuclear shape among the isotopes. The effect on the IS
can be estimated via a change to the FS factor, δFA,A′ =
C(rcc4

A′/r2
A′ − rcc4

A/r2
A), with rcc the fourth radial moment and

C � −6×10−4 fm−2 the Seltzer coefficient calculated in [28].
As the ratio of moments depends on the nuclear shape, we
estimate their maximal change by varying the skin thickness
parameter by 10% in Eq. (3), as suggested in Ref. [2]. It
shows a 2% variation in δFA,A′ , which is in agreement with
the finding of Ref. [25] [see their Eq. (20)] that was also
adopted in Ref. [24]. To be more conservative, and following
the discussion given in Ref. [20], we treat this contribution
not as a correction, but as another source of uncorrelated
uncertainty to the nuclear radii extraction in the Ag isotopes.

It is also worth noting that in this work, ISs are defined
as the centers of gravity of the hyperfine manifold. When
there are nearby states of equal parity, the mixing of fine
and hyperfine structures introduces a nuclear spin-dependent
shift of the ISs (see, e.g., [29]). For the energy levels of Ag
that are of interest to this work, the largest shift would be
due to the mixing of fine and hyperfine structures in the 5p

033040-2



RECONCILING MEAN-SQUARED RADIUS DIFFERENCES … PHYSICAL REVIEW RESEARCH 6, 033040 (2024)

manifold. The order of magnitude of this shift can be roughly
estimated by �E (2) � A(5p 2P1/2)A(5p 2P3/2)/�EFS [30,31],
where �EFS = 28 THz is the fine structure of the 5p mani-
fold. Even for the isotopes with the largest magnetic moments,
�E (2) � 10 kHz. It is three orders smaller than the precision
of interest to the present work, and hence it can be safely
neglected.

III. ATOMIC CALCULATIONS

A. Method of calculation

We consider the Dirac-Coulomb (DC) Hamiltonian to cal-
culate the IS factors in the relativistic framework, given in

atomic units (a.u.) by

H =
∑

i

[
c�αD

i · �pi + (
βD

i − 1
)
c2 + Vn(ri )

] +
∑
i, j>i

1

ri j
, (2)

where c is the speed of light, �αD and βD are the Dirac matrices,
�p is the single-particle momentum operator, Vn(r) denotes the
nuclear potential seen by an electron at distance r from the
nucleus, and 1

ri j
represents the Coulomb potential between the

electrons located at the ith and jth positions. The finite size
of the nucleus is defined by a two-parameter Fermi-charge
distribution, given by

ρ(r) = ρ0

1 + e(r−b)/a
, (3)

where ρ0 is the normalization constant, b is the half-charge radius, and a = 2.3/4 ln(3) is an approximate skin thickness. It yields

Vn(r) = − Z

N r

{
1
b

[
3
2 + a2π2

2b2 − r2

2b2 + 3a2

b2 P+
2

6a3

b2r (S3 − P+
3 )

]
for ri � b

1
ri

[
1 + a62π2

b2 − 3a2r
c3 P−

2 + 6a3

b3 (S3 − P−
3 )

]
for ri > b,

(4)

where the factors are

N = 1 + a2π2

b2
+ 6a3

b3
S3,

with Sk =
∞∑

l=1

(−1)l−1

lk
e−lb/a

and P±
k =

∞∑
l=1

(−1)l−1

lk
e±l (r−b)/a. (5)

In the above expression, b is obtained using the relation

b �
√

5
3 R2 − 7

3 a2π2, (6)

where R is the approximate root-mean-squared radius and
calculated from the empirical relation [37]

R � (0.836A1/3 + 0.57) fm. (7)

We later show that the excitation energies and IS factors very
weakly depend on the assumed value of the charge radius, thus
validating the above approximations. The FS operator F is
defined in this case as

F̂ = −δVn(r)

δR
= −∂Vn(r)

∂b

δb

δR
. (8)

In the relativistic formulation, the normal mass shift
(NMS) and specific mass shift (SMS) operators are given by

ONMS = 1

2

∑
i

[
�p2

i − αeZ

ri
�αD

i · �pi − αeZ

ri

(
�αD

i · �C1
i

) �C1
i · �pi

]
(9)

and

OSMS = 1

2

∑
i �= j

[
�pi · �p j − αeZ

ri
�αD

i · �p j

−αeZ

ri

(
�αD

i · �C1
i

)(
�p j · �C1

j

)]
, (10)

respectively, where αe is the fine-structure constant and �C is
the Racah angular momentum operator. Contributions from
the Breit and lower-order QED interactions are also estimated,
by including them self-consistently in the calculations [38], as
corrections to the DC Hamiltonian results.

Expectation values of F , ONMS, and ONMS with respect
to the wave function of an atomic state will correspond to
the FS, NMS, and SMS factors, respectively. It should be
noted from Eq. (7) that different R values can affect Vn(r)
and, hence, calculation of the atomic wave functions. We later
validate that such changes in wave functions do not affect the
energies, NMS factors, and SMS factors at the precision of
our interest, but it may affect calculations of the FS factors
as the F operator can have nonlinear dependency on R. We
demonstrate this dependency by calculating the energies and
IS factors later with different values of R.

The Ag atom has the ground-state configuration [4d10] 5s.
Our interest is to calculate the difference in the values be-
tween two states of the IS factors of the 5s 2S1/2 −5p 2P1/2;3/2,
5s 2S1/2 −6s 2S1/2, and 5s 2S1/2 −6p 2P1/2;3/2 transitions in
this work. We calculate these factors for each state using
the relativistic coupled-cluster (RCC) theory by adopting
the analytical-response approach (AR-RCC method) as de-
scribed in Ref. [15]. It requires the determination of wave
functions of the ground state as well as for the 5p 2P1/2;3/2,
6s 2S1/2, and 6p 2P1/2;3/2 states of Ag I. To conveniently
obtain all these states, we first calculate the wave func-
tion (|
0〉) of the common closed-shell core configuration
[4d10] of all these states by expressing it in the RCC theory
ansatz [39],

|
0〉 = eS0 |�0〉, (11)

where S0 is the RCC excitation operator carrying elec-
tron correlation effects and the reference state |�0〉 is the
mean-field wave function of the closed-shell [4d10] configura-
tion, obtained in the Dirac-Hartree-Fock (DHF) method. The
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amplitude determining the equation for S0 is given by

〈�∗
0|(HeS0 )l |�0〉 = 0, (12)

where |�∗
0〉 represents all possible excited-state determinants

with respect to |�0〉 and subscript l means linked terms. First,
we approximate the RCC theory at the singles and doubles
approximation (RCCSD method), in which the S0 is defined
as

S0 = S10 + S20 =
∑
a,p

sapa†
paa + 1

4

∑
a,b,p,q

sap,bqa†
pa†

qabaa,

(13)

where S10 and S20 stand for single and double excitations
of the RCC operator S0 with the amplitudes sap and sap,bq,
respectively. Here, a, b denote occupied orbitals and p, q rep-
resent unoccupied (virtual) orbitals. Following Eq. (12), it
yields

sap = 〈�p
a|H + [(HeS0 )l − H )]ofd|�0〉

εa − εp

and

sap,bq = 〈�pq
ab |H + [(HeS0 )l − H )]ofd|�0〉

εa + εb − εp − εq
, (14)

where |�∗
0〉 are taken as |�p

a〉 = a†
paa|�0〉 and |�pq

ab〉 =
a†

pa†
qabaa|�0〉 representing the singly and doubly excited

Slater determinants, respectively. Here the subscript ofd de-
notes off-diagonal terms and ε’s are the single-particle orbital
energies.

After obtaining the solution for |
0〉, we determine the
wave function of an atomic state (|
v〉) of Ag I with a valence
orbital v by defining [40,41]

|
v〉 = eS0+Sv |�v〉 = eS0{1 + Sv}|�v〉, (15)

where |�v〉 = a†
v|�0〉 is the modified DHF wave function, and

Sv includes excitation configurations due to correlation effects
by the valence electron. In the RCCSD method, we define

Sv = S1v + S2v =
∑
p�=v

svpa†
pav + 1

2

∑
p�=v,b,q

svp,bqa†
pa†

qabav,

(16)

where S1v and S2v stand for single and double excitations
of the RCC operator Sv with the amplitudes svp and svp,bq,
respectively. Like the case for the S0 operator, amplitudes of
the Sv operator are determined by

〈�∗
v|{(HeS0 )l − Ev )}Sv + (HeS0 )l |�v〉 = 0, (17)

where |�∗
v〉 denotes singly and doubly excited Slater determi-

nants with respect to |�v〉. It corresponds to

svp =
〈
�

p
v |(HeS0 )l + [(HeS0 )l Sv]ofd|�v

〉
Ev − εp

and

svp,bq = 〈�pq
vb|(HeS0 )l + [(HeS0 )l Sv]ofd|�v〉

Ev + εb − εp − εq
. (18)

The energy of the respective state is given by

Ev = 〈�v|(HeS0 )l{1 + Sv}|�v〉. (19)

Both Eqs. (17) and (19) are solved simultaneously by adopting
a self-consistent procedure. Here we use a normal-ordered
Hamiltonian with respect to |�0〉, so that the calculated Ev

value will correspond to the electron affinity (EA) rather than
the total energy of |
v〉. Excitation energy (EE) of a transition
can be obtained from the difference between the EAs of two
states associated with the transition.

In the AR-RCC method, we estimate IS factors as the first-
order energy correction to the calculated Ev value of the state
|
v〉 due to the corresponding IS operator (denoted by HIS in
general). Hereafter, we identify the RCC operators and cal-
culated energies due to the DC Hamiltonian with superscript
(0) and the first-order corrections in the AR-RCC method are
denoted by the superscript (1) as described in Ref. [15]. In
the AR-RCC method, the first-order energy correction (E (1)

v )
is obtained as the solution of the following equation:(

H − E (0)
v

)∣∣
 (1)
v

〉 = (
E (1)

v − HIS
)∣∣
 (0)

v

〉
. (20)

In the singles and doubles excitation approximation of the
AR-RCC approach (AR-RCCSD method), the amplitudes of
the S(1)

0 and S(1)
v operators are defined in the similar way as in

the case of unperturbed case and they are obtained by

〈�∗
0|

(
HeS(0)

0 S(1)
0 + HISeS(0)

0
)

l
|�0〉 = 0 (21)

and

〈�∗
v|

{(
HeS(0)

0
)

l − E (0)
v

}
S(1)

v + (
HeS(0)

0 S(1)
0

)
l

× {
1 + S(0)

v

} + (
HISeS(0)

0
)

l

{
1 + S(0)

v

}
+ E (1)

v S(0)
v |�v〉 = 0. (22)

In the above equation, the expression for an IS factor is given
by

E (1)
v = 〈�v|

(
HeS(0)

0
)

l S
(1)
v + (

HeS(0)
0 S(1)

0

)
l

{
1 + S(0)

v

}
+ (

HISeS(0)
0

)
l

{
1 + S(0)

v

}|�v〉. (23)

It should be noted that Eqs. (21), (22), and (23) are the
first-order approximations of Eqs. (12), (17), and (19), respec-
tively. Therefore, the amplitudes of the perturbed operators of
the AR-RCC method follow similar expressions correspond-
ing to their respective unperturbed RCC operators.

In this work, we considered correlations from electrons
among the 20s, 20p, 19d , 18 f , 16g, 14h, and 12i orbitals.
Since considering triple excitations among all these orbitals
was not feasible with the available computational resources,
we have allowed triple excitations up to 15s, 15p, 15d , 11 f ,
and 10g orbitals along with the correlations from the RCCSD
method. It should be noted that we have not counted spin
multiplicity of the orbitals here.

To demonstrate contributions to the IS factors at different
levels of approximations in the atomic Hamiltonian, we give
results using the DC Hamiltonian and corrections due to the
Breit (given as +Breit) and QED (given as +QED) effects
at the RCCSD method. Differences of the RCCSD values
from the larger basis set are given as “+Basis” contribution.
Estimated contributions from the triple excitations are listed
as “+T.” We also present calculated energies at the second
perturbation theory (MP2 method) using the 20s, 20p, 19d ,
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TABLE I. Comparison of calculated and measured energies. Calculated electron affinities (EAs, where zero energy refers to the ground
state of Ag II) of the considered states in Ag at different levels of approximation. The estimated excitation energies (EEs) are also quoted.
Unless otherwise stated, all values are in cm−1. Our final results are compared with the experimental values (denoted Expt.). Differences
between our calculated and experimental values are shown as � in percentage. The last column gives the results of prior calculations available
in the literature which are closest to experiment.

State DHF MP2 RCCSD +T +Basis +Breit +QED Total Expt. [32,33] �% Lit.

EAs
5s 2S1/2 50376 61014 60408 441(110) 193(96) −59 −22(22) 60961(148) 61106.5(2) 0.2(2) 60823 [34]
5p 2P1/2 26730 30771 31007 455(114) 46(23) −36 4(4) 31477(116) 31554.4(2) 0.2(4) 31066 [34]
5p 2P3/2 26148 29862 30089 442(111) 39(20) −24 −4(4) 30543(112) 30633.7(2) 0.3(4) 30184 [34]
6s 2S1/2 17115 18641 18455 45(11) 21(11) −8 −3(3) 18510(16) 18550.3(2) 0.2(1) 18494 [34]
6p 2P1/2 11786 12726 12680 89(22) 9(5) −8 1(1) 12771(23) 12809.0(2) 0.3(2) 12656 [35]
6p 2P3/2 11618 12502 12467 94(24) 8(4) −5 −1(1) 12563(24) 12606.6(2) 0.3(2) 12452 [35]

EEs
5s 2S1/2 −5p 2P1/2 23646 30243 29400 −14(4) 147(73) −24 −25(25) 29484(78) 29552.061(1) 0.2(3) 29496 [35]
5s 2S1/2 −5p 2P3/2 24228 31152 30319 −2(0.) 154(77) −36 −18(18) 30418(79) 30472.703(1) 0.2(3) 30451 [36]
5s 2S1/2 −6s 2S1/2 33261 42373 41953 396(99) 172(86) −51 −19(19) 42451(105) 42556.152(2) 0.2(3) 42329 [34]
5s 2S1/2 −6p 2P1/2 38590 48288 47727 352(88) 185(92) −51 −23(23) 48190(108) 48297.402(3) 0.2(3) 47765 [35]
5s 2S1/2 −6p 2P3/2 38758 48512 47940 347(87) 185(93) −54 −21(21) 48398(103) 48500.805(2) 0.2(3) 47969 [35]

18 f , and 16g orbitals to demonstrate the importance of con-
sidering an all-order method such as RCC theory for accurate
calculations of the properties in Ag. Most of the uncertainty
in our calculated energies and IS factors would stem from
the frozen orbitals in the estimations of the triples contribu-
tions. High-lying orbitals that are not included in the RCCSD
calculations can also contribute, to some extent, to the IS
factors. We have accounted for possible uncertainties from
these contributions after estimating them in the MP2 method.

B. Results and discussion

1. Energies

In Table I, we give results for the calculated EAs. They are
given first at the DHF approximation, which already captures
the gross level structure. When taking into account electron
correlations through either MP2 or RCCSD, the EAs of the
n = 5 manifold increase by O(15%). The effect is stronger
than in the isoelectronic Cd II, where it is 8–9%, indicating
that electron correlations are more important in Ag I. For
the n = 6 manifold, the increase is half the size, hinting
that correlations in more weakly bound single-valence states
play smaller roles, as expected. Introducing correlation effects
through triple excitations increases the EAs of the n = 5 man-
ifold by 0.7–1.5%, twice as much as in Cd II, and three times
that for the n = 6 manifold. The uncertainty tied to missing
quadruple electron excitation contributions to EAs is expected
to be small. The basis set extrapolation increases the EAs for
all levels as well.

The Breit and QED contributions are found to be small,
but not negligible. We find that for states with ns valence
orbitals, the Breit and QED corrections are comparable in
magnitude, while for states with the np subshells, the former
is much larger, as was pointed out in [42]. Our approximate
QED correction to the 5s 2S1/2 EA is found to be smaller
than most other literature values, as compiled in Table VIII
of [42]. For this reason, we ascribe a 100% uncertainty to
it and to the corresponding corrections to the IS operators.

Although these uncertainties are negligible with respect to
other contributions, they point out that moving to heavier
or multiply charged systems without losing accuracy would
necessitate a refinement of the QED treatment.

The total EAs are 0.2–0.3% away from experiment, within
two standard deviations from our estimated uncertainty. They
are closer to the experimental values than the closest results
from the literature [34,35], which do not quote uncertainties,
by up to a factor of 8. Due to the stronger electron correlations,
the total uncertainty is a factor of 2–3 higher than in our prior
work on Cd II. All in all, we undershoot the experimental
energies, which indicates that a more complete treatment of
electron correlations is necessary for accurate estimations of
the results. For Cd II, we overshot the experimental energies,
indicating possibly underestimated many-body QED effects.

The EEs are calculated from the differences of the other
level EAs to that of the 5s 2S1/2 ground level at different
approximations. Similarly to the EAs, the EEs are 0.2% away
from experimental measurements, within our uncertainty es-
timation. The EEs of the n = 5 doublet are less accurate than
in the prior works [35,36], while those of the higher states
are more so [34,35]. It is interesting to note that contributions
from the triple excitations are similar for each state in the
manifold. This means that the uncertainty is dominated by
basis extrapolation for the first two EEs.

2. IS factors

In Table II, we give the IS factors evaluated at differ-
ent levels of approximation. We first discuss the FS factors
from our calculations. At the DHF level, F (5s 2S1/2) and
F (6s 2S1/2) are large stemming from strong overlap with
the nucleus, F (5p 2P1/2) and F (6p 2P1/2) are small but non-
negligible, and F (5p 2P3/2) and F (6p 2P3/2) are negligible.
Our result for F328 ≡ F (5p 2P3/2) − F (5s 2S1/2) is close
to the Hartree-Fock calculation in [25], but differs from
their Dirac-Fock calculation. Introducing electron correlations
at the AR-RCCSD approximation increases F (5s 2S1/2) by

033040-5



B. OHAYON et al. PHYSICAL REVIEW RESEARCH 6, 033040 (2024)

TABLE II. Calculated isotope shift factors F , KSMS, and KNMS for selected levels in Ag I. For each of the calculated values, we first list
factors relative to the ground state of the Ag II ion, followed by factors for optical transitions from the 5s 2S1/2 ground state of Ag I. F and
KSMS are compared with semi-empirical values from the literature, while KNMS is compared with the values returned from the scaling law
(SL), as discussed in the main text. Calculations are performed with R = 4.55 fm; the effect of repeating them with different radii is shown in
Table III.

State DHF AR-RCCSD +T +Basis +Breit +QED Total

F MHz/fm2

5s 2S1/2 −2527 −3852 129(32) −30(15) 11 19(19) −3723(40)
5p 2P1/2 −17 −163 −37(9) 1(1) 1 1(1) −197(9)
5p 2P3/2 −0. −126 −42(11) 2(1) 1 1(1) −165(11)
6s 2S1/2 −412 −517 15(4) −1(1) 1 2(1) −499(5)
6p 2P1/2 −5 −32 −11(3) 1(0.) 0. 0.(0.) −42(3)
6p 2P3/2 −0. −25 −15(4) 1(0.) 0. 0.(0.) −39(4)
5s 2S1/2 −5p 2P1/2 −2510 −3689 166(42) −31(15) 10 19(19) −3525(48)
5s 2S1/2 −5p 2P3/2 −2527 −3726 171(43) −31(16) 10 18(18) −3557(49)
Ref. [25] −2625, −3146 −4265(341)
Refs. [24,26] −4300(300)
5s 2S1/2 −6s 2S1/2 −2115 −3336 114(29) −28(14) 10 17(17) −3223(36)
5s 2S1/2 −6p 2P1/2 −2522 −3820 141(35) −30(15) 11 19(19) −3680(43)
5s 2S1/2 −6p 2P3/2 −2527 −3827 144(36) −30(15) 11 19(19) −3683(43)

KSMS GHz u
5s 2S1/2 −1611 1346 115(29) −4(2) 5 1(1) 1463(29)
5p 2P1/2 −553 342 68(17) −3(2) −1 −0.(0.) 405(17)
5p 2P3/2 −464 370 64(16) −3(1) −0. −0.(0.) 432(16)
6s 2S1/2 −253 176 28(7) −2(1) 1 0.(0.) 202(7)
6p 2P1/2 −150 65 23(6) −1(1) 0. −0.(0.) 88(6)
6p 2P3/2 −128 75 25(6) −1(0.) 0. −0.(0.) 99(6)
5s 2S1/2 −5p 2P1/2 −1058 1005 47(12) −1(0.) 6 1(1) 1058(12)
5s 2S1/2 −5p 2P3/2 −1146 976 51(13) −1(1) 5 1(1) 1031(13)
Ref. [26] 150(450)
5s 2S1/2 −6s 2S1/2 −1358 1171 87(22) −2(1) 4 0.(0.) 1260(22)
5s 2S1/2 −6p 2P1/2 −1461 1281 92(23) −3(1) 5 1(1) 1375(23)
5s 2S1/2 −6p 2P3/2 −1482 1271 90(23) −3(2) 5 1(1) 1363(23)
KNMS GHz u SL
5s 2S1/2 3393 808 36(9) 11(5) −1 −1(1) 852(11) 1005
5p 2P1/2 1200 367 51(13) 5(3) −1 0.(0.) 422(13) 519
5p 2P3/2 1111 351 49(12) 5(3) −1 −0.(0.) 405(13) 504
6s 2S1/2 667 274 2(1) 1(1) −0. −0.(0.) 277(1) 305
6p 2P1/2 396 181 5(1) 1(1) −0. 0.(0.) 187(1) 211
6p 2P3/2 376 176 5(1) 1(1) −0. −0.(0.) 182(1) 207
5s 2S1/2 −5p 2P1/2 2193 441 −14(4) 5(3) −0. −1(1) 431(5) 486
5s 2S1/2 −5p 2P3/2 2282 457 −13(3) 5(3) −1 −1(1) 448(4) 501
5s 2S1/2 −6s 2S1/2 2727 534 34(9) 9(5) −1 −1(1) 575(10) 700
5s 2S1/2 −6p 2P1/2 2998 627 31(8) 9(5) −1 −1(1) 665(9) 764
5s 2S1/2 −6p 2P3/2 3017 632 32(8) 9(5) −1 −1(1) 671(9) 798

50%, and F (6s 2S1/2) by 25%. This trend is similar to that
seen with the EAs. Correlations also increase F of the nP
levels, thus reducing the magnitudes for the fine-structure
intervals. Triple excitation contributions to F (5s 2S1/2) reduce
its magnitude by 3%, twice as much and of opposite sign as
in Cd II. In Zn II, triple contributions to F (4s 2S1/2) are of
the same sign and five times smaller then in Ag I [20]. These
observations demonstrate the nontrivial nature of correlation
effects from the high-level excitations, and motivate extending
these calculations to the homologous levels in Cu I in order to
gain further insight. As in Cd II and Zn II, the contribution of
approximate QED corrections is much larger than that of the

Breit interaction. Nevertheless, it is still small compared with
our uncertainty estimation.

Note that ours is an ab initio calculation of the FS fac-
tor in Ag I levels. Nevertheless, it was semi-empirically
extracted from the 5s 2S1/2 hyperfine structure, yielding
F328,SE = −4265(341) MHz/fm2, with SE shorthand for
semi-empirical, given in [25]. A similar estimation was also
used in recent works [24,26]. F328,SE is larger than our
recommended value by two of its standard deviations. A
quarter of the difference is directly related to the missing
contribution from the 5p level, and another quarter from
their estimation of the higher-moment contribution. These

033040-6



RECONCILING MEAN-SQUARED RADIUS DIFFERENCES … PHYSICAL REVIEW RESEARCH 6, 033040 (2024)

observations support other studies (see [12,43,44]) which
suggest that semi-empirically estimated values of F are
about 20% too large. While this effect was already re-
ported by Torbohm et al. in 1985 [45], semi-empirical values
for F are still often assigned a much smaller error in the
literature.

The SMS factor KSMS, tied to a two-body operator, is
entirely affected by electron correlations; so much so that its
calculated value is meaningless at the mean-field approxima-
tion. At the AR-RCCSD approximation, KSMS(5s 2S1/2) is of
similar magnitude in Ag I and Cd II. However, KSMS(5p) for
both levels of the doublet is 2.5 times larger in Ag. Triple
excitation contributions are twice larger for KSMS(5s 2S1/2)
and an order of magnitude larger for both KSMS(5p 2P1/2) and
KSMS(5p 2P3/2) Surprisingly, KSMS converges fast with in-
creasing basis size. This is fortunate as the calculation of KSMS

at the AR-CC singles doubles triples (AR-CCSDT) approxi-
mation already requires several months of computation time
on a medium-sized high-performance cluster. As in Cd II, the
Breit and QED corrections to KSMS are completely negligible.
Thus, the total uncertainty is dominated by our estimation of
contributions from the missing quadruple excitations.

To our knowledge, there are no available ab initio calcu-
lations of KSMS to be compared with. Nevertheless, we can
test the heuristic used in [26], that KSMS

SE ≈ 0.3(9)KNMS
SL =

150(450) GHz u, where the NMS factor was estimated
through the scaling law (SL) KNMS

SL = −me�E = 501 GHz u,
with �E the measured energy difference. Even though a large
uncertainty is attached to this semi-empirical calculation, our
result lies two standard deviations away, putting some doubts
on the reliability of using this semi-empirical method.

Although KNMS is estimated from a one-body operator, it
is highly affected by electron correlations, with the AR-CCSD
value only a third of the DHF value. Triple excitations con-
tribute around 10% to the n = 5 manifold states, as seen in
Cd II. For the n = 6 manifold, the effect of correlations is
smaller: half and a few percent in the AR-RCCSD method
and after including contributions from the triple excitations,
respectively. Breit contributions to KNMS are found to be small
but not negligible, while QED contributions are negligible. A
difference of 10 to 20% between the calculated KNMS and the
one semi-empirically estimated via scaling law is observed for
all levels. It is much larger than the difference seen in Cd II,
indicating that its origin is from electron correlations, stronger
in Ag I, than from the relativistic effects, stronger in Cd II. A
discussion on this phenomenon can be found in Ref. [46].

The calculations are repeated for different values of R in a
range spanning the root-mean-squared radii of 96Ag – 121Ag.
The results are given in Table III and show that the depen-
dency of the calculated IS factors on R is negligible compared
with our reported uncertainties. Nevertheless, we take them
into account when extracting δr2 away from stability.

IV. MEASUREMENTS ON THE 5s 2S1/2 → 5p 2P3/2

LINE AT 328 NM

To improve the available measurements for the naturally
occurring isotopes of Ag, we perform continuous-wave laser-
induced fluorescence spectroscopy with a buffer gas cooled
atomic beam. The spectrometer used for these measurements

has been previously described [47–49]. Briefly, Ag atoms
of natural isotopic abundance (52% 107Ag and 48% 109Ag)
are produced by laser ablation inside a cryogenically cooled
copper cell, thermalized by colliding with a He buffer gas
at a temperature of 3 K, and exit the cell as a slow, pulsed
atomic beam. At a distance of 70 cm from the exit of the buffer
gas cell, the atoms interact with a low-intensity probe laser
beam which excites the 5s 2S1/2 → 5p 2P3/2 transition near
328 nm. The laser light is produced by frequency doubling
a narrow-linewidth ring dye laser (Sirah Matisse 2DX) at
656 nm. The frequency of the 656 nm light is recorded using
a commercial wave meter (High Finesse WS8-10, calibrated
with a temperature stabilized HeNe laser), which provides
an absolute accuracy of 20 MHz at 328 nm. Laser-induced
fluorescence is collected using a photomultiplier tube whose
photocurrent is delivered to a transimpedance amplifier to
generate a time-of-flight trace. Based on the range of arrival
times at the detector, we estimate that the range of velocities
in the beam covers 90 to 130 m/s (full width at half maxi-
mum). The transverse velocity width of the atomic beam is
restricted using a 2 mm square aperture mounted immediately
in front of the detector. Orthogonality with the atomic beam
direction is ensured using a set of alignment irises mounted
on the detection vacuum chamber; we additionally verify and
limit residual Doppler shifts due to misalignment by com-
paring spectra by arrival time at the detector, as discussed
later.

Figure 2(a) shows the relevant energy levels for 107,109Ag,
both of which have a nuclear spin of I = 1/2. Levels within
the ground (excited) levels are labeled by their hyperfine
angular momentum quantum number F (F ′), and the optical
transitions are labeled by their respective line intensities. In
the experiment, the hyperfine structure in the 2S1/2 and 2P3/2

states is considered. The large splitting (∼1.8 GHz) in the
5s ground state means that atoms excited on the F = 0 →
F ′ = 1 and F = 1 → F ′ = 1 hyperfine transitions are opti-
cally pumped to the F = 1 (F = 0) levels after an average
of two (three) photon scattering events, respectively. The pro-
cess of optical pumping tends to reduce the amplitudes and
increase the width of these lines as compared to the closed
F = 1 → F ′ = 2 transition, and necessitates minimizing the
number of photon scattering events per atom to obtain the best
spectra. Second, the hyperfine splitting in the 5p 2P3/2 state
is roughly three times the natural linewidth of the transition,
which modifies the fluorescence line shape by the interference
between photon scattering pathways [50]. To minimize this
effect, we use laser light linearly polarized at an angle θm =
cos−1(1/

√
3) to the detector direction. This is the so-called

magic angle at which the anisotropic part of the fluorescence
emission is zero, interference between scattering paths dis-
appears, and a symmetric line shape is recovered [50]. The
relatively large solid angle of our collection optics of nearly
π/4 steradians further suppresses the interference effect by
roughly a factor 2.

Figure 2(b) shows three spectra obtained with our spec-
trometer. The upper two spectra are taken with a single-
frequency probe laser, at two different probe laser intensities
I0. We label the spectra by the two-level saturation parameter
s = I0/Isat, where Isat = πhc�

3λ3 = 82.5 mW/cm2 is the two-
level saturation intensity for the transition. Solid red lines
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TABLE III. Determining the dependence of energies and isotope shift factors on the assumed root-mean-squared nuclear charge radius R,
in fm. Calculated values of electron attachments and isotope shift factors in different states with different values for the nuclear charge radius.
The Dirac-Coulomb Hamiltonian at the analytical-response, relativistic coupled-cluster up to double excitations [(AR-)RCCSD] approximation
is used. The R = 4.55 column corresponds to the AR-CCSD column in Table II.

R = 4.34 R = 4.54 R = 4.55 R = 4.56 R = 4.84

EA values in cm−1

5s 2S1/2 60407.91 60407.69 60407.67 60407.66 60407.33
5p 2P1/2 31007.44 31007.43 31007.43 31007.43 31007.42
5p 2P3/2 30088.87 30088.86 30088.86 30088.86 30088.85
6s 2S1/2 18454.78 18454.75 18454.75 18454.74 18454.70
6p 2P1/2 12680.42 12680.41 12680.41 12680.41 12680.41
6p 2P3/2 12467.25 12467.25 12467.25 12467.25 12467.25
F MHz/fm2

5s 2S1/2 −3866.85 −3853.40 −3852.20 −3850.63 −3830.17
5p 2P1/2 −163.99 −163.38 −163.39 −163.26 −162.40
5p 2P3/2 −126.66 −126.22 −126.25 −126.14 −125.47
6s 2S1/2 −518.63 −516.82 −516.66 −516.45 −513.71
6p 2P1/2 −32.03 −31.92 −31.92 −31.89 −31.73
6p 2P3/2 −25.33 −25.24 −25.24 −25.22 −25.09
KNMS GHz u
5s 2S1/2 807.82 807.79 807.88 807.77 807.73
5p 2P1/2 366.64 366.63 366.68 366.63 366.67
5p 2P3/2 350.68 350.67 350.71 350.67 350.71
6s 2S1/2 273.87 273.86 273.87 273.86 273.85
6p 2P1/2 180.86 180.86 180.87 180.86 180.87
6p 2P3/2 175.74 175.74 175.75 175.74 175.75
KSMS GHz u
5s 2S1/2 1346.77 1346.49 1346.33 1346.49 1346.41
5p 2P1/2 342.32 341.77 341.68 341.72 341.79
5p 2P3/2 370.81 370.27 370.16 370.23 370.22
6s 2S1/2 175.67 175.61 175.59 175.60 175.60
6p 2P1/2 65.30 65.19 65.17 65.18 65.18
6p 2P3/2 75.45 75.34 75.32 75.33 75.33

show fits using a set of Lorentzian functions, where the full
width at half maximum �/(2π ) is allowed to vary between
resonances in order to account for optical pumping. For the
spectrum at lower intensity, the relative line intensities agree
well with the relative line intensities given in Fig. 2(a), indi-
cating that optical pumping has been largely avoided. For the
higher-intensity spectrum, we use the relative peak heights to
estimate that when the laser is tuned to the (F, F ′) = (1, 2)
resonance, the atoms scatter, on average, six photons. This
means that the effect of photon recoil shifts and broadens the
resonance lines by, at most, 0.1 MHz. We note that the number
of photon scattering events derived from the line intensities
is a factor of two less than that derived using a simple two-
level rate equation model and the estimated intensity of the
probe light. The Lorentzian linewidth of the (1,2) resonances,
unaffected by optical pumping, is �/(2π ) = 25.4(1.0) MHz.
Fitting with a Voigt line shape resulted in a slightly reduced
Lorentzian linewidth, �/(2π ) = 24.4(6) MHz, with a Gaus-
sian linewidth of below 4 MHz (full width at half maximum),
corresponding to a transverse velocity spread of below 3.1
m/s. The radiative lifetime extracted from the Voigt fits,
τ = 1/�, is a few percent below that reported by Carlsson
et al. [51], which we attribute to the effect of a residual
magnetic field in our detector, measured to be ∼0.3 G.

The absolute frequencies of the line centers from six spec-
tra, taken over two days and using a range of probe laser
intensities, varied by less than 2 MHz (standard deviation),
and intervals between resonance lines varied by less than
1.5 MHz (standard deviation). The absolute frequency uncer-
tainty is dominated by the 10 MHz uncertainty of the wave
meter at 656 nm; in a previous experiment using the same
spectrometer, we found agreement with the precisely mea-
sured 1S0 → 1P1 399 nm line in Yb at the 10 MHz level [47].
Doppler shifts due to misalignment of the probe laser and
atomic beams is, at most, 2 MHz, which we estimate by
plotting the fitted line centers versus forward velocity in the
atomic beam, and extrapolating to zero velocity. We extract
the magnetic dipole hyperfine interaction constants A107 and
A109 in each state for the two Ag isotopes and present these
in Table IV. The ground-state splittings agree, with high ac-
curacy, with the microwave measurements [52,53] to within
2.5 MHz (109Ag) and 0.4 MHz (107Ag), and for the excited
state, we agree with the quantum beat spectroscopy measure-
ments of Carlsson et al. [51] to better than 0.4 MHz. This
suggests that the isotope shift between 107,109Ag measured
from the same spectra may have an uncertainty of 2–3 MHz
due to the uncertainty of the wave-meter frequency measure-
ments.
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FIG. 2. Laser-induced fluorescence spectroscopy of a buffer gas cooled Ag atomic beam. (a) Level scheme for the 2S1/2 → 2P3/2 transition
in 107,109Ag. The relative intensities of the transitions are indicated. (b) Example spectra taken using a single-frequency probe beam with
s = 0.012 (upper), a single-frequency probe beam with s = 0.002 (middle), and a two-frequency probe beam whose frequencies are separated
by 2νAOM ≈ 410 MHz (lower). Resonance lines are labeled by isotope and total angular momentum numbers (F, F ′) for the transition. The
red shaded box indicates the region where the (1,2) transitions of 107,109Ag are almost overlapping. (c) Example time-of-flight trace of the
fluorescence when using the double-pass acousto-optic modulator (AOM) as discussed in the text, illustrating the observation windows used
in the analysis. A sudden change in the fluorescence signal occurs when the AOM is switched on or off. The inset shows a spectrum using
observation window (ii), and the fitted frequency offset � between the (1,2) lines of the Ag isotopes. The contributions of the individual
isotopes are shown in transparent blue, with the solid red line their sum which is the combined fit function. (d) A plot of the fitted value of �

vs 2νAOM for observation windows (i) and (ii), used to extract the isotope shift of the (1,2) lines.

To improve the accuracy of our isotope shift measure-
ments, we introduced a single acousto-optical modulator
(AOM) into the optical setup, operated in double-pass con-
figuration using a cat-eye lens. The AOM is driven at a radio
frequency νAOM, which can be varied via a voltage controlled
oscillator, and is monitored using a radio frequency counter.
We deliberately allow both the zeroth-order (i.e., unshifted)
and twice-shifted beams to be present, such that the probe
laser light is now composed of two frequency components
separated by 2νAOM, and whose spatial overlap and pointing
varies by less than 0.4 mrad as νAOM is varied. An example
spectrum is shown in the lower trace of Fig. 2(b), where
arrows show the displacement in the frequency axis intro-
duced by the AOM. We choose νAOM to be around 200 MHz
such that the frequency-shifted component of the probe beam
excites the 107Ag, F = 1 − F ′ = 2 transition, while the other
component simultaneously excites this transition in 109Ag.
This enables detection of both isotopes while only scanning
a small (∼200 MHz) range with the laser, indicated by the red
shaded box in the spectrum. Moreover, we can rapidly switch

between single- and dual-frequency probe light as atoms fly
through the detector via the rf driving power to the AOM.

Figure 2(c) shows a time-of-flight fluorescence trace using
the AOM method, and with the laser tuned to the (1,2) 107Ag
resonance. The rf power to the AOM is set to give equal op-
tical power in the two frequency components, and is switched
off for roughly 200 µs as the atoms fly through the detector.
We use the fluorescence within this observation window for a
“reference spectrum” in order to fix the 107Ag isotope position
in each measurement. This largely removes contributions to
the IS from any slow drift in the wave-meter frequency axis
over timescales longer than a minute. The shaded regions in
Fig. 2 labeled (i) and (ii) are observation windows for which
both frequency components are present in the probe light.
We fit spectra derived from these observation windows to
a model containing the resonances of both isotopes, where
the hyperfine splittings are fixed to those given in Table IV,
the 107Ag (1,2) resonance is fixed to that measured in the
reference spectrum, and the natural abundance ratio deter-
mines the total contribution from each isotope to the spectrum.
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TABLE IV. Summary of the experimental results for the
5s 2S1/2 → 5p 2P3/2 transition in 107,109Ag, and comparison with the
literature values. All values are given in MHz. Absolute frequen-
cies of hyperfine lines for isotope α are labeled as να (F, F ′) and
ν̄α denotes the gravity center for this isotope. ν̄nat. is the mean of
the gravity centers for the two isotopes, weighted by the natural
isotopic abundance, which approximates the observed line center
in a low-resolution measurement with a naturally abundant sample.
δν109,107(1, 2) = ν107(1, 2) − ν109(1, 2). δν̄109,107 = ν̄107 − ν̄109.

This work Literature

ν109(1, 2) 913 548 760(20)
ν107(1, 2) 913 549 171(20)
A109(2P3/2) −36.9(3) −36.7(7) [51]
A109(2S1/2) −1979.4(1.1) −1976.932 075(17) [53]
A107(2P3/2) −31.7(6) −31.7(7) [51]
A107(2S1/2) −1713.0(8) −1712.512 111(18) [53]
ν̄109 913 548 293(20)
ν̄107 913 548 766(20)
ν̄nat. 913 548 539(20) 913 548 593(60) [33]
δν109,107(1, 2) 410.9(6)
δν̄109,107 473.2(7) 467(4) [24]

476(10) [54]

This leaves only the offset frequency � between the (1,2)
resonances of 107,109Ag as a free parameter, beside a common
amplitude term and a y-axis offset. The inset to Fig. 2 displays
an example spectrum with 2νAOM = 404.02 MHz, showing
the two isotope components of the signal and the interval � in
the underlying fit function.

We repeat this procedure for different values of 2νAOM and
plot � versus 2νAOM in Fig. 2(d). In the ideal case, this should
result in a linear relationship with a gradient 1, whose x-axis
intercept (i.e., where � = 0) returns the isotope shift between
the (1,2) lines of the two Ag isotopes. The linear fits to the
data in observation windows (i) and (ii) have slightly different
intercepts, which we attribute to a small residual misalignment
of the probe light to the atoms, and the atoms in the two
observation windows having slightly different forward veloc-
ities. The slopes of the two curves are 0.96(2) and 1.03(2) in
regions (i) and (ii), respectively. We take the average of the
two intercepts as the x-axis intercept, and half their difference
as the 67% confidence interval, and apply small corrections
to this value to arrive at our value for the true isotope shift as
follows. First, we consider the residual alignment difference
between the two frequency components in the probe light,
which, for a forward velocity of 120 m/s, tends to reduce the
line separation by 150 kHz. Second, the spectral intensity of
the probe light near the 107Ag resonance is about a factor of 4
larger (i.e., s ≈ 0.016) in the reference spectrum, which would
shift the (1,2) line center of 107Ag in the reference spectrum
by +70 kHz. We both correct for these effects and increase
the systematic error bar accordingly. Third, the background
magnetic field in the detector (∼0.3 G) leads to Zeeman shift-
induced broadening of the hyperfine lines and potentially to
a small differential shift. Since the nuclear spins of 107,109Ag
are identical, and the nuclear magnetic moments are within
about 15% of one another [55], this effect is negligible. AC
Stark shifts of the 2P3/2 and 2S1/2 states by the excitation light

are well below the kHz level for the intensities used in our
measurements and can be neglected. The result, δν109,107 =
ν107(1, 2) − ν109(1, 2) = 410.9(6) MHz, is consistent with
that measured using the wide range, single-frequency probe
data, 410.7(7) MHz, though the latter has a few MHz of sys-
tematic uncertainty associated with the linearity of the wave
meter. Our procedure is robust to relaxing many assumptions
about the underlying line-shape model. For example, fitting
the overlapping (1,1) resonances as a single Lorentzian line
changes δν109,107(1, 2) by less than 0.1 MHz. Varying the
contribution of 107,109Ag to the overlapping (1,2) lines also re-
sults in a value for δν109,107(1, 2), consistent within 0.1 MHz.
Such a signal imbalance only significantly changes the slope
observed in Fig. 2(d).

In deriving an improved value for the isotope shift of the
5s 2S1/2 → 5p 2P3/2 gravity center, we take advantage of the
2S1/2 hyperfine-structure measurements of [53], whose stated
uncertainty is below 0.1 kHz. We use the values in Table IV
for the hyperfine splitting of the 2P3/2 states, and use the
result of Fig. 2(d) to fix the isotope shift of the (1,2) lines.
This interval contributes most to the uncertainty of the gravity
center isotope shift, and therefore dominates the error bar.

V. MEAN-SQUARED RADIUS DIFFERENCE

A. Between stable isotope pairs

We now combine our calculations of F and K with opti-
cal isotope shifts to estimate the mean-squared charge radius
difference of the stable isotope pair, δr2

109,107. The calculated
relative transition field shift factors, F (i) − F (5s 2S1/2), span
a range of −3223(26) to −3683(43) GHz/fm2, which is an
order of magnitude larger than their individual uncertainties
(see Table II). Thus, a useful consistency check of our F and
K calculations, as well as the experimental ISs, is satisfied
when applying Eq. (1) to each optical transition returns similar
values of δr2

109,107. The relative ISs are calculated with a Ritz-
type analysis (see, e.g., [12]) of our measurement and those
given in [56–60]. The results are given in Table V.

The standard deviation of the radii extracted from indi-
vidual transitions is 0.003 fm2. It is slightly larger than the
0.002 fm2 which we would expect from the uncorrelated
uncertainties. This could indicate possible underestimated
uncertainties in the experiment and/or our calculation. To
account for it, we conservatively add the standard deviation
as another source of systematic uncertainty to all of our rec-
ommended values of δr2.

Our final recommended value for δr2
109,107 including the

above uncertainties is within 1.0 combined standard uncer-
tainties from δr2

109,107 = (R109
k /V 109

2 )2 − (R107
k /V 107

2 )2, where
the Barrett-equivalent moments Rk are measured with muonic
atom x-ray spectroscopy [2], and the proportionality factors
between the Barrett and second charge moment V2 ≡ Rk/R are
estimated with a Fermi distribution, to which we added a rela-
tive shape-variation uncertainty. It is illuminating to note that
in both muonic and electronic silver, it is the (unknown) shape
change which dominates the error in the extracted radii. This
motivates one to perform an elastic electron scattering experi-
ment to determine the shape change. The marginal agreement
between radii differences extracted all-optically and from

033040-10



RECONCILING MEAN-SQUARED RADIUS DIFFERENCES … PHYSICAL REVIEW RESEARCH 6, 033040 (2024)

TABLE V. Extraction of the mean-squared radius difference,
δr2

109,107 ≡ r2
107 − r2

109 in fm2, of the stable isotopes of Ag via differ-
ent optical transitions from the ground state. δν109,107 ≡ ν107 − ν109

are the center-of-gravity isotope shifts in MHz, estimated from the
indicated data sources, including this work (TW). The correspond-
ing δr2

109,107 in fm2 are extracted employing the factors given in
Table II. The uncertainties are denoted with subscripts according to
experiment (expt), uncertainties in our calculated isotope shift factors
(K, F ), standard deviation from unweighted mean (std), systematic
uncertainty from nuclear shape variation (NS), and uncertainty in
extraction from muonic atoms due to nuclear polarization (NP).

Interval Source δν109,107 δr2
109,107

5s 2S1/2 −5p 2P1/2 [56,57] 473(4) −0.207(1)expt (3)K,F

5s 2S1/2 −5p 2P3/2 TW 473.2(7) −0.204(0)expt (3)K,F

5s 2S1/2 −6s 2S1/2 TW, [56–58] 368(7) −0.212(2)expt (3)K,F

5s 2S1/2 −6p 2P3/2 [59,60] 414.0(6) −0.207(0)expt (3)K,F

Final −0.207(3)std (3)K,F (4)NS

Muonic Ag [2] −0.198(0)expt (4)NP(5)NS

Interpolated [25] −0.148(31)
Compilation [61] −0.148(1)

muonic atoms is expected considering recent work in the
medium-mass region [7,18,20], pointing to the need to rean-
alyze the cascade energies with modern tools (e.g., [62–69]).
It is also worth noting that in Ref. [24], a more conservative
uncertainty estimate for the muonic data was employed.

We conclude this section by focusing on the IS of the fine
structure of the 5p doublet. Calculating it from the factors of
Table II and the recommended δr2

109,107 from Table VI results
in −8.3(4) MHz, in tension with the experimental value of
0 ± 4 MHz, whose uncertainty is completely decided by a
single photoelectric measurement [56]. Extending precision
laser spectroscopy to the IS of the 5s 2S1/2 −5p 2P1/2 338 nm
line could help to shed light on this issue. The experimental
method detailed in this article could be straightforwardly ap-
plied.

B. Among isotope and isomer chains

We interpret the ISs measured in radioisotopes of Ag
in terms of δr2. The nuclei are divided into three groups.
The first consists of those whose ISs were measured only
for the 5s 2S1/2 −5p 2P3/2 328 nm line (Refs. [24,26,27]).

TABLE VI. Extraction of the difference in mean-squared nuclear charge radius, δr2 in fm2, between radioactive silver isotopes and isomers,
from optical isotope shifts δν in GHz. When two references are given, the value is their weighted average. Numbers in italics are an input to
the King Plot of Fig. 3. ν328,KP

109,A is the mean and standard deviation of the posterior distribution of the 328 nm line isotope shift which is output
by the fit. The δr2 are calculated from ν328

109,A and, when available, ν328,KP
109,A , using the isotope shift factors from Table II, taking into account the

corrections given in Table III. The uncertainties in parentheses are tied to the experimental isotope shift measurements, and those in square
brackets are the total systematic uncertainties discussed in Sec. V A. The absolute radius can be obtained by adding R(109Ag) = 4.564(2) fm [2]
in quadrature. The last column includes the ladder-type difference for ground-state nuclei and the isomer shifts for isomers.

A δν548
109,A Ref. δν328

109,A Ref. δν328,KP
109,A δr2

109,A Ref. [24] Ref. [25] δr2
A,A+2

96 2.64+1.1
−0.8 [24] −1.26+22

−31[4] −1.21+27
−19[14]† −0.20(27)[1]

97 4.36(28) [24,26] −1.69(8)[5] −1.55(8)[15] 0.41(8)[1]
98 3.66(21) [24,26] −1.45(6)[4] −1.36(6)[13] 0.31(8)[1]
99 3.20(9) [24,26] −1.28+2

−3[4] −1.20+3
−2[12]† 0.27(5)[1]

100 2.85(20) [24,26] −1.14(6)[3] −1.02(8)[11] 0.43(7)[1]
101 4.672(5) [25] 2.54(23) [24,26] 2.55(17) −1.02(5)[3] −0.98(10)[10] −0.670(3)[135] 0.31(5)[1]
102 1.60(17) [24] −0.712(48)[20] −0.67+5

−4[8]† 0.06(6)[0]
103 3.302(4) [25] 1.58(30) [24] 1.74(8) −0.711(23)[24] −0.63(7)[7] −0.482(2)[98] 0.313(24)[10]
104 2.939(3) [25] 1.71(22) [24] 1.65(14) −0.648(39)[22] −0.61(6)[6] −0.416(2)[83]
105 1.926(6) [25] 0.894(22) −0.397(6)[13] −0.296(2)[63] 0.193(6)[6]
107 0.9781(5) [59] 0.4732(7 ) TW −0.207(0)[6] −0.198(2)[20] −0.148(1)[31] 0.207(0)[6]
114 −0.850(3) [24] 0.408(1)[14] 0.384(1)[50] 0.116(3)[4]
115 −0.995(5) [24] 0.480(1)[16] 0.454(3)[60] 0.114(2)[4]
116 −1.040(9) [24] 0.524(3)[18] 0.500(10)[60] 0.107(3)[4]
117 −1.181(6) [24] 0.595(2)[20] 0.568(3)[70] 0.107(2)[4]
118 −1.203(5) [24] 0.631(1)[21] 0.607(3)[80] 0.108(2)[3]
119 −1.348(5) [24] 0.702(1)[23] 0.675(3)[90] 0.090(2)[4]
120 −1.379(4) [24] 0.740(1)[25] 0.715(2)[90]
121 −1.461(3) [24] 0.791(1)[26] 0.767(1)[100]

δr2
A,Am

99m 3.58(68) [24,26] −1.39(19)[5] −1.18+26
−22[12] −0.11(19)[0]

101m 2.40(24) [26] −0.98(7)[3] −0.91(6)[10] 0.04(8)[0]
105m 2.229(10) [25] 1.21(8) −0.485(21)[16] −0.321(2)[65] −0.088(22)[3]
106m 2.049(30) [25] 1.30(18) −0.474(52)[16] −0.271(4)[52]
108m 0.443(9) [27] −0.159(3)[5] −0.120(13)[20]
110m −0.689(60) [27] 0.0551(17)[18] 0.036(5)[16]

†Our analysis suggests that when adopting the tabulated asymmetric statistical uncertainties in δν328
109,A, the signs of the corresponding

uncertainties in δr2
109,A should be swapped as compared with those given in Table 1 and Fig. 2 of Ref. [24].
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FIG. 3. Two-dimensional King Plot whose data points are given
in italics in Table VI. The vertical axis is the reduced IS in the
5s 2S1/2 −5p 2P3/2 transition. The horizontal axis is the reduced
isotope shift in the 4d95s2 2D5/2 −6p 2P3/2 transition. The resulting
slope (full line) lies two standard deviations (dashed lines) away from
that calculated empirically (dotted line) in [25].

Here, δr2
109,A can be directly estimated using our calculated

IS factors, including the systematic uncertainties discussed in
the previous section. The results are given in Table VI. The
second group includes the four nuclei whose ISs were mea-
sured for both 328 nm and 4d95s2 2D5/2 −6p 2P3/2 548 nm
lines (data from this work and Refs. [24–26,59], itali-
cized in Table VI). Because the 548 nm line involves a
4d95s2 configuration, i.e., a 4d-hole state, accurately cal-
culating F548 ≡ F (6p 2P3/2) − F (4d95s2 2D5/2) and K548 ≡
K (6p 2P3/2) − K (4d95s2 2D5/2) is beyond the scope of this
article. We interpret these data by making use of a two-
dimensional KP linear equation,

δν̄328
A,A′ � K328,548 + F328,548 δν̄548

A,A′ , (24)

where δν̄ i
A,A′ ≡ δν i

A,A′/μA,A′ , F328,548 ≡ F328/F548, and
K328,548 ≡ K328 − F328,548K548. The higher-order corrections
to Eq. (1) affect the validity of Eq. (24). The largest effect
stems from the variation in nuclear shape, which is of the
order of 2% of the field shifts of the two transitions. Thus
the maximal change in the slope F328,548 is 4%, which is
negligible compared with the statistical uncertainty in it,
which is 30%. A Monte Carlo linear regression, shown
in Fig. 3, returns a slope F328,548 = 1.0(3) and intercept
K328,548 = 3.4(1.9) THz u. It also results in posterior ISs for
the cooling line, which we denote δν328,KP

109,A , given in Table VI,
along with their corresponding radii. The third group consists
of nuclei for which measurements exist only for the 548 nm
line. We use the joint distribution of the slope and intercept
to project their ISs from the 548 nm line to the 328 nm line.
The results are also given in Table VI, with the corresponding
radii.

The fit results can be used to check for the reasons
for inconsistencies found in the literature. The fitted slope
deviates by two of its standard deviations from F SE

548,328

F SE
328,548 = 0.33(3), estimated from the semi-empirical FS fac-

tors given in [25]. Combining our calculated factors for the
cooling line with the fitted slope and intercept, we find
F548 = −3+1

−2 GHz/fm2 and K548 = −2+2
−1 THz u. Although it

is roughly estimated, our FS factor is four combined stan-
dard errors away from the semi-empirical estimation F SE

548 =
−12(1) GHz/fm2 [25]. Indeed, the authors of Ref. [25] ob-
served that when F SE

548 was combined with δr2
109,107 from

muonic atoms, a surprising crossing of isotopic chains ap-
peared around Z = 50. To remedy this issue, they elected
to interpolate δr2

109,107 from that of neighboring isotones.
These epicycles resulted in KSE

548 = 4.4(2.7) THz u, which was
considered to agree with the Hartree-Fock calculation by
Bauche [70]. However, as seen in Table II, a Hartree-Fock
calculation cannot reproduce the sign of the SMS, which value
dominates that of the total MS. Considerably reducing the
errors of the data points in Fig. 3, or introducing new ones
via measurements, would help shed light on these issues while
reducing uncertainties in the extracted radii.

Our recommended δr2
109,A are compared with prior extrac-

tions in Table VI and Fig. 1. Although significantly different
IS factors are used, we find agreement with the radii given in
Ref. [24] within uncertainties. This is due to the mitigating
effect of enforcing δr2

109,107 from muonic atoms. However, the
all-optical radii have smaller uncertainties, by up to a factor
of 5 (for δr2

109,105). This motivates more accurate IS measure-
ments for the neutron-deficient Ag, whose radii uncertainties
are now dominated by experiment. A larger disagreement is
observed when comparing our results with those of the GSI
group [25], with the largest deviation (4σ ) for δr2

109,106m. This
is due to the reasons described above; namely, the different
estimation of δr2

109,107 (see Table V) and the highly different
F548. Whereas most of the nuclei whose ISs were measured
with the 548 nm line at GSI were also later measured with the
cooling line, 105Ag, 105mAg, and 106mAg were only measured
with the 548 nm line. This work endows them with reliable
and precise δr2

109,A.
We conclude this section by comparing δr2

109,A from this
work and the value calculated by state-of-the-art density func-
tional theory (DFT) as done in [24] and shown in Fig. 1.
Focusing first on the neutron rich isotopes, we see agree-
ment for the odd-odd nuclei and a disagreement for the
odd-even ones. On the proton-rich side, an agreement is seen
for all nuclei except for 96Ag, as discussed in [24], and
102Ag, which lies 6 standard errors from the DFT calculation.
These discontinuities are further emphasized when looking
at the ladder-type differences, given in the last column of
Table VI.

VI. SUMMARY AND OUTLOOK

Nuclear charge radius differences in the silver isotopic
chain deviate between experiments at the few σ level, as seen
in Fig. 1. To find the origin of these deviations and reconcile
them, we performed high-accuracy calculations of isotope
shift factors in the low-lying states of atomic silver (Tables I
and II), as well as precise spectroscopic measurements in the
silver 5s 2S1/2 −5p 2P3/2 line (Table IV), and combined this
information in a global analysis (Tables V and VI).
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We find that discrepancies in the reported values of δr2 are
largely the result of the field shift factors F used to extract
them from the experimental data, rather than discrepancies be-
tween experiments. Our measurement of the center-of-gravity
isotope shift is within 2 combined standard errors from a
recent collinear laser spectroscopy measurement [24]. This
difference is too small to explain the tensions with earlier stud-
ies, narrowing down the suspects to the used IS factors and/or
the mean-squared radius difference of the stable pair. To test
the latter, we extracted the mean-squared radius difference
of the stable pair from the isotope shifts of four transitions
to the ground state, two of which make use of our measure-
ment in the 328 nm line (see Table V). We find a reasonable
agreement between these radii, which allows one to estimate
the accuracy of the calculated IS factors. Based on this, we
recommended a radius difference for the stable pair. It is one
combined standard error away from the one extracted from
muonic atom cascade x-ray spectroscopy [2], and two stan-
dard errors away from the value used in prior works [25,26],
which was interpolated from neighboring nuclei. The three
values of the mean-squared radius differences used by us
and in prior works partially explain the disagreements in the
silver chain, which must thus originate from the choice of
field shift factor. We show this by making a projection of
our calculated factors from the 5s 2S1/2 −5p 2P3/2 line to the
4d95s2 2D5/2 −6p 2P3/2 line using a King Plot (Fig. 3), which
also benefits from our precise IS measurement. The projected

factors of the 548 nm line disagree by four combined standard
errors with the ones evaluated semi-empirically, thus pointing
out that this is the main culprit of the disagreements.

Having shed light on prior disagreements, we provide in
Table VI transparent and reliable mean-squared radius dif-
ferences in the silver isotopic chain. Their trend is found
to be generally consistent with that from a state-of-the-art
nuclear theory calculation. Nevertheless, the calculated shape-
staggering effect is overestimated on the neutron-rich side,
and there are discontinuities around A = 96 and A = 102
which call for further attention, as seen in Fig. 1. With the
much smaller systematic uncertainties afforded by this work,
the radii of proton-rich silver nuclei could now be greatly
improved with more accurate measurements, and the maxi-
mum information can be extracted from new measurements
extending even further towards the drip lines [71].
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