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Solving the ground state and the ground-state properties of quantum many-body systems is generically a hard
task for classical algorithms. For a family of Hamiltonians defined on an m-dimensional space of physical param-
eters, the ground state and its properties at an arbitrary parameter configuration can be predicted via a machine
learning protocol up to a prescribed prediction error ε, provided that a sample set (of size N) of the states can
be efficiently prepared and measured. In a recent work [Huang et al., Science 377, eabk3333 (2022)], a rigorous
guarantee for such a generalization was proved. Unfortunately, an exponential scaling for the provable sample
complexity, N = mO( 1

ε ), was found to be universal for generic gapped Hamiltonians. This result applies to the
situation where the dimension of the parameter space is large, while the scaling with the accuracy is not an urgent
factor, not entering the realm of more precise learning and prediction. In this work, we consider an alternative
relevant scenario, where the effective dimension m is a finite, not necessarily large constant, while the scaling
with the prediction error becomes the central concern. By jointly preserving the fundamental properties of density
matrices in the learning protocol and utilizing the continuity of quantum states in the parameter range of interest,
we rigorously obtain a polynomial sample complexity for predicting quantum many-body states and their prop-
erties, with respect to the uniform prediction error ε and the number of qubits, n, with N = poly(ε−1, n, ln 1

δ
),

where poly denotes a polynomial function, and (1 − δ) is the probability of success. Moreover, if restricted to
learning local quantum-state properties, the number of samples can be further reduced to N = poly(ε−1, ln n

δ
).

Numerical demonstrations confirm our findings, and an alternative approach utilizing statistical learning theory
with reproducing kernel Hilbert space achieves consistent results. The mere continuity assumption indicates that
our results are not restricted to gapped Hamiltonian systems and properties within the same phase.
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I. INTRODUCTION

The prediction of quantum many-body ground states and
their properties lies at the heart of a multitude of branches
of modern quantum science [1–4], ranging from condensed-
matter physics, quantum computation and simulation, to
quantum chemistry. However, finding the exact ground states
of quantum many-body Hamiltonians is generically beyond
the reach of efficient classical algorithms, under a widely be-
lieved conjecture in computational complexity theory that the
polynomial hierarchy does not collapse [5]. Such complex-
ity arises from the rich structure of the quantum many-body
state space as well as the principles of quantum mechanics.
Recently, it was proved [6,7] that for a particular family
of gapped Hamiltonians, evaluating ground-state properties,
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such as the expectation values of local operators, can be as
hard as solving NP-complete problems in classical settings.

On the other hand, machine learning as an effective approx-
imation scheme whose solution can be efficiently obtained
via proper optimization processes has found a wide spectrum
of applications in solving complex quantum-physics prob-
lems [8–17], including approximating and predicting quantum
states [1,7,18–51], as well as identifying phases and phase
transitions [52–93]. This raises the hope that machine learn-
ing may also help, in some cases, with efficiently predicting
quantum many-body ground states and their properties; for
instance, when the Hamiltonian depends on parameters and
a training set of ground states or their properties can be effi-
ciently prepared for some specific parameter choices, in which
case learning algorithms can help to generalize to unknown
parameters with a lower cost compared to that required in
experiments, and to make predictions for the entire parameter
space, up to a small prediction error ε.

Such a situation has recently been addressed in [7], where
a rigorous guarantee for learning and predicting properties of
quantum many-body ground states was presented, provided
that a training set of the ground states is efficiently available
via classical shadow tomography [94,95]. But, unfortunately,
a provably exponential scaling of the sample complexity N
with the prediction error ε, N = mO(ε−1 ), was found to be
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universal for generic gapped Hamiltonians, where m is the
dimension of the parameter space. This situation is therefore
mostly useful when the dimension m is large while the error
tolerance is high, and precise learning and prediction are not
in focus.

An alternative relevant practical scenario may be that the
scaling of N with the accuracy is the main concern while the
number of parameters m is a finite constant. This includes,
for instance, situations where one is only concerned with the
spatially local properties of the system or with the continuous
macroscopic quantities in the critical region of phase transi-
tions, where only a small number of terms in the Hamiltonian
is relevant.

In this work, we are motivated by the framework of
the probably approximately correct (PAC) learnable [96,97],
which is a fundamental theory of computational learning and
requires the minimal number of samples for the learning task
to scale (at most) polynomially in the inverse of the prediction
error (ε−1), as well as in the inverse of the failure probability
(δ−1). We explore theoretical guarantees for polynomially ef-
ficient learning that significantly reduce the provable sample
complexity scaling exponentially with ε−1 in [7], and find a
decrease of many orders of magnitude in it. The polynomial
sample complexity is numerically demonstrated for a quantum
XY model, which highlights that our results apply to more
general quantum systems beyond gapped Hamiltonians [98]
and properties of a single phase.

While using the framework of kernel-based learning, we
emphasize physical constraints on the learning protocol to
avoid possible unphysical predictions. These constraints lead
us to introduce the concept of positive good kernels (PGKs)
[99], which will be elaborated below.

Moreover, kernel-based models for learning and predict-
ing quantum states have the following advantages: First,
kernel methods have been widely used in supervised and
unsupervised learning tasks such as nonlinear regression
and classification [97,100], and also dimensionality reduction
[82–84,101,102]. The kernel itself contains rich information
such that there is no need to calculate the feature maps in
the high-dimensional feature space [103,104], which drasti-
cally reduces the computational cost. Second, even supervised
learning with neural networks, the currently most popular
architecture, is equivalent to the neural tangent kernel (NTK)
regression in the limit of infinite width of the network [105].
Third, each positive kernel is uniquely associated with a repro-
ducing kernel Hilbert space (RKHS) [97,100,103,106,107],
which can be a universal hypothesis space for the learning
problem (in the case that the kernel is a universal kernel).
With these properties, kernel-based methods not only are of
practical value, but also can provide a unified framework of
theoretical analysis for various provable guarantees.

II. SETTING AND MODEL

We start from a continuously parametrized family of
n-qubit quantum states ρ(x) with x ∈ X , where X =
[− L

2 , L
2 ]m ⊂ Rm is an m-dimensional space of physical pa-

rameters, with L the length of the intervals in each dimension.
Without loss of generality, here we restrict to qubit models.
For fermionic models, they can be encoded as qubits through,

for example, the Jordan-Wigner [108] or the Bravyi-Kitaev
[109] transformation. The states ρ(x) may be, but are not
restricted to, the ground states of a parametrized Hamiltonian
H (x). Additionally, we assume that the parameter space is
equipped with a probability measure μ, according to which
a sample xi is drawn from X , and that a training set of
quantum states, S = {xi, ρ(xi )}N

i=1, can be efficiently prepared
classically or quantumly.

While the tomography for accessing ρ(xi ) experimentally
is, in general, expensive for multiqubit systems, various strate-
gies have been proposed to reduce the cost of quantum state
tomography, e.g., via compressed sensing [110,111], or with
neural-network quantum state tomography [21,39–44]. In par-
ticular, in classical shadow tomography [7,94,95], the sample
state is approximated via randomized Pauli measurements
ρ(xi ) ≈ σT (xi ), with σT (xi ) the classical shadow state over T
copies of measurements at the parameter xi. Moreover, with
locality assumptions, the approximation via shadow states has
been proved [7,94] to be very efficient, requiring only T =
O(ln n/ε2) copies of measurements, where ε is the precision
of the tomography in trace norm. For more details about the
classical shadow tomography, see [7,94].

Without loss of generality, the target functions to be
learned, such as the real and imaginary parts of the density-
matrix entries, or the order parameters of quantum phases are
assumed to be continuous real functions f : X → R [112].
Furthermore, periodic boundary conditions can be assumed
for X , as in [7], such that the function f is defined on a
circle of length L in each dimension. Finally, the predicted
density matrix at an arbitrary x ∈ X is given by the kernel
generalization from the training set S ,

σN (x) = 1

N

N∑
i=1

K�(x − xi )ρ(xi ), (1)

where we assume a kernel with translational symmetry, i.e.,

K�(x, xi ) = K�(x − xi ), (2)

with positive integer index �.
Note that the estimated density matrix σN (x) in (1) should

preserve the fundamental properties of density operators for
all x ∈ X , i.e., it should be Hermitian, positive semidefinite,
and have unit trace. The first two conditions require K�(x) �
0 to be real, while the last one, due to approximation and
statistical errors, can be approximately satisfied in a practical
learning process, i.e.,

TrσN (x) = 1

N

N∑
i=1

K�(x − xi ) ≈ 1. (3)

III. POSITIVE GOOD KERNELS (PGKs)

In order to facilitate an efficient and accurate learning of
the quantum state (1) satisfying the physical constraints for
density matrices, we characterize the following conditions for
PGKs (e.g., see [99,113]):

(I) Positivity and boundness:

0 � K�(x) � O(�τ ) (∀x ∈ X ), (4)

with τ some positive integer.
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(II) Normalization:∫
x∈X

K�(x)dμ(x) = 1. (5)

(III) η-convergence: For all 0 < η � L,∫
x∈X , ‖x‖2�η

|K�(x)|dμ(x) � O(�−1). (6)

The normalization (II) of the kernel guarantees that
TrσN (x) ≈ 1 with high probability with respect to S . The
conditions (I, II, III) allow us to predict the continuous quan-
tum state within a prescribed uniform precision and in an
efficient manner (see more details and examples of PGKs in
Appendix B). If the uniform distribution on X is used, the
probability measure will be given by dμ(x) = 1

Lm dx. As an
example, we present a rectangular Fejér kernel, which is a
PGK (see Appendix B for proof details) given by [99,114]

F�(x) = 1

�m

m∏
i=1

sin2
(

�π
L xi

)
sin2

(
πxi
L

) , (7)

where we have 0 � F�(x) � �m.
In [7], an �2-Dirichlet kernel, D�(x), has been shown to

perform well in approximating smooth functions; in particu-
lar, the average of local observables with respect to the ground
state, with a bounded derivative of the first order and through
a truncated Fourier series. However, we find that in the task
of kernel learning of the density matrix, the Dirichlet kernel
may fail to be a PGK, in the sense that it violates the positivity
and the L1-boundness [99]. For example, taking the dimension
m = 1, the entries of D�(x) can be negative for some values
of x, and also 1

2π

∫ π

−π
|D�(x)|dx � c ln �, with some constant

c > 0.

IV. RESULTS

We are now prepared to present our main findings exposed
by the following two theorems.

Theorem 1 [Efficient learning of quantum-state represen-
tations with positive good kernels (PGKs)]. Given: A family
of n-qubit unknown quantum states ρ(x) with continuously
[112] parametrized density-matrix entries defined on the pa-
rameter space X ⊂ Rm, where m is a constant, and a training
set S = {xi, ρ(xi )}N

i=1 with xi drawn from X according to a
probability density associated with the probability measure μ.

Goal: Output an estimator σN (x) for the density matrix
which preserves the positivity and the unit trace through (1)
via the PGKs, with an as small as possible number of samples
N , and which is close to the true density matrix ρ(x) for an
arbitrary x ∈ X , in terms of the uniform prediction error,

sup
x∈X

‖σN (x) − ρ(x)‖�∞ � ε (8)

and

|TrσN (x) − 1| � ε (9)

at the same time, with probability at least 1 − δ (0 < δ < 1).
Result (Sample complexity): The above goal can be

achieved with only

N = poly

(
ε−1, n, ln

1

δ

)
. (10)

Note that the matrix �∞-norm here (different from the op-
erator norm) is defined as ‖ρ‖�∞ = maxi, j |ρi j |, with ρi j the
entries of the matrix ρ, and poly denotes a polynomial func-
tion. (This completes Theorem 1.)

While the computational time can generically depend ex-
ponentially on the number of qubits because the number
of entries of the density matrix is of O(4n), this may be
reduced to poly(n) for sparse states. We emphasize that ε

represents the uniform prediction error for the whole param-
eter space. Theorem 1 guarantees that efficient learning and
prediction are performed physically by (approximately) pre-
serving the fundamental properties of the density matrix. For
more discussions about the continuity of the density matrix,
see Appendix C.

Motivated by the importance as well as the hardness of
computing the ground-state properties for generic quantum
many-body Hamiltonians, we next relax to the target of learn-
ing a state property,

fO(x) = Tr[Oρ(x)] =
M∑

i=1

fi(x), (11)

a continuous function on X given by the expectation value
of a q-local operator O = ∑M

i=1 Oi, with respect to the quan-
tum many-body state ρ(x). The ith-partite local state property
reads

fi(x) = Tr[Oiρ(x)], (12)

with i ∈ [M] = {1, 2, . . . , M}, where M is a positive integer
scaling polynomially in n, and the local function is bounded
by | fi(x)| � O(1).

Theorem 2 [Efficient learning of quantum-state properties
with positive good kernels (PGKs)]. Given: A training set of
size N efficiently prepared as S = {xi, fO(xi )}N

i=1.
Goal: Predict the quantum-state property,

f̂O(x) = Tr[OσN (x)] =
M∑

i=1

f̂i(x), (13)

via the positive σN (x) with unit trace in (1), with an as small as
possible number of samples N , and such that it is close to the
true values of fO(x) in terms of the uniform prediction error,

sup
x∈X

| f̂O(x) − fO(x)| � ε, (14)

with probability at least 1 − δ (0 < δ < 1).
Result (Sample complexity): The above goal can be

achieved with only

N = poly

(
ε−1, n, ln

1

δ

)
. (15)

Moreover, if locality is assumed, where the learning only re-
quires supx∈X | f̂i(x) − fi(x)| � ε (∀i ∈ [M]) with probability
at least 1 − δ, then N can be further reduced to

N = poly
(
ε−1, ln

n

δ

)
. (16)

Now the computational time scales only (at most) polynomi-
ally in the number of qubits n. (This completes Theorem 2.)

For a summary of the main ideas and the detailed proofs of
the two theorems, see Appendix B.
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FIG. 1. (a) Comparison between the exact (red dashed curve) ground-state energies per qubit and the positive good kernel (PGK) predicted
(blue dots) ones, for a finite-size one-dimensional quantum XY model with sample size N = 106. The black arrows indicate the locations
where the energy curve is continuous but not smooth due to the vacua competition [115,116]. Note that there are two additional but not obvious
points in the vicinity of h/J = ±1, where the energy curve is also continuous but not smooth due to the vacua competition, which are not
indicated in this figure. (b) Double-logarithmic plot of ε−1 vs N (blue dots), and a linear regression (red dashed line) with a slope ≈0.45 and an
R-squared score ≈0.99, confirming a polynomial scaling of the sample complexity. We use the rectangular Fejér kernel with � = 50, n = 5
qubits, γ = 1/3, and samples from a uniform distribution in both (a) and (b). The error ε in (b) is obtained as the maximal error between the
predicted and true energies for a set of fixed values of h/J as shown in (a). The mean values and error bars in both panels are calculated with
30 independent runs.

V. COMPARISON WITH EXISTING RESULTS

We compare the provable polynomial sample complex-
ity here with that scaling exponentially with respect to the
prediction accuracy, while being restricted to learning the
ground-state properties fO(x) in [7]. With a unified error met-
ric and the same notation, the provable sample complexity in
[7] is of the order of

N0 = B2

ε2
(2m + 1)

1
ε2 . (17)

For instance, taking m = 2, the number of qubits, n = 100, a
q-local operator O such that M = O(nq) (taking q = 1), and
ε = 0.1, we then have N/N0 ≈ 10−48 with a Fejér kernel, and
N/N0 ≈ 10−61 with a Gaussian kernel, respectively, where N
denotes the number of samples in (15) (see more details in
Appendix B 6). This demonstrates that the rigorous guarantees
provided here are more powerful when m is not large and the
prediction precision is a central concern.

VI. NUMERICAL DEMONSTRATION

While our rigorous results target experimentally ob-
tained training sets, here we demonstrate the above findings
regarding learning the ground-state properties with a one-
dimensional (1D) quantum XY model [115–117]. The Hamil-
tonian is given by

H = −J
n∑

i=1

1 + γ

2
σ x

i σ x
i+1 + 1 − γ

2
σ

y
i σ

y
i+1 + h

J
σ z

i , (18)

where σ
x,y,z
i are the Pauli matrices of the ith qubit, J > 0

and h parametrize the nearest-neighbor interaction and the
transverse field, respectively, and 0 � γ � 1 is the anisotropic

parameter. We assume periodic boundary conditions for the
qubits. This model is important for studying quantum many-
body physics and is exactly solvable in the dual fermion
picture [108,109]. The latter allows us to test our theoretical
results, for example, when fO(x) is the ground-state energy or
the correlation function.

An interesting feature of the 1D quantum XY model for fi-
nite sizes is that there are two fermion number parity sectors in
the Jordan-Wigner fermion picture [115,116], corresponding
to periodic and antiperiodic boundary conditions of fermions,
respectively. The ground state of the model is the winner
of the competition between the vacuum states of the two
parity sectors. Therefore, there can be gapless points where
the ground-state energy curve is continuous but not smooth
within the parameter range |h/J| � 1 [e.g., see the locations
indicated by black arrows in Fig. 1(a)]. Note that this situation
is not covered by the results in [7].

Figure 1(a) shows a comparison between the PGK pre-
dicted (blue dots) and exact (red dashed curve) energies Eg/J;
the double-logarithmic plot in Fig. 1(b) depicts the scaling
of ε−1 with N (blue dots), where a good linear behavior (red
dashed line) indicates a polynomial sample complexity. Note
that with a sufficiently large fixed value of �, the general-
ization error is dominant, then N ≈ O(ε−2) is observed, as
expected from our results (see Appendix B 3). We use n = 5
qubits and γ = 1/3 to sharpen the nonsmooth behavior of
the energy curve. The excellent agreement between exact and
predicted ground-state energies confirms that our provably
rigorous guarantee is not limited to smoothly parametrized or
gapped Hamiltonian systems as in [7], but can apply to more
general quantum systems.

As a second example, we provide results for predicting
the long-range spin-spin correlation functions of the quantum
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FIG. 2. Predicting the ground-state long-range order (spin-spin correlation function) limr→∞(−1)r〈Sx
0Sx

r 〉 of the quantum XY model in
the thermodynamic limit. (a) Double-logarithmic plot of the positive good kernel (PGK) prediction accuracy ε−1 vs N (blue dots) within
the two-dimensional parameter space −3/2 � h/J � 3/2 and 0 � γ � 1. A linear regression (red dashed line) with a slope ≈0.45 and an R-
squared score ≈0.98 confirms a polynomial scaling of the sample complexity. (b) Comparison between the exact (red dashed curve) long-range
spin-spin correlation function and the PGK predicted (blue dots) one with N = 105, for a quantum XY chain with one-dimensional parameter
space −3/2 � h/J � 3/2 and a fixed value of γ = 1/3. We use uniform distributions, a Fejér kernel with � = 50, and 30 independent runs
as in Fig. 1.

XY model with one- and two-dimensional parameter spaces,
respectively. The target is to learn the ground-state two-point
function [118],

lim
r→∞(−1)r

〈
Sx

0Sx
r

〉
, (19)

where the spin operators are given by Sx,y,z
i = σ

x,y,z
i /2 (set h̄ =

1), and the training set is sampled from the exact solution in
the thermodynamic limit [118].

In Fig. 2(a), we present a double-logarithmic plot of the
inverse uniform error ε−1 versus the number of samples, N
(blue dots), obtained within the two-dimensional parameter
space (h, γ ). The linear scaling (red dashed line) indicates a
polynomial sample complexity. In Fig. 2(b), the comparison
between the exact (red dashed curve) and the predicted (blue
dots) correlation functions is plotted, with the parameter h
varying and a fixed value of γ . More details can be found in
the caption of Fig. 2. We note that in both Figs. 2(a) and 2(b),
the range of parameters includes values where the correlation
function has a divergent or ill-defined gradient (i.e., it is not
smooth), e.g., at |h/J| = ±1 in Fig. 2(b). This is another
strong evidence that our method is applicable to more general
cases beyond gapped Hamiltonians, as well as properties of
the system within the same phase.

VII. LEARNING QUANTUM-STATE PROPERTIES IN
REPRODUCING KERNEL HILBERT SPACE (RKHS)

Now we further elaborate the kernel model and exploit the
theory of generalization in machine learning [97], to explicate
the result in Theorem 2. We recall that in [100,107], each
symmetric and positive-definite kernel K�(x, x′) defined on
X × X is associated to a unique RKHS HK�

(see a brief
review in Appendix D), with the reproducing property

f (x) = 〈 f , K�(x, )〉HK�
, (20)

for all f ∈ HK�
. It is straightforward to verify that the estima-

tor for the state property f̂O(x) given by (1) lies in the RKHS
HK�

. For universal kernels, the corresponding RKHS is a suit-
able ansatz space for learning the quantum-state properties.

Provided a training set S = {xi, fO(xi )}N
i=1, the optimal

function f̂ ∈ HK�
can be found by minimizing the empirical

error,

Et = 1

N

N∑
i=1

| f̂O(xi ) − fO(xi )|, (21)

with a bounded functional norm ‖ f̂O‖HK�
� λ f . The repre-

senter theorem [97,100] states that the optimal solution admits
the form of

f̂O(x) =
N∑

i=1

αiK�(x − xi ), (22)

where the real coefficients {αi} are dual variables determined
by minimizing Et .

To obtain a theoretical guarantee with the PGK estimator
in (1), the dual variables can be set to be αi ≈ fO(xi )/N .
Moreover, according to the generalization theory of statistical
learning, the expected error in terms of the L1-norm,

Ep = E
x∼μ

| f̂O(x) − fO(x)|, (23)

is upper bounded by (with probability at least 1 − δ) (see more
details in Appendix E)

Ep � Et + 8λ f R√
N

√
ln 2

δ

2
, (24)

provided that K�(x, x) � R2 for all x ∈ X .
With a PGK estimator, the empirical error Et can be upper

bounded at O(ε) with large probability, given a polynomial N
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as in (15) (see Appendix E for details). Moreover, the second
term on the right-hand side of (24) can also be consistently
bounded by O(ε). We then obtain a consistent but relaxed
result with respect to Theorem 2, i.e., the expected prediction
error can be of O(ε), requiring only a polynomially efficient
sample complexity.

VIII. CONCLUSION

We have provided a theoretical guarantee for polynomially
efficient machine learning quantum many-body states and
their properties, provided that efficient access to the training
set is available (e.g., via classical shadow tomography) and
that the dimension of the parameter space is not necessarily a
large constant.

The key idea underlying our finding is to jointly utilize the
continuity of quantum states in the parameter space and to
preserve the fundamental properties of the density operator
in the learning protocol. Our provably rigorous results reveal
that a polynomial sample complexity in terms of the uniform
prediction error and the qubit number is possible, allowing us
to predict the quantum states and their properties efficiently
and accurately. When restricted to learning local quantum-
state properties, the dependence of the number of samples on
the number of qubits can be further reduced to poly(ln n).

We emphasize again that our results are not restricted to
learning smooth ground states of gapped Hamiltonians as
in [7]. Because our mere continuity assumption of quantum
states is more general, it also applies to gapless Hamiltonian
systems or continuously parametrized mixed states and their
properties (e.g., quantum states smoothly parametrized by
Kraus operators [119], and quantum metrological states with
finite amounts of quantum Fisher information [120–125]; see
Appendix C for more details). An alternative approach from
the standard generalization theory of statistical learning, based
on the complexity of the RKHS, also achieves consistent
results.

Note added. Recently, two related preprints [126,127] ap-
peared, which obtained a quasipolynomial sample complexity,
while focusing on learning the average of observables under
the assumption of geometric locality, accordingly with more
restricted and specific learning models.
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APPENDIX A: LIST OF ABBREVIATIONS AND SYMBOLS

For the readers’ convenience, here in Table I we list the
abbreviations and symbols used most often in this work.

FIG. 3. Schematics of bounding the prediction error of positive
good kernel (PGK) predictors, with polynomial number of samples.
The target function to be learned (e.g., entries of the density matrix,
expectation values of operators with respect to a target quantum
state, etc.) is a continuous function defined on the compact parameter
space X , the space of which is denoted by C(X ). In the bottom left
of the approximation-generalization-prediction (A-G-P) triangle, the
model space is obtained via the convolution (denoted by a ∗) between
the function itself and a PGK K�. In the bottom right, the kernel
predictor fN is defined as a discrete convolution over the sample set
S of size N . With the physical constraints and proper PGKs, if both
the approximation error d�( f ) and the generalization error dN ( f )
can be bounded from above up to a small error bound of O(ε), in a
consistent manner and with polynomial number of samples, N , then
the prediction error can be bounded at O(ε), according to the triangle
inequality for distances and norms. Note that B is twice the upper
bound of the target function f (x) for x ∈ X (related to the number of
qubits, n) and δ is the probability of success with respect to S.

APPENDIX B: A UNIFIED PROOF FOR THEOREMS 1
AND 2 IN THE MAIN TEXT

1. Setting and summary of main ideas

Summary of proof ideas. Because the target functions to
be learned in Theorems 1 and 2 in the main text, such as
the entries of the density matrix or the average of the local
operators, are continuous functions defined on the parameter
space X , the proofs for the two theorems can be given in a
unified framework.

The key idea relies on the concept of good kernels [99].
(We added the positivity condition for good kernels to predict
density matrices and their properties. Then the L1-boundness
condition for good kernels is automatically satisfied due to
the normalization of the kernel.) The convolution between a
sequence of good kernels and a continuous target function
on a closed interval can approximate the function itself up
to an arbitrary uniform error at O(ε) (also known as the
“approximation to the identity”) [99]. On the other hand, the
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TABLE I. List of abbreviations and symbols.

Abbreviation Full form

PAC-learnable Probably approximately correct-learnable
PGK Positive good kernel
NTK Neural tangent kernel
RKHS Reproducing kernel Hilbert space
A-G-P Approximation-generalization-prediction

Symbol Description

X Input parameter space, with X ⊂ Rm

m Dimension of the parameter space
L Length of X in each dimension
μ Probability measure
S Training set
N Number of samples/size of the training set
n Number of qubits in the system
ε Prediction error bound of the machine learning model
δ Probability of failure (1 − δ is the success probability)
η Quantity used in the definition of continuous functions
� Index of the kernel/Scale of cutoff
K�(x, x′) Kernel defined on X × X
K�(x − x′) Kernel with translational symmetry
M Upper bound of the L1 norm of the kernel
σN (x) Kernel density matrix estimator ∀x ∈ X
Tr Trace
poly(α, γ , . . . ) Polynomial function of α, γ , etc.
d�( f ) Distance (error) from the convolution approximation of f with PGKs
dN ( f ) Distance (error) from the generalization over the training set
O q-local observable defined as O = ∑M

i=1 Oi, with M = O(nq )
B Twice the upper bound of a continuous function f (x) defined on X
CL Lipschitz constant
HK�

Reproducing kernel Hilbert space (RKHS) associated with kernel K�

αi Dual variables for i = 1, 2, . . . , N
f̂O(x) Kernel estimator of the expectation value of O with respect to the quantum state ρ(x)
λ f Upper bound of the functional norm of f̂O(x) in the RKHS
Ep Expected error in terms of L1 norm
Et Corresponding empirical error/training error with respect to Ep

RS Empirical Rademacher complexity
R Square root of the upper bound of the kernel K�

Dn(x) Rectangular Dirichlet kernel with the vector index n
F�(x) Rectangular Fejér kernel with the cutoff scale �

Kh(x) Gaussian kernel parametrized by h

kernel convolution can be approximated as the sample mean
over the training set of size N drawn from the parameter
space X and the target f (x) [e.g., see Eq. (1) in the main
text], up to a generalization error O(ε) and with a proba-
bility of success (at least) 1 − δ. If the two approximation
errors can be consistently controlled (for all x ∈ X ) with
a polynomially scaling number of samples (relative to ε−1,
the qubit number n, and ln δ−1), then Theorems 1 and 2
follow naturally. Note that we have used the Heine-Cantor
theorem which states that a continuous function defined on
a compact metric space is uniformly continuous. Here the
input space X is a compact metric space. See Fig. 3 for
a schematic illustration of the main idea. We will elabo-
rate the details of the proof in the following, where we use
positive good kernels such as the multidimensional Fejér
kernel and the Gaussian kernel, and the uniform proba-

bility distribution. The results can remain unchanged with
nonuniform distributions. (This completes the summary of
the proof.)

Without loss of generality, we set the input parameter space
as X = [− L

2 , L
2 ]m ⊂ Rm, an m-dimensional tensor product of

closed intervals of length L. The target to learn is a continuous
real function f : X → R, defined on a circle of length L in
each dimension (i.e., with periodic boundary conditions in
the parameter space). As in the main text, we restrict our-
selves to kernels with translational symmetry. For a sequence
of kernels, {K�(x)}�∈I , defined on the parameter space X ,
with I the index set of integers by default, we first use the
uniform distribution for the probability measure on X (the
case with nonuniform distributions will be discussed later),
i.e., dμ(x) = dx/Lm. Then, the properties for positive good
kernels read as follows:
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(I) Positivity and boundness: 0 � K�(x) � O(�τ ) (∀x ∈
X ), with τ some positive integer.

(II) Normalization: 1
Lm

∫
x∈X K�(x)dx = 1.

(III) η-convergence: For all 0 < η � L,
1

Lm

∫
x∈X ,‖x‖2�η

|K�(x)|dx � O(�−1) as � → ∞.
We first use a Fejér kernel [99,114] as an example of the

proof. The rectangular Fejér kernel, obtained as the mean of a
sequence of rectangular Dirichlet kernels, is given by [114]

F�(x) = 1

�m

∑
n∈V�

Dn(x), (B1)

where the kernel index set V� = {n = (n1, n2, . . . , nm) ∈
Zm : 0 � ni < �,∀i ∈ [1, 2, . . . , m]}, and the rectangular
Dirichlet kernel reads

Dn(x) =
n1∑

k1=−n1

n2∑
k2=−n2

· · ·
nm∑

km=−nm

e2πk·x/L, (B2)

where the wave vector k = (k1, k2, . . . , km) takes integer en-
tries. An equivalent but closed expression for the Fejér kernel
above is

F�(x) = 1

�m

m∏
i=1

sin2
(

�π
L xi

)
sin2

(
πxi
L

) , (B3)

where we have 0 � F�(x) � �m. The closed form (B3) of
the rectangular kernel significantly accelerates the numerical
convolution compared to the �2 kernels, as the latter require
to first generate wave vectors whose �2-norm does not exceed
�, while the cardinality of the wave-vector set can be expo-
nentially large relative to � [7].

Lemma 1. The rectangular Fejér kernel is a positive good
kernel (PGK) with respect to the uniform distribution.

Proof. The positivity and boundness, as well as the normal-
ization, can be easily verified through the closed expression
of the Fejér kernel. The last property (III) can be found to
be true in the following Appendix B 2 while bounding the
approximation error in (B6). �

Here the target function f (x) to be learned can be either
the entries of the density matrix (real or imaginary parts,
respectively) or the average of observables with respect to
the quantum state, fO(x) = Tr[Ôρ(x)], where Ô is a local
bounded operator as in the main text.

Notation and definition. Because f (x) is assumed to be
continuous on a compact metric space X ⊂ Rm, according to
the Heine-Cantor theorem, it is uniformly continuous. Then,
∀ε > 0, there exists η > 0 such that if ‖x − y‖2 � η, then
| f (x) − f (y)| � ε

4 [called ( ε
4 , η)-continuous]. The function

is uniformly continuous, so η is independent of x, but can
depend on ε. Furthermore, for a rich family of continuous
functions, η can be chosen to be of O(εk ), where k � 0. For
example, for Lipschitz continuous functions, which satisfy the
Lipschitz condition

| f (x) − f (y)| � CL‖x − y‖2 (B4)

for all x, y ∈ X , with CL the Lipschitz constant, we have η =
ε/(4CL ). Or, more generally, for Hölder continuous functions
satisfying

| f (x) − f (y)| � CH‖x − y‖αH
2 , (B5)

where CH is a constant and αH ∈ (0, 1], we have k = 1/αH .
As a consequence, a function that scales polynomially in
η−1 is also polynomial in ε−1. In addition, because f (x) is
continuous on the closed set X , it is guaranteed to be bounded
by | f (x)| � B/2 for all x ∈ X , for some positive constant B.

2. Bounding the approximation error

With positive good kernels, such as the Fejér kernel F�(x),
the error from the convolutional approximation of the function
is given by

d�( f ) = | f ∗ F�(x) − f (x)|

= 1

Lm

∣∣∣∣
∫
X

[ f (x − y) − f (x)]F�(y)dy

∣∣∣∣
� 1

Lm

∫
X

| f (x − y) − f (x)| × |F�(y)|dy

= 1

Lm

∫
y∈X ,‖y‖2�η

| f (x − y) − f (x)| × |F�(y)|dy

+ 1

Lm

∫
y∈X ,‖y‖2�η

| f (x − y) − f (x)| × |F�(y)|dy

� ε

4
+ B

(
C

�

)m

� ε

2
, (B6)

where

C = 4mL2

π2η2
. (B7)

The second equation comes from the symmetry property of
the kernel convolution on X , f ∗ F�(x) = F� ∗ f (x), as well
as the normalization property of the Fejér kernel. In the third
equation, the first integration is upper bounded by ε/4 because
f is ( ε

4 , η)-continuous and because the kernel is normalized.
The bound for the second term in the third equation is ob-
tained based on the fact that the integration over the region
with ‖y‖2 � η does not exceed the integration over the region
with ‖y‖∞ � η/

√
m, where the latter is a multidimensional

integration over a cubic region that can be factorized into the
product of the integrations in each dimension. In each factor
dimension, the Fejér kernel is bounded from above by

1

� sin2[πη/(
√

mL)]
� 4mL2

π2�η2
, (B8)

by using sin x � x/2 while 0 < x < π/3 is a small number.
Then the second inequality holds. This line of argument also
serves as a proof for the statement that the multidimensional
Fejér kernel satisfies the property (III) of good kernels (see
above). Finally, if we set

�m � 4BCm

ε
, (B9)

it suffices to bound the total approximation error d�( f ) up to
ε/2, as in the last inequality.
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3. Bounding the generalization error

The Fejér kernel estimator of the density matrix is given by

σN (x) = 1

N

N∑
i=1

F�(x − xi )ρ(xi ). (B10)

By taking the target f (x) to be the entries of the density
matrix or the state properties fO(x), and with the correspond-
ing sample set S = {xi, f (xi )}N

i=1 drawn uniformly from X
and the function space, Eq. (B10) is a sample mean of the
kernel convolution f ∗ F�(x). Equivalently, denoting a se-
quence of independent random variables as {Zi(x) = F�(x −
xi ) f (xi )}N

i=1, which is bounded by |Zi| � �mB/2, we have

E
xi∼μ(X )

1

N

N∑
i=1

Zi(x) = 1

Lm

∫
X

F�(x − y) f (y)dy

= f ∗ F�(x). (B11)

As in Eq. (B10), the Fejér kernel estimator can be written
as f̂N (x) = 1

N

∑N
i=1 Zi(x). The McDiarmid’s inequality [97]

leads to

Prob

[
| f̂N (x) − f ∗ F�(x)| � ε

2

]
� 2 exp

(
− Nε2

2�2mB2

)
.

(B12)

Therefore, if the number of samples is set to be

N � 2B2�2m

ε2
ln

2

δ
, (B13)

then we have the generalization error

dN ( f ) = | f̂N (x) − f ∗ F�(x)| � ε

2
, (B14)

with probability at least 1 − δ [δ ∈ (0, 1)].

4. Bounding the supremum-norm prediction error with
polynomial sample complexity

Combing Eqs. (B9) and (B13), we can finally obtain the
prediction error of the Fejér kernel estimator as (see Fig. 3 for
an illustration)

| f̂N (x) − f (x)| � dN ( f ) + d�( f ) � ε, ∀x ∈ X , (B15)

with probability at least 1 − δ, by using a sample set of size

N � 32B4C2m

ε4
ln

2

δ

= poly

(
1

ε
, B, ln

1

δ

)
, (B16)

provided that m is a finite constant, the scaling of which is
not a concern. The polynomial scaling of N in ε−1 is due to
the fact that C = O(η−2) = O(ε−2k ), as in (B7) and in the
Notation and definition of Appendix B 1.

Now we can apply (B16) to the quantum-state proper-
ties learning as in Theorem 2 of the main text, where the
target function fO(x) = Tr[Oρ(x)] = ∑M

i=1 fi(x) is a contin-
uous function on X given by the average of a local operator
O = ∑M

i=1 Oi, as in the main text. The bound of fO(x) here is

B = O(M ) = poly(n), provided that | fi(x)| � O(1) as in the
main text.

So far we have focused on approximating a single function.
Next we consider to simultaneously bound the approximation
errors up to ε for a set of continuous functions { fi(x)}M

i=1 with
x ∈ X , with the Fejér kernel predictor as above. This situation
applies to, for example, learning the overall density matrix as
in Theorem 1 and learning the quantum-state properties with
locality assumptions as in Theorem 2.

Define the event Ai to be | f̂iN (x) − fi ∗ F�(x)| � ε
2 ; then,

Prob

(
| f̂iN (x) − fi ∗ F�(x)| � ε

2
, ∀i ∈ [M]

)

= Prob.

(
M⋂

i=1

Ai

)

= 1 − Prob.

(
M⋃

i=1

Ac
i

)
, (B17)

where Ac
i =: | f̂iN (x) − fi ∗ F�(x)| � ε

2 is the complementary
event of Ai. Also, we have the following relation:

Prob

(
M⋃

i=1

Ac
i

)
�

M∑
i=1

Prob
(
Ac

i

)
� Mmax

i∈[M]
Prob

(
Ac

i

)

� 2Mmax
i∈[M]

exp

(
− Nε2

2�2m
i B2

i

)
, (B18)

where the first inequality is from the fact that Prob(A1 ∪
A2) = Prob(A1) + Prob(A2) − Prob(A1 ∩ A2) �
Prob(A1) + Prob(A2), and the last inequality is derived from
(B12). Lastly, by combining Eqs. (B9), (B17), and (B18), we
obtain that with success probability at least 1 − δ, all of the
functions fi(x) can be approximated by the kernel predictor up
to a maximal error ε, if the kernel parameter and the number
of samples are set to be

�m � 4BmaxCm
max

ε
(B19)

and

N � 32B4
maxC2m

max

ε4
ln

2M

δ

= poly

(
1

ε
, Bmax, ln

M

δ

)
, (B20)

respectively, where the respective maximal values of B and C
are obtained by taking i running from 1 to M. Note that for the
density matrix learning in Theorem 1, Bmax = ‖ρ‖�∞ � 1 and
M = O(2n), while for the quantum-state properties learning
with strong locality in Theorem 2, Bmax = O(1) and M =
poly(n).

In addition, the normalization property of good kernels is
particularly important for the density-matrix learning prob-
lem, in keeping the trace of σN (x) to be (approximately) one
for all x ∈ X . The Hoeffding inequality (or, more generally,
the McDiarmid’s inequality) [97] ensures that the trace of the
predicted density matrix, given by TrσN (x) = 1

N

∑N
i=1 F�(x −
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xi ), lies in the vicinity of one with high probability. Con-
cretely, we have

Prob[|TrσN (x) − 1| � ε] � 2 exp

(
−2Nε2

�2m

)
. (B21)

Therefore, by taking N in Eq. (B20), it suffices to set
|TrσN (x) − 1| � ε with probability at least 1 − δ.

So far we have proved the statements in Theorems 1 and
2 in the main text with an example of PGKs, the rectangular
Fejér kernel. Alternatively, one can use a Gaussian kernel as
another choice of the PGKs, in which case the index set of
the kernel is not restricted to positive integers. Then the Fejér
kernel in Eq. (B10) can be replaced by a Gaussian kernel,
which is given by

Kh(x) = Chexp

(
−‖x‖2

�2

h

)
, (B22)

where x ∈ X and Ch is the normalization coefficient. Note that
here 1/

√
h plays the same role as � in the Fejér kernel. We set

h � L/2; then, Ch = [L/(
√

πh)]m. We extend the Gaussian
kernel to be defined periodically outside X , i.e., to be defined
on a circle of length L in each dimension as in the case of the
Fejér kernel. Then, following a similar procedure as above, it
can be straightforwardly shown that for m � 2, the required
number of samples for | f̂N (x) − f (x)| � dN ( f ) + d�( f ) � ε,
with confidence at least 1 − δ [δ ∈ (0, 1)], is

N �
2B2Cm

g

ε2
ln

2

δ

= poly

(
1

ε
, B, ln

1

δ

)
, (B23)

where Cg = mL2

πη2 ln 2mB
ε

. So the result is similar to that with a
Fejér kernel in (B16). Other examples of PGKs, which may
have better performance, will be left for future work.

5. Nonuniform distributions

We have demonstrated a polynomial sample complexity
with a uniform probability density, dμ(x) = dx/Lm. We recall
that [97] the framework of the probably approximately correct
(PAC) learning also requires that the polynomial sample com-
plexity is distribution free. So it is meaningful to explore other
practical probability densities, �(x), with which the sample xi

is drawn from X , denoted by dμ(x) = �(x)dx. Starting from
the above rectangular Fejér kernel as an example, one can use
a weighted Fejér kernel, given by

F̃�(x) = ω(x)F�(x), (B24)

where ω(x) = �0(x)/�(x), with �0(x) = 1/Lm the uniform
density distribution. Then the weighted Fejér kernel is a PGK
when the probability density �(x) is used, and serves as the
kernel used for a similar derivation leading to a polynomial
sample complexity as in the above proving procedure, pro-
vided that F̃�(x) is also upper bounded by O(�m) for x ∈ X ,
as in the case of the Fejér kernel. While this is one of the possi-
ble methods to construct PGKs for nonuniform distributions,
other approaches may exist.

In summary, by combining the above Appendices B 1–B 5,
we complete the unified proof for Theorems 1 and 2 in the
main text.

6. Comparison with existing results

Again, we compare the number of samples above with the
exponential scaling for learning the ground-state properties
fO(x) in [7], with more mathematical details compared to that
in the main text. The target function defined on the compact
parameter space (with L = 2) in [7] is assumed to have a
bounded first-order derivative, which means it satisfies the
Lipschitz condition mentioned earlier,

| fO(x) − fO(y)| � CL‖x − y‖2, (B25)

for all x, y ∈ X . This is a result of the mean value theo-
rem, where the first-order derivative of the function is upper
bounded by CL here. As a consequence, we have η = ε/(4CL )
(or, equivalently, k = 1). Also, note that Ref. [7] uses an
error metric of averaged square distance between the predicted
and target functions, while here we used the supremum-norm
distance bounded by ε. With the same notation, the required
number of samples in [7] is of the order (with CL = 1)

N0 = B2

ε2
(2m + 1)

1
ε2 . (B26)

Note that | fO(x)| � B/2 = O(M ) by assuming that ‖Oi‖∞ =
O(1), and M = O(nq) for the q-local operator O.

For example, taking m = 2, the qubit number n = 100, q =
1, and ε = 0.1, one can easily obtain

N

N0
≈ 10−48, (B27)

with a Fejér kernel, where the required number of samples, N ,
is given by (B16), and

N

N0
≈ 10−61, (B28)

with a Gaussian kernel, where the required number of sam-
ples, N , is given by (B23), respectively. We see that when m
is a small constant, very significant reductions in the provable
sample complexity can be achieved here with the PGKs, as in
the main text.

APPENDIX C: BOUNDED SMOOTH PARAMETRIZATION
IMPLIES CONTINUOUS DENSITY MATRICES

In Theorem 1, we assume that the entries of the den-
sity matrix are continuous over the parameter space. In this
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Appendix, we show the continuity of the entries of the density
matrix, provided that the operator norm of the gradient of the
parametrized density operator is uniformly upper bounded.
This holds for ground states of gapped Hamiltonians and other
smoothly parametrized models.

Lemma 2. For a family of density operators ρ(x) smoothly
parametrized by x, if the gradient is upper bounded uniformly
in the operator norm, i.e., ‖∂xρ(x)‖∞ � C0, then each en-
try of the density matrix is continuous over the parameter
space.

Proof. Because ∂xρ(x) is a Hermitian operator, it has a
spectral decomposition given by

∂xρ(x) =
∑
k=1

λk|ek〉〈ek|, (C1)

where λk is the eigenvalue and |ek〉 is the corresponding eigen-
vector (both of which may be x dependent).

As a result, the gradient of the entry of the density matrix
is bounded by

|∂xρi j (x)| =
∣∣∣∣∣
∑
k=1

λk〈i|ek〉〈ek| j〉
∣∣∣∣∣

�
∑
k=1

|λk| |〈i|ek〉〈ek| j〉|

� ‖∂xρ(x)‖∞
∑
k=1

|〈i|ek〉〈ek| j〉|

� C0

(∑
k=1

|〈i|ek〉|2
∑
k=1

|〈 j|ek〉|2
) 1

2

� C0, (C2)

where |i〉 is a parameter-independent basis of the Hilbert
space, and in the second to last inequality, we have used the
Cauchy-Schwartz inequality and the normalization condition
〈i|i〉 = ∑

k=1 |〈i|ek〉|2 = 1 ∀i.
Because the gradient of the entry is uniformly bounded

by C0 as above, it is a Lipschitz continuous function over
the parameter space, which can be directly obtained via the
mean value theorem. It can be directly generalized to the
multiparameter case, provided that Lemma 2 holds in each
dimension of the parameter space. �

In the following, we list a few examples where the gradient
of the density operator can be uniformly bounded.

1. Ground states of gapped Hamiltonians

The gradient of the ground-state density operator for a local
Hamiltonian H (x) (0 � x � 1) with a uniform constant gap
γ > 0 is given by [98]

∂xρ(x) = i[ρ(x), D(x)],

with D(x) =
∫ +∞

−∞
dt Wγ (t ) eitH (x) ∂xH (x) e−itH (x), (C3)

where Wγ (t ) ∈ L1(R) is a decaying weight function satisfying
‖Wγ ‖1 � c0/γ , for some positive constant c0 [98].

It is straightforward to show that

‖∂xρ(x)‖∞ � 2‖D(x)‖∞‖ρ(x)‖∞

� 2
∫ +∞

−∞
dt |Wγ (t )|‖∂xH (x)‖∞

� 2c0

γ
‖∂xH (x)‖∞. (C4)

Note that we have used that ‖ρ(x)‖∞ � 1 and that the op-
erator norm is invariant under unitary transformations in the
second inequality. Therefore, the gradient of the density ma-
trix above can be bounded provided that each component of
the local Hamiltonian H (x) = ∑

j h j (x) has a bounded gradi-
ent in the operator norm, i.e., ‖∂xh j (x)‖∞ � const.

2. States smoothly parametrized by Kraus operators

In the Kraus representation [119], starting from a
parameter-independent initial state ρ0, the parametrized state
(which can be a pure or a mixed state) is given by

ρ(x) =
∑

i

Ki(x)ρ0K†
i (x), (C5)

where Ki(x) are the Kraus operators satisfying∑
i Ki(x)K†

i (x) = Id (identity). The gradient of the quantum
states satisfies

‖∂xρ(x)‖∞ � 2
∑

i

‖Ki(x)‖∞‖∂xKi(x)‖∞, (C6)

where we have used the subadditivity and submultiplicity of
the operator norm, and ‖ρ0‖∞ � 1.

Therefore, the gradient of ρ(x) can be uniformly upper
bounded, as long as the operator norms of Ki(x) and ∂xKi(x)
(∀i) for the physical process are uniformly bounded from
above.

3. Quantum parameter estimation

In quantum parameter estimation or quantum metrology,
quantum Fisher information plays a central role in charac-
terizing the fundamental precision limit (e.g., for a recent
review, see [124]; see, also, [120–123]). The quantum Fisher
information with respect to the single parameter x for the
quantum state ρ(x) reads

F = Tr[ρ(x)L2], (C7)

where L is the symmetric logarithmic derivative (SLD) oper-
ator given by

∂xρ(x) = 1
2 [ρ(x)L + Lρ(x)]. (C8)

Consequently, we can obtain that ‖∂xρ(x)‖∞ � ‖L‖∞.
This condition holds in quantum metrological schemes with
finite amount of quantum Fisher information (e.g., without
quantum phase transitions in the parameter range of interest).

APPENDIX D: REVIEW OF REPRODUCING
KERNEL HILBERT SPACE (RKHS)

Here we provide a brief review of the key ideas and main
results for the RKHS [100,107].
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Definition 1. Let X be a compact space and H be a Hilbert
space of functions f : X → R with the inner product 〈·, ·〉H,
where a kernel associated with H is defined as K : X × X →
R. If K (X ,X ) is symmetric and positive definite, and has the
following reproducing property, i.e., for all functions f ∈ H,
f (x) = 〈 f , K (x, )〉H, then H is called the reproducing kernel
Hilbert space (RKHS) of K , denoted by HK .

Properties of RKHS:
(1) ∀x ∈ X , K (x, ) ∈ HK .
(2) K (x, x′) = 〈K (x, ), K (x′, )〉HK , which naturally follows

from (1) and the reproducing property of RKHS.
(3) The linear evaluation operator Ex is bounded, i.e.,

|Ex f | = | f (x)| = ∣∣〈 f , K (x, )〉HK

∣∣
�

√
K (x, x)‖ f ‖HK , (D1)

where the second equation follows from the reproducing prop-
erty and the last inequality results from the Cauchy-Schwartz
inequality.

Theorem 3 (Moore-Aronszajn). Let K : X × X → R be a
positive-definite kernel. There is a unique RKHS HK with the
reproducing kernel K .

Universal kernels. Let C(X ) be the space of bounded con-
tinuous functions on X . A kernel K (X ,X ) is called universal
if the RKHS HK is dense in C(X ), i.e., ∀ f ∈ C(X ) and ∀ε >

0, and there is a f ∗ ∈ HK such that ‖ f (x) − f ∗(x)‖∞ � ε.
Representer theorem. The optimal function f̂ in the RKHS

that minimizes the functional-norm regularized empirical loss
on the training set S = {xi, yi}N

i=1,

f̂ = arg min
f ∈HK

1

N

N∑
i=1

�[ f (xi ), yi] + λ‖ f ‖HK , (D2)

takes the form

f̂ (x) =
N∑

i=1

αiK (x, xi ), (D3)

where the dual variables {αi} ⊂ R are determined by mini-
mizing the specific empirical loss function, and λ > 0 is a
regularization parameter to avoid the overfitting. This is par-
ticularly useful for reducing the complexity of the problem,
by transforming the optimization over an infinite-dimensional
Hilbert space into that over a finite set of real variables.

APPENDIX E: LEARNING QUANTUM-STATE
PROPERTIES IN REPRODUCING KERNEL HILBERT

SPACE AND GENERALIZATION ERROR

Here we present the generalization error bound for ansatz
functions from the reproducing kernel Hilbert space (RKHS)
[97]. Given spaces X ⊂ Rm and Y ⊂ R, and a joint distri-
bution D over the joint space, where (x, y) ∼ D for x ∈ X
and y ∈ Y , we are aiming at learning the continuous target

function fO : X → Y , provided a sample set

S = {zi = (xi, yi )}N
i=1 = {zi = [xi, fO(xi )]}N

i=1 (E1)

drawn from the distribution D. An optimal function f̂O ∈ HK

can be obtained by minimizing an empirical loss defined on
the sample set; then the estimator f̂O will be applied to the
whole space X for predictions.

If we take the loss to be

�[ f̂O(x), y] = | f̂O(x) − fO(x)|, (E2)

the empirical error is given by

Et = 1

N

N∑
i=1

| f̂O(xi ) − fO(xi )|, (E3)

and the expected prediction error is

Ep = E
(x,y)∼D

| f̂ (x) − y|

= E
x
| f̂O(x) − fO(x)|. (E4)

In statistical learning theory [97,100], the expected predic-
tion error is upper bounded by the empirical error plus a term
proportional to 1/

√
N . For the model with the RKHS HK , it

can be written as follows:
With probability at least 1 − δ [δ ∈ (0, 1)],

Ep � Et + RS (L ◦ HK ) + 3β

√
ln 2

δ

2N
, (E5)

where

RS (L ◦ HK ) � RS (HK ) = 2λ f

√
trK

N
(E6)

is the empirical Rademacher complexity of the loss space,
and provided that ‖ f̂O‖HK � λ f , and 0 � �[ f̂O(x), fO(x)] �
β for all x ∈ X . Note that we have used the property of the
Rademacher complexity that

RS (L ◦ HK ) � CLRS (HK ), (E7)

provided that �(·, y) ∈ L is a CL-Lipschitz continuous func-
tion (CL = 1 for the loss we use here). The trace of the kernel
defined on the training set satisfies trK � NR2 provided that
K (x, x) � R2.
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With the PGK estimator,

f̂O(x) = 1

N

N∑
i=1

K�(x − xi ) fO(xi ), (E8)

the empirical error can be approximated as (when � is a large
number, the PGK plays a role of the Dirac δ function)

Et ≈ 1

N

N∑
i=1

∣∣∣∣∣∣
1

N

N∑
j=1

K�(xi − x j ) − 1

∣∣∣∣∣∣ × | fO(xi )|, (E9)

which can be upper bounded at O(ε) with large probability,
given a polynomial N as in (B20), with which TrσN (xi ) is
close to one, up to a O(ε) error. Also, note that fO(x) is
bounded. Once Et is minimized up to O(ε), one needs to
bound the second plus the third terms on the right-hand side
of (E5) also up to O(ε), which will result in Ep � O(ε), to
facilitate a good generalization and prediction. Then we get
the minimal number of samples required for this purpose,

N � 1

ε2

⎛
⎝8λ f R

√
ln 2

δ

2

⎞
⎠

2

= poly

(
1

ε
, B, ln

1

δ

)
, (E10)

as in the main text, which indicates an efficient sample
complexity. Note that with the reproducing property for the
function f̂O(x), one obtains that

�[ f̂O(x), fO(x)] � | f̂O(x)| + | fO(x)|
� λ f R + B

2
� 2λ f R =: β, (E11)

where the second inequality is obtained from (D1), and the
last inequality is because R is a large number such that λ f R �
B/2. Furthermore, if the dual variables are set to be

αi ≈ fO(xi )

N
, (E12)

as in the PGK estimator in the main text, we have λ f = BR/2.
Also, to obtain (E10), we have assumed ln 2

δ
� 2 for a small

value of δ. The result in (E10) is consistent with that obtained
from (B12). Note that due to the normalization of the kernel, R
can be, in general, dependent on m exponentially. This can be
further improved by the dimensionality reduction in specific
learning tasks.
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Lemr, and F. Nori, Experimental kernel-based quantum
machine learning in finite feature space, Sci. Rep. 10, 12356
(2020).

[105] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent ker-
nel: Convergence and generalization in neural networks, in
Advances in Neural Information Processing Systems, edited
by S. Bengio et al. (Curran Associates, Inc., 2018), Vol. 31,
pp. 8571–8580.

[106] H. Q. Minh, L. Bazzani, and V. Murino, A unifying framework
in vector-valued reproducing kernel Hilbert spaces for man-
ifold regularization and co-regularized multi-view learning,
J. Mach. Learn. Res. 17, 1 (2016).

[107] M. Schuld, Supervised quantum machine learning models are
kernel methods, arXiv:2101.11020.

[108] P. Jordan and E. Wigner, Über das Paulische Äquivalenzver-
bot, Z. Phys. 47, 631 (1928).

[109] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computa-
tion, Ann. Phys. 298, 210 (2002).

[110] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Quantum state tomography via compressed sensing, Phys.
Rev. Lett. 105, 150401 (2010).

[111] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, Quantum
tomography via compressed sensing: error bounds, sample
complexity and efficient estimators, New J. Phys. 14, 095022
(2012).

[112] For the definition and more details about continuous func-
tions here, see the paragraph Notation and definition in
Appendix B 1.

[113] Note that in the usual definition of good kernels [99], there is
no requirement for the positivity, but a L1-boundness condition
of the kernel is necessary, i.e.,

∫
x∈X |K�(x)|dμ(x) � M as

� → ∞, with M a positive constant. Here, for the density-
matrix learning, the positivity and normalization conditions
together lead to the L1-boundness, with M = 1. Therefore, we
do not write this condition explicitly.

[114] L. Pfister and Y. Bresler, Bounding multivariate trigonometric
polynomials, IEEE Trans. Signal Process. 67, 700 (2019).

[115] A. De Pasquale and P. Facchi, XY model on the circle: Diag-
onalization, spectrum, and forerunners of the quantum phase
transition, Phys. Rev. A 80, 032102 (2009).

[116] M. Okuyama, Y. Yamanaka, H. Nishimori, and M. M. Rams,
Anomalous behavior of the energy gap in the one-dimensional
quantum XY model, Phys. Rev. E 92, 052116 (2015).

[117] S. Sachdev, Quantum Phase Transitions (Cambridge Univer-
sity Press, Cambridge, 2011).

[118] E. Barouch and B. M. McCoy, Statistical mechanics of the
XY model. II. spin-correlation functions, Phys. Rev. A 3, 786
(1971).

[119] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, 2012).

[120] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[121] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory (North-Holland, Amsterdam, 1982).

[122] J. Ma, X. Wang, C.P. Sun, and F. Nori, Quantum spin squeez-
ing, Phys. Rep. 509, 89 (2011).

[123] Y. Che, J. Liu, X.-M. Lu, and X. Wang, Multiqubit matter-
wave interferometry under decoherence and the Heisenberg
scaling recovery, Phys. Rev. A 99, 033807 (2019).

[124] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, Quantum Fisher
information matrix and multiparameter estimation, J. Phys. A:
Math. Theor. 53, 023001 (2020).

[125] E. Rinaldi, M. González Lastre, S. García Herreros, S. Ahmed,
M. Khanahmadi, F. Nori, and C. Sánchez Muñoz, Parameter
estimation from quantum-jump data using neural networks,
Quantum Sci. Technol. 9, 035018 (2024).

[126] L. Lewis, H.-Y. Huang, V. T. Tran, S. Lehner, R. Kueng, and J.
Preskill, Improved machine learning algorithm for predicting
ground state properties, Nat. Commun. 15, 895 (2024).

[127] E. Onorati, C. Rouzé, D. S. França, and J. D. Watson, Efficient
learning of ground and thermal states within phases of matter,
arXiv:2301.12946.

033035-16

https://doi.org/10.1007/s00220-011-1380-0
https://doi.org/10.1073/pnas.0500334102
https://dl.acm.org/doi/10.5555/2976248.2976368
https://doi.org/10.26421/qic17.15-16
https://doi.org/10.1038/s41598-020-68911-5
https://papers.nips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://jmlr.csail.mit.edu/papers/v17/14-036.html
https://arxiv.org/abs/2101.11020
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1088/1367-2630/14/9/095022
https://doi.org/10.1109/TSP.2018.2883925
https://doi.org/10.1103/PhysRevA.80.032102
https://doi.org/10.1103/PhysRevE.92.052116
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1103/PhysRevA.99.033807
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/2058-9565/ad3c68
https://doi.org/10.1038/s41467-024-45014-7
https://arxiv.org/abs/2301.12946

