
PHYSICAL REVIEW RESEARCH 6, 033030 (2024)

Exact steady states in the asymmetric simple exclusion process beyond one dimension
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The asymmetric simple exclusion process (ASEP) is a paradigmatic nonequilibrium many-body system that
describes the asymmetric random walk of particles with exclusion interactions in a lattice. Although the ASEP is
recognized as an exactly solvable model, most of the exact results obtained so far are limited to one-dimensional
systems. Here, we construct the exact steady states of the ASEP with closed and periodic boundary conditions
in arbitrary dimensions. This is achieved through the concept of transition decomposition, which enables the
treatment of the multidimensional ASEP as a composite of the one-dimensional ASEPs.
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I. INTRODUCTION

Exactly solvable models play a fundamental role in un-
derstanding the physics of interacting many-body systems
[1–3]. The asymmetric simple exclusion process (ASEP) is
a minimal exactly solvable model for investigating interact-
ing many-body systems far from equilibrium [4–36]. The
ASEP describes an asymmetric random walk of particles
with exclusion interactions in a lattice. Despite its simplicity,
the ASEP captures a range of nonequilibrium phenomena,
such as vehicular traffic flow [30,31] and biological transport
phenomena [32,33], and involves many crucial concepts in
nonequilibrium physics, including the KPZ universality class
[34–36] and boundary-induced phase transition [6]. One of
the most outstanding features of the ASEP is its solvability.
By employing mathematical physics approaches such as the
matrix product ansatz [4–8] and the Bethe ansatz [9–26],
we can evaluate physical quantities without approximations.
However, most of the exact results obtained so far are limited
to one-dimensional systems.

Many natural phenomena in the real world occur in sys-
tems beyond one dimension. For example, in highway traffic
flow, roads are often not single-lane but multilane, and there
may also be designated passing lanes. In this case, we need
to consider the effect of car lane changes, which is absent
in a one-dimensional system. To understand more diverse
and realistic phenomena, such as traffic flow on multilane
highways and the dynamics of pedestrian crowds, it is vital to
investigate the ASEP in multidimensional spaces. The exten-
sion of the ASEP to various types of two-dimensional systems
has been actively studied [37–76]. However, unlike the one-
dimensional case, studies on the two-dimensional (2D) ASEP
are mostly based on the mean-field approximation. Despite

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the numerous studies, exact results are few and limited to
specific situations [69–76].

In this Letter, we construct the exact steady state for the
ASEP in an arbitrary dimensional lattice with closed and pe-
riodic boundary conditions. The property of the steady states
depends on boundary conditions. In the one-dimensional (1D)
ASEP, the density distribution in a steady state is spatially
homogeneous in periodic boundary conditions [Fig. 1(a)]
[6], while that is inhomogeneous in the closed boundary
conditions [Fig. 1(b)] [28]. In higher dimensions, there are
more patterns of boundary conditions. Here, we consider the
combinations of periodic and closed boundary conditions. In
the two-dimensional case, there are three types of combina-
tions depending on the choice of boundary conditions for the
horizontal and vertical directions [Figs. 1(c) and 1(d)]: (i)
periodic × periodic boundary conditions (torus), (ii) periodic
× closed boundary conditions (multilane ASEP), and (iii)
closed × closed boundary conditions. In the following, we
demonstrate that steady states corresponding to such vari-
ous boundary conditions can be exactly constructed in any
dimension.

II. MODEL

The ASEP is a continuous-time Markov process that de-
scribes the asymmetric diffusion of particles with hardcore
interactions. The ASEP is usually considered in a one-
dimensional lattice. The updating rule of the 1D ASEP is
defined as follows. Each particle moves to the nearest forward
(backward) site with a hopping rate p (q). Due to the exclusion
interactions, each site can contain at most one particle. In
periodic boundary conditions [Fig. 1(a)], a particle at site 1
(L) hops to site L (1) with rate q (p) and to site 2 (L − 1) with
rate p (q). On the other hand, in closed boundary conditions
[Fig. 1(b)], a particle at site 1 (L) hops only to site 2 (L − 1)
with rate p (q).

In this study, we consider the multidimensional ASEP,
whose updating rule is given below. We consider a d-
dimensional lattice with the system size L1 × L2 × · · · × Ld .
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FIG. 1. ASEP under various boundary conditions. The 1D ASEP
with (a) periodic boundary conditions and (b) closed boundary condi-
tions. The 2D ASEP with (c) periodic × closed boundary conditions
(multilane ASEP) and (d) closed × closed boundary conditions.

Each particle moves to the nearest forward (backward) site
in the ri direction (1 � i � d) with a hopping rate pi (qi).
Each site can contain at most one particle because of the
exclusion interactions. For a given � (0 � � � d), we con-
sider closed boundary conditions for the ri�� directions and
periodic boundary conditions for the ri��+1 directions.

The position of a site r is denoted as r = (r1, r2, · · · , rd )
(1 � ri � Li for 1 � i � d). The state of a site r is rep-
resented by a Boolean number nr, which is set to nr =
0 (nr = 1) if the site is empty (occupied). A configura-
tion n is described by a series of the Boolean numbers
[n(1,··· ,1), n(1,··· ,2), · · · , n(L1,··· ,Ld )]. We denote the probability
of the system being in a configuration n at time t as P(n, t ).
The time evolution of P(n, t ) is determined by the master
equation

d

dt
P(n, t )

=
∑
n′ �=n

[P(n′, t )W (n′ → n) − P(n, t )W (n → n′)]

=
∑
n′∈In

P(n′, t )W (n′ → n) −
∑

n′∈Dn

P(n, t )W (n → n′),

(1)

where W (n → n′) is a transition rate from a configuration n to
n′, In represents a set of all configurations that can transition
to a configuration n, and Dn denotes a set of all configurations
that can transition from a configuration n.

It is helpful to express the master equation (1) in
vector form. The state of a site r is described by a two-
dimensional vector |nr〉, which equals |0〉 for empty and
|1〉 for occupied. A configuration n is represented by |n〉 =⊗L1

r1=1

⊗L2
r2=1 · · · ⊗Ld

rd =1 |nr〉, which forms an orthonormal
basis of the configuration space under normalization. A

stochastic state vector |P(t )〉 is described by

|P(t )〉 =
∑

n

P(n, t )|n〉. (2)

The master equation (1) is given by

d

dt
|P(t )〉 = H|P(t )〉, (3)

where H is the Markov matrix, which is expressed as a non-
Hermitian spin chain as follows:

H =
⎛
⎝ �∑

i=1

Li−1∑
ri=1

∑
{r1,··· ,rd }\ri

+
d∑

i=�+1

∑
{r1,··· ,rd }

⎞
⎠

× [pi{Ŝ+
r Ŝ−

r+ei
− n̂r(1 − n̂r+ei )}

+ qi{Ŝ−
r Ŝ+

r+ei
− (1 − n̂r)n̂r+ei}]. (4)

Here, we consider the half of the Pauli matrices Ŝx,y,z
r

that act on a site r, and introduce the ladder op-
erators Ŝ±

r = Ŝx
r ± iŜy

r and the number operators n̂r =
I/2 − Ŝz

r . ei represents the unit vector in the ri direc-
tion. The sum range corresponds to the boundary con-
ditions. The first sum represents closed boundary condi-
tions, and

∑
{r1,··· ,rd }\ri

= ∑L1
r1=1 · · · ∑Li−1

ri−1=1

∑Li+1
ri+1=1 · · · ∑Ld

rd
.

The second represents periodic boundary conditions, and∑
{r1,··· ,rd } = ∑L1

r1=1 · · ·∑Ld
rd =1. When the hopping rates are

symmetric, the Hamiltonian of the ASEP is equivalent to that
of the spin-1/2 Heisenberg model. In this sense, the ASEP
is regarded as a non-Hermitian extension of the Heisenberg
model by introducing asymmetricity.

III. STEADY STATE

In the ASEP, any initial state relaxes to the steady state.
Since the number of particles N is conserved in closed and
periodic boundary conditions, the Hamiltonian is block di-
agonalized, and a unique steady state exists for each N . In
the following, we fix the particle number N and consider a(L1···Ld

N

)
-dimensional subspace. We denote the position of a jth

particle (1 � j � N) as r j = (r j;1, r j;2, · · · , r j;d ). A config-
uration n is represented by a set of the N particle positions
{r1, r2, · · · , rN }.

The probability distribution in a steady state Pst(n) is the
solution of the master equation (1) with d

dt P(n, t ) = 0:
∑
n′∈In

Pst(n
′)W (n′ → n) −

∑
n′∈Dn

Pst(n)W (n → n′) = 0. (5)

In vector form, the steady state |Pst〉 corresponds to the eigen-
vector of the Markov matrix (4) with an eigenvalue zero

H|Pst〉 = 0. (6)

We express the steady state vector |Pst〉 as

|Pst〉 = 1

Z

∑
n

P̃st(n)|n〉, (7)

where P̃st(n) is the weight of the probability distribution
that satisfies Pst(n) = P̃st (n)/Z , and Z = ∑

n P̃st(n) is the
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normalization constant to satisfy
∑

n Pst(n) = 1. Note that
P̃st(n) also satisfies the master equation for a steady state (5).

In the one-dimensional case, the exact steady state is
constructed for both periodic [6] and closed boundary con-
ditions [28]. The weight of the probability distribution
for the steady state under periodic boundary conditions is
given by

P̃st,p(n) = 1 for ∀n. (8)

From the master equations (5), the following relation is
satisfied:

∑
n′∈In

Wp(n′ → n) −
∑

n′∈Dn

Wp(n → n′) = 0, (9)

where Wp(n → n′) represents the transition probability in the
1D periodic ASEP. On the other hand, the weight of the prob-
ability distribution for the steady state under closed boundary
conditions is given by

P̃st,c(n) =
(

p1

q1

)∑N
j=1 r j;1

. (10)

Based on the master equation (5), we obtain

∑
n′∈In

(
p1

q1

)∑N
j=1 r′

j;1

Wc(n′ → n)

−
∑

n′∈Dn

(
p1

q1

)∑N
j=1 r j;1

Wc(n → n′) = 0, (11)

where Wc(n → n′) denotes the transition probability in the 1D
closed ASEP.

In this Letter, we construct the exact steady state for the
multidimensional ASEP with closed and periodic boundary
conditions (4). The weight of the probability distribution for
the steady state is given by

P̃st,m(n) =
�∏

i=1

(
pi

qi

)∑N
j=1 r j;i

. (12)

In the following, we show that this gives the stationary solu-
tion to the master equation (5). The key is the decomposition
of the multidimensional ASEP to the 1D ASEP. All transi-
tions of a configuration in the multidimensional ASEP can be
regarded as those of the corresponding 1D ASEP. Figure 2
shows, as an example, the transition from the configuration
n = {(1, 1), (2, 2), (2, 3)} in the 2D (2 × 3) ASEP with � =
1. In this case, we find two 1D ASEPs extending in the
r1 direction (r2 = 1, 2, 3) and three 1D ASEPs extending in
the r2 direction (r1 = 1, 2). By considering the configuration
transition in each 1D ASEP [Figs. 2(a)–2(e)] and aggregating
all these transitions, we obtain all configurations that can
transition from the configuration n in the 2D ASEP.

FIG. 2. Example of the transition of states from the configuration
n = {(1, 1), (2, 2), (2, 3)} in the 2D (2 × 3) ASEP with � = 1. All
configurations that can transition from the configuration n in the 2D
ASEP can be regarded as the transition of the five 1D ASEPs along
the ri direction (a)–(e).

When the coordinates (r1, · · · , rd ) except ri (denote them
as {r}\ri := {r1, · · · , rd}\ri) are fixed, we can specify a series
of cells arranged on a one-dimensional line extending in the ri

direction. Regarding the cells as the 1D ASEP, we consider
the transition of states for a given configuration n. We de-
note a set of all configurations that can transition to (from)
a configuration n in the 1D ASEP extending in the ri direction
with fixed {r}\ri as I i

n;{r}\ri
(Di

n;{r}\ri
). The decomposition of

the multidimensional ASEP to the 1D ASEP means that the
configuration set In (Dn) for the multidimensional ASEP can
be expressed as the sum of the sets I i

n;{r}\ri
(Di

n;{r}\ri
) for the 1D

ASEPs

In =
d⋃

i=1

⋃
{r}\ri

I i
n;{r}\ri

, Dn =
d⋃

i=1

⋃
{r}\ri

Di
n;{r}\ri

. (13)

Based on this picture, we decompose the master equa-
tions of the multidimensional ASEP (1)

d

dt
P(n, t ) =

d∑
i=1

∑
{r}\ri

⎡
⎢⎣ ∑

n′∈I i
n;{r}\ri

P(n′, t )W i
n;{r}\ri

(n′ → n)

−
∑

n′∈Di
n;{r}\ri

P(n, t )W i
n;{r}\ri

(n → n′)

⎤
⎥⎦, (14)

where W i
n;{r}\ri

(n → n′) represents a transition rate from a
configuration n to n′ in the 1D ASEP extending in the ri

direction with fixed {r}\ri. Then, we substitute Eq. (12) for
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the right-hand side of the master equation (14)

d∑
i=1

∑
{r}\ri

⎡
⎢⎣ ∑

n′∈I i
n;{r}\ri

P̃st,m(n′, t )W i
n;{r}\ri

(n′ → n)

−
∑

n′∈Di
n;{r}\ri

P̃st,m(n, t )W i
n;{r}\ri

(n → n′)

⎤
⎥⎦

=
�∑

i=1

∑
{r}\ri

�∏
k �=i

(
pk

qk

)∑N
j=1 r j;k

×

⎡
⎢⎣ ∑

n′∈I i
n;{r}\ri

(
pi

qi

)∑N
j=1 r′

j;i

W i
n;{r}\ri

(n′ → n)

−
∑

n′∈Di
n;{r}\ri

(
pi

qi

)∑N
j=1 r j;i

W i
n;{r}\ri

(n → n′)

⎤
⎥⎦

+
d∑

i=�+1

∑
{r}\ri

�∏
i=1

(
pi

qi

)∑N
j=1 r j;i

×

⎡
⎢⎣ ∑

n′∈I i
n;{r}\ri

W i
n;{r}\ri

(n′ → n)

−
∑

n′∈Di
n;{r}\ri

W i
n;{r}\ri

(n → n′)

⎤
⎥⎦

= 0. (15)

Here, we use Eqs. (9) and (11), which are the relations for
the steady state of the 1D ASEP. Therefore, Eq. (12) is the
stationary solution of the master equation.

Here, it is worth mentioning that in the case of periodic
boundary conditions, it can be extended to nonuniform lanes.
In other words, even if the hopping rates in the ri direc-
tion (� + 1 � i � d) are extended to depend on coordinates
{r1, · · · , rd} except ri (that is, pi = pi({r} \ ri ), qi = qi({r} \
ri )), Eq. (12) still gives the stationary solution of the master
equation (5). Since the weight of the stationary probability
distribution under periodic boundary conditions (8) is inde-
pendent of the configuration, we can show this through a
parallel discussion.

IV. EXAMPLE

In the following, as an example, we consider the quasi-one-
dimensional flow in the 2D ASEP with � = 1 [Fig. 3(a)] and
show the effect of two-dimensionality. We introduce two types
of lanes (fast lane and slow lane) by setting inhomogeneous
hopping rates in the r2 direction [p2(r1)]. For simplicity, we
assume q2(r1) = 0. From Eq. (12), the steady state of the

FIG. 3. (a) 2D ASEP with �=1. We set (L1, L2)=(3, 8), p2(r1) =
0.3 for r1 = 1, 2, and p2(r1) = 1.0 for r1 = 3, and q2(r2) = 0.
(b) Relation between the quasi-one-dimensional current j and the
density ρ for various hopping rates (p1, q1) in the 2D ASEP.

ASEP is given by

|Pst〉 = 1

Z

∑
n

(
p1

q1

)∑N
j=1 r j;1

|n〉. (16)

The expectation value of a physical quantity Â in the steady
state is expressed as 〈Â〉 = 〈s|Â|Pst〉 where 〈s| = ∑

n〈n|. Here,
we introduce a quasi-one-dimensional current operator in the
r2 direction at the cross section r2 = k as

ĵk =
L1∑

r1=1

p2(r1)n̂(r1,k)(1 − n̂(r1,k+1)), (17)

and define a quasi-one-dimensional current as j = 〈 ĵ1〉. Then,
the current is given by

j = 1

Z

L1∑
r1=1

∑
ñ

p2(r1)

(
p1

q1

)∑N
j=1 r j;1

, (18)

where
∑

ñ represents the sum over all configurations with
n(r1,1) = 1 and n(r1,2) = 0.

Figure 3(b) shows the relation between the quasi-one-
dimensional current j and the density ρ = N

L1L2
for various

hopping rates in the r1 direction (p1, q1). In the case of sym-
metric rates p1 = q1 (blue dots), two-dimensionality does not
significantly affect, and the relation is almost equivalent to
that in the 1D ASEP. Namely, the current j reaches its maxi-
mum value when the density ρ equals 1/2. Conversely, when
the hopping rate is asymmetric p1 �= q1, two-dimensionality
alters the properties of the flow. Specifically, the value of the
density ρ at which the current j reaches its maximum deviates
from 1/2. Thus, the behavior of the quasi-one-dimensional
flow depends on the hopping rates perpendicular to the current
direction.
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V. CONCLUSION

In this Letter, we presented the exact results of the ASEP
in more than one dimension. We introduced the multidimen-
sional ASEP with closed and periodic boundary conditions,
which describes a range of situations, such as asymmetric
diffusion in a box and quasi-one-dimensional flow in a tube.
We constructed the exact steady states of the ASEP in arbi-
trary dimensions, and, as an example, we revealed the effect of
two-dimensionality on quasi-one-dimensional flow by calcu-
lating the current in the 2D inhomogeneous ASEP with slow

and fast lanes. The central concept was the decomposition
of transitions, which enabled us to treat the multidimensional
ASEP as the combination of the 1D ASEPs. This would be ap-
plicable to investigate other exactly solvable models in higher
dimensions.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant No.
JP24K16976.

[1] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(Academic Press, New York, 1982).

[2] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the
Theory of Solitons (Springer, Berlin, 1987).

[3] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum
Inverse Scattering Method and Correlation Functions (Cam-
bridge University Press, England, 1997).

[4] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Ex-
act solution of a 1D asymmetric exclusion model using
a matrix formulation, J. Phys. A: Math. Gen. 26, 1493
(1993).

[5] B. Derrida, An exactly soluble non-equilibrium system: The
asymmetric simple exclusion process, Phys. Rep. 301, 65
(1998).

[6] R. A. Blythe and M. R. Evans, Nonequilibrium steady states of
matrix-product form: a solver’s guide, J. Phys. A: Math. Theor.
40, R333 (2007).

[7] N. Crampe, E. Ragoucy, and M. Vanicat, Integrable approach
to simple exclusion processes with boundaries. Review and
progress, J. Stat. Mech. (2014) P11032.

[8] F. H. Essler and V. Rittenberg, Representations of the quadratic
algebra and partially asymmetric diffusion with open bound-
aries, J. Phys. A: Math. Gen. 29, 3375 (1996).

[9] O. Golinelli and K. Mallick, The asymmetric simple ex-
clusion process: an integrable model for non-equilibrium
statistical mechanics, J. Phys. A: Math. Gen. 39, 12679
(2006).

[10] L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-
scaling exponent of the noisy Burgers equation, Phys. Rev. A
46, 844 (1992).

[11] D. Kim, Bethe ansatz solution for crossover scaling functions of
the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type
growth model, Phys. Rev. E 52, 3512 (1995).

[12] O. Golinelli and K. Mallick, Bethe ansatz calculation of the
spectral gap of the asymmetric exclusion process, J. Phys. A:
Math. Gen. 37, 3321 (2004).

[13] O. Golinelli and K. Mallick, Spectral gap of the totally asym-
metric exclusion process at arbitrary filling, J. Phys. A: Math.
Gen. 38, 1419 (2005).

[14] K. Motegi, K. Sakai, and J. Sato, Exact relaxation dynamics in
the totally asymmetric simple exclusion process, Phys. Rev. E
85, 042105 (2012).

[15] K. Motegi, K. Sakai, and J. Sato, Long time asymptotics of the
totally asymmetric simple exclusion process, J. Phys. A: Math.
Theor. 45, 465004 (2012).

[16] S. Prolhac, Spectrum of the totally asymmetric simple exclusion
process on a periodic latticebulk eigenvalues, J. Phys. A: Math.
Theor. 46, 415001 (2013).

[17] S. Prolhac, Spectrum of the totally asymmetric simple exclusion
process on a periodic lattice-first excited states, J. Phys. A:
Math. Theor. 47, 375001 (2014).

[18] S. Prolhac, Extrapolation methods and Bethe ansatz for the
asymmetric exclusion process, J. Phys. A: Math. Theor. 49,
454002 (2016).

[19] S. Prolhac, Perturbative solution for the spectral gap of the
weakly asymmetric exclusion process, J. Phys. A: Math. Theor.
50, 315001 (2017).

[20] Y. Ishiguro, J. Sato, and K. Nishinari, Asymmetry-induced delo-
calization transition in the integrable non-Hermitian spin chain,
Phys. Rev. Res. 5, 033102 (2023).

[21] J. de Gier and F. H. Essler, Bethe ansatz solution of the asym-
metric exclusion process with open boundaries, Phys. Rev. Lett.
95, 240601 (2005).

[22] J. de Gier and F. H. L. Essler, Exact spectral gaps of the asym-
metric exclusion process with open boundaries, J. Stat. Mech.
(2006) P12011.

[23] J. de Gier and F. H. L. Essler, Slowest relaxation
mode of the partially asymmetric exclusion process with
open boundaries, J. Phys. A: Math. Theor. 41, 485002
(2008).

[24] J. de Gier and F. H. L. Essler, Large deviation function for the
current in the open asymmetric simple exclusion process, Phys.
Rev. Lett. 107, 010602 (2011).

[25] F.-K. Wen, Z.-Y. Yang, S. Cui, J.-P. Cao, and W.-L. Yang, Spec-
trum of the open asymmetric simple exclusion process with
arbitrary boundary parameters, Chin. Phys. Lett. 32, 050503
(2015).

[26] N. Crampé, Algebraic Bethe ansatz for the totally asymmetric
simple exclusion process with boundaries, J. Phys. A: Math.
Theor. 48, 08FT01 (2015).

[27] Y. Ishiguro, J. Sato, and K. Nishinari, Relationships among the
asymmetric simple exclusion process, the Burgers equation and
the derivative nonlinear Schrödinger equation, J. Phys. Soc. Jpn.
90, 114008 (2021).

[28] S. Sandow and G. Schütz, On Uq[SU (2)]-symmetric driven
diffusion, Europhys. Lett. 26, 7 (1994).

[29] G. M. Schütz, Duality relations for asymmetric exclusion pro-
cesses, J. Stat. Phys. 86, 1265 (1997).

[30] A. Schadschneider, Statistical physics of traffic flow, Physica A
285, 101 (2000).

033030-5

https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1088/1751-8113/40/46/R01
https://doi.org/10.1088/1742-5468/2014/11/P11032
https://doi.org/10.1088/0305-4470/29/13/013
https://doi.org/10.1088/0305-4470/39/41/S03
https://doi.org/10.1103/PhysRevA.46.844
https://doi.org/10.1103/PhysRevE.52.3512
https://doi.org/10.1088/0305-4470/37/10/001
https://doi.org/10.1088/0305-4470/38/7/001
https://doi.org/10.1103/PhysRevE.85.042105
https://doi.org/10.1088/1751-8113/45/46/465004
https://doi.org/10.1088/1751-8113/46/41/415001
https://doi.org/10.1088/1751-8113/47/37/375001
https://doi.org/10.1088/1751-8113/49/45/454002
https://doi.org/10.1088/1751-8121/aa77de
https://doi.org/10.1103/PhysRevResearch.5.033102
https://doi.org/10.1103/PhysRevLett.95.240601
https://doi.org/10.1088/1742-5468/2006/12/P12011
https://doi.org/10.1088/1751-8113/41/48/485002
https://doi.org/10.1103/PhysRevLett.107.010602
https://doi.org/10.1088/0256-307X/32/5/050503
https://doi.org/10.1088/1751-8113/48/8/08FT01
https://doi.org/10.7566/JPSJ.90.114008
https://doi.org/10.1209/0295-5075/26/1/002
https://doi.org/10.1007/BF02183623
https://doi.org/10.1016/S0378-4371(00)00274-0


YUKI ISHIGURO AND JUN SATO PHYSICAL REVIEW RESEARCH 6, 033030 (2024)

[31] A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic
Transport in Complex Systems: From Molecules to Vehicles
(Elsevier, Amsterdam, 2010).

[32] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers 6, 1
(1968).

[33] S. Klumpp and R. Lipowsky, Traffic of molecular mo-
tors through tube-like compartments, J. Stat. Phys. 113, 233
(2003).

[34] L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equa-
tions from particle systems, Commun. Math. Phys. 183, 571
(1997).

[35] T. Sasamoto and H. Spohn, One-dimensional Kardar-Parisi-
Zhang equation: An exact solution and its universality, Phys.
Rev. Lett. 104, 230602 (2010).

[36] K. A. Takeuchi, An appetizer to modern developments on
the Kardar–Parisi–Zhang universality class, Physica A 504, 77
(2018).

[37] R. J. Harris and R. Stinchcombe, Ideal and disordered two-lane
traffic models, Physica A 354, 582 (2005).

[38] T. Mitsudo and H. Hayakawa, Synchronization of kinks in the
two-lane totally asymmetric simple exclusion process with open
boundary conditions, J. Phys. A: Math. Gen. 38, 3087 (2005).

[39] E. Pronina and A. B. Kolomeisky, Asymmetric coupling in
two-channel simple exclusion processes, Physica A 372, 12
(2006).

[40] T. Reichenbach, E. Frey, and T. Franosch, Traffic jams induced
by rare switching events in two-lane transport, New J. Phys. 9,
159 (2007).

[41] R. Juhász, Weakly coupled, antiparallel, totally asymmetric
simple exclusion processes, Phys. Rev. E 76, 021117 (2007).

[42] R. Jiang, M.-B. Hu, Y.-H. Wu, and Q.-S. Wu, Weak and strong
coupling in a two-lane asymmetric exclusion process, Phys.
Rev. E 77, 041128 (2008).

[43] Z.-P. Cai, Y.-M. Yuan, R. Jiang, M.-B. Hu, Q.-S. Wu, and Y.-H.
Wu, Asymmetric coupling in multi-channel simple exclusion
processes, J. Stat. Mech. (2008) P07016.

[44] R. Jiang, K. Nishinari, M.-B. Hu, Y.-H. Wu, and Q.-S. Wu,
Phase separation in a bidirectional two-lane asymmetric exclu-
sion process, J. Stat. Phys. 136, 73 (2009).

[45] S. Xiao, M. Liu, and J.-j. Cai, Asymmetric coupling in two-lane
simple exclusion processes: Effect of unequal injection rates,
Phys. Lett. A 374, 8 (2009).

[46] C. Schiffmann, C. Appert-Rolland, and L. Santen, Shock dy-
namics of two-lane driven lattice gases, J. Stat. Mech. (2010)
P06002.

[47] R. Juhász, Dynamics at barriers in bidirectional two-lane exclu-
sion processes, J. Stat. Mech. (2010) P03010.

[48] M. R. Evans, Y. Kafri, K. E. P. Sugden, and J. Tailleur, Phase
diagrams of two-lane driven diffusive systems, J. Stat. Mech.
(2011) P06009.

[49] C. Lin, G. Steinberg, and P. Ashwin, Bidirectional transport and
pulsing states in a multi-lane ASEP model, J. Stat. Mech. (2011)
P09027.

[50] A. Melbinger, T. Reichenbach, T. Franosch, and E. Frey, Driven
transport on parallel lanes with particle exclusion and obstruc-
tion, Phys. Rev. E 83, 031923 (2011).

[51] V. Yadav, R. Singh, and S. Mukherji, Phase-plane analysis
of driven multi-lane exclusion models, J. Stat. Mech. (2012)
P04004.

[52] Q.-H. Shi, R. Jiang, M.-B. Hu, and Q.-S. Wu, Strong asym-
metric coupling of multilane paseps, Phys. Lett. A 376, 2640
(2012).

[53] A. K. Gupta and I. Dhiman, Asymmetric coupling in two-
lane simple exclusion processes with langmuir kinetics: Phase
diagrams and boundary layers, Phys. Rev. E 89, 022131
(2014).

[54] Y.-Q. Wang, R. Jiang, A. B. Kolomeisky, and M.-B. Hu, Bulk
induced phase transition in driven diffusive systems, Sci. Rep.
4, 5459 (2014).

[55] A. I. Curatolo, M. R. Evans, Y. Kafri, and J. Tailleur, Multilane
driven diffusive systems, J. Phys. A: Math. Theor. 49, 095601
(2016).

[56] S. Klein, C. Appert-Rolland, and M. R. Evans, Spontaneous
pulsing states in an active particle system, J. Stat. Mech. (2016)
093206.

[57] Q.-Y. Hao, R. Jiang, C.-Y. Wu, N. Guo, B.-B. Liu, and Y. Zhang,
Theoretical analysis and computer simulation of dynamic pro-
cesses for a driven diffusive two-lane system, Phys. Rev. E 98,
062111 (2018).

[58] Q.-Y. Hao, R. Jiang, M.-B. Hu, Y. Zhang, C.-Y. Wu, and N.
Guo, Theoretical analysis and simulation of phase separation
in a driven bidirectional two-lane system, Phys. Rev. E 100,
032133 (2019).

[59] A. K. Verma, A. K. Gupta, and I. Dhiman, Phase dia-
grams of three-lane asymmetrically coupled exclusion pro-
cess with Langmuir kinetics, Europhys. Lett. 112, 30008
(2015).

[60] I. Dhiman and A. K. Gupta, Origin and dynamics of a
bottleneck-induced shock in a two-channel exclusion process,
Phys. Lett. A 380, 2038 (2016).

[61] H. Yamamoto, S. Ichiki, D. Yanagisawa, and K. Nishinari,
Two-lane totally asymmetric simple exclusion process with
extended Langmuir kinetics, Phys. Rev. E 105, 014128
(2022).

[62] F. J. Alexander, Z. Cheng, S. A. Janowsky, and J. L.
Lebowitz, Shock fluctuations in the two-dimensional asym-
metric simple exclusion process, J. Stat. Phys. 68, 761
(1992).

[63] H.-T. Yau, Law of the two dimensional asymmetric simple
exclusion process, Ann. Math. 159, 377 (2004).

[64] N. Singh and S. M. Bhattacharjee, Transverse diffusion induced
phase transition in asymmetric exclusion process on a surface,
Phys. Lett. A 373, 3113 (2009).

[65] Z.-J. Ding, R. Jiang, and B.-H. Wang, Traffic flow in the Biham-
Middleton-Levine model with random update rule, Phys. Rev.
E 83, 047101 (2011).

[66] N. Tizón-Escamilla, C. Pérez-Espigares, P. L. Garrido, and P. I.
Hurtado, Order and symmetry breaking in the fluctuations of
driven systems, Phys. Rev. Lett. 119, 090602 (2017).

[67] Z.-J. Ding, S.-L. Yu, K. Zhu, J.-X. Ding, B. Chen, Q. Shi, X.-S.
Lu, R. Jiang, and B.-H. Wang, Analytical and simulation studies
of 2D asymmetric simple exclusion process, Physica A 492,
1700 (2018).

[68] P. Helms and G. K.-L. Chan, Dynamical phase transitions in
a 2D classical nonequilibrium model via 2D tensor networks,
Phys. Rev. Lett. 125, 140601 (2020).

[69] E. Pronina and A. B. Kolomeisky, Two-channel totally asym-
metric simple exclusion processes, J. Phys. A: Math. Gen. 37,
9907 (2004).

033030-6

https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1023/A:1025778922620
https://doi.org/10.1007/s002200050044
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1016/j.physa.2005.02.030
https://doi.org/10.1088/0305-4470/38/14/002
https://doi.org/10.1016/j.physa.2006.05.006
https://doi.org/10.1088/1367-2630/9/6/159
https://doi.org/10.1103/PhysRevE.76.021117
https://doi.org/10.1103/PhysRevE.77.041128
https://doi.org/10.1088/1742-5468/2008/07/P07016
https://doi.org/10.1007/s10955-009-9770-9
https://doi.org/10.1016/j.physleta.2009.10.022
https://doi.org/10.1088/1742-5468/2010/06/P06002
https://doi.org/10.1088/1742-5468/2010/03/P03010
https://doi.org/10.1088/1742-5468/2011/06/P06009
https://doi.org/10.1088/1742-5468/2011/09/P09027
https://doi.org/10.1103/PhysRevE.83.031923
https://doi.org/10.1088/1742-5468/2012/04/P04004
https://doi.org/10.1016/j.physleta.2012.06.040
https://doi.org/10.1103/PhysRevE.89.022131
https://doi.org/10.1038/srep05459
https://doi.org/10.1088/1751-8113/49/9/095601
https://doi.org/10.1088/1742-5468/2016/09/093206
https://doi.org/10.1103/PhysRevE.98.062111
https://doi.org/10.1103/PhysRevE.100.032133
https://doi.org/10.1209/0295-5075/112/30008
https://doi.org/10.1016/j.physleta.2016.04.031
https://doi.org/10.1103/PhysRevE.105.014128
https://doi.org/10.1007/BF01048875
https://doi.org/10.4007/annals.2004.159.377
https://doi.org/10.1016/j.physleta.2009.06.059
https://doi.org/10.1103/PhysRevE.83.047101
https://doi.org/10.1103/PhysRevLett.119.090602
https://doi.org/10.1016/j.physa.2017.11.091
https://doi.org/10.1103/PhysRevLett.125.140601
https://doi.org/10.1088/0305-4470/37/42/005


EXACT STEADY STATES IN THE ASYMMETRIC SIMPLE … PHYSICAL REVIEW RESEARCH 6, 033030 (2024)

[70] K. Tsekouras and A. B. Kolomeisky, Parallel coupling of sym-
metric and asymmetric exclusion processes, J. Phys. A: Math.
Theor. 41, 465001 (2008).

[71] T. Ezaki and K. Nishinari, Exact solution of a heterogeneous
multilane asymmetric simple exclusion process, Phys. Rev. E
84, 061141 (2011).

[72] T. Ezaki and K. Nishinari, A balance network for the asymmet-
ric simple exclusion process, J. Stat. Mech. (2012) P11002.

[73] H.-W. Lee, V. Popkov, and D. Kim, Two-way traffic flow:
Exactly solvable model of traffic jam, J. Phys. A: Math. Gen.
30, 8497 (1997).

[74] M. E. Fouladvand and H.-W. Lee, Exactly solvable two-way
traffic model with ordered sequential update, Phys. Rev. E 60,
6465 (1999).

[75] Y.-Q. Wang, B. Jia, R. Jiang, Z.-Y. Gao, W.-H. Li, K.-J. Bao,
and X.-Z. Zheng, Dynamics in multi-lane TASEPs coupled
with asymmetric lane-changing rates, Nonlinear Dyn. 88, 2051
(2017).

[76] Y.-Q. Wang, J.-X. Wang, W.-H. Li, C.-F. Zhou, and B. Jia,
Analytical and simulation studies of driven diffusive system
with asymmetric heterogeneous interactions, Sci. Rep. 8, 16287
(2018).

033030-7

https://doi.org/10.1088/1751-8113/41/46/465001
https://doi.org/10.1103/PhysRevE.84.061141
https://doi.org/10.1088/1742-5468/2012/11/P11002
https://doi.org/10.1088/0305-4470/30/24/014
https://doi.org/10.1103/PhysRevE.60.6465
https://doi.org/10.1007/s11071-017-3361-0
https://doi.org/10.1038/s41598-018-34579-1

