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Quantum variational algorithms (VQAs) are highly promising to realize quantum advantages on near-term
quantum devices. Existing VQAs based on a manually fixed quantum Ansarz are computationally inefficient
due to noise and the limited coupling maps of these devices. Previous work considers various quantum
architecture search (QAS) algorithms to autodesign a quantum Ansatz based on specific questions to improve
the performance of VQAs. Compared to manual design, autodesign can more efficiently explore the large space
of a possible Ansatz and achieve better performance. However, two main challenges in utilizing QAS to design
quantum circuits efficiently are the tremendous amount of space required for candidate quantum circuits, and
the disconnection between quantum devices and autodesign in terms of qubit mapping and quantum noise. To
address these issues, we propose an adaptive diversity-based quantum Ansarz search algorithm to efficiently
generate the optimal quantum circuit based on device qubit mapping and noise. By considering the diversity
among different candidate circuits and adaptively adding circuit depths, our approach only needs to focus on a
small optimization space at each iteration step. In addition, the synchronization of optimizing circuit structure
and aligning qubit mapping enables us to generate quantum circuits while avoiding additional mapping overhead.
We evaluate the performance of our algorithm on simulators and real quantum devices for quantum eigenvalue
problems and classification tasks. Results demonstrate that quantum circuits generated by our method outperform
both a fixed hardware-efficient Ansatz and randomly generated quantum circuits in terms of final performance
and resource-saving. Our algorithm provides a flexible way to efficiently generate excellent quantum circuits for

significantly improving the performances of VQAs on near-term quantum devices.
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I. INTRODUCTION

Quantum computing has had dramatic progress in recent
decades. Starting with Shor’s [1] breakthrough and continuing
with Grover’s algorithm [2] to quantum supremacy [3], it
is clear that quantum mechanics offers an apparent advan-
tage for computing. A fully fault-tolerant quantum computer
can achieve high computing power, accuracy, and reliability
in performing computations. However, since constructing a
fully fault-tolerant quantum computer is still a challenge at
present, researchers have focused on developing and utilizing
devices known as noisy intermediate-scale quantum (NISQ)
[4] computers, which are smaller and less reliable than a fully
fault-tolerant computer but are still capable of performing
certain quantum computations.
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Quantum-classical hybrid algorithms [5,6] are the most
promising near-term algorithms for achieving a quantum ad-
vantage in NISQ devices. Some hybrid algorithms, such as
variational quantum classifiers (VQCs) [7], variational quan-
tum eigensolvers (VQEs) [8], and quantum approximation op-
timization algorithms (QAOAs) [9], are proposed for different
scenarios, such as a VQC for credit card fraud detection anal-
ysis [10,11] and a VQE for quantum chemistry [12]. However,
these algorithms still face certain challenges under near-term
quantum devices, such as the fixed coupling map of physi-
cal particles, which limits the connectivity of quantum gates,
and quantum noise, which destroys the results of algorithms.
While general quantum circuits, such as a hardware-efficient
Ansatz [13] and ZX-XX layout [14], have been proposed, de-
signing specific quantum circuits suitable for near-term quan-
tum devices plays the primary role in implementing efficient
and high-performance quantum-classical hybrid algorithms.

There has been a significant amount of research on neu-
ral network architecture search algorithms for designing
high-performance and low-resource neural networks. These
classical architecture search algorithms have considered a
variety of factors, such as the limits of the search space
[15,16], efficient search strategies [17-19], and performance
estimation [20].
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FIG. 1. The quantum architecture search algorithm considers
three factors. One is the search space, which determines the set of
quantum circuits that are candidates for the search. The second is
the search strategy, which determines how to search through the can-
didate circuits efficiently. The last factor is performance estimation,
which determines how to evaluate the quality of the quantum circuits.

Quantum architecture search (QAS) algorithms aim to find
the optimal quantum circuit architecture for a given task. Sim-
ilar to neural network architecture search algorithms, QAS
mainly involves three different steps—search strategies, can-
didate solution space, and performance evaluation—which
are shown in Fig. 1. In previous work, a variety of search
strategies have been proposed, including evolutionary learn-
ing [21-26], reinforcement learning [27,28], the differentiable
quantum architecture search algorithm [29], and the Monte
Carlo tree searching algorithm [30]. The candidate solution
space is usually composed of different permutations of a set
of quantum gates, which are determined by specific quantum
devices [31]. Usually, the performance estimation of candi-
date quantum circuits is dependent on the final performance
of the algorithm and quantum operator resource requirements.
However, there are two primary challenges in QAS: (i) enough
shallow quantum circuits must be generated to prevent the
results of the algorithms from being destroyed due to the
accumulation of quantum noise; and (ii) an efficient search
approach must be designed to handle the tremendous amount
of solution space.

To address these challenges, this work proposes an adap-
tive diversity-based quantum architecture search (ADQAS)
algorithm that updates the search strategy and restricts the
search space to enhance algorithm performance and ef-
ficiency. In particular, we adopted an iterative strategy,
gradually increasing the number of quantum gates to generate
shallow circuits, in order to mitigate the effects of quantum
noise accumulation. Further, we consider the combination of
qubit mapping and circuit design directly in the search strat-
egy, which can avoid the extra overhead when implementing
the generated quantum circuits on a specific device such as
the IBM quantum devices Lima, Manila, and Nairobi. In ad-
dition, we present an effective approach, a diversity-guided
search space, to increase the structural diversity of candidate
solutions by calculating the maximum quantum architecture
entropy, which can prevent our algorithm from falling into a
trap. In the performance estimation stage, the average energy,
accuracy, and recall serve as the metrics for evaluating the
algorithm.

Here, we consider two different application scenarios of
our algorithm, namely variational quantum eigenvalue prob-
lems and classification tasks. For the six-qubit VQE task,
the adaptive diversity-based quantum architecture search al-
gorithm reduces the classical resources (parameters) and
quantum resources (quantum gates) of the generated circuit
by 28% and 23%, respectively, compared to a hardware-
efficient Ansatz (HEA), when subjected to depolarizing noise.
Additionally, it achieves lower average energy compared to
the HEA under depolarizing noise. Furthermore, the ADQAS
algorithm reduces the sampling resources, achieves lower av-
erage energy, and takes nearly 100 000 seconds less time than
the adaptive random-based quantum architecture search (AR-
QAS) algorithm. For the four-qubit VQE task, the ADQAS
algorithm also reduces the quantum and classical resources
and demonstrates better performance compared to the HEA.
It also requires less time than the ARQAS algorithm when
subjected to the Lima-Simulator and IBM-Lima device.

For the Iris VQC task, the ADQAS algorithm reduces clas-
sical and quantum resources of the generated circuit by 75%
and 73%, respectively, compared to HEA, when subjected to
depolarizing noise. Additionally, it achieves higher average
accuracy compared to the random-based quantum architecture
search (RQAS) algorithm under depolarizing noise. Further-
more, the circuits generated by the ADQAS algorithm achieve
81% accuracy and 86% recall ratio on the Iris data set and the
credit card fraud detection data set in IBM-Lima.

II. ADAPTIVE DIVERSITY-BASED QUANTUM
ARCHITECTURE SEARCH ALGORITHM

The quantum circuit in most quantum algorithms does not
consider real physical device environments such as quantum
noise and qubit mapping. As a result, the performance of
quantum algorithms often falls short of expectations. In this
section, we present the ADQAS algorithm, which addresses
these challenges by considering the actual noise charac-
teristics of physical devices and their coupling map when
designing circuits automatically. For instance, we apply the
ADQAS algorithm in the real quantum device Lima, taking
into account its device noises such as dephasing and decoher-
ence. In addition, the circuit autodesigned by our algorithm
follows the T-shaped qubit connection in Lima as the device’s
coupling map. By incorporating these factors, the ADQAS
algorithm can automatically design more effective circuits,
leading to improved performance.

In this study, we propose an adaptive diversity-based quan-
tum architecture search algorithm that aims to improve the
performance of the quantum architecture search by using an
adaptive algorithm and to improve the efficiency of the search
by reducing the search space. The ADQAS algorithm has
four stages: the initial stage, the search space sampling stage,
the performance and estimation stage, and the adaptive stage,
which is shown in Fig. 2. Our algorithm also uses a diversity-
guided algorithm, as shown in Fig. 2(b), to limit the search
space to a subset of the random-based search space depicted in
Figs. 2(c) and 2(d), which samples more evenly and increases
the efficiency of the QAS algorithm.

In the initial stage, the ADQAS generates the whole
search space with (#Rotationd"its 4 2#CNOT)L noicy quantum
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FIG. 2. The ADQAS algorithm and the ARQAS algorithm follow an iterative process. In each iteration i, the algorithms consist of three
stages: (1) search space sampling, (2) performance estimation, and (3) adaptation. (a) An adaptive method employed in ADQAS and ARQAS.

(b) In ADQAS, at the start of iteration i, search space sampling narrows the circuit search space to asetC/, ...

, Cl.N/ Tof N /i candidate quantum

circuits using quantum architecture entropy. Each Cij represents the jth candidate circuit in iteration i. In the performance estimation stage, the
top N/(i+1) circuits with the best-estimated performance are retained. Finally, in the adaptive stage, ADQAS adds another layer of complexity
to the algorithm. After L generations, the output of the algorithm is the optimal circuits. (c) ARQAS chooses candidate circuits at random in
the space sampling stage and uses the same performance estimation and adaptation stages as ADQAS. (d) The RQAS algorithm randomly
chooses a quantum circuit from the search space and uses the ADAM optimizer to optimize it. (¢) The HEA with Ry, R,, and CNOT gates as a

general set of quantum gates to construct quantum circuits.

circuits with L blocks, where #Rotation refers to the number
of noisy quantum rotation gates, and #CNOT refers to the
number of noisy CNOT gates. In addition, each block of these
noisy quantum circuits consists of a layer of single-qubit
gates (the red and yellow rectangles present different basis
single-qubit gates) and a layer of two-qubit gates (the blue
rectangles present two-qubit gates CNOT, named CX). The
CNOT gate connectivity adheres to the specific coupling map
of the physical device.

In the search space sampling stage, the ADQAS initializes
the candidate noisy quantum circuits and randomly samples M
noisy quantum circuits (in the dark blue box) from the whole
space. The ADQAS then selects the candidate noisy quantum
circuits, called diversity-guided circuits (in red ellipse), from
M to N according to the quantum architecture entropy, which
ensures the diversity of quantum circuit structures. In a later
subsection, we will provide more details on the definition of
quantum architecture entropy and how to use it to narrow the
search space.

In the performance and estimation stage, the ADQAS
optimizes the diversity-guided circuits using an ADAM opti-
mizer. To ensure the efficiency of the ADQAS, the algorithm
only optimizes all trainable candidate quantum circuits a
few times. To this end, even though the size of quantum
circuit space scales in terms of n qubits and L layers,
ADQAS can guarantee its applicability toward large-scale
problems. To select quantum circuits for the next generation,
the trained quantum circuits are ranked based on their per-
formance under the noised simulator, and the top first N/i
circuits that are less affected by noise and with low average
energy are chosen. We will provide more details on the var-
ious performance metrics used in different cases in a later
subsection.

In the adaptive stage, the top circuits use the adaptive
algorithm to expand the number of blocks to obtain the
adapted noisy circuits. Then the adapted noisy circuits use the
diversity-guided sampling strategy again. The process is re-
peated until convergence of the ADQAS. Simultaneously, the
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optimal noisy quantum circuit is generated by the ADQAS,
which has the best performance under the real physical device.

After identifying the optimal quantum circuit architecture,
we combine gates of the same type and remove any nonfunc-
tional quantum gates, and we reoptimize parameters. We will
provide more details on the specific process of the adaptive
algorithm and how it is used in the ADQAS algorithm in a
later subsection.

A. Search space sampling

Improving the efficiency of algorithms in quantum circuit
design can reduce the resources and time needed to run the
algorithm. One approach is to use ADQAS, which leverages
the architecture entropy of quantum circuits to diversify the
architecture of candidate quantum circuits. This approach is
inspired by the concept of architecture entropy in neural net-
works [32]. Here, we present three definitions according to
architecture entropy in quantum circuits.

The Levenshtein distance (LD) is a measure of the distance
between two strings. It is defined as the minimum number of
single-character edits (insertions, deletions, or substitutions)
required to transform one string into another. To calculate the
LD between two strings, we can use the following recursive
formula:

d .= di1j-1,
h min(d;—1,j, d; j—1, di—1,j—1)+1

sli] = t[j],
otherwise,

where s and ¢ are input strings, and d; ; is the LD between the
substrings s[0 : i] and #[0 : j]. In the context of quantum cir-
cuits, the LD can be used to measure the differences between
two quantum circuits.

To explore a variety of quantum circuit structures, we
establish a notion of the difference between two quantum
circuits. In a quantum architecture search, the difference is
quantified using the weighted Levenshtein distance (WLD),
an extension of the Levenshtein distance. The WLD takes
into account the different types of quantum gates and assigns
different weights to them based on their relative importance.
The definition is as follows:

Definition 1. The weighted Levenshtein distance of
quantum circuits is D(i, j) = Zf{ers Wr * fir(is )+We *
Jec(, J).

In this definition, D(i, j) represents the WLD between
quantum circuits C; and C;, nlayers is the number of layers in
the quantum circuit, and fi g(i, j) and fi c(i, j) represent the
LD between the signal- and two-qubits gates, respectively, of
layer k in quantum circuits C; and C;. The factors W and W¢
are the distance weights assigned to the signal- and two-qubit
gates, respectively.

To identify candidate quantum circuits with similar struc-
tures, we partition quantum circuits into distinct subgroups.
Each subgroup Sy, ..., Sy consists of quantum circuits that
share similar structural characteristics. We define a criterion
for assigning a given quantum circuit C; to the kth subgroup
Sk by utilizing the WLD, a measure of the difference between
two quantum circuits.

Definition 2. The criterion for assigning a quantum circuit
C; to the kth subgroup S; is based on the averaged WLD
between C; and every circuit Ck/ € S. If the averaged WLD

is less than or equal to a predetermined threshold value x, C;
is placed in S;.

Cy, represents the jth quantum circuit belonging to the kth
subgroup. Opting for a lower value of x means that circuits
need to exhibit a higher level of similarity to be placed in
the same subgroup. However, this can result in reduced ef-
ficiency. In our study, the choice of x is based on empirical
experience, allowing us to strike a balance between precision
and efficiency.

After choosing a suitable x, the candidate quantum circuits
are divided into different subgroups. Therefore, more diverse
quantum circuits can be formed by selecting quantum circuits
from different subgroups.

Definition 3. The architecture entropy of quantum circuits
is a measure of the diversity of candidate quantum circuits,
which is defined as Eqag = — Zqul Pqlog(py).

Eqag is the architecture entropy, Q is the number of sub-
groups of candidate quantum circuits, and p, = |Sy|/N is
the proportion of quantum circuits in subgroup g, where [S|
is the number of quantum circuits in subgroup ¢, | - | presents
the number of quantum circuits of the group S,, and N is
the total number of candidate quantum circuits. The value
of the architecture entropy belongs to the range [0, log N]. A
lower value indicates a lower degree of diversity, and a higher
value indicates a higher degree of diversity. The architecture
entropy can be used to evaluate the diversity of candidate
quantum circuits and optimize their structure by increasing
their diversity. It can also be used as a criterion for selecting
quantum circuits in ADQAS.

The diversity-guided sample algorithm works for nar-
rowing the search space of ADQAS using the quantum
architecture entropy. It involves generating a random-based
sample of M candidate quantum circuits and then selecting
a diversity-guided sample of N quantum circuits from the
random-based sample based on the maximum architectural
entropy of the candidate quantum circuits. The value of M
is typically greater than N, and there are a total of C}; possible
combinations of N quantum circuits that can be selected from
the random-based sample of M quantum circuits. To improve
the efficiency of the algorithm, ADQAS can repeat the selec-
tion process M —N times, each time deleting a single quantum
circuit from the random-based sample and selecting a new
quantum circuit based on the maximum architectural entropy.
This helps to reduce redundancy in the random-based sample
and improve the diversity of the selected quantum circuits.

B. Adaptive strategy

The random sampling algorithm is commonly used for
searching for the optimal solution, but it can be inefficient
due to its large variance in performance. To address this issue,
Adaptive VQE [33] adds quantum gates one by one based on
the derivative of the Ansatz to improve quantum architecture
search performance. However, this approach can be resource-
intensive because of the need to add gates individually.

Adaptive diversity-based quantum architecture search can
address this issue by adding quantum layers one by one, using
the adaptive layer concept to improve quantum circuits’ per-
formance while saving computing resources. In the ADQAS
algorithm, N quantum circuits are initially sampled and
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FIG. 3. There are two main types of quantum devices: Simulator
and IBM-Lima. Both Simulator and IBM-Lima have a coupling map,
which specifies the connectivity of the qubits, and a set of basis
quantum gates, which are the basic building blocks for constructing
quantum circuits. They may also have a noise model, which describes
the sources of noise that can affect the device. Next to devices are the
VQE problems corresponding to different devices.

optimized using an optimizer such as ADAM. After T iter-
ations of optimization, the quantum circuits’ performance is
ranked, and the top N/i performing circuits are chosen as a set
of candidate quantum circuits for the next generation, which
is shown in Fig. 2(a).

In the next generation, the previous layer is fixed, and the
search space in ADQAS is reduced. This process continues
until the optimal circuits with L layers are obtained. The
search space’s reduction helps optimize the circuit search
while still guaranteeing an acceptable performance level.

In this stage, the open system needs to be considered.
In IBM’s quantum cloud, the real physical systems, such as
Lima, Manila, and Nairobi, are open systems with noise chan-
nels that continuously interact with the environment and have
qubit layouts. This work considers two types of devices: a
quantum simulator with depolarizing noise and an IBM-Lima
with gate noises (depolarizing error and amplitude damping
error) and measurement noises.

The quantum simulator has a depolarizing noise model
given by

74
e@=%+@wm (1)

where p is the density matrix that represents the quantum
state, and p is the probability that the qubit is depolarized.
The qubit layout of the quantum simulator is shown in Fig. 3,
Simulator.

The IBM-Lima not only has a depolarizing error, but it also
has an amplitude damping error described by a Kraus form:

€(0) = Eo(p)E; + EipE{,
Ey =10)(0] + v 1 — A[1)(1], @)
Ey = V/A0)(1],

where A is the probability of the qubit relaxing; the IBM-Lima

also has measurement noises and a “T”” qubit layout, as shown
in Fig. 3, IBM-Lima.

C. Performance estimation

The performance estimation depends on the different tasks,
such as variational quantum eigensolver and variational quan-
tum classification.

1. Variational quantum eigensolver

The variational quantum algorithm is a quantum-classical
hybrid algorithm for solving the quantum many-body ground
energy problem in the NISQ era. The essence of its mathemat-
ics is the Rayleigh-Ritz algorithm [34], which minimizes the
value of the function by varying the parameters of the wave
function:

+
E(x) = min (9o|U" (x)HU (x)|¢0)

. 3
N GolUT (U (0)[0) ©)

In a quantum processing unit (QPU), the initial state |¢y) is
generally initialized |000 - - - 0) in the VQE algorithm. Then,
through the unitary evolution U (x), the final state is evaluated
as |¢,). Next, through the measurement operation, the classi-
cal result is (¢,|H |¢y). Finally, VQE puts the classical result
into the optimizer in a central processing unit (CPU), such
as ADAM, or gradient descent, to optimize the parameters
x of the quantum evolution. Then it returns to the QPU for
evolution.

2. Variational quantum classifier

A variational quantum classifier, which belongs to quan-
tum supervised learning, is another quantum-classical hybrid
algorithm to deal with classification problems. It has a learn-
ing process to learn the existing observations, and a predicting
process to estimate the new observations.

The variational quantum classifier assumes the existing
observations (data set) are D = {(x;, yi)}?i 1» where x; € R"
is the vector of data features, and y; € {0, ..., k} is the data
label, which means the data x; belong to class y;. VQC can
encode the data features x; into a quantum state |x;) by using
the amplitude encoding method [35] or the angle encoding
method [14]. After data encoding, VQC designs a quantum
classifier U(0) to evaluate. Note that the data encoding and
evolution process U(6) can be viewed together as a classi-
fier G(x;6). Then, according to the total of classes k, VQC
uses a measurement operator with log K-dimension. Accord-
ing to the measurement result, the data set can be classified
into y;. Next, using a classical optimizer to optimize the
parameters 6,

L©O) =) —yilog ({¢(xi, 0)|0lp(xi, 0))), “

where |¢(x;, 0)) = G(x;;6)|0). Then, VQC is evolved again
by classical parameters until the VQC converges. After train-
ing the classifier with a parametrized quantum circuit G(x; 6*)
in existing observations, the VQC could predict the class of
new observations.

In the following two sections, we will present the results of
using the simulator and IBM-Lima device for VQE and VQC
problems. The training was performed using an AMD Ryzen
9 5950X CPU with 16 cores.
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FIG. 4. The VQE and VQC are algorithms that utilize the concept of quantum-classical hybridization to solve problems by combining a
quantum computer with a classical computer. The VQE consists of two quantum blocks (Ansatz and measurement) and a classical optimizer.
Each Ansatz block includes one layer of single-qubit gates, which are parametrized by variables that can be modified by the classical optimizer,
and one layer of two-qubit gates such as CNOT gates. The measurement block measures the output of the Ansatz block, and the classical
optimizer adjusts the parameters of the Ansarz block to improve the approximation of the ground energy through iterative adjustment. The
VQC comprises three quantum blocks (encoder, Ansatz, and measurement) and a classical optimizer. The encoder block loads the data into the
quantum circuit, and the Ansarz block processes the data with a parametrized quantum circuit. The measurement block measures the output of
the Ansatz block, and the classical optimizer adjusts the parameters of the Ansatz block to increase classification accuracy.

III. RESULTS FOR VQE PROBLEMS

In this section, we consider the variational quantum eigen-
solver, as shown in Fig. 4, under both the Simulator and the
IBM-Lima device. We aim to solve the ground energy of the
two-dimensional (2D) lattice of a six-qubit and a four-qubit
Heisenberg system. The Heisenberg model is a mathemat-
ical model of a system of interacting spin-1/2 particles,
widely used to describe the behavior of magnetic materials.
To demonstrate the efficiency of the ADQAS, in Figs. 2(a)
and 2(b), for designing optimal quantum circuits with high
performance and low resource requirements, we conducted a
comparison with three other algorithms: the HEA shown in
Fig. 2(e), the RQAS shown in Fig. 2(d), and the ARQAS
shown in Fig. 2(c). The HEA [13], with Ry, R, and cNOT
gates, is a general quantum circuit that can be used for both
VQE and VQC problems, and it is designed to be efficient in
terms of its use of quantum hardware resources. The RQAS
algorithm as shown in Fig. 2(d) only uses a random sampling
algorithm to solve VQE problems. The ARQAS as shown in
Figs. 2(a) and 2(c) is similar to the RQAS, but it includes the
adaptive algorithm in addition to the random sampling algo-
rithm. Later, we will present the simulation and real results in
these algorithms for VQE problems.

In the ADQAS, the basis gates, the qubits connection, and
the noise model are used to depend on the type of device being
used. For the simulator (shown in Fig. 3, Simulator), the basis
gates are the rotation gates Ry, R,, and the two-qubit gates
CNOT, SWAP, and the noise model used is the depolarizing
noise model. The depolarizing noise of single-qubit gates is
set to 0.001, the depolarizing noise of CNOT is set to 0.05, and
the depolarizing noise of SWAP is set to 0.15. The coupling
map for the simulator is based on the topological structure of
the device (0-1, 1-2, 1-3, 3-4, 4-5, 4-6). For the IBM-Lima
(shown in Fig. 3, Lima), the basis gates are the single-qubit
gates I, R,, Sqrt of X (SX), X, and the two-qubit gates CNOT,
and the noise model used is a combination of depolariz-
ing noise, thermal relaxation error, and read-out error. The

coupling map for the IBM-Lima is based on the topological
structure of the device (0-1, 1-2, 1-3, 3-4, 4-5).

The ADQAS uses different initial sample sizes depending
on the problem. For the six-qubit Heisenberg model, it ini-
tially chooses N~200 circuits in the whole quantum circuit
search space and uses 100 times diversity-guided sampling.
For the four-qubit Heisenberg system, the initial sample size
is reduced to N~60 circuits. It selects the best-performing
circuits and adds layers to them until the best circuit is found
and trains the candidate quantum circuits with the ADAM
optimization algorithm with a learning rate of n = 0.05, the
exponential decay rate for the first moment estimation of
B1 = 0.9, the exponential decay rate for the second-moment
estimation of 8, = 0.99, and a small value for numerical sta-
bility of € = 1078, According to the performance of candidate
quantum circuits, in the ith generation, ADQAS selects the
first N/i well-performance quantum circuits. Each selected
candidate quantum circuit is added with two kinds of quantum
circuits with one layer. Then, the ADQAS repeats the process
of narrowing the space, training, selecting, and adding layers
until it finds the quantum circuit with the best performance.

Variational quantum eigensolver is a quantum algorithm
that uses a quantum computer to find the ground energy of
a given Hamiltonian, such as the Heisenberg model. The key
idea behind VQE is to use a quantum computer to prepare
a quantum state |¢(x)) = U (x)|¢o) that encodes information
about the system being studied and then measure the energy of
the system (¢po|U " (x)HU (x)|¢o), and then use classical opti-
mization techniques to adjust the parameters x of the quantum
state in order to minimize the energy of the system.

Heisenberg model: The Heisenberg model is a model of
a system of spin-1/2 particles, such as electrons or protons,
that interact with each other on a two-dimensional lattice. The
Hamiltonian describes the model

H:ZJi,jO'i%Tj, %)
iJ
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TABLE 1. The comparison of the classical resources, quantum
resources, final performance, and running time (in seconds) of
ADQAS-C*, ARQAS-C*, RQAS-C*, and HEA under a depolarizing
noise simulator for the six-qubit Heisenberg model.

Quantum Average energy

Circuit Nof Ry N of CX via simulator Time (s)
ADQAS-C* 43 22 —11.406256 270259
ARQAS-C* 45 18 —11.49023 373647
RQAS-C* 45 25 —10.9238 68466
HEA 60 25 —11.25390 55050

where J; ; > 01is the coupling strength between the ith and jth
particles, and o is the Pauli operator o = (o, 0/, 0}). In the
next two subsections, we demonstrate experimental results for
different eigenvalue solving tasks, with one subsection pre-
senting results on a simulator and the other on a real quantum
device.

A. Simulator

In the Simulator, the basic operation pool is set as Ry, R,
CNOT. Depolarizing noise is introduced, with a strength of
0.0001 for single-qubit depolarizing noise and a strength of
0.005 for two-qubit depolarizing noise.

The Hamiltonian of the 2D lattice of six qubits can be
rewritten as shown:

H = XoX, + YoY1 + ZoZ1 + XoXa + YoYa + ZoZo
+XiX3 +Y1Ys + 272175 + Xo X3+ Y2 Y3 + 7075
+XoXs + Yo Y4 + 72074 + X3Xs5 + Y3Ys5 + Z3Zs
+ XuXs + Y4 Ys + Z47s. (6)

1. The best quantum circuit generated by ADQAS
outperforms other algorithms

To evaluate the performance of the best quantum circuit
(ADQAS-C*) generated by ADQAS, we compare it to the
best quantum circuits (ARQAS-C*, RQAS-C*, and HEA)
generated by other algorithms such as ARQAS, RQAS, and
the hardware-efficient Ansatz-based VQE under a depolariz-
ing noise environment. Table I presents a comparison of these
algorithms in terms of their resource usage and performance
for solving the 2D Heisenberg problem. It includes informa-
tion on classical resources (number of parameters in terms
of Ry gates), quantum resources (number of quantum gates
in terms of Ry gates and CX gates), final performance (aver-
age energy), and running time under the depolarizing noise

environment. o
Table I illustrates that the ADQAS-C* uses similar re-

sources to the ARQAS-C* and RQAS-C*. However, it
utilizes fewer classical and quantum resources than the
hardware-efficient Ansatz under a depolarizing noise envi-
ronment. In particular, ADQAS-C* reduces resource usage
by 28% and 23% when compared to the HEA. Addition-
ally, the performance of ADQAS-C* and ARQAS-C* is
similar and better than that of RQAS-C* and HEA. Signifi-
cantly, ADQAS-C* outperforms the HEA, achieving a final
energy of —11.406 256, which is relatively close to the ex-
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FIG. 5. The average performance of quantum circuits generated
by ADQAS, ARQAS, and RQAS for solving the 2D Heisenberg
problem.

act ground energy of —12.5175. Although ADQAS-C* and
ARQAS-C* have similar resource usage and performance,
the running time for ADQAS-C* is also shorter than that of
ARQAS-C*. Overall, these results demonstrate the effective-
ness of the ADQAS algorithm in achieving high performance
with low resource requirements under the depolarizing noise
environment.

2. Average performances of quantum circuits generated
by ADQAS outperform RQAS algorithms

To evaluate the average performance of ADQAS, ARQAS,
and RQAS, all algorithms were run with the same set of
hyperparameters. In Fig. 5, we show the mean and variance
of the average energy of the average 10 circuits generated
by ADQAS, ARQAS, and RQAS. The results indicate that
the average performance of quantum circuits generated by
ADQAS and ARQAS outperforms RQAS, with a lower av-
erage energy and smaller error bar.

B. IBM-Lima

To further analyze the performance of the ADQAS, we
solve the 2D Heisenberg problem with four qubits under an
IBM real device. In this case, the 2D square lattice of the
4-qubits Hamiltonian model is shown as

H=XX; +YoY: +Z¢Z; + XoXy + YoY2 + ZoZ,
+XiX3+ Y1 Y3+ 7173 + Xo X3+ Yo Y3 + 72575, (7)
The search space of candidate quantum circuits with the
basis gates (I, R,, SX, X, and CNOT) is too large. To reduce the
search space, we reconstruct the basic gates to be Ry, R, and

CNOT. This is done by expressing the gates SX - R,(6) - SX - X
as Ry(—0), as shown in Eq. (8),

SX -R,(0) - SX - X = ¢ 128X ZSXX

o
= elYf

=Ry (—0). (8)
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(a) ADQAS-C*
_ Ry = _ Ry Rz _ _ Ry RZ___ o [
-1.57 -5.07 3.7 -1.6 (3.11
__ Ry _ _Ry__Rz_Ry_____Ry_Rz___
1.72 -4.99 3.5 | 4.67 549  6.27
_ Ry Rz __ | Ry _Rz _Ry _
-3.2 4.84 -498 3.19 -535
_Ry__Ry RZ_Ry_ = _ Ry RE___
-2.37 139 543 -1.61 -1.56 | 5.07
(c) RQAS-C*
_ Ry Rz L
122 -4.16
_ Ry Rz _ _ = _ Ry _ Rz _ Ry _ _
2.61 -3.81 059 (285 043
_ Ry Rz = __ Ry _ Rz _Ry _| _
0.66 -1.07 031 393 523
Ry Rz Ry Ry Rz Ry |

772207 514 142 | 593 1539 432

(b) ARQAS-C*

_ Ry 'Rz | Ry | Ry _ Rz _Ry [
4.07 135 6.22 428 225 -4.47

_ Ry _Ry  __ | _Ry = __ Rz_ Ry _ _
-2.07 0.80 5.02 317 3.4

_ Ry Rz Ry Rz __ __ Ry Rz | | _ Ry
1.56 6.09 0.49 0.63 2.62 2.65 -5.43

_ Ry RZz_ Rz _Ry = Rz_____ = _  _ Ry Rz
131 2.22 314 0.02 4.70 6.30 2.06

(d) HEA

_ Ry Rz | _ Ry Rz _ Ry _ Rz
1.51  6.29 3.12 -0.79 6.31 -0.79

_ Ry Rz _ = _ Ry _Rz__ _ | Ry _ Rz [
160 3.14 3.14 6.27 312 317

_Ry Rz = Ry Rz __ __ __ Ry Rz __ _ = |
237 3.80 0.34 1.57 1.78 0.02

_ Ry Rz =~ __ Ry Rz __ _ = _ Ry Rz _ L
2.88 2.29 4.71 -0.26 1.59 4.96

FIG. 6. The quantum circuits generated by ADQAS, ARQAS, RQAS, and HEA-based algorithm. (a) ADQAS-C* under Lima-Simulator
noise model for a four-qubit Heisenberg system. (b) ARQAS-C* under a Lima-Simulator noise model for a four-qubit Heisenberg system.
(c) RQAS-C* under the Lima-Simulator noise model for a four-qubit Heisenberg system. (d) HEA under the Lima-Simulator noise model for

a four-qubit Heisenberg system.

1. Best quantum circuit generated by adaptive diversity-based
quantum architecture search algorithm outperforms
other algorithms

To evaluate the performance of ADQAS, we generate
ADQAS-C* using ADQAS under the Lima-Simulator and
compare it to the ARQAS-C*, RQAS-C*, and HEA gen-
erated by other algorithms such as ARQAS, RQAS, and
the hardware-efficient Ansatz-based VQE on both the Lima-
Simulator and IBM-Lima devices. The exact ground energy of
this four-qubit system is —8. In Fig. 6, we show the number of
parameters and the number of quantum gates. In Table II, we
present the performance of ADQAS-C*, ARQAS-C*, RQAS-
C*, and HEA for solving the 2D Heisenberg problem under
the Lima-Simulator and IBM-Lima device, as well as the
running time for each algorithm under the Lima-Simulator.
The results indicate that ADQAS-C* uses resources simi-
lar to ARQAS-C*, but uses fewer classical and quantum
resources than HEA under the Lima-Simulator and IBM-
Lima device. Additionally, ADQAS-C* and ARQAS-C* have
similar performances and outperform RQAS-C* and HEA.
Although ADQAS-C* and ARQAS-C* have similar resource
usage and performance, ADQAS-C* has a shorter running
time than ARQAS-C*. Overall, these results demonstrate the
effectiveness of the ADQAS algorithm in achieving high

TABLE II. The comparison of final performance and running
time (in seconds) between ADQAS-C*, ARQAS-C*, RQAS-C*,
and HEA under the Lima-Simulator and IBM-Lima for a four-qubit
Heisenberg system.

Quantum Average energy via Average energy via

circuit Lima-Simulator IBM-Lima Time (s)
ADQAS-C* —6.53 —5.67 64295
ARQAS-C* —7.08 —5.55 99154
RQAS-C* —5.89 —5.01 49706
HEA —6.07 —5.12 46529

performance with low resource requirements under both the
Lima-Simulator and IBM-Lima.

2. Average performances of quantum circuits generated by
ADQAS algorithm outperform RQAS algorithms

To evaluate the average performance of ADQAS, ARQAS,
and RQAS, all algorithms were run with the same set of
hyperparameters. The results, which are presented in Table 111,
show the average energy of the average 10 circuits gener-
ated by ADQAS (ADQAS-C), ARQAS (ARQAS-C), and
RQAS(RQAS-C) on both IBM-Lima quantum simulator and
IBM-Lima. It can be observed that the circuits generated by
ADQAS and ARQAS have a lower average energy, indicating
better performance.

IV. RESULTS FOR VQC PROBLEMS

In this section, we consider the variational quantum classi-
fier, as shown in Fig. 4, VQC, under both the Simulator and
the IBM-Lima devices. In this application, the goal is to use
the variational quantum algorithm to predict the species of
iris flowers based on four features and to predict credit card
fraud detection based on 28 features. These are examples of
supervised learning tasks, where the goal is to learn a model
that can predict the output (the species of the iris flower or
whether a credit card transaction is fraudulent) based on a

TABLE III. The mean average performance comparison of quan-
tum circuits generated by ADQAS, ARQAS, and RQAS under the
Lima-Simulator and IBM-Lima for the 2D Heisenberg problem.

Quantum Mean average energy Mean average energy
circuits via Lima-Simulator via IBM-Lima
ADQAS-C —5.65 —5.26
ARQAS-C —5.86 —5.21
RQAS-C —5.35 —4.47
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set of input features (the characteristics of the iris flower
or that of the credit card transaction). To demonstrate the
efficiency of the ADQAS algorithm for designing optimal
quantum circuits with high performance and low resource
requirements, we conducted a comparison with three other
algorithms: the HEA, the RQAS, and the ARQAS. Later, we
will present the simulation and real results in these algorithms
for VQC problems.

The variational quantum classifier shown in Fig. 4 is a
machine-learning algorithm that uses a quantum computer
to perform classification tasks. In a classification task, the
goal is to assign a label y to an input data point x based on
certain features or characteristics of that data point. The core
principle behind VQC is the use of a quantum circuit, which
is a sequence of quantum gates that manipulate the state of
a quantum system. This circuit is designed to take input data
and encode them into the state of the quantum system |x) in
the encoder block, and then use the parametrized classifier
U (@) to perform classification tasks. To train the quantum
classifier, a classical optimization algorithm is used to adjust
the parameters 0 of the quantum circuit in order to minimize
the classification error.

Classification problem: There are two applications of a
variational quantum classifier: Iris classification and credit
card fraud detection. The Iris classification application in-
volves using a VQC to classify different species of iris flowers
based on their sepal length, sepal width, petal length, and
petal width. For this task, we have selected 100 data sets
with two species of iris flowers, and the ratio of training to
testing data sets is 1:1. The ADQAS algorithm is used to
find a high-performing VQC that can accurately classify the
different species of iris flowers.

Credit card fraud detection in finance uses trained VQC
to detect genuine and fraudulent transactions. In this task, a
data set of genuine and fraudulent transactions is used, with
a ratio of 1:1 (100:100). The data set is preprocessed using
principal component analysis to reduce the dimensionality
from 28 to 4, as shown in Fig. 7. In the figure, purple points
represent genuine transactions, and light blue points represent
fraudulent transactions. Several indicators are defined in order
to evaluate the performance of the VQC. True Negative (TN)
is the number of times a fraudulent transaction is correctly
identified as genuine. True Positive (TP) is the number of
times that a fraudulent transaction is correctly identified as
fraudulent. False Positive (FP) is the number of times that
a genuine transaction is incorrectly identified as fraudulent.
False Negative (FN) is the number of times that a genuine
transaction is incorrectly identified as genuine. The accuracy
is defined as accu = (TP+TN)/(TP+TN+FP+FN), the pre-
cision is precision = TP/(TP+FP), the f-score is f-score =
2 « precision * recall/(pre+recall), and the recall is defined as
recall = TP/(TP-+FN).

The loss function for this classification task is defined
as the cross-entropy, which measures the difference between
the predicted and actual values. To introduce the nonlinear
property, we use the sigmoid activation function that maps
real-valued input to the range [0, 1], which has the form

1
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FIG. 7. Scatterplots of credit card fraud detection feature compo-
sitions explore relationships between different features in a data set.
Each transaction is represented by a point on the scatterplot, with one
feature on the x-axis and another on the y-axis.

Then, we use the softmax function to normalize the output
of a model into a probability distribution over a set of classes,
and the form is

eti

—
j=1€"

softmax(x;) =

where x is a vector of real-valued inputs, i is the index of
a particular element in the vector, and K is the number of
classes. So, we write the loss function as

L) = Z —w;y; log(softmax(o ((¢p(x;, 6)|0l¢(x;, 0)))),
©))
where y; is the actual value and w; is the corresponding
weight. If y; = 0, then w; = 1, and if y; = 1, then w; = 10.

VQC problems under different quantum devices can use
different encodings for representing quantum states. In gen-
eral, quantum states can be represented in a number of
different ways, including amplitudes (amplitude encoding)
and angles (angle encoding). Amplitude encoding represents a
quantum state as a complex amplitude, which is a mathemati-
cal quantity that describes the probability of finding a particle
in a particular state. Angle encoding represents a quantum
state as a set of angles, which define the state in terms of
rotations around the x, y, and z axes of the Bloch sphere.

In the next two subsections, we present experimental
results for different classification tasks using two distinct
quantum encoding methods. One subsection reports results on
the quantum simulator, while the other presents results on the
IBM-Lima device.

A. Simulator

In this case, the Iris flower has four features, which means
that a four-qubit system is required to encode the feature
information using angle encoding. Since the goal is to predict
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TABLE IV. The comparison of the classical resources, quan-
tum resources, final performance, and running time (in seconds)
of ADQAS-C*, ARQAS-C*, RQAS-C*, and HEA under the noise
simulator for Iris classification.

Average
Quantum N of N of accuracy via
circuit R, CX Simulator Time (s)
ADQAS-C* 4 2 1 128676
ARQAS-C* 5 2 1 522099
RQAS-C* 5 4 1 134344
HEA 16 6 1 133749

only two species, the VQC can use a single-qubit observer as
a measurement operator.

1. Best quantum circuit generated by ADQAS outperforms
other algorithms

To analyze the performance of the ADQAS-C* generated
by ADQAS, we compare it to the ARQAS-C*, RQAS-C*,
and HEA generated by other algorithms such as ARQAS,
RQAS, and the hardware-efficient Ansatz-based VQE under
a depolarizing noise environment. The results of these com-
parisons are presented in Table IV, which show the classical
and quantum resources used, as well as the final performance
for predicting the species of Iris flowers in these environments
for ADQAS-C*, ARQAS-C*, RQAS-C*#, and HEA.

Table IV shows that the ADQAS-C* algorithm uses similar
resources to the ARQAS-C* and RQAS-C* algorithms. How-
ever, it utilizes fewer classical and quantum resources than
HEA-based VQE under a depolarizing noise environment.
In particular, ADQAS-C* reduces classical and quantum
resource usage by 75% and 73% when compared to the HEA-
based VQE. The performances of ADQAS-C*, ARQAS-C*,
RQAS-C*, and HEA are similar and equal to 1. The running
time for ADQAS-C*, RQAS-C*, and HEA is similar and
shorter than that of ARQAS-C*. Overall, the comparison in
Table IV shows that the ADQAS-C* and RQAS-C* algo-
rithms both perform better while using fewer classical and
quantum resources and less time.

2. Average performance of quantum circuits generated
by ADQAS outperforms RQAS algorithms

To illustrate the average performance of ADQAS, ARQAS,
and RQAS, all algorithms were run with the same set of
hyperparameters. In Fig. 8, we show the mean and variance of
the testing accuracy for predicting the species of Iris flowers
of the average 10 circuits generated by ADQAS, ARQAS,
and RQAS. The results indicate that the average performance
of quantum circuits generated by ADQAS and ARQAS out-
perform RQAS, with a lower average energy and smaller
error bar.

B. IBM-Lima

In this subsection, we consider two different classification
problems: Iris classification and credit card fraud detection.
Both of these problems have four features, and we use ampli-
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FIG. 8. The average testing accuracy of quantum circuits gener-
ated by ADQAS, ARQAS, and RQAS for Iris classification.

tude encoding to represent these features using two qubits. As
these are both two-class classification problems, we can use
a single-qubit observer as the measurement operator in our
quantum classifier under IBM-Lima. The basic gates we use
are X, SX, R,, and CNOT, with coupling maps of 0-1 and 1-0.
To train our quantum classifier, we use the ADQAS algorithm,
which employs the Adam optimizer, 20 000 shots, and Pauli-Z
measurement. We trained the quantum classifier on the IBM-
Lima quantum simulator and then tested its performance on
the real IBM-Lima quantum device.

1. Best quantum circuit generated by ADQAS outperforms
other algorithms

To analyze the performance of ADQAS, we generate the
ADQAS-C* using ADQAS under the Lima-Simulator and
compare it to the ARQAS-C*, RQAS-C*, and HEA gen-
erated by other algorithms such as ARQAS, RQAS, and
the hardware-efficient Ansatz-based VQE on both the Lima-
Simulator and IBM-Lima devices. In Fig. 9, we show the
number of parameters and the number of quantum gates. In
Tables V and VI, we present the performance and running
time of ADQAS-C*, ARQAS-C*, RQAS-C*, and HEA under
Lima-Simulator and IBM-Lima for classifying the Iris fol-
lower and detecting credit card fraud, respectively.

TABLE V. The comparison of final performance and running
time (in seconds) between ADQAS-C*, ARQAS-C*, RQAS-C*, and
HEA under the Lima-Simulator and IBM-Lima for Iris classification.

Average
Quantum Average accuracy accuracy via
circuit via Lima-Simulator IBM-Lima Time (s)
ADQAS-C* 1 1 100582
ARQAS-C* 1 1 108716
RQAS-C* 1 1 65984
HEA 1 0.67 6100
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Credit Card Detection:

Rz
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FIG. 9. The quantum circuits generated by ADQAS, ARQAS, RQAS, and HEA-based algorithms for Iris classification and credit card
fraud detection, respectively. (a)—(d) ADQAS-C*, ARQAS-C*, RQAS-C*, and HEA under the Lima-Simulator noise model for credit card
fraud detection. (e)—(h) ADQAS-C*, ARQAS-C*, RQAS-C*, and HEA under the Lima-Simulator noise model for Iris classification.

It appears that ADQAS-C*, ARQAS-C*, RQAS-C* have
a shallow depth and fewer parameters compared to the HEA
in Fig. 9 under the IBM-Lima environment. Additionally, in
Tables V and VI, the ADQAS-C* and ARQAS-C* have been
shown to have better performance than the HEA. Furthermore,
ADQAS-C* takes less time than ARQAS-C*.

2. Average performances of quantum circuits generated
by ADQAS outperform ROAS

To evaluate the average performance of ADQAS, ARQAS,
and RQAS, all algorithms were run with the same set of
hyperparameters. For the task of Iris classification, the average
performance results of the 10 circuits generated by ADQAS,
ARQAS, and RQAS for the testing data sets on both the
quantum simulator and the quantum device are presented in
Table VII. Apparently, the ADQAS-C and ARQAS-C have
better performances.

TABLE VI. The comparison of final performance and running
time (in seconds) between ADQAS-C*, ARQAS-C*, RQAS-C*, and
HEA under the Lima-Simulator and IBM-Lima for credit card fraud
detection.

Quantum Average recall via Average recall

circuit Lima-Simulator via IBM-Lima Time (s)
ADQAS-C* 0.92 0.92 37816
ARQAS-C* 0.92 0.92 55058
RQAS-C* 0.88 0.88 18332
HEA 0.6 0.6 11571

For the task of credit card fraud detection, the average
performance results of the average 10 circuits generated by
ADQAS, ARQAS, and RQAS for the testing data sets on both
the quantum simulator and the quantum device are presented
in Table VIII. The ADQAS-C and ARQAS-C also have better
performances.

V. PERFORMANCE EVALUATION OF VARIOUS
ANSATZES FOR DIFFERENT PROBLEMS

To evaluate the effectiveness of the ADQAS method,
we conduct several numerical experiments involving seven
different problems. For each problem, we evaluated the
performance of eight quantum algorithms. Each quantum
algorithm is independently tested through five trials, and the
results are recorded for analysis. The metrics include testing
accuracy, average energy, or approximate optimization results,
depending on the specific problem.

The results of the evaluation performed on the IBM fake
Kolkata system are presented in Tables IX and X. These tables
provide the mean ¥ and the maximum deviation, max |x — X/,

TABLE VII. The mean final average performance comparison of
quantum circuits generated by ADQAS, ARQAS, and RQAS under
the Lima-Simulator and IBM-Lima for Iris classification.

Quantum Mean average accuracy Mean average Accu
circuits via Lima-Simulator via IBM-Lima
ADQAS-C 0.74 0.81
ARQAS-C 0.76 0.82
RQAS-C 0.62 0.6
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TABLE VIII. The mean final average performance comparison
of quantum circuits generated by ADQAS, ARQAS, and RQAS
under the Lima-Simulator and IBM-Lima for credit card fraud
detection.

additional layers. The test accuracy of VQC, ground energy
of VQE, and the optimization result of QAOA obtained by
each Ansatz are presented in Tables IX and X. Our algorithm
consistently outperforms the other methods for all model
problems in terms of test accuracy or average energy, and it

Quantum Mean average recall Mean average recall outperforms the other methods for 5/7 model problems in
cireults via Lima-Simulator via IBM-Lima terms of converged iterations. For all model problems except
ADQAS-C 0.86 0.86 for the Ising model (c5), we set the iteration number at 500.
ARQAS-C 0.86 0.87 However, for the Ising model with 20 qubits, we limit the
RQAS-C 0.72 071 iteration to 100 steps. This decision is due to the high compu-

of the testing accuracy, average energy, or approximate op-
timization results for each model problem and optimization
method.

The evaluation considered seven distinct model problems:
a two-qubit entanglement witness (cl), an eight-qubit eigen-
value problem for a hydrogen chain (H4) (c2), a 12-qubit
eigenvalue problem for a hydroxyl cation (OH—) (c3), a
14-qubit eigenvalue problem for beryllium hydride (BeH2)
(c4), a 20-qubit eigenvalue problem for the Ising model (c5),
a 10-qubit max cut problem (c6), and a 10-qubit portfolio
optimization problem (c7).

The evaluation encompassed eight optimization methods,
each offering a different approach to solving the model prob-
lems. These methods included ADQAS-C*, LBL-ADQAS-
C* BSI1, BS2, BS3, BS4, BS5, and BS6. ADQAS-C*
represents the best quantum circuit generated by ADQAS.
LBLADQAS-C* represents the best quantum circuit gener-
ated by the LBL-ADQAS method, as discussed in Sec. VIL.
BS1 is a circuit-centric quantum Ansatz [35] with the layer
of a single arbitrary unitary gate and controlled unitary gate
layer. BS2 is the HEA Ansarz [13]. BS3 is the EfficientSU2
Ansatz [38], which consists of layers of single-qubit opera-
tions spanned by SU(2) and CX entanglements. BS4 is the
QAOA Ansatz [9] with the mixer layer and the cost layer.
BSS5 is the two local quantum Ansatz with the layer of Ry and
the layer of controlled Ry [39]. BS6 is a two-design quantum
Ansatz [40], which consists of alternating rotation and entan-
glement layers with an initial layer of v/H = Ry (7 /4) gates.

For the considered problems, we explore different baseline
methods ranging from one to three layers, except for the
QAOA Ansatz. In the maxcut and portfolio optimization task,

tational time required for this model, where each experiment
of 100 steps exceeds five hours.

We aim to achieve the highest test accuracy or the lowest
average energy with our proposed method. Trainability in-
cludes the number of converged iterations and the achieved
accuracy. The number of converged iterations alone does not
guarantee optimal results, but in the majority of cases it does
outperform them, as highlighted in Tables IX and X. It is
important to note that certain circuits with fewer parameters or
shortcuts may converge quickly but not with lower accuracy.
On the other hand, the tables demonstrate that our algorithm
consistently achieves better accuracy compared to other meth-
ods, and it performs competitively in terms of converged
iterations. Thus, our proposed method not only demonstrates
superior accuracy but also exhibits strong competitiveness in
terms of trainability.

VI. EXPRESSIBILITY: KL DIVERGENCE

Expressibility can help to understand the reason that au-
todesigned circuits outperform human-designed circuits in
terms of accuracy. Higher expressibility enables autodesigned
circuits to encompass a wider range of problem solutions,
facilitating more effective optimization towards desired out-
comes.

For an arbitrary parametrized quantum circuit U (6), the
fidelity between two specific quantum circuits (parametrized
by ¥* and 6*) is given by F = |(0|U T (y*)U (6*)|0)|?, which
follows a probability distribution F ~ P(f). Especially, the
probability density function of fidelities for the ensemble of
Haar random states is well-established and can be expressed
analytically as follows:

we also explore the performance of the QAOA Ansatz with Piaar(F) = 2" = 1)(1 — F)*' 2, (10)

TABLE IX. Performance evolution of various Ansdtze for different problems: averaged test accuracy (cl: entanglement witness with
2 qubits), averaged average energy (c2: hydrogen chain with 8 qubits, ¢3: hydroxyl cation with 12 qubits, c4: beryllium hydride with 14
qubits, and c5: Ising model with 20 qubits), and averaged approximate optimization results (c6: max cut problem with 10 qubits, c7: portfolio
optimization problem with 10 qubits).

Method Problem ADQAS-C* LBL-ADQAS-C* BS1 BS2 BS3 BS4 BS5 BS6
vQC cl 0.72£0.01 / 0.714+0.02 0.714+0.02 0.724+0.03 / 0.64£0.03 0.70£0.03
c2 -322+0 / —3.04+£0.02 -3.12£0.11 —-3.124+0.10 / —3.14£0.06 —2.90£0.06
c3 —78.54+0 —78.43+£024 —77.714+£0.49 -78.17+£0.43 —78.24+0.12 / —78.11£0.30 —73.50+14.88
VQE c4 / —1846+£0.01 —17.66+0.01 —18.36+0 —18.23£0.01 / —18.34£0 —15.94+£2.49
c5 / —-1981+0 —16.01£0.26 —16.71+2.18 —14.651+0.46 / —15.78£1.17 —7.57+£3.46
QAOA c6 —13.88+0.10 / —12.90£0.06 —12.934+0.02 —13.624+0.016 —11.67+£0.47 —13.78+0.25 —12.924+1.42
c7 —1.94+0.01 / —-1.87£0.01 —-193£0.01 —-1.92£0 —-1.79+£0.03 —-191£0.01 —1.64%0.18
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TABLE X. The averaged number of iterations to reach convergence of various Ansdtze for different problems (c1—c7).

Method Problem ADQAS-C* LBL-ADQAS-C* BS1 BS2 BS3 BS4 BS5 BS6
vQC cl 18.6£6.6 / 314+12.6 27.84+58 27.84+222 / 18.6+£34 228482
c2 1+0 / 182 £138 158 £52 144 £ 126 / 220£110 166+ 104
c3 1+0 246 £ 104 310+ 160 406 £106 356+ 144 / 362+£138 424+174
VQE c4 / 304 + 340 500£0 5000 500£0 / 500+£0 498 £ 10
c5 / 1+£0 100£0 100£0 100£0 / 100£0 100£0
QAOA c6 288 £228 / 306+ 36 330+£90 314+114 192+188 350+60 326+ 86
c7 140 £30 / 188 £132 216 £ 64 128 £12 162 +32 144 + 26 248 132

where F corresponds to the fidelity of Haar random states, and
n is the dimension of the qubit system.

To assess the expressibility of parametrized quantum cir-
cuits, one approach [36] is to compare the distribution of
state fidelities generated by a parametrized quantum circuit
to the state fidelities produced by the Haar distribution. In
statistical mathematics, the difference between two probabil-
ity distributions can be measured using the Kullback-Leibler
(KL) divergence [37]. For discrete probability distributions, P
and Q, the KL divergence can be defined as

P())

Di(P|IQ) =) P(j)ln —== (11
J

()

The quantum expressibility of a parametrized quantum

circuit (QExprpoc) can be described as the KL divergence

between the estimated state fidelity distribution of the PQC
and that of the Haar distribution:

QExprpoc = DxL[Proc () Praar (f)],

where Ppoc represents the estimated probability distribu-
tion of fidelities resulting from generating states from a
parametrized quantum circuit. A smaller QExprpq value (i.e.,
QExprpq closer to 0) indicates a stronger expressibility of the
parametrized quantum circuit.

Meanwhile, ADQAS generates a set of quantum circuits in
each generation. The expressibility of ADQAS (QExprpgas)
can be defined as the minimum value of QExprpy. among all
the parametrized quantum circuits in ADQAS:

12)

QEXprapgas = n (13)

mi EXprooe,
PQCEADQASQ Plec

which establishes that QExprapgas < QExprpgc when PQC
belongs to the quantum circuit generation of ADQAS. If
the HEA or a more expressive quantum circuit is present in
the generations of ADQAS, the ADQAS method has at
least the same power as the HEA. In the IBM-lima quan-
tum system, the basic single-qubit gates include SX, X, I,
and R,, and the two-qubit gate is CX. By defining Ry =
SX-R;-SX - X and considering that CX can be applied to
the ith and jth qubits following the coupling map of the
device with a fake Kolkata system, it becomes apparent that
ADQAS can generate the HEA Ansatz. Therefore, it is evident
that our method can effectively generate a more uniform state
distribution compared to the HEA.

To illustrate this, we compare our method with the HEA.
The simulation focuses on ADQAS with 200 initially gener-
ated circuits with one layer, ranging from 2 to 12 qubits. The
results are shown in Fig. 10, in which it can be observed that

for every point, the QEXprypg,s is lower than QExpryg, . This
indicates that the expressibility of our method is higher than
that of the HEA. Consequently, our method demonstrates a
greater ability to achieve superior results compared to human-
designed circuits like the HEA.

VII. SCALABILITY
A. LBL framework

To address the scalability issue in quantum circuit de-
sign, we propose a layered ADQAS approach. This approach
involves the use of a hybrid algorithm that combines the
layer-by-layer (LBL) method with the ADQAS method. The
LBL-ADQAS algorithm is designed to handle large qubit
problems that have more than 10 qubits. For such problems,
we use a single-qubit layer search space of SX-layer, X-layer,
R,-layer, SX-layer, and a two-qubit layer search space of
CX-layer.

To evaluate the performance of our algorithm, we apply
the circuit generated by traditional ADQAS, the circuit gener-
ated by LBL-ADQAS, and BS Ansdtzes under the IBM fake
Kolkata system to solve the eigenvalue of a hydroxyl cation
with 12 qubits. We compare the average energy results and
the number of iterations required for convergence between
LBL-ADQAS-C* and ADQAS-C*, as shown in Tables IX
and X. The comparison reveals that although LBL-ADQAS-
C* performs slightly worse than ADQAS-C¥*, it outperforms
the other methods.

Low 0.16
Expr
1 0.14
0.12
0.10
a
% 0.08
o
0.06
0.04
¥ 0.02
High
Expr 2 4 6 8 10 12

Qubit

FIG. 10. Comparison of the expressibility value QExpr between
the HEA and ADQAS in the quantum system, ranging from 2 to 12
qubits.
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FIG. 11. Comparison of computational complexity between
ADQAS and RQAS using the Ising model with qubit sizes ranging
from 4 to 20.

There exists a tradeoff between the precision and scala-
bility of circuit search algorithms. The traditional ADQAS
method can generate highly optimized circuits but may have
limited scalability due to the large number of candidate cir-
cuits it generates, which increases the search space size. On
the other hand, the LBL-ADQAS method reduces the search
space size, enhancing scalability, but it may not discover the
most optimized circuits and may miss some optimization op-
portunities.

Therefore, when selecting circuit search algorithms, both
aspects should be considered, and the tradeoff between them
should be balanced. If the problem requires high precision, the
traditional ADQAS method can be chosen. However, if the
problem is relatively simple but with a large scale, a search
algorithm with better scalability may be a better choice, as
it can enhance the scalability of the search algorithm while
ensuring an acceptable circuit for the problem.

B. Scalability analysis

Within the LBL framework, we conducted a complexity
analysis considering the number of qubits, layers, iterations,
and samplers. We use the Ising model, with sizes ranging from
4 to 20 qubits, as an illustrative example. The complexity is
calculated asn x L x T x N, where n is the number of qubits,
L is the number of layers, T is the number of iterations for

each sampler, and N is the number of samplers. Figure 11
demonstrates that ADQAS significantly reduces complexity
compared to RQAS methods, thus enhancing feasibility for
large-scale systems.

VIII. CONCLUSION

Hybrid quantum-classical algorithms hold promise in
providing a quantum advantage. Nevertheless, designing
parametrized quantum circuits that perform well in the
presence of noise and coupling topologies is a significant chal-
lenge. In this study, we introduce an adaptive diversity-based
quantum adaptive search algorithm that finds efficient quan-
tum circuits while optimizing the use of classical and quantum
resources. Our algorithm utilizes an adaptive approach to
identify circuits and employs a diversity-based method to
reduce the pool of candidate circuits.

Our ADQAS algorithm significantly reduces classical and
quantum resources by 28% and 23%, respectively, compared
to a hardware-efficient Ansarz, and outperforms RQAS in
terms of average energy for the six-qubit Heisenberg model
when evaluated on a simulator. Furthermore, our algorithm
produces optimized circuits with a more shallow depth and
fewer parameters than a hardware-efficient Ansatz and has
lower average energy than RQAS for the four-qubit Heisen-
berg model when tested on the IBM-Lima.

For the Iris classification task, our algorithm generates
optimized circuits that reduce classical and quantum resources
by 75% and 73%, respectively, compared to a hardware-
efficient Ansatz and achieve higher accuracy than RQAS on a
simulator. Additionally, our algorithm exhibits superior recall
and accuracy compared to the random-based algorithm for
both Iris classification and credit card fraud detection when
tested on the IBM-Lima.
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