PHYSICAL REVIEW RESEARCH 6, 033034 (2024)

Efficient factored gradient descent algorithm for quantum state tomography

Yong Wang,' Lijun Liu,>" Shuming Cheng

L3471 Li®,!3 and Jie Chen'-3

'College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
’Department of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030006, China
3Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201203, China
Institute for Advanced Study, Tongji University, Shanghai 200092, China

M (Received 6 November 2023; accepted 20 June 2024; published 8 July 2024)

Reconstructing the state of quantum many-body systems is of fundamental importance in quantum information

tasks, but extremely challenging due to the curse of dimensionality. In this work, we present an efficient quantum
tomography protocol that combines the state-factored with eigenvalue mapping to address the rank-deficient
issue and incorporates a momentum-accelerated gradient descent algorithm to speed up the optimization process.
We implement extensive numerical experiments to demonstrate that our factored gradient descent algorithm

efficiently mitigates the rank-deficient problem and admits orders of magnitude better tomography accuracy and
faster convergence. We also find that our method can accomplish the full-state tomography of random 11-qubit

mixed states within one minute.
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I. INTRODUCTION

Quantum state tomography (QST) is a powerful tool to
recover full-state information of the unknown many-body
quantum systems from measurement statistics, and thus plays
an indispensable role in quantum information processing
tasks, with wide applications ranging from certifying funda-
mental principles in quantum theory [1,2] and benchmarking
quantum devices [3,4], to verifying quantum algorithms [5,6].
However, it is a challenging task due to the curse of dimen-
sionality in the sense that it admits an exponential growth of
measurement settings, memory cost, and computing resources
as the number of subsystems involved linearly increases [4].

Typically, the way QST works is that some proper state
estimator, such as the maximum-likelihood estimator (MLE)
[7-10] or linear regression estimator (LRE) [11-13], is intro-
duced to be optimized over parameterized estimate states and
to find a (sub)optimal state close to the target state [14]. Sev-
eral efficient QST methods have been developed for specific
classes of states, including low-rank states [15—17], permuta-
tionally invariant states [18,19], matrix product states [20—24],
and neural states [25-29]. Since a physical state must satisfy
the fundamental constraint of positivity, extra techniques are
needed to map the estimated state to a physical one. For
example, one is to parametrize the state via the positive-
semidefinite (PSD) factorization [7,9,16,17,28,30-32], and
another is state projection which maps eigenvalues (possibly
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negative) of the estimate to those of physical states [11,13,33—
37]. However, the rank-deficient issue exists in those estima-
tors and is likely to output the estimate states with at least
one or more zero eigenvalues [9,11-13,38,39] for the full-rank
target states. Even though the estimators such as the hedged
MLE [38] and Bayesian mean estimator [36,39] are able to
yield the almost full-rank state, they usually require heavy
computation. Thus, it is crucial to design a state estimator
which mitigates the rank-deficit problem and can also effi-
ciently find a physical estimate.

Further, numerous gradient-based algorithms for the fac-
tored or projected methods have been employed to accelerate
the QST convergence, with some well-known examples in-
cluding diluted direct gradient [8], conjugate gradient (CG)
[40], projected gradient (PG) [35], CG-accelerated PG (CG-
APG) [40], momentum-inspired gradient descent (MGD)
[41], stochastic gradient [42], and Riemannian gradient [43].
However, the issue exists that the current factored gradient
methods have limited convergence speed and accuracy, and
the projected ones need extra computational resources [40].

To address the above issues, here we propose a state-
mapping protocol based on factorization and P-order absolute
eigenvalue mapping Ap, which mitigates the rank-deficient
problem in the tomography optimization. We further show
that this technique is also capable to leverage other QST
methods, such as the MLE with MGD [41]. Additionally, we
introduce a momentum-accelerated Rprop (MRprop) gradient
descent algorithm to achieve fast accurate MLE reconstruc-
tion. Moreover, a product-structured positive operator-valued
measure (POVM) is employed to measure the system and to
reduce the storage cost as well as the required computational
resources.

Extensive numerical experiments are implemented on a
large number of random states, ranging from pure states
and low-rank states, to maximally entangled states. Our re-
sults demonstrate that the proposed factored gradient descent
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algorithm significantly improves the tomography speed and
accuracy of MLE on states with various purity and rank.
This improvement is also witnessed in the MLE using other
optimizer MGD [41] and the LRE [12]. Furthermore, it is
found that the MLE with MRprop and .Ap mapping achieves
the optimal infidelity scale of O(1/N) with sample size N [10]
and a full-state tomography of random 11-qubit mixed states
within one minute, while the MLE with CG-APG takes nearly
15 minutes for 10-qubit states [40]. Finally, the results also
show that our scheme outperforms the iterative MLE (iMLE)
[44] and MLE with CG-APG by orders of magnitude less
runtime and iterations, and more accuracy than the LRE.

The remainder of this paper is organized as follows. Sec-
tion II introduces basic concepts related to QST, including
state description, MLE and LRE estimators, state-mapping
techniques, and state fidelity. Section III details our state-
mapping method, MRprop gradient descent algorithm, and
product-structured POVM. Then, the numerical results and
analysis are presented in Sec. IV. Finally, the summary and
outlook are discussed in Sec. V.

II. QUANTUM STATE TOMOGRAPHY

A. Reconstructing the density matrix

The state of quantum many-body systems is characterized
by a PSD density matrix o with unit trace, i.e., p > 0 and
Tr[p] = 1. Formally, it can be written as

p = pilvi{vil, e))

where p; denotes the occurrence probability of state |y;)
satisfying p; > 0 and ), p; = 1. If p = [¥) (¥, then p is
pure, otherwise it is a mixed state. Note that for the n-qubit
system, generically, it requires d> — 1 real parameters to fully
determine p, where d = 2" is the dimension of the Hilbert
space. It is obvious that the number of parameters describing
state p grows exponentially with the qubit number 7.

To reconstruct density matrix p in Eq. (1), the QST is
decomposed of two steps: The first is the measurement pro-
cedure which yields the outcome statistics described by a
probability distribution (PD) generated from measuring on
identically prepared copies of unknown p. Specifically, quan-
tum measurement is modeled as a POVM {Mk}kK:1 with M >
0 and Zle M, = 1 (1 is the identity matrix), and the proba-
bility p; of each outcome k is governed via the Born rule with
pr = Tr[Myp]. The second is the reconstruction procedure
which finds an estimate state p from the observed PDs. It can
be formulated as the following optimization problem:

estimate p
subjectto  p > Oand Tr[p] =1,
pr = Tr[Myp] = Tr[Myp] V My,
K

M= 0and Y M =1. )
k=1
In practice, it is challenging to directly solve the above

problem for the systems with a larger number of qubits,
due to the curse of dimensionality that as qubit number n

linearly increases, it requires an exponential growth of mea-
surement settings {Mk}kK:1 to determine p, memory to store
p = (p1, ..., px), and computational resources to process the
reconstruction. Further, the presence of statistical error and
readout noise leads to the noisy data f; & Tr[M;p], instead of
the accurate probability py, which makes the tomography task
more challenging.

B. The state estimators
1. Maximum-likelihood estimator

One commonly used choice to perform state estimation is
MLE that minimizes the negative log-likelihood function be-
tween the measured frequency f; and the estimate probability
Pr = Tr[Mp] [7-91,

mini{}nize — ;fk In(Tr[M; P[T (6)]]),

K
subject to My > 0 and ZMk =1, 3)
k=1

where p = P[T ()] is a physical estimate state with a proper
state mapping P[-], and T (@) represents the estimate matrix
characterized by parameter vector . It has a unique global
minimum for strictly convex negative log-likelihood functions
in Eq. (3), otherwise some local minima may exist far from
the global one [45]. One of the well-known MLE algorithms
is iIMLE, which iteratively constructs correction operators
to make the state p asymptotically approach the maximum-
likelihood estimate, via the expectation maximization [44].
The MLE has the advantage of asymptotic normality and
efficiency for full-rank states [10,45], and has been tested
experimentally on, e.g., the single-ion Zeeman qubit [46] and
entangled photons [47].

2. Linear regression estimator

With a complete Hermitian operator basis set {Qi},-dip
any state can be characterized by parameter vector 6 =

(1/Nd, 65, ...,6,) via
dZ
p= 6 )
i=1

where Q) =1/d, Tr[Q2]1=0 for i=2,...,d% and
Tr[2;Q2;] = §;; with the Kronecker function §;;. Similarly, the
POVM {M;}£_, is also decomposed into My = Z?;leiQi
fork=1,...,K, and X is a representation matrix with ele-
ments Xi; = Tr[M;2;]. Thus, the measurement possibility py
associated with outcome k is determined by p; = Tr[M;p] =
2
S X6 = Xi0, with X = (Xi1, . . ., Xe2)-
Another state estimator is LRE [11-13] formulated as the
optimization problem

mini;nize Xk:(fk — X,0)°,

K
subject to M > 0 and ZMk =1. 5)
k=1
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It admits a closed-form solution 8 = (XTX)~ !XT f, where
f=U,..., fx )T denotes the frequency vector and AT is the
transpose of matrix or vector A. Compared to MLE, the LRE
can offer faster arithmetic but slightly worse accuracy, with
experimental validation reported in [11].

C. Mapping techniques to ensure the positivity of estimate states

In the state estimators of MLE (3) and LRE (5), the
estimate state p should satisfy the fundamental physical con-
straint that it is a PSD operator with unit trace; however,
this may not always be guaranteed. As a consequence, it is
essential to introduce the state mapping P[-] of either state
factorization or projection to map the unphysical estimate T
to physical state p.

1. Factorization method

An arbitrary density matrix p admits the factorization
TiT

p =PIT] zzi?ff?fﬁ’

(6)
where transition matrix 7 is usually a complex lower tri-
angular matrix (Cholesky factorization) [7,28,30-32] or an
arbitrary complex matrix [9,16,17], and § denotes the complex
conjugate transpose.

It is evident from Eq. (6) that p is automatically positive,
so the QST optimization is reduced to find T in the factored
space without the positivity constraint. There is evidence to
show the suboptimal tomography accuracy of the existing
factored methods [40].

2. Projection method

Note that any Hermitian matrix 7" has the spectral decom-
position T = VAV', where A is the eigenvalues diagonal
matrix with eigenvalues A, and V is the eigenvectors unitary
matrix. The state-projection methods [11,13,33-37] first in-
troduce the mapping P (-), which maps the eigenvalues A
(possibly negatives) to vector ¢ on the unit simplex /\ under
certain distance function f, i.e.,

o =PpQ)= argmigf(a, A), @)
with
d
Ni=fxeR' x>0 > x=1} ®)

i=1

Then, the physical estimate state is constructed from the
projected o and V,

p=PpIT1=VPA(MV = VEV'. ©)

Here the diagonal matrix ¥ is formed by vector o.

There are many choices of distance f. For example, it is
mostly chosen as the square of the Frobenius norm, ||o —
Al|% := (6 — L) - (o — L), and the corresponding state projec-
tion is called the simplex projection S[-] [34,35,37]. It has an
efficient solution: (1) It sets A; = X; + (1 — Zi A;i)/a for all
A; and the element number a of {A;}. (2) If all A; > 0, then
o; = A; for all A; from {A;}, and end the search. Otherwise, set

o; = A = 0forall A; < 0 from {A;}, remove A; < 0 from {A;},
and repeat step (1).

An alternate is to first project A to the positive space Re™
and then to unit simplex A [48],

0’ = Pre+(A) = arg min f(o’, L), (10)
o’cRe?
with
Ret :={x e RY | x > 0}. (11)

We can obtain a physical state p = VX V' similar to Eq. (9),
with o = Pp (0”). The distance f in Eq. (10) could be either
the square of the Frobenius norm or nuclear norm, which
can be efficiently solved via ¢’ = max(A, 0). This stepwise
projection P o Py+[-] is named M[-] and will be examined
in our experiments in Sec. IV. We remark that it can also be
projected first to the unit sum space {x € R¢ | Z?:l xi =1}
using the Frobenius norm, and then to unit simplex, equivalent
to the S projection.

If T is non-Hermitian, (7 + T7)/2 yields a Hermitian one
that is processed with the above projection process. Indeed,
the projection method pulls the estimate matrix 7 close to
a physical p to enhance the tomography performance, with
expensive spectral decomposition and projection operator
[36,40,48]. Further, discarding negative eigenvalues in the S
or M projection signals the possibility of state information
loss and also gives rise to the estimate close to the lower-rank
states for full-rank target states, thus raising the rank-deficient
issue. Thus, it still calls for developing new state-mapping
techniques to avoid such issues, whereas for the rank-deficient
states, projection methods provide comparable estimates.

D. State fidelity metric for tomography

The reconstruction accuracy of QST estimators can be
evaluated via quantum state fidelity F;, which measures the
distance between the target state p and the estimate p. Specif-
ically, the fidelity F; is defined as [49,50]

Fy(p, B) = (Tr[y/ /P o/ P

and state infidelity is 1 — F;(p, p). An efficient approach ex-
ists to compute the state fidelity as [51,52]

VE(0.7) =) mi(VPov/p)
=2 VHWDoVP) =) Viilpp).  (13)

where 1;(A) refer to the eigenvalues of matrix A, which are
non-negative reals for the PSD matrices p and p [52]. Obvi-
ously, Eq. (13) only needs to find the eigenvalues of pp, rather
than using the two computationally expensive matrix square
roots in Eq. (12).

12)

III. FACTORED MRPROP ALGORITHM WITH P-ORDER
ABSOLUTE STATE MAPPING

In this section, we first present a state-mapping method
based on factorization and eigenvalue mapping, called P-order
absolute state mapping Ap[-], to alleviate the rank-deficient
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issue in MLE and to ensure the fast QST. Then, we develop the
MRprop gradient algorithm to expedite the state reconstruc-
tion. We find that our MLE with MRprop and Ap mapping
is capable of achieving the full-state tomography of 11-qubit
random mixed states within one minute, while it takes nearly
15 minutes for 10-qubit states using the superfast MLE with
CG-APG [40].

A. P-order absolute state-mapping method
1. Method design

For the Hermitian matrix 7, it follows directly from the
factored method that we have

__ T'T  VAVIVAV'
P =TT T T VAVIVAVT
AZ
=V Vi=VEVT, (14)
Tr[A2]

where T admits the spectral decomposition VAV, and ¥ =
A?/Tr[A?] is automatically a non-negative diagonal ma-
trix with unit trace. We remark that the factored method
in Eq. (14) corresponds to an eigenvalue mapping P(-) as
P(A) = A?/Tr[A?], and can also be regarded as a state-
mapping strategy which first uses an eigenvalue mapping
(e.g., P(A) = |A]) to process the Hermitian 7' and simulta-
neously uses the state factorization to output a physical state
P, in the form of

PITTIPIT] .. P(A)
Tr[PITHIPIT]] Tr[P(A)?]

Here the eigenvalue mapping P(-)* contains the projection in
Sec. 1 C2, without the need to map eigenvalues to the unit
simplex.

Following further from Eq. (15), we propose the P-order
absolute state mapping,

V. (15)

p=

1A

Vil (16)

b= AplT] =V

with the eigenvalue mapping

Pp(A) = |A]7. (17)

The tunable parameter P is introduced to adjust the weighting
of different eigenvalues of A. It is easy to verify that Eq. (14)
is a special case of Ap[-] with P = 2, and Ap[-] with an even
integer P can be efficiently computed similar to Eq. (14),
using only matrix multiplication rather than costly spectral
decomposition.

The parameter P enables the .4p mapping in Eq. (16) to
accommodate diverse tomography scenarios, addressing the
requirements for both full-rank and rank-deficient estimation.
In terms of computational efficiency and tomography accu-
racy, P is recommended as 2 for the general unknown states
and choosing a larger even-integer P for the rank-deficient es-
timation, as supposed by the experimental findings in Sec. IV.

2. Rationality analysis

We show that for an arbitrary density matrix p, there al-
ways exists at least one Hermitian matrix 7 such that p =

Ap[T].

Theorem 1. Let p be an arbitrary physical density
matrix and Ap[-] the state mapping Ap[T]:T — p =
V(AP /Tr[|A|P)VT for Hermitian matrix T with spectral
decomposition VAVT. Then, there always exists a surjection
mapping Ap[-].

The proof is sketched as follows. Note that p obeys
the decomposition p = Y, p;|:)(¥;| in Eq. (1). By setting
T =3, (p)"?|¥:) (il we have p = Ap[T]. A similar con-
struction is also obtained as Y, —(p;)"/"|¥;)(yi|. Thus, the
mapping Ap|[-] exists and is surjection.

The proof of Theorem 1 indicates that the eigenvalues of
p and matrix 7 are in one-to-one correspondence, allowing
for iteratively optimizing eigenvalues of p. Moreover, the
Ap mapping preserves the full eigenvalues information with-
out discarding the negative ones, improving the tomography
performance and also alleviating the rank-deficient issue for
full-rank states with suitable P, to be confirmed by the ex-
periments reported in Sec. IV. We remind the reader that the
excellent fit of our method to the measured data may result in
overfitting for large noisy data, which can be mitigated by per-
forming rank-deficient estimation using a larger P. It is also
possible to apply Ap to known QST estimators, such as the
MLE with MGD [41], to provide accuracy and convergence
improvements.

We remark that there exists a way to unite the factored and
projected methods in which the factored method is used in
the early stage to achieve a fast convergence and then the
projected method is employed to improve final tomography
accuracy, such as the MLE with CG-APG [40]. However,
our numerical results in Sec. IV C show that the MLE with
CG-APG becomes inefficient to tomography for the large-
qubit states due to the CG optimizer. Besides, there are issues
in CG-APG regarding the switching condition between the
factored and projected methods as well as the computational
cost to be carefully examined.

B. Momentum-accelerated Rprop gradient algorithm

The MRprop gradient algorithm is then proposed to accel-
erate the state search, where model parameters are updated
based on the sign of gradients, the step size depends on
two consecutive changes in the gradients, and a consistent
direction enlarges the step size and, vice versa, decreases it
[53]. We further introduce the gradient momentum to ensure
more stable and faster convergence, and the complete MR-
prop gradient algorithm with Ap mapping is summarized as
Algorithm L.

In addition to gradient momentum, we also add judgment
on the change of objective function. If the gradient change is
opposite and the function value is greater than the last one,
then the gradient direction is inverted, which further speeds
up the convergence of the algorithm. The comparison of our
developed method with other QST algorithms is showcased in
Sec. IVC.

C. POVM with product structure

In this work, the n-qubit POVM {My} is chosen as a
tensor product of single-qubit POVM {Mk}szl, where k =
(ki,....kp)withk; e {1,...,K}and Mg = My, @ --- @ M, .

033034-4



EFFICIENT FACTORED GRADIENT DESCENT ALGORITHM ...

PHYSICAL REVIEW RESEARCH 6, 033034 (2024)

ALGORITHM 1: MRprop gradient algorithm with Ap-
mapping.

Input: {fi}, {Mi}, 6o € R, n, = 1.14, _ = 0.66,
Tmax — 507 Tmin — 1076, o= 1072
Output: p(6:)

1 Initialize 8y randomly, no = 0.5, mo = 0;
2 fort«+1,...,do

3 ﬁt(af,—1) «— Ap [T(ef,—l)};
4 | 1(0—1) =3 feIn(Tr [Mipe(0:-1)]);
5 gt < Vglt(Btfl);
6 for i < 0to d* — 1 do
7 if gi_1gi > 0 then
8 | mi « min{ni_1m4, Tmax };
9 else
10 if gi_19i <0 then
11 ¢ = max{n_17—, Tmin};
12 if I > [;—1 then
13 | gl < —gi;
14 else
15 | gi « 0
16 end
17 else
18 |t miy;
19 end
20 end
21 end
22 if 4 > 0 then
23 My < (- 1 + 1 - sign(ge);
24 Bt <—0t,1 — My,
25 else
26 ‘ 0r < 0:—1 — ny - sign(ge);
27 end
28 gi—1 < g¢;
29 end

The total number of measurement settings {My} is K", thus
yielding a K"-dimensional PD. Consequently, obtaining Px =
Tr[Mx p] reduces to the product of the matrices.

We take the two-qubit state as an example. Given matrices
M; = [f: Zﬁ] and p = [’é g], where A, B, C, D are block
matrix elements, there is

P =Tr[(M; ® M;)p]

~nfoom ([ tJoa+[s oJors)

= aiTr[MjA] + blTI'[MJB] + CiTI'[MjC] + d,TI'[M]D]
=VplVa Ve Ve Vpl'Vi, (18)

where Vyx is the column vectorization of matrix X, such as
Vi, = lai bi c; d;]". This form can greatly reduce the com-
putational and storage costs, which has been verified in [40],
where the cost of computing the probabilities is reduced from
O(K"4") to O(K"+1). Thus, we utilize the product-structured
POVM in all QST algorithms tested in the following section.

IV. NUMERICAL EXPERIMENTS

In this section, we perform extensive experiments to ver-
ify the great utility of the .Ap-mapping method in various
tomography scenarios. In particular, it is tested on two large
classes of states. One is a class of n-qubit Werner states,

1-p

p=pi)YI+—=1, 19)

with 0 < p < 1 and d = 2". The pure state |) is randomly
generated from

4 Welk)

Vi [

where W, are sampled from {0, 1, —1, i, —i} and |k) denotes
the state basis with binary k (e.g., |2) is [10), for n = 2).
It is obvious that the state set {|¥)} covers the product,
Greenberger-Horne-Zeilinger (GHZ), and W states. The other
is a family of mixed states with rank r,

ATA

p= Te[ATA]’ 2D

W) = (20)

where matrix element A;; in A € C"* is randomly sampled
from {0, 1, —1, i, —i} satisfying that p has rank r.

Numerical experiments are then performed to study the
following problems:

(P1) How do the techniques of state mapping affect the
tomography performance of the MLE with MRprop and even
other QST algorithms?

(P2) What is the reason for the improvements of our Ap-
mapping method?

(P3) Is the MLE with MRprop and Ap[-] capable of effi-
ciently reconstructing various multiqubit states, ranging from
pure states sampled from the set {|W)} to more general mixed
states?

(P4) Are there advantages over previous QST methods with
different optimization algorithms, in terms of tomography
fidelity, runtime, and iterations, when our MLE with MRprop
and Ap[-] is used?

A. Experimental setups

The single-qubit tetrahedral POVM [54] is given by
{My = [1, + (s - 0)/~/31/4};_,, with

S = (17 1’ 1)’ Sy = (_1’ _17 1)9
s3=(=11,-1), s4 =(1, -1, =1), (22)

where o = (o1, 02, 03). Note that our method can be easily
applied to the case involving multiple POVMs on each qubit
or other nontetrahedral POVM. To reduce computational cost
and easily compare with other QST algorithms, we focus on
the tetrahedral POVM. Measurement samples {Nj} are ac-
quired via numerically sampling the multinomial distribution
{pr} of N times, with py = Tr[Mp] for the n-qubit POVM
{Mx} and target state p, and then the measurement frequency
fx is obtained as N /N.

Numerical experiments are conducted on the computer
with single Intel(R) Core(TM) i7-12700KF CPU @ 3.60 GHz
with 64 GB RAM, and single NVIDIA GeForce RTX 3090Ti
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GPU with 24 GB RAM. All QST algorithms are run on the
platform of PYTORCH 2.01 and CUDA 11.8 with the same GPU
device to speed up computation. The parameters of the MR-
prop algorithm are shown in Algorithm 1, identical to those
used in MGD, and the other QST algorithms are consistent
with the original work [12,40,44]. The codes are available in
Ref. [55]. In addition to state fidelity (12), we also collect the
runtime [12,17,40] and number of iterations [8,28] to evaluate
the performance of QST algorithms in Sec. IV C. In detail, the
runtime accumulates the minimum time spent per iteration of
the algorithm, and one iteration means obtaining an estimate
of the target state. Both the runtime and iterations are recorded
until the state fidelity reaches 0.99 or the algorithm consumes
the maximum allowed iterations.

B. Performance of the .Ap-mapping method

The tomography performance of .4p mapping is examined
in terms of convergence speed, accuracy in various sample
number N, and accuracy on states with various purity and
rank. By contrast, other mapping methods acting on our MLE
with MRprop, MLE with MGD [41], and LRE [12], are also
investigated. In summary, there is a total of 10 state mappings
involved:

(i) the factorization method (6) with lower triangular ma-
trix Fact and general matrix Facy;

(ii) the S and M projection mentioned in Sec. II C 2 for the
regular gradient algorithm and projected gradient algorithm
(labeled as “proj”);

(iii) the factorization method with Hermitian matrix (14),
equal to A;; and

(iv) the P-order absolute state mapping Ap (16) with P =
1,3,4.

The target states are chosen as -eight-qubit mixed
states that contain 11 Werner states (19) with p=
'y —1/d)/(1 —1/d) and state purity y sampled equidis-
tant from the interval [1/d, 0.99] and nine random mixed
states (21) with varying rank r, which is sampled via log, r
equidistant from [0, 8]. The number of iterations is 10 and
5 x 103 for the MLE with MRprop and MLE with MGD, re-
spectively, and infidelity is compared after reaching the value
of 10~* or all iterations.

1. Tomography convergence speed

We first examine the tomography infidelity convergence of
our MLE with MRprop based on 10 mappings with N = 10'°
measurement samples. It is shown in Fig. 1 that our Facy
achieves the fastest convergence and the best tomography
accuracy, with state infidelity of almost 10~ within 103 it-
erations. It is also found that other factored methods Fac, and
Fact quickly converge at the early stage, but perform worse
than Facy by up to an order of magnitude in accuracy at the
final stage. The S and M projections offer no convergence ad-
vantage for a regular gradient algorithm, whereas they admit a
rapid convergence in the later stage for the projected gradient
algorithm.

0
| T .
*\\.
-1
>10
g MLE-MRprop
=
c
= 10—2 —=— Facy S
—s— Facr e M
—s— Facp, —- A;
S(proj) —A- Az
-3] =&~ M(proj) Ag
10 0 1 2 3
10 10 10 10

No. of iterations

FIG. 1. The tomography infidelity convergence of our MLE with
MRprop based on 10 state mappings, with N = 10'° measurement
samples. Each is tested on 20 states that contain 11 random Werner
states (19) and nine random mixed states (21). The line denotes me-
dian infidelity and the shaded area is the interquartile range around
the median.

2. Tomography accuracy with varying sample

We then implement the mapping experiments with mea-
surement samples N = 107, 108, 10°, 10'9, 10! for our MLE
with MRprop, MLE with MGD, and LRE. As shown in
Fig. 2(a), Facy outperforms other mapping techniques for
MLE with MRprop, such that more than an order of mag-
nitude improvement in infidelity is obtained. Importantly, it
admits a O(1/N) infidelity scaling as the infidelity scales from
10~! to 10~* as the sample number N varies from 108 to 10'!.
As further displayed in Figs. 2(b) and 2(c), the tomography
accuracy of MLE with MGD is similar to that of MLE with
MRprop, indicating that the Ap mapping is widely applicable
to various optimizers. For LRE, S and M projections have a
better infidelity but a worse tomography accuracy, in compar-
ison with the MLE. This matches well with the previous work

[11].

3. Tomography accuracy on states with varying purity

We continue to study how these mapping methods act on
full-rank states with different purity y. Similar to the experi-
mental settings in Sec. IV B 2, we test the MLE with MRprop,
MLE with MGD, and LRE based on 10 state mappings by
reconstructing 11 full-rank Werner states (19) with uniformly
distributed purity.

In Fig. 3(a), there is a trend that the increase of P in the
MLE with MRprop leads to a high state purity, for the A,
mapping. For P = 2, Facy achieves the best accuracy on states
across purity. Similar results are obtained for the case of MLE
with MGD in Fig. 3(b), except that A; also demonstrates good
performance. It is further found in Fig. 3(c) that for the LRE,
A has comparable accuracy as S and M on most tested
states.

4. Tomography accuracy on states with varying rank

We further perform a full-state tomography of nine random
mixed states (21) with some chosen ranks r based on the
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FIG. 2. The tomography infidelity of (a) our MLE with MRprop, (b) MLE with MGD, and (c) LRE based on 10 mappings, with the sample
size of N = 107, 108, 10°, 10'°, 10"!. The median infidelity obtained from 20 experiments with 11 Werner states (19) and nine random mixed

states (21) is described as the curves, with the interquartile range as the shaded area.

above 10 state mappings. The results in Fig. 4(a) show that
for the MLE with MRprop, Facy has the highest fidelity on
states with various rank, while Fac, and the projected gradient
algorithms based on & and M attain similar accuracy on
most states. However, Ap with a large P tends to suffer from
rank-deficient estimation, which is explained in Sec. IVBS.
Similar results are obtained for MLE with MGD in Fig. 4(b).
These results suggest that Facy offers the strongest adaptation
to a wide range of states. Several good matches are established
between the S and M projections and Faca, Ap with large P
and Facr, in the case of MLE.

5. Analysis of performance improvements

We finally study the problem of whether the eigenvalues
of density matrices reconstructed by .Ap match with those of
the target states. Specifically, the target states are generated as
eight-qubit Werner states (19) with purity y = 0.004, 0.596,
and random mixed states (21) with rank r = 32, 256. Without
loss of generality, we examine this match problem via MLE
with MRprop under nine mappings and 10' measurement

samples. The eight largest and eight smallest eigenvalues are
picked up to benchmark the corresponding algorithm.

As illustrated in Fig. 5, it is observed that Facy fits the
actual eigenvalues almost perfectly for states with various
purity and rank, demonstrating its strong adaptability for a
wide range of states. For example, the minimum eigenvalue
of the Werner state with y = 0.004 is 3.9 x 1073, which is
estimated as 3.5 x 1073 by Facy, while estimates of Faca,
A4, and S and M used for the projected gradient are 3.1 x
1073,3.9 x 10719, 1.1 x 1073,2.2 x 103, respectively. For
the mixed state with » = 256, the actual and estimate minima
are 2.9 x 1077,8.9 x 1077,3.4 x 1078, 0, 0, 0, respectively.
These results confirm that Facy, equivalent to Ap mapping
with P = 2, is suitable for the MLE, with excellent accuracy
and efficient computation.

C. Performance of various QST algorithms

We then introduce tomography infidelity, runtime, and
number of iterations as figures of merit, to evaluate the
tomography performance of various QST algorithms on ran-
dom Werner states within 10* iterations. Particularly, these

—=— Facy —— Facr —— Facy S(proj) —--- M(proj) S e M o—a— A —a— A3 Ay
@10 F T oo M0 T
........ .
. ¢
-1 T
10 Y
) .,4——0--0'—""'.'_ :
3 107
£ -
1 107 |
MLE-MRprop \ MLE-MGD LRE \
10° b 107 o107 h
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
Purity Purity Purity

FIG. 3. The tomography infidelity of (a) our MLE with MRprop, (b) MLE with MGD, and (c) LRE for Werner states (19) with

uniformly distributed purity, based on the 10 mappings with N =

J(y = 1/d)/(1 = 1/d) and y sampled from 1/d to 0.99.

10'° samples. The 11 full-rank Werner states are chosen with p =
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FIG. 4. The tomography infidelity of (a) our MLE with MRprop, (b) MLE with MGD, and (c) LRE for random mixed states (21) with
various rank, based on the 10 mappings with N = 10'* samples. The nine mixed states are chosen with log, r sampled equidistant from 0 to 8.

algorithms are our MLE with MRprop and Facy mapping, MLE with MRprop or MGD attains a higher fidelity than oth-
MLE with MGD [41] and Facy mapping, iMLE [44], MLE ers, with approximately an order of magnitude improvement
with CG-APG [40] using Fac, mapping and S projection, and in state fidelity. Furthermore, it is found in Fig. 6(b) that our

LRE [12] with S projection and .4; mapping. MLE with MRprop consumes fewer iterations and runtime,
compared to the MLE with both MGD and CG-APG. The
1. Tomography of eight-qubit states with varying sample iMLE has very slow convergence and does not always reach

. . 4 . . .
First, these QST algorithms are tested via the task of recon- 9'99 ﬁ delity .even with 10 1terat19ns. .The. LRE requ{res 'no
structing the randomly generated eight-qubit Werner states, iteration anq is extremely fast, makmg it suitable for yielding
subjected to the samples noise. It is shown in Fig. 6(a) that the an initial estimate of other QST algorithms.
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FIG. 5. The distribution of actual and estimate eigenvalues of our MLE with MRprop for the eight-qubit Werner states (19) with state
purity (a) 0.004 and (b) 0.596, as well as random mixed states (21) with rank (c) 32 and (d) 256, within 10'° measurement samples. The actual
and estimate 16 eigenvalues are selected as the eight largest and the eight smallest of the density matrix in descending order.
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FIG. 6. The (a) tomography infidelity and (b) runtime and iter-
ation number of our MLE with MRprop, MLE with MGD, iMLE,
MLE with CG-APG, and two LREs. Given the sample size of
N =107, 108, 10%, 10'°, 10", each experiment is repeated 20 times
with the eight-qubit random Werner states. Each data in (a) and
(b) represents the median metric and the shaded area in (a) is the
interquartile range.

2. Tomography of states up to 11 qubits

We further extend the eight-qubit experiments to states up
to 11 qubits, accounting for runtime and number of iterations.
The maximum number of iterations is set to 10* and statistical
noise is not considered.

It follows from Fig. 7 that our MLE with MRprop and
Facy mapping is able to precisely tomography 11-qubit states
within one minute, implying the strong scalability of our
method. It outperforms the MLE with CG-APG and the iMLE
in that it takes one or two orders of magnitude less runtime
than the MLE with CG-APG for 9- and 10-qubit states and
the iMLE for states with >6 qubits. Further, our MLE with
MRprop shows excellent scalability on a large number of
qubits (>8), with less number of iterations and runtime than
the MLE with the CG-APG algorithm. The iMLE is elim-
inated due to slow convergence. Finally, it is worth noting
that although the LRE reaches the same fidelity faster than

—e— Time of MLE-MRprop-Facy +-4- lterations of MLE-MRprop-Facy
—e— Time of IMLE -4+ lterations of IMLE
—e— Time of MLE-(CG-APG)-(Faca-S)--+- lIterations of MLE-(CG-APG)-(Faca-S)
Time of LRE-S Iterations of LRE-S
Time of LRE-A1 Iterations of LRE-A;
3
10 X 1 04
2
10

-
o

o
N
No. of iterations

N
o

Runtime (s)
=)
- o

10 10"
107 .
107 10
2 3 45 6 7 8 9 10 M
No. of qubits

FIG. 7. The runtime and iteration number of our MLE with
MRprop and Facy mapping and other QST algorithms with the vary-
ing number of qubits. Experiments are implemented to reconstruct
Werner states with uniformly distributed p. A data point is obtained
by mediating either the time or iteration number over 20 states. The
iMLE is up to eight-qubit states as it cannot achieve the 0.99 fidelity
within 10* iterations, while the MLE with CG-APG is up to 10 qubits
limited by long runtime.

our MLE with MRprop, it results in a lower-fidelity estimate
when the same measurement samples are used, as detailed in
Sec. IVC1.

V. CONCLUSION AND OUTLOOK

We have presented the factored gradient descent algorithm
which combines a P-order absolute state-mapping technique
(16) with a momentum-accelerated Rprop gradient algorithm
to achieve fast and accurate reconstruction of multiqubit
states. With extensive experiments on the proposed state-
mapping strategy and other QST algorithms, sufficient results
show that our scheme effectively fits the eigenvalues and
achieves strong adaptability to the state purity and rank, as
well as more precise tomography in less runtime and itera-
tions. It is further demonstrated that the our MLE method
enables tomography of 11-qubit mixed states in less than
one minute and achieves optimal O(1/N) infidelity scal-
ing with sample size N. Finally, our state-mapping strategy
also provides the performance improvement for other QST
algorithms.

There are many interesting questions left for future work.
For instance, a suitable construction of the estimate matrix in
a factored method is still needed to address the rank-deficient
issue, and the discovery of other non-Hermitian constructions
can deepen the understanding of state mappings. Further, it
would also be interesting to verify our method on a real
quantum chip.
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