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Random coordinate descent: A simple alternative for optimizing parameterized quantum circuits
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Variational quantum algorithms rely on the optimization of parameterized quantum circuits in noisy settings.
The commonly used back-propagation procedure in classical machine learning is not directly applicable in
this setting due to the collapse of quantum states after measurements. Thus, gradient estimations constitute
a significant overhead in a gradient-based optimization of such quantum circuits. This paper introduces a
random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent
algorithm. This algorithm only requires one partial derivative at each iteration. Motivated by the behavior
of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an
optimization problem setting that is amenable to analysis. Under this setting, the random coordinate descent
algorithm exhibits the same level of stochastic stability as the full gradient approach, making it as resilient to
noise. The complexity of the random coordinate descent method is generally no worse than that of the gradient
descent and can be much better for various quantum optimization problems with anisotropic Lipschitz constants.
Theoretical analysis and extensive numerical experiments validate our findings.
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I. INTRODUCTION

Variational quantum algorithms have emerged as a promis-
ing application for near-term quantum devices, addressing
various computational challenges with enhanced efficiency
[1,2]. These algorithms encompass several notable ap-
proaches, such as the variational quantum eigensolver [3],
the variational quantum simulation [4], the quantum approx-
imate optimization algorithm [1,5,6], and quantum machine
learning [7–10]. They are designed to operate in a hy-
brid quantum-classical fashion [11,12]. In these algorithms,
the quantum component involves the implementation of
parameterized quantum gate operations. By performing mea-
surements, a cost function (and optionally, its gradient) is
obtained as the output. The classical computational procedure
then. utilizes an iterative method to produce updates for the
parameters, which are subsequently leveraged to refine and
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reprogram the quantum circuits. This iterative process contin-
ues until convergence is achieved, forming a feedback loop
that continues to improve the algorithm’s performance.

In variational quantum algorithms, the optimizable
parameters are defined within parameterized quantum circuits
(PQCs) [13–16]. A PQC is a sequence of unitary operators
represented by parameterized quantum gates that can be
readily implemented on a quantum computer. Assuming we
are working in an n-qubit Hilbert space, a parameterized
quantum circuit can be expressed as follows:

U (θ) =
J∏

j=1

Uj (θ j )Wj . (1)

Here θ = {θ j}J
j=1 are the parameters that we need to optimize,

Uj (θ j ) ∈ C2n×2n
are the parameterized unitary operators,

and Wj ∈ C2n×2n
are fixed unitary operators. For instance, a

simple example of a PQC consisting only of one-qubit Pauli
rotation operators takes the form

Uj (θ j ) =
M⊗

m=1

e−iθ j,k j,m σ j,k j,m ,

where σ j,k j,m ∈ C2×2 is a single-qubit Pauli matrix that acts
on k j,m-th qubit, θ j,k j,m represents one of the parameters in
θ, and Wj’s can be used to represent quantum gates that
do not require parametrization, such as the controlled-NOT
(CNOT) gate.

Let d be the dimension of the parameters, and we write
θ = (θ1, θ2, . . . , θd ). We then optimize the parameter θ by
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minimizing a properly chosen cost function f (θ). As an ex-
ample, the variation quantum eigensolvers (VQE) finds the
smallest eigenvalue (ground-state energy) and its correspond-
ing eigenvector (ground state) of a given Hamiltonian matrix
H by minimizing the energy of the state:

θ∗ = argminθ f (θ) = argminθ〈U (θ)ψ0|H |U (θ)ψ0〉. (2)

Here |ψ0〉 ∈ C2n
is a predetermined initial state that can be

easily prepared on a quantum computer. For each given θ,
U (θ) is implemented on a quantum computer to evolve |ψ0〉,
and the corresponding energy f (θ) and its gradient ∇θ f (θ)
can be consequently obtained with measurements. By solving
the optimization problem (2), the minimum value gives an ap-
proximation to the smallest eigenvalue of H , while U (θ∗)|ψ0〉
approximates the corresponding eigenvector.

A. Problem setup

Although the problem of optimizing parameters in VQAs
resembles classical optimization problems in machine learn-
ing, there exist key differences, particularly in how the cost
function is evaluated and the level of accuracy that can be
obtained for function and gradient evaluations. First, quantum
circuits used for estimating partial derivatives in various di-
rections are typically different. This is predominantly because
there is no straightforward method (in parallel to backprop-
agation) to estimate the entire gradient at once, given the
inherent nature of quantum states. The predominant method
for computing partial derivatives in a PQC is called the
parameter-shift rule [17–19], which can only be applied to
evaluate one component of the partial derivatives at a time.
As a result, the estimation of the gradient, ∇ f (θ), typically
incurs a cost that is d times greater than the cost associated
with merely estimating a single partial derivative, ∂i f (θ).

Second, the evaluation of any given quantity, a function
value or a partial derivative, requires measurement from quan-
tum computers and is subject to measurement noise. We note
that this noise is associated with a finite sampling space. For
example, a measurement of the Hamiltonian in (2), which is
defined in a finite-dimensional Hilbert space, yields one of
its eigenvalues corresponding to the ansatz. Thus, with an
increased number of samples or measurements, the central
limit theorem suggests that the distribution of the sample
average of the function value or the partial derivative can be
approximated by a Gaussian distribution, and as a result, the
accuracy of function and gradient evaluations can be relatively
low. Therefore, the optimization algorithm must be designed
to be resilient to measure noise.

In an idealized scenario, we may assume that both the
function value and the partial derivatives incorporated into
the optimization routine are subject to some Gaussian noise.
However, the magnitude of corresponding noises can differ
up to a constant, especially in situations where the parameter
shift rule is applicable (see Ref. [20]). With this consideration,
the problem of optimizing PQCs can be stated as follows:

Problem 1 (Optimizing parameterized quantum circuits).
Finding an efficient algorithm to solve the optimization prob-
lem,

θ∗ = argminθ∈Rd f (θ), (3)

under the following assumptions:
(1) The cost of evaluating a partial derivative scales lin-

early with that of a function value.
(2) Every evaluation of the function and partial derivative

is susceptible to Gaussian noise:

f (θ) → f (θ) + N
(
0, σ 2

1 (θ)
)
,

∂i f (θ) → ∂i f (θ) + N
(
0, σ 2

2 (θ)
)
. (4)

Here σ1(θ) and σ2(θ) depend on the real implementation
and are not necessarily the same (see Ref. [20] for example).
In practical applications, it is common to adaptively adjust the
number of samples for varying values of θ when evaluating f
or ∇ f . This adjustment ensures that the noise strength, σ1(θ)
and σ2(θ), remains comparable. For simplicity, in our later
analysis, we assume that σ2(θ) has a uniform upper bound σ∞
(see Assumption 2).

B. Optimization methods

One widely used approach for optimizing VQA is through
the application of gradient descent (GD) [20,21]. The classi-
cal gradient descent method involves iteratively updating the
parameters θ by utilizing the gradient of the cost function,

θn+1 = θn − an∇ f (θn), (5)

where an denotes the learning rate. In light of the measure-
ment process in quantum computing, we consider the noisy
gradient descent: Rather than implementing Eq. (5) with exact
∇ f (θn), we apply an unbiased estimator g(θ)1 [for example,
(4)]. Consequently, the parameter update involves the follow-
ing iteration:

θn+1 = θn − ang(θn). (6)

Since g(θn) is an unbiased estimation, Eq. (6) is equivalent
to Eq. (5) in the expectation sense. Specifically, by taking the
conditional expectation on both sides, we have

E(θn+1|θn) = θn − an∇ f (θn), (7)

where E(·|θn) denotes the conditional expectation given θn.
While noisy gradient descent avoids the need for precise

gradient information, it still requires the approximated full
gradient information at each iteration. As argued before, in
the context of VQA, it is often necessary to compute d partial
derivatives separately for each direction, which makes the cost
of each updating step at least d . In this paper, we introduce
an alternative optimization method called random coordinate
descent (RCD) [22–24] for addressing Problem 1, with the
goal of eliminating the cost dependency on d in each step.
RCD can be viewed as a variant of GD where the full gradient
in GD is approximated by a randomly selected component of
∇ f (θn) in each iteration. Specifically, one RCD iteration can
be expressed as:

θn+1 = θn − anein∂in f (θn). (8)

Here ein is the in-th unit direction, f ′
in (θn) is the corresponding

partial derivative of the cost function, and in is a random index

1g(θ) satisfies E[g(θ)] = ∇ f (θ).
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TABLE I. Comparison of the gradient descent and the random-
ized coordinate descent methods with an unbiased noisy gradient
estimation. d is the dimension of the parameter, and the smoothness
constants L and Lavg are defined in (11) and (13), respectively. σ 2

∞ is
a bound for the measurement noise defined in (15a). In the table, we
limit our attention to the situation where the learning rate is fixed.

Iteration Iterations to reach Total
Algorithm cost ε tolerance cost

GD �(d ) Õ
(

max
{

Lσ 2∞d
μ2ε

, L
μ

ln
(

1
ε

)})
�
(

Lσ 2∞d2

ε

)
RCD �(1) Õ

(
max

{
Lavgσ 2∞d2

μ2ε
, dLmax

μ
ln
(

1
ε

)})
�
(

Lavgσ 2∞d2

ε

)

uniformly drawn from {1, 2, . . . , d}. Similarly to Eq. (6), we
can write the noisy RCD as:

θn+1 = θn − anein gin (θn). (9)

It is important to emphasize that in each iteration of RCD
(9), only one partial derivative information is needed. Con-
sequently, within the scope of VQA (as stated in the first
assumption of Problem 1), the cost per step of RCD is d times
smaller than that of GD.

C. Contribution

This paper primarily focuses on the investigation of RCD
in the context of noisy gradient evaluation. Our analysis is
conducted in a specific comparison with GD, and we illustrate
that, under specific conditions, RCD can serve as a favorable
alternative for optimizing parameterized quantum circuits.
The main contributions of this study can be summarized as
follows:

(i) We show that RCD is theoretically no worse than GD
when measuring the complexity by the number of partial
derivative calculations (Theorems 3 and 4), assuming the
presence of noise and the local Polyak-Łojasiewicz (PL) con-
dition, which is more appropriate for PQCs (see Remark 2). A
summary of the complexities of the two methods is presented
in Table I for comparison. It is important to highlight that
the inequality Lavg � L � dLavg always holds. Consequently,
when the optimization problem is highly anisotropic, i.e.,
L 
 Lavg, RCD is more cost-effective than GD. In the most
extreme case when L is nearly equal to dLavg, RCD can reduce
the complexity by a factor of d compared to GD.

(ii) We demonstrate that (noisy) GD and RCD converge
with high probability under the local PL condition (As-
sumption 3) and are stable under noisy gradient information.
Specifically, if the initial parameter θ0 resides within the
basin N (X ) surrounding the global minimum, then both noisy
methods ensure that the subsequent parameters θn will remain
consistently within this basin until they converge with the
same high probability (Lemmas 5 and 6). To the best of our
knowledge, such stochastic stability has not been established
for the optimization methods in variational quantum algo-
rithms. We employ a, to the best of our knowledge, novel
supermartingale approach and utilize Markov’s inequality to
quantify the average behavior of the iterates in the optimiza-
tion method. We anticipate that this, as far as we know,
new analytical framework would also be useful for other
optimization algorithms for PQCs.

(iii) We provide extensive empirical evidence demon-
strating that RCD consistently delivers superior performance
compared to GD (Secs. I E and IV). Our numerical findings
support the theoretical observation that RCD can take a larger
learning rate than GD, leading to faster convergence.

D. Related works

1. Gradient descent with noise

The noisy gradient descent (6) is a popular optimization
method in the classical machine learning community. No-
table examples are the stochastic gradient descent (SGD)
[25] or the perturbed gradient descent [26]. The convergence
properties of the noisy gradient descent method in (6) have
been extensively studied [20,27–31]. These previous works
established that when the cost function is L-smooth, and μ

strong convex (or PL [32]) and satisfies other mild conditions,
f (θn) converges linearly to an approximation of fmin. In the
recent study by Sweke et al. [20], a comparable theoretical
result was demonstrated for the application of the noisy GD
method to quantum optimization problems. The authors es-
tablish the L-smooth property of the loss function (2) and
achieve the convergence of noisy gradient descent under the
assumption of unbiased gradient estimation and global PL
condition. Another approach to interpreting noise involves
assuming that the variational quantum state is influenced by
a noisy quantum map [33], ultimately resulting in a noisy
loss function. In Ref. [33], the authors investigate the con-
vergence properties of noisy GD, considering the impact of
both noise and the stochastic nature of quantum measurement
outcomes. They specifically illustrate that, when assuming the
global PL condition, noisy GD has the capability to converge
to a region where the perturbation in loss is bounded by a
quantity associated with the quantum Fisher information of
the variational state. With an important observation that PQCs
typically do not obey the global PL condition (see Remark 2),
we formulate a local PL condition, a property that is more
appropriate for PQCs, and we establish the convergence of
noisy GD and RCD under this weaker condition and unbiased
gradient estimation. We substantiate the efficacy of both opti-
mization algorithms with high probability. To the best of our
knowledge, this result is novel and has not been previously
explored.

2. Randomized coordinate descent

The RCD method has proven its efficiency over GD in
many large-scale optimization problems. The convergence
properties of RCD have been extensively explored in the
fields of machine learning and optimization [22–24,34–36].
For example, it was shown in Ref. [22] that when f is strongly
convex, the convergence complexity of RCD can be consis-
tently lower than or equal to that of GD. Here complexity
refers to the total number of partial derivative calculations re-
quired for convergence. Later, for strongly convex functions,
RCD accelerations were achieved with adaptive momentum-
based strategies in various regimes [35,36]. For the nonconvex
optimization, recent work [34] shows the global convergence
behavior of RCD with a focus on saddle-point avoid-
ance. Nevertheless, convergence rates of RCD have been
scarcely studied for nonconvex optimization problems. More
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importantly, most related works focused on the case where
partial derivatives are computed exactly, while in this work,
we deal with the case where partial derivatives are estimated,
which is subject to noise, and we will refer to it as noisy RCD
(9).

3. Locally defined convex conditions for convergence analysis

One limitation of the conventional convergence analysis is
its reliance on assumptions of global convex [25] or global
PL [20] conditions for the cost function f (θ). However, we
show that such global assumptions are not satisfied in quan-
tum problem applications with PQCs, as elaborated on in
Remark 2. Thus, one must weaken such a global assumption
to a local one in the analysis. Convergence analysis under
local assumptions requires more sophisticated techniques (see
Refs. [37–40] and therein), but it provides important insights
that help to interpret empirical results. In our work, we make
a local nonconvex condition based on the local PL condition
[27]. Under this condition and suitable assumptions for the
cost function, we present local convergence analysis for the
optimization of PQCs.

By employing a stochastic stability argument, we demon-
strate that the noisy GD and RCD methods maintain a
comparable convergence rate under our local PL condition
with high probability (refer to Theorem 3 and Theorem 4).
To the best of the authors’ knowledge, this paper is the first
to provide a rigorous result for the complexity of noisy GD
and RCD under a local PL condition designed for variational
quantum algorithms built from PQCs. The recent work [41]
also provided a local convergence analysis for the noisy GD
but their local assumption and result are more suitable for deep
neural networks in the classical machine learning.

4. Other quantum optimization methods

Simultaneous perturbation stochastic approximation
(SPSA) [42,43], is a zeroth-order method (i.e., it only involves
function values) that has some similarity to the RCD method.
Each iteration of SPSA employs a finite-difference formula to
estimate one directional derivative of the loss function. SPSA
has been used in Ref. [44] to update the control parameters
in VQE and achieves a level of accuracy comparable to
standard gradient descent methods. We highlight that when
each directional or partial derivative is approximated using
only two loss function values through finite differences,
the cost per step of SPSA and RCD should be comparable.
However, in scenarios where analytic partial derivatives are
available, such as those where the parameter shift rule [20]
is applicable, RCD becomes significantly more robust than
SPSA, since the small parameter in finite-difference formulas
tends to amplify the noise inherence in the measurement. In
contrast, derivative estimations from analytic derivatives are
more stable in the presence of measurement and quantum
noise, as substantiated by the numerical example provided in
Appendix J2.

2One can also use the parameter shift rule to calculate the direc-
tional derivative in SPSA. Nevertheless, the computation of a random
directional derivative always requires evaluating d partial derivatives,
making it d times more expensive than the cost of RCD per step.

Besides SPSA, there are other promising zero-order meth-
ods in variational quantum optimization, more commonly
known as gradient-free methods. Notably, policy gradient-
based techniques have shown their effectiveness in noise
robust optimization in the NISQ [45]. Sung et al. [46] con-
struct models based on the previous method and further
improve the sample efficiency of the methods. Further-
more, these zero-order optimization methods leverage the
strengths of reinforcement learning [47–50], Monte Carlo tree
search [51–53], and natural evolutionary strategies [54–56],
Bayesian [57,58], as well as Gaussian processes [59].

In addition to these zero-order methods, several other opti-
mization methods have been proposed recently [60–64]. One
interesting example is the quantum natural gradient (QNG)
[64], an approximate second-order method, that incorporates
the quantum geometric tensor, which is similar to the natural
gradient in classical machine learning. While an outcome of
measurement is used as an estimate of the gradient in the QNG
or the noisy gradient (6) from (1), the Jordan algorithm [62]
encodes the partial derivatives as binary numbers in the com-
putational basis. This algorithm was later improved by Gilyen
et al. [61] using high-order finite-difference approximations,
and applications to VQAs for a certain class of smooth func-
tions were considered. However, the methods [61,62] require
a significant number of ancilla qubits and complex control
logics, due to the binary encoding of partial derivatives. Al-
ternatively, Ref. [65] proposed a quantum backpropagation
algorithm, which uses ln d copies of the quantum state to
compute d derivatives. The overhead for computing d deriva-
tives is polylog(d ) times that of function evaluation (therefore
mimicking backpropagation). One of the main drawbacks of
their algorithm is that there is an exponential classical cost
associated with the process. For a more restrictive class of
cost functions (polynomial functions), Ref. [63] proposed a
framework to implement the gradient descent and Newton’s
methods. This method also requires the coherent implementa-
tion of the cost function on a quantum computer using, e.g.,
sparse input oracle, and thus can be challenging to implement
in near-term devices.

E. A numerical illustration: Variational
quantum eigenvalue solver

As a brief illustration of the performance of noisy GD
versus RCD methods, we consider the transverse-field Ising
model,

H = J
N−1∑
j=1

ZjZ j+1 + �

N∑
j=1

Xj, (10)

with the coefficient J = 1 and � = 1.5. Here N denotes the
number of qubits, and Xj, Zj are Pauli operators acting on
the j-th qubit. In Fig. 1, we set N = 10. To implement the
quantum circuits, we use Qiskit Aer-simulator [66] with the
command “result.get_counts” that outputs measurement out-
comes as classical bitstrings. We utilize the resulting classical
bitstrings to compute partial derivatives by applying the pa-
rameter shift rule [20]. Thus, the result in Fig. 1 takes into
account the measurement noise.

In each experiment, 10 independent simulations are used
with a fixed initialization. The parameterized quantum circuit
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FIG. 1. The comparison of the performance of GD (red) and RCD (blue) for optimizing the Hamiltonian (10). The unit of the x axis labels
the number of partial derivative evaluations as an indication of the computational complexity. The top panels show the approximation of the
ground state, including the energy ratio (left) and fidelity (right). In the bottom panels, we show the ratios of Lipschitz constants obtained from
the two methods are compared: L

Lavg
(left) and L

Lmax
(right).

used for estimating the ground-state energy of the Hamilto-
nian (10) is given in Fig. 2 (Appendix D).

We compare the optimization performance of the two
methods in terms of the number of partial derivative evalu-
ations. The optimization results in Fig. 1 suggest that RCD
requires nearly 4 times fewer partial derivative evaluations
than GD to converge to an energy ratio of 0.99 and a fidelity
of 0.97, both of which are higher than the energy ratio and the
fidelity obtained from GD. This observation can be explained
by the analysis in Sec. II B, i.e., RCD can be more efficient
than GD when the ratio of Lipschitz constants (L/Lavg or
L/Lmax) is significantly larger than 1. Specifically, the ratio
of the total computational cost of GD to RCD can be linked
to the Lipschitz ratios, as summarized in Table I. For instance,
in the lower panels of Fig. 1, we observe that the ratio L/Lavg

and L/Lmax remains above 20 and 11 throughout the iterations
on average. The faster convergence of RCD can be attributed
to these large Lipschitz ratios.

II. PRELIMINARIES AND MAIN RESULTS

Before we establish results pertinent to the performance of
RCD, we first establish consistent notations and assumptions,
which are presented in Sec. II A. Following that, we outline
our key theoretical findings in Sec. II B.

A. Notations and assumptions

Given a vector v ∈ Rd , we use standard norms for v,

including the 2-norm ‖v‖2 :=
√∑

i v
2
i and the ∞-norm

‖v‖∞ := maxi |vi|. In order to ensure the convergence of

gradient-based methods, we list several technical assump-
tions.

We assume the cost function f satisfies the L-smoothness.
Specifically, it satisfies the following assumption:

Assumption 1. The cost function f is L-smooth, in that

‖∇ f (θ) − ∇ f (θ′)‖2 � L‖θ − θ′‖2, for all θ, θ′ ∈ Rd .

(11)

It is worth noting that assuming L-smoothness is stan-
dard when analyzing the convergence of gradient-based
algorithms. Moreover, in the setting of PQC, verifying the
L-smoothness of the loss function is straightforward. An ex-
ample of this can be seen in Ref. [[20], Theorem 2], where the
author demonstrates that a broad class of PQCs can generate
loss functions that satisfy L-smoothness properties.

Since the gradient is Lipschitz continuous, the partial
derivatives are Lipschitz continuous as well. We define the
componentwise Lipschitz constants.

Definition 1. We say that a function f is Li-smooth with
respect to the i-th component if

|∂i f (θ + eih) − ∂i f (θ)| � Li|h| ∀h ∈ R, (12)

where ∂i f (θ) denotes the partial derivative in the i-th direc-
tion.

From these componentwise Lipschitz constants, we denote
the maximum and average of those constants as

Lmax := max
1�i�d

Li, Lavg = 1

d

d∑
i=1

Li. (13)
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As shown in Ref. [24], in general we have

Li � Lavg � Lmax � L � dLmax. (14)

Another interpretation is through the Hessian: When f is
twice continuously differentiable, the condition (11) is equiv-
alent to ∇2 f (x)  LId , and, similiarly, condition (12) is
equivalent to supθ |∂2

i f (θ)| � Li. We note that both the upper
and lower bounds of L in terms of Lmax in (14) are tight.
If ∇2 f is a diagonal matrix, then Lmax = L, both being the
largest diagonal element of ∇2 f . (This is the case in which
all coordinates are independent of each other, for example,
f =∑i λix2

i .) On the other hand, if ∇2 f = e · e�, where
e ∈ Rd satisfies ei = 1 for all i, then L = dLmax. This is a
situation where f is highly anisotropic, e.g., f = (

∑
i xi )2/2,

where L = d and Lmax = 1. In addition, when Lavg = L, we
see that Lavg = Lmax = Li for all i.

Next, it is important to note that the estimation of the
gradients in quantum computing can be susceptible to noise,
which stems from the inherent nature of quantum measure-
ments. Consequently, in our analysis and comparative studies
of different optimization methods, we will take into account
the presence of noise. To facilitate such analysis, we make the
following assumption:

Assumption 2 (Bounds of the noise with respect to the
2-norm). Given any θ ∈ Rd , we assume that we can find an
unbiased random estimate g(θ) for the gradient ∇ f (θ), mean-
ing that

E[g(θ)] = ∇ f (θ).

Furthermore, we assume that there exists a constant σ 2
∞ > 0

such that

σ 2
∞ > sup

θ∈Rd

max
1�i�d

E[|∂i f (θ) − gi(θ)|2]. (15a)

Here we also assume g(θ) is independent for different θ.
The constraint on the noise bounds is a standard assump-

tion in the analysis of noisy gradient-based algorithms. A
straightforward case that satisfies this assumption is ∇ f (θ) ∈
L∞(Rd ), a condition frequently observed in optimizations
involving PQCs. Moreover, in cases where |∇ f (θ)| lacks an
upper bound, we can adjust the sample sizes in various θ

values to effectively reduce the variance to a bounded range.
Additionally, we assume the existence of a basin encom-

passing the global minimum, within which f satisfies the PL
condition [32] and, equivalently, the local PŁ condition [27].

Assumption 3 (Local PL condition). Define X as the set of
global minima and fmin as the global minimum value evalu-
ated over X . Then there exists a δ f , μ > 0 such that for any
θ ∈ N (X ) := f −1([ fmin, δ f )),

‖∇ f (θ)‖2 � 2μ( f (θ) − fmin).

While a similar condition was theoretically justified in
classical machine learning (e.g., over-parameterized regimes
[27]), analysis on the case of parameterized quantum circuits
Eq. (1) is still lacking and challenging. The technical tools in
Ref. [27] might be applicable for the case of PQCs. We leave
this for future work. Nevertheless, it is worthwhile to highlight
that the local PL condition is defined not on the entire space
Rd but the neighborhood of global minima N (X ), which is

reasonable in the setting of variational quantum algorithm. We
support this argument with the following remark.

Remark 2 (PQCs are neither global PL nor globally convex).
Let f (θ) be a cost function defined by some parameterized
quantum circuit (2). Note that f is periodic and smooth, due
to its specialized form. By the extreme value theorem, we see
that there exist global maximum and minimum of f , denoted
by θmax and θmin. In general, f is not constant, which means
that fmax > fmin. Had f satisfied the global PL condition, it
would have followed that at the global maximum θmax,

0 = ‖∇ f (θmax)‖2 � 2μ( fmax − fmin) � 0, (16)

which gives a contradiction to the general case that fmax >

fmin. As another case study, if f is assumed to be convex,
namely

f (θ′) � f (θ) + (∇ f (θ), θ′ − θ) for all θ, θ′ ∈ Rd , (17)

then setting θ = θmax and θ′ = θmin results in a contradiction.
Therefore, the cost function f that is constructed from an
ansatz similar to (2), will not satisfy global PL or convex
conditions in general.

B. Main result: Complexity comparison of GD and RCD

In this study, our main focus is to compare the complexity
of noisy GD and RCD under the assumptions of a local PL
condition 3. For the sake of simplicity, in the remaining part
of this paper, we will refer to “noisy gradient descent” and
“noisy randomized coordinate descent” as “GD” and “RCD,”
respectively, without explicitly mentioning the term “noisy.”

The main theoretical results are summarized in the follow-
ing two theorems:

Theorem 3 (Complexity of GD under the local PL con-
dition). Assume f is a L-smooth function that satisfies
assumption 3 and g satisfies assumption 2. Given ε > 0 small
enough, if f (θ1) � δ f and an = �(min{με/(Lσ 2

∞d ), 1/L})
in GD (7), then with probability 1 − f (θ1)/δ f − o(1), there
exists at least one

n < N = �̃
(

max
{
Lσ 2

∞d/(μ2ε), L/μ
})

(18)

such that f (θn) � fmin + ε.
Theorem 4 (Complexity of RCD under the local PL condi-

tion). Assume f is a L-smooth function that satisfies assump-
tion 3 and g satisfies assumption 2. Given ε > 0 small enough,
if f (θ1) � δ f and an = �(max{με/(Lavgσ

2
∞d ), 1/Lmax}) in

RCD (9), then with probability 1 − f (θ1)/δ f − o(1), there
exists at least one

n < N = �̃
(

max
{
Lavgσ

2
∞d2/(μ2ε), Lmaxd/μ

})
(19)

such that f (θn) � fmin + ε.
Based on the theorem mentioned above, to achieve f (θn) −

fmin � ε, we can select the learning rate an = με

Lσ 2∞d for GD

and an = με

Lavgσ 2∞d for RCD. Recalling Eq. (14), we observe that
Lavg � L, which means that we could use a larger learning rate
for RCD. This choice aligns with the learning rates utilized
in the numerical experiments presented in Sec. I E as well as
those in Sec. IV.

We compare the complexity of the noisy GD and RCD
methods with the estimates of the number of iterations. First,
according to the above result, we conclude that the number
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of iterations required for GD is N = �̃( Lσ 2
∞d

μ2ε
)3, while for

RCD, we have N = Õ( Lavgσ
2
∞d2

μ2ε
). Notably, in RCD, there is

an additional factor of d , which can be understood in the
expectation sense: During each iteration of the noisy RCD,
the randomness arises from two sources: the random direc-
tion in and the noisy partial derivative gin (θn). By taking the
conditional expectation with respect to θn, we obtain:

E(θn+1|θn) = θn − an

d
∇ f (θn). (20)

Compared with (7), there is an extra 1/d factor in the ex-
pectation of RCD. Consequently, in each iteration, the rate of
decay of the cost function is smaller in RCD compared to GD.
Consequently, we anticipate that RCD would necessitate more
iteration steps to achieve convergence. On the other hand,
it is also important to note that in certain scenarios where
Lavgd is comparable to L, the number of iterations required
for RCD is comparable to that of GD.

Meanwhile, it is important to point out that a more practical
criterion for comparing the two methods is the cumulative
cost of each method, which is represented by the number of
partial derivative calculations from the quantum circuits. This
is because quantum algorithms for estimating the gradient
have a cost proportional to d . Since each iteration of GD needs
to calculate the full gradient (d partial derivatives), the total
number of partial derivative estimations in GD is

Npartial,GD = �̃

(
Lσ 2

∞d2

μ2ε

)
.

In contrast, the number of partial derivative estimations in
RCD is

Npartial,RCD = Õ
(

Lavgσ
2
∞d2

μ2ε

)
.

From Eq. (14), we can deduce that:

�̃(Npartial,RCD) = Npartial,GD = dÕ(Npartial,RCD).

This suggests that the computational cost of RCD is L/Lavg

times cheaper than that of GD. In an extreme case where
f is highly skewed, i.e., L/Lavg ≈ d , RCD can reduce the
computational cost by a factor of the dimension d , which will
be a significant reduction for large quantum circuits.

In addition to the complexity result, it is worth noting that
the two methods exhibit similar success probability, which is
approximately 1 − f (θ1)/δ f , as indicated by the two afore-
mentioned theorems. This observation is quite surprising, as
each iteration of RCD appears noisier due to the random
selection of the updating direction in. Intuitively, this suggests
that we might need to choose a smaller learning rate an to
ensure stability in RCD, which would consequently increase
its complexity. However, our theory unveils that choosing
a similar learning rate an is adequate to stabilize RCD. To
elucidate this point, it is important to recognize that, on av-
erage, RCD behaves equivalently to GD. By conducting more

3This complexity aligns with the classical theoretical results for
GD, which typically assume the presence of strong convexity or a
local PL condition for the function f .

iterations, RCD can approximate its average behavior (expec-
tation), effectively mitigating the extra randomness introduced
by in. This compensation mechanism ensures that the success
probabilities remain consistent between the two methods.

III. PROOF OF MAIN RESULTS

In this section, we provide the proofs for Theorems 3 and
4. We will start by showing the stochastic stability of the two
methods in Sec. III A. This will guarantee that the parameter θ

is likely to stay close to the global minimum until attaining a
small loss. Following that, in Sec. III B, we utilize the local
PL condition around the global minimum to establish the
convergence of f (θn). In all of the following theoretical results
and the corresponding proofs in the Appendixes, we assume
fmin = 0 without loss of generality by modifying the original
function as

f (θ) ← f (θ) − fmin. (21)

Thus, all results in this section can be reformulated for the
original cost function by the substitution (21), which will yield
Theorems 3 and 4.

A. Stochastic stability

In the context of optimization, stability and convergence
are not separate properties. In a deterministic algorithm,
convergence immediately guarantees stability. However, this
connection does not hold for stochastic processes in general.
For instance, when optimization methods such as noisy GD,
SGD, or noisy RCD are applied, discrete-time stochastic pro-
cesses are generated. In such cases, a convergence theory must
be developed for a collection of random paths, which can
exhibit different convergence behaviors among themselves.

In our specific case, we anticipate that when θn remains
within the basin N (X ) and the learning rate is correctly cho-
sen, both the GD and the RCD methods, when the gradient
is exactly calculated, converge to a global minimum due to
the local PL condition stated in Assumption 3. However,
in the presence of noise in the gradient and the use of a
constant learning rate, it is generally impossible to ensure
that θn ∈ N (X ) almost surely, unless a different strategy is
adopted such as the decreasing learning rates [37,38,40]. On
the other hand, the purpose of the optimization algorithm is
to minimize the loss function, which means that it suffices
to ensure stability until a small loss is achieved. To quantify
such a likelihood, in this section, we demonstrate that when
θ0 ∈ N (X ), there exists a finite probability that θn obtained
from GD and RCD remain within N (X ) until achieving a
small loss. This provides a high probability of convergence
for the two methods.

We summarize the result for noisy GD in the following
lemma.

Lemma 5. Assume that f is a L-smooth function that sat-
isfies the Assumption 3 and g satisfies the Assumption 2. If
f (θ1) � δ f and the learning rate is chosen as follows:

an = a < min

{
1

L
,

2μδ f

Lσ 2∞d

}
,
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then, with high probability, iterations of noisy GD (7) remain
in f −1([0, δ f )) until a small loss is achieved. Specifically,

P

{
∃N > 0 such that f (θN ) /∈ N and f (θn)

>
Laσ 2

∞d

μ
, ∀n < N

}
� f (θ1)

δ f
. (22)

In light of Eq. (22), if we select the learning rate an to
be sufficiently small, then with a probability of 1 − f (θ1 )

δ f
,

the parameters are guaranteed to achieve a small loss before
escaping the basin.

Despite infrequent updates of the gradient components,
RCD still demonstrates a similar level of stochastic stability.
This key observation is summarized in the following lemma:

Lemma 6. Assume that f is a L-smooth function that sat-
isfies Assumption 3 and g satisfies Assumption 2. Given any
f (θ1) < δ f , if one chooses the learning rate

an = a < min

{
1

Lmax
,

d

μ
,

2μδ f

Lavgσ 2∞d

}
,

then, with high probability, iterations from the noisy RCD (9)
stay at f −1([0, δ f )) until achieving a small loss. Specifically,

P

{
∃N > 0 such that f (θN ) /∈ N and f (θn)

>
Lavgaσ 2

∞d

μ
, ∀n < N

}
� f (θ1)

δ f
.

The proofs of Lemma 5 and 6 are provided in Ap-
pendixes A and B, respectively. The core concept of these
proofs is based on the construction of a specialized super-
martingale and the utilization of Markov’s inequality. For
example, to prove Lemma 5, we define a stochastic process

Vn =
{

f (θn)In, n < τ

f (θτ )Iτ , n � τ
.

where the indicator random variable is given by

In =
{

1, if {θk}n−1
k=1 ⊂ f −1([0, δ f ))

0, otherwise.
,

and the stopping time

τ = inf

{
k : f (θk ) � Laσ 2

∞d

μ

}
.

We observe that Vn is a meticulously crafted supermartingale,
allowing us to distinguish between stable and unstable events.
In particular, we demonstrate that if θn exits the basin before it

reaches f (θn) = Laσ 2
∞d

μ
(an unstable event), then supn Vn � δ f .

Therefore, we can employ Vn as a categorizer and the proba-
bility of failure of GD can be characterized by the value of Vn.
More specifically,

P

{
∃N > 0 such that f (θN ) /∈ N and f (θn)

>
Laσ 2

∞d

μ
, ∀n < N

}
� P {sup

n
Vn � δ f }.

Except for its use as a categorizer, we have designed Vn in such
a way that it is a supermartingale, meaning E(Vn+1|θk�n) �
Vn. Therefore, we can use Markov’s inequality for super-
martingales to bound the supremum of Vn and achieve the
desired result.

B. Convergence analysis

In this section, we present the convergence properties of
noisy GD and RCD methods. It is important to note that
Theorems 3 and 4 directly follow from Theorems 7 and 8,
respectively.

Our first theorem shows the convergence performance of
the noisy GD method,

Theorem 7. Assume f is a L-smooth function that satis-
fies Assumption 3 and g satisfies Assumption 2. Given any
precision 0 < ε < δ f , the initial guess f (θ1) < δ f , and the
probability of failure η ∈ ( f (θ1 )

δ−1
f

, 1), we choose the learning

rate in (5)

an = a = O
(

min

{
1

L
,

με

Lσ 2∞d

})
,

and the total number of iterations

N = �

⎛
⎜⎝ 1

μaη
ln

⎧⎪⎨
⎪⎩

f (θ1)[
η − f (θ1 )

δ f

]
ε

⎫⎪⎬
⎪⎭
⎞
⎟⎠.

Then, with probability 1 − η, we can find at least one θm with
1 � m � N such that f (θm) � ε. In particular,

P {∃m � N, f (θm) � ε} � 1 − η,

Next, we state the convergence property of the noisy RCD
method in the following theorem,

Theorem 8. Assume f is a L-smooth function that satis-
fies Assumption 3 and g satisfies Assumption 2. Given any
precision 0 < ε < δ f , the initial guess f (θ1) < δ f , and the
probability of failure η ∈ ( f (θ1 )

δ−1
f

, 1), we choose the learning

rate in (9)

an = a = O
(

min

{
1

Lmax
,

d

μ
,

με

Lavgσ 2∞d

})
,

and the total number of iterations

N = �

⎛
⎜⎝ d

μaη
ln

⎧⎪⎨
⎪⎩

f (θ1)[
η − f (θ1 )

δ f

]
ε

⎫⎪⎬
⎪⎭
⎞
⎟⎠.

Then, with probability 1 − η, we can find at least one θm with
1 � m � N such that f (θm) � ε. In particular,

P {∃m � N, f (θm) � ε} � 1 − η.

The proofs of these theorems can be found in the Ap-
pendix C.

Remark 9. We emphasize that Theorem 7 and theorem
Theorem 8 are general convergence results that require only
mild conditions. Specifically, Theorem 7 can be used to
demonstrate the stability and convergence of the traditional
SGD algorithm when the right assumptions are in place. A
convergence result analogous to the one previously discussed
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has been investigated in Ref. [[27], Theorem 7], where the
authors impose a more stringent requirement on the cost func-
tion [67]. In our work, we demonstrate the convergence of
noisy GD using more sophisticated techniques in probability
theory and adopt a weak version of probabilistic convergence
[68]. In addition, our approach can be directly extended to
show the convergence of noisy RCD as in theorem Theo-
rem 8, which to the best of our knowledge, has not been
established before. These two theorems suggest that with a
high probability, the loss function can achieve a small loss
during the training process. In other words, it is likely that the
parameter θ remains in the basin N until the precision ε is
attained at some point. After that, the optimization algorithm
could diverge unless a certain strategy is applied, for example,
a schedule of decreasing learning rates or an early stopping
criterion.

Remark 10. Our theoretical result clarifies a relation be-
tween the learning rate and the desired precision in opti-
mization. For example, the precision ε is manifested in the
upper bounds of the learning rates in Theorem 7 and theorem
Theorem 8. Thus, to reach precision ε, it is suggested to use
an O(ε) learning rate. Otherwise, due to the stability issue, the
trajectory is no longer guaranteed to converge to the precision
with positive probability.

We present the roadmap for proving Theorem 7 as follows:
Define the stopping time

τ = inf {k : f (θk ) � ε}.
To prove Theorem 7, it suffices to demonstrate that the prob-
ability of failure P (τ > N ) is small. Since the learning rate
an is selected to be sufficiently small and, according to the
Lemma 5, it is likely that θn will remain within the basin until
the ε loss is achieved.4 Thus, informally, it suffices for us to
assume θn ∈ N . The next step is to find an upper bound for
the probability of failure pfail = P (τ > N ). Using the local
PL condition, we can show that when ε < f (θn) < δ f ,

E( f (θn+1)|θn) �
(

1 − μa

2

)
f (θn),

meaning that the conditional expectation of f (θn+1) decays
to zero with rate (1 − μa

2 ). Inspired by this observation, we
can construct a supermartingale to show that, if τ > N , then,
with high probability, we have inf1�n�N f (θn) � ε. We note
that this event is complementary to the failure event {τ > N}.
Consequently, we obtain an upper bound for pfail.

IV. NUMERICAL RESULTS

In Sec. I E, depicted in Fig. 1, we have demonstrated that
the noisy RCD leads to faster convergence than the noisy
GD for VQE problems. In this section, we extend our in-
vestigation to gauge the efficiency of noisy RCD applied to
various other variational quantum algorithms, especially those
involving nonconvex optimization problems. The implemen-
tation of these algorithms is executed on classical computers.

4Rigorously, we must also take into account the possibility that the
optimization algorithm does not reach ε loss in a finite number of
iterations.

To emulate quantum measurement noise, the partial deriva-
tives undergo perturbation through additive Gaussian noise
as outlined in Sec. I A.5 Subsequently, we substantiate this
approximation through a numerical experiment on a quan-
tum simulator. This experiment further also proposes suitable
values for the strength of the Gaussian noise that we will
introduce in the upcoming numerical tests to appropriately
mimic the measurement noise.

In the experiment presented in Sec. IV B, we utilize Qiskit-
0.44.1 [66].

The algorithms for subsequent examples are implemented
using Numpy [69] and Jax [70]. We conducted each experi-
ment 10 times, employing different random initializations for
each run. All tests are executed on an Intel Xeon CPU @
2.20 GHz, complemented by a T4 GPU.

A. Analyzing the noise distribution

Building on the numerical experiment detailed in Sec. I E
and executed in Qiskit, we analyze the statistics of the partial
derivatives derived from the quantum circuit. Figure 2 show-
cases the histograms representing 10 000 estimates of partial
derivatives with respect to the initial 12 directions, while the
histograms for the remaining directions are presented in Ap-
pendix F. Each estimate of the partial derivatives is averaged
over 1000 shots. From all histograms, we can clearly see that
the distribution is closely approximated by a Gaussian distri-
bution. In addition, the magnitude of the standard deviation of
partial derivative estimates across all directions is comparable.
These observations support assumptions of the noise model
in Problem 1. For simplicity, we will employ the Gaussian
noise model in our subsequent investigations to compare the
performance of the noisy GD and RCD methods.

In the next two sections, we conduct a comprehensive com-
parison between noisy RCD and GD across a broad spectrum
of variational quantum algorithms and applications.

B. VQE with a varied circuit structure

In Sec. I E, we utilize the VQE for the TFIM (10) employ-
ing both the noisy GD and the noisy RCD. In this section,
we tackle the same optimization task but with a modified
setup. Specifically, Fig. 3 depicts the PQC [44] utilized in the
experiments showcased in Fig. 4, different from the one used
in Fig. 1.

In the experiments illustrated in Fig. 4, each optimization
outcome derives from 10 identical simulations with the same
initial condition. We set the learning rates for the RCD and GD
at 0.3 and 0.05, respectively. Each experiment utilizes 10,000
shots, with 18 trainable parameters. Results shown in Fig. 4
demonstrate that, compared to GD, RCD requires nearly three
times fewer partial derivative evaluations to converge.

5The derivative with noise is computed by adding Gaussian noise
to the original derivative: ∂i f (x) ← ∂i f (x) + ε, where ε follows a
Gaussian distribution, denoted as N (0, σ ). In this notation, σ sig-
nifies the standard deviation, defining the intensity of the Gaussian
noise.
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FIG. 2. Histograms of the estimated partial derivatives: Each panel displays the histogram of 10 000 partial derivative estimates in one of
the first 12 directions using the parameter-shift rule. The sampling of the partial derivatives is carried out at a suboptimal point chosen from
one simulation used in Fig. 1, where the fidelity is about 0.883.

FIG. 3. A variational circuit ansatz is employed for the Transverse-field Ising model expressed in Eq. (10), utilizing three qubits. This
circuit is a parameterized construct comprised of alternating rotation and entanglement layers. Each rotation layer involves the application
of single qubit gates, specifically Rotation-y and Rotation-z gates, to all qubits. In contrast, the entanglement layer employs two-qubit gates,
namely the controlled-X gate, to facilitate entanglement among the qubits. The ansatz is designated with 18 parameters.

FIG. 4. Performance comparison between GD (red) and RCD (blue) in terms of energy ratio and Lipschitz constant ratios for optimizing
the Hamiltonian (10). The energy ratio E/EGS is presented in the left panel, while the Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
, are

shown in the middle and right panels, respectively. The shaded areas in each panel represent variations observed across multiple trials.
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C. Quantum approximate optimization algorithm
for quantum Hamiltonians

The quantum approximate optimization algorithm
(QAOA) [5], originally devised for solving combinatorial
problems, is a leading example for demonstrating quantum
advantage on near-term quantum computers. As introduced in
Ref. [5], the QAOA utilizes a PQC, which naturally enables
optimization through the variational quantum algorithm.

In a generalized QAOA model, we begin with an ini-
tial quantum state |ψi〉, which can be easily prepared in
experiments, and let it evolve by a parameterized unitary
transformation,

|ψ (α,β)〉 = U
({α j, β j}p

j=1

)|ψi〉
= e−iH2βpe−iH1αp · · · e−iH2β1 e−iH1α1 |ψi〉, (23)

where the vector α (or β) enumerates the parameters α j

(or β j), and thus the total number of parameters is 2p and
the unitary transformation alternates between two kinds of
parameterized unitary transformations. With this ansatz, the
optimization is performed with the parameters {α j, β j} asso-
ciated with the application-dependent Hamiltonian matrices
H1 and H2, respectively.

In the subsequent sections, we will consider optimization
problems based on the QAOA (23). We will conduct a com-
parative analysis of the noisy GD and RCD for various QAOA
models that will span a range of systems, including the Ising
model (refer to Sec. IV C 1), the Heisenberg model (refer
to Sec. IV C 2), and variational auantum factoring (refer to
Sec. IV D 3).

1. QAOA: Ising model

In this section, we parametrize the transverse-field Ising
model by a Hamiltonian

H[h] =
N−1∑
j=1

Zj+1Zj +
N∑

j=1

(Zj + hXj ), (24)

where N denotes the total number of qubits. The global con-
trol field h ∈ {±4} takes two discrete values, corresponding
to the two alternating QAOA generators H1 = H[−4] and
H2 = H[+4] [45,48]. The initial state |ψi〉 corresponds to the
ground state of H[−2], while the desired target state |ψ∗〉
is selected as the ground state of H[+2]. The variational
problem aims to optimize the fidelity,6

max
{αi,βi}p

i=1

F
({αi, βi}p

i=1

) = max
{αi,βi}p

i=1

|〈ψ∗|U ({αi, βi}p
i=1)|ψi〉|2,

(25)

where

U
({αi, βi}p

i=1

)|ψi〉 = e−iH2βpe−iH1αp · · · e−iH2β1 e−iH1α1 |ψi〉.
(26)

6Fidelity serves as a metric for optimization. However, one caveat
of utilizing fidelity is its reliance on the ground state. In this context,
we assume the presence of an oracle capable of producing the fidelity
value. Subsequently, we also employ energy as an observable metric
for optimization purposes.

FIG. 5. Performance comparison between the noisy GD and
RCD for the Ising model (24). The corresponding Lipschitz constant
ratios, denoted as L

Lavg
and L

Lmax
, are presented in the bottom figures.

The shaded areas within the figures represent variations that have
been observed across 10 random realizations. The optimization is
performed for parameters with dimension equal to 20.

We note that the fidelity optimization (25) is equivalent to
the optimization of the form (2) by letting the Hamiltonian
be |ψ∗〉〈ψ∗|.

In the numerical test, we choose a system from (24) with
three qubits (N = 3) and then apply both GD and RCD
methods in the optimization. Figure 5 shows the optimiza-
tion results obtained from the noisy GD and RCD with the
respective learning rates of 0.0045 and 0.015 by using an
ansatz defined with 20 parameters. By adjusting the learning
rate and tracking the stability. We observe that RCD permits
a larger learning rate in comparison to GD, while maintaining
the stability. Similarly to the results presented in Fig. 1, we
compare the performance of the two methods in terms of the
number of partial derivative evaluations. From Fig. 5, We
observe that noisy RCD converges much faster than noisy
GD. While RCD achieves a fidelity near 1 with 500 partial
derivative evaluations, GD only attains a fidelity below 0.25
with an equivalent number of evaluations. This computational
effectiveness of RCD can be attributed to the large ratios of
Lipschitz constants shown in Fig. 5, which are obtained along
the optimization trajectories.

2. QAOA: Heisenberg model

Our second test problem with QAOA is the (anisotropic)
spin-1 Heisenberg model, H = H1 + H2, with the alternating
Hamiltonians given by

H1 = J
N∑

j=1

(Xj+1Xj + Yj+1Yj ), H2 = �

N∑
j=1

Zj+1Zj,

with anisotropic parameter �/J = 0.5 (topological-Haldane
[71–74]). For the Heisenberg model, we consider a system
consisting of eight qubits (N = 8) and choose the fidelity
as a measure for optimization, similarly to the setup for the
results in Fig. 5. We set the antiferromagnetic initial state
to |ψi〉 = |10101010〉. The target state is the ground state of
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FIG. 6. Performance comparison between noisy GD and RCD
for the Heisenberg model. The corresponding Lipschitz constant
ratios, denoted as L

Lavg
and L

Lmax
, are presented in the middle and

right. The shaded areas within the figure represent variations that
have been observed across 10 random realizations. The optimization
is performed in dimensions of 28.

the Hamiltonian H = H1 + H2. We employ the QAOA ansatz
represented by Eq. (26) and carry out the fidelity optimization
detailed in Eq. (25).

Figure 6 showcases the performance outcomes from noisy
GD and RCD simulations with learning rates set to 0.01
and 0.1, respectively. This QAOA model involves 28 param-
eters. The fidelity result shows that RCD converges to the
target state much faster than GD. This phenomenon can be
elucidated by noting that the ratios of Lipschitz constants de-
rived from both noisy methods, L

Lavg
and L

Lmax
, average around

10 and 6 along the trajectories, respectively. Especially, the
magnitude of the ratio L

Lmax
is similar to that of the ratio of

the numbers of partial derivative evaluations to reach a high
fidelity >0.8 from both noisy methods, as shown in Fig. 6.
Based on the observed numerical results, a high ratio of L

Lmax
is responsible for the efficiency of RCD in this optimization
problem.

D. QAOA for classical combinatorial optimization problems

Quadratic unconstrained binary optimization (QUBO)
problems have significant applications in fields such as fi-
nance, logistics, and machine learning, etc. Recognized as one
prominent optimization model in quantum computing, QUBO
consolidates a wide range of combinatorial optimization prob-
lems [75–78] and translates them into identifying the ground
state of classical Ising models [79].

The goal of QUBO is to identify a sequence of binary vari-
ables (0 or 1) that minimize a quadratic function. Specifically,
a cost function fQ is constructed over the set of binary vectors,
Bn:

fQ(x) = x�Qx =
n∑

i, j=1

Qi jxix j . (27)

In this context, B = {0, 1} signifies the set of binary values (or
bits), and Bn represents the collection of binary vectors with

length n > 0. A symmetric, real-valued matrix Q ∈ Rn×n is
introduced, with each element Qi j determining the weight for
the corresponding pair of indices i, j ∈ 1, . . . , n. For example,
if i = j, then the term Qiix2

i contributes Qii to the function
value when xi = 1. On the other hand, if i �= j, then the term
Qi jxix j contributes Qi j to the function value when both xi = 1
and x j = 1.

Overall, QUBO seeks to minimize the function fQ over the
set of binary vectors by determining an optimal minimizer x∗,

x∗ = arg min
x∈Bn

fQ(x). (28)

Incorporating the variational quantum algorithm into QUBO,
we reformulate the cost function using the following substitu-
tion:

xi = 1 − Zi

2
or

1 + Zi

2
, (29)

where the variable xi is supplanted by the Pauli Z matrix
operating on the i-th qubit. This replacement facilitates the
formulation of a model Hamiltonian. Its ground state can be
approximated by minimizing the expected energy via the vari-
ational quantum algorithm, as elaborated on in Sec. IV D 1.

In the following sections, we evaluate the performance of
the noisy GD and RCD across various QUBO applications,
focusing on the ground-state energy estimation. These ap-
plications encompass Max-Cut in Sec. IV D 1, the traveling
salesman problem in Sec. IV D 2, and variational quantum
factoring in Sec. IV D 3.

1. Max-Cut

For the Max-Cut problem, the graph employed in our nu-
merical experiments is presented as follows:

The global cost function is designed to maximize C =∑
(i, j)∈E xi(1 − x j ), where E represents the edges in the graph.

For the given graph, the QUBO problem can be formulated as:

min
xi∈{0,1}

−3x2
0 + 2x0x1 + 2x0x2 + 2x0x3 − 2x2

1 + 2x1x2

− 3x2
2 + 2x2x3 − 2x2

3 .

In order to construct the corresponding Hamiltonian, we asso-
ciate the binary variables xi with the Pauli Z matrices, denoted
as Zi, which act on individual qubits. Taking into account the
relationship between the binary variables xi and the Pauli ma-
trices Zi, defined by the equation xi = 1−Zi

2 , the cost function
is articulated by the Hamiltonian:

H = 1
2 I − 3Z0 + 1

2 Z0Z1 + 1
2 Z0Z2 + 1

2 Z0Z3

+ 1
2 Z1Z2 + 1

2 Z2Z3. (30)
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FIG. 7. Performance comparison between noisy GD and RCD for the Max-Cut problem. The corresponding Lipschitz constant ratios,
denoted as L

Lavg
and L

Lmax
, are presented in the middle and right panels. The shaded areas within the figure represent variations that have been

observed across 10 random realizations. The optimization process has been performed in 20 dimensions.

Using this Hamiltonian, we construct a parameterized
quantum circuit with four qubits (N = 4) and 20 parame-
ters. The circuit consists of alternating single-gate rotations,
denoted as Usingle (θ) =∏n

i=1 RY(θi )7 and entangler gate
Uentangler.8 This structure resembles the variational quantum
circuit of the QAOA, with the ansatz given by |ψ (θ)〉 =
[Usingle (θ)Uentangler ]m|+〉. For the optimization process, we
assign a learning rate of 0.1 for GD and 3.0 for RCD and select
energy as the optimization metric.

As illustrated in Fig. 7, the RCD also outperforms GD in
this case, as it converges to an energy ratio of 1 with roughly
200 partial derivative evaluations. In contrast, the GD achieves
only an average of 0.75 with 1000 derivative evaluations. The
superior performance of RCD in Fig. 7 can again be attributed
to the significant values of L

Lavg
and L

Lmax
, both exceeding an

order of magnitude of 3. As observed from the optimization
result, a high ratio of L

Lavg
is indicative of the rapid convergence

of RCD in this application.

2. Traveling salesman problem

We have designed a numerical test for the traveling sales-
man problem (TSP) using three cities as an example. The
intercity costs for these cities are 48, 63, and 91, respectively.
The cost of TSP is defined as

C(x) =
∑
i, j

wi j

∑
p

xi,px j,p+1 + A
∑

p

(
1 −

∑
i

xi,p

)2

+ A
∑

i

⎛
⎝1 −

∑
p

xi,p

⎞
⎠

2

,

where i labels the node, p indicates its order, and xi,p is in the
set {0, 1} and the penalty parameter A is set sufficiently large
to effectively enforce constraints. More details regarding the
expansion of C(x) can be found in Appendix G.

Utilizing the defined cost function, we establish a model
Hamiltonian in the same manner as presented in Sec. IV D 1.

7Each layer of rotation gates includes a rotation-Y gate applied to
every qubit.

8The entanglement layer incorporates two-qubit gates for qubit
entanglement without tunable parameters. In this experiment, the
entangler gate employs controlled-Z gates. For a comprehensive
explanation, refer to the circuit architecture in Appendix E.

We aim to prepare its ground state to address the QUBO prob-
lem. A detailed representation of the Hamiltonian is available
in Appendix G. We construct a parameterized quantum cir-
cuit comprising alternating single-gate rotations, represented
by Usingle (θ) =∏n

i=1 RY(θi) and entangler gate Uentangler. The
total number of trainable parameters is 90, which requires nine
qubits (N = 9) and 10 alternating layers. We employ energy
as the measure for the optimization cost function.

In the left panel in Fig. 8, the optimization results obtained
from the noisy RCD and GD are plotted. Notably, GD ex-
hibits slower convergence compared to RCD in achieving an
energy ratio of 1. The employment of 90 parameters in the
optimization, a number markedly greater than those in prior
applications, might account for this disparity. This increased
parameter count likely requires additional iterations and par-
tial derivative evaluations when applying GD. Similarly to
previous results, the two types of Lipschitz constant ratios
are obtained and shown along with the iterations in Fig. 8.
Again, we can see that the values of the ratios are considerably
large, especially during the initial stage of the optimization,
underlining the efficiency of RCD in the optimization process.

3. Variational quantum factoring

Our next QUBO problem is designed as a variational
quantum factoring task. For this task, we formulated the opti-
mization problem within the framework of quantum adiabatic
computation [80,81]. For example, to factorize 143 into the
product of two prime numbers, let 143 = pq, where

p = 8 + 4p2 + 2p1 + 1,

q = 8 + 4q2 + 2q1 + 1.

On direct computation, the relations are simplified to

p1 + q1 − 1 = 0, (31)

p2 + q2 − 1 = 0, (32)

p2q1 + p1q2 − 1 = 0. (33)

To solve this system of equations, we introduce a cost func-
tion,

c(p1, q1, p2, q2) = (p1 + q1 − 1)2 + (p2 + q2 − 1)2

+ (p2q1 + p1q2 − 1)2. (34)
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FIG. 8. Performance comparison between noisy GD and RCD for the TSP problem. The corresponding Lipschitz constant ratios, denoted
as L

Lavg
and L

Lmax
, are presented in the middle and right panels. The shaded areas within the figure represent variations that have been observed

across 10 random realizations. The optimization process has been performed in 90 dimensions. In the first panel, Ẽ/ẼGS is defined as (E −
c)/(EGS − c), where c/EGS = 3000. For clarity in the presentation, we adjust the energy by a constant.

By borrowing techniques (see Appendix H for more details)
from Refs. [82,83], the cost function can be reduced to

c(p1, q1, p2, q2)

= 5 − 3p1 − p2 − q1 + 2p1q1 − 3p2q1

+ 2p1 p2q1 − 3q2 + p1q2 + 2p2q2 + 2p2q1q2. (35)

Following the methods detailed in the QUBO, we treat
(p1, q1, p2, q2) as Boolean functions and substitute each
Boolean with 1

2 (1 − Zi ) as we did in previous sections. Then
the problem can be reformulated into the Ising Hamiltonian,

H = − 3I + 1
2 Z0 + 1

4 Z1 + 3
4 Z0Z2 + 1

4 Z2 − 1
4 Z1Z2 + 1

4 Z0Z1

− 1
4 Z0Z1Z2 + 1

2 Z3 + 1
4 Z0Z3 + 3

4 Z1Z3 + 1
4 Z2Z3

− 1
4 Z1Z2Z3. (36)

The ground states of this Hamiltonian are |0110〉 and |1001〉,
which respectively correspond to the solutions for the factor-
ization of the number 143. We summarize it as follows:

(p1, p2, q1, q2) = (0, 1, 1, 0) ←→ (p, q) = (13, 11), (37)

(p1, p2, q1, q2) = (1, 0, 0, 1) ←→ (p, q) = (11, 13), (38)

p = 8 + 4p2 + 2p1 + 1 and q = 8 + 4q2

+ 2q1 + 1 Boolean functions. (39)

In our numerical experiment, we select the mixer Hamil-
tonian H2 =∑Xi and set up a 20-layer QAOA, which

corresponds to 40 parameters.9 We set the learning rates to
0.0001 for GD and 0.005 for RCD and choose the energy as
a measure for optimization. Even with a small step size, the
variance of GD is notably large. Employing a larger step size
for GD further exacerbates the results.

In Fig. 9, the optimization results of the Hamiltonian (36)
are depicted, showing that the number of partial derivative
evaluations for the RCD to reach an energy ratio of 1 is
about 400 whereas the GD seems to require more than 1000
to the same tolerance. As discussed previously, this obser-
vation aligns with prior discussions, particularly given the
pronounced magnitude of the Lipschitz constant ratios evident
in Fig. 9.

V. CONCLUSION

In this paper, we propose that the RCD method is a simple
and effective algorithm for optimizing parameterized quan-
tum circuits. The effectiveness of RCD is demonstrated using
extensive numerical experiments for a variety of quantum op-
timization problems (all are nonconvex problems). In a noisy
environment, we find that RCD’s computational cost (mea-
sured by the number of partial derivative calculations) can be
significantly lower than that of the gradient descent method.
This suggests that in optimizing parameterized quantum

9The QAOA ansatz builds the variational circuit by alternating
between the parametrized unitary evolution associated with the prob-
lem Hamiltonian H and the mixer Hamiltonian H2.

FIG. 9. Performance comparison between noisy GD and RCD for the quantum factoring problem. The corresponding Lipschitz constant
ratios, denoted as L

Lavg
and L

Lmax
, are presented in the middle and right panels. The shaded areas within the figure represent variations that have

been observed across 10 random realizations. The optimization process has been performed in 40 dimensions.
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circuits, the benefits of developing an asymptotically efficient
and yet complex quantum circuit for evaluating all partial
derivatives, as discussed in Refs. [61,62,65], may be limited
and demand re-evaluation.

From a theoretical perspective, most previous works on
randomized coordinate descent algorithms studied the case
of convex cost functions or functions satisfying the global
PL condition, which do not fit into most variational quantum
applications that involve nonconvex cost functions. In this
work, we generalized the conventional convergence analysis
of randomized coordinate descent to local convergence anal-
ysis under a local-PL condition that can capture a large class
of nonconvex optimization. In particular, we proved that noisy
randomized coordinate descent can converge faster than noisy
gradient descent in terms of the total cost, measured in terms
of the total number of partial derivative estimations. Relaxing
the global PL condition to a local one leads to additional the-
oretical difficulties, namely the inherent noise can potentially
displace parameters from the local basin. In our study, we in-
troduce, to the best of our knowledge, a novel supermartingale
approach to show that, with a proper initial condition, the pa-
rameters can stay within the basin and converge to a low-loss
point. We believe that this analysis technique may also benefit
the analysis of other quantum optimization algorithms. We
also emphasize that our analysis does not guarantee the global
convergence of the algorithm and, specifically, does not ad-
dress its performance in the presence of barren plateaus [84].

Our analysis noise comes from quantum measurements.
However, in real quantum devices, the presence of generic
quantum noise may introduce additional noise to the prob-
lem. For example, circuit noise will have two effects on
our optimization methods. First, it will increase the variance
σ 2 associated with the gradient estimators and, as a result,
increase the sampling complexity [85] or the number of it-
eration steps (Theorem 3 and Theorem 4). Second, noise
may induce a bias that is proportional to the noise strength
(λ) [85]. Although the bias can be improved by error mit-
igation techniques (see Refs. [86] and [87]), e.g., the zero
noise extrapolation method, the variance overhead will persist
and thus increase the optimization complexity, as indicated
by Theorems 3 and 4. Meanwhile incorporating small bias
into the convergence analysis seems possible, as suggested by
previous works (refer, for instance, to Ref. [88]).

From an optimization standpoint, variational quantum
optimization as outlined in Problem 1 also raises many
interesting questions. For instance, in our experiment, we
employ a fixed number of measurement shots for each step.
However, in practical scenarios, implementing an adaptive
approach to determine the number of shots could potentially
reduce the overall shot count and increase the accuracy.
When the estimation for f (θ ) and ∇ f (θ ) reveals significant
magnitudes, increasing the number of shots can effectively
reduce variance, ensuring high accuracy in the estimation
process. Another interesting direction is to consider
non-gradient-based optimization algorithm. For example,
can second-order or zeroth-order optimization methods (i.e.,
methods using only function evaluation) be more efficient
compared to the current gradient-based algorithms? In a
technical viewpoint, another question is whether the stability
result Lemma 5 can be generalized so that the event covers

the case that the iteration diverges at some time instances,
but it remains in the entire basin until then, f −1[0, δ f ), not
necessarily in the region above the set of global minima,

f −1( Laσ 2
∞d

μ
, δ f ). If this is possible to show, then it will provide

a stronger result such as the stability of the noisy GD and
RCD within the entire basin as the stability of Markov chain in
Ref. [89]. Furthermore, the barren plateau [84] (i.e., vanishing
gradients) poses a significant challenge for training algorithms
for PQCs. Moreover, there remains a gap in the theoretical
understanding of how the observed vanishing gradients relate
to the assumptions underlying the analysis of optimization
algorithms. A simple speculation is that the presence of barren
plateau will make some of the constants (e.g., the local PL
constant) in our analysis vanishingly small as the number of
qubits and/or the circuit depth increases. It may be possible
to combine RCD with some existing novel optimization
algorithms, e.g., layerwise training [90], to partially mitigate
the difficulty caused by the barren plateau in specific
applications.
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APPENDIX A: STOCHASTIC STABILITY OF NOISY GD

In this section, we prove Lemma 5.
Proof of Lemma 5 Define the probability filtration: Fn =

σ (θk|k � n) and the stopping time10

τ = inf

{
k : f (θk ) � Laσ 2

∞d

μ

}
,

which is the smallest timepoint where the noisy GD achieves

f (θk ) � Laσ 2
∞d

μ
.

Define the indicator function In:

In =
{

1, if {θk}n−1
k=1 ⊂ f −1([0, δ f ))

0, otherwise
, (A1)

and the stochastic process

Vn =
{

f (θn)In, n < τ

f (θτ )Iτ , n � τ
.

10It is straightforward to see

{τ � n} ∈ Fn, {τ > n} ∈ Fn.
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According to the definition of Vn, there are complementary
and exclusive events (cases):

(i) Case 1: If there exists 0 < n < ∞ such that: 1. θn /∈ N ;
2. For any m < n, θm ∈ N and f (θm) >

Laσ 2
∞d

μ
. Then

Vn � δ f ⇒ sup
n

Vn � δ f .

(ii) Case 2: For any n < τ , f (θn) ∈ N .
We observe that Case 2 is the stable situation, indicating

that f (θn) remains in the basin of the global minimum until it
achieves a small loss.11 To prove (22), it suffices to show that

P (�1) � f (θ1)

δ f
, (A2)

where �1 denotes the event associated with Case 1.
Now we show that Vn is a supermartingale to bound

supn Vn. Taking the conditional expectation, we obtain

E(Vn+1|Fn) =E(Vn+1|Fn, In = 1, τ � n)P (τ � n)

+ E(Vn+1|Fn, In = 1, τ > n)P (τ > n),

where we use In+1 � In. There are two terms in the above
equation:

(i) For the first term, when τ � n, we obtain Vn+1 = Vτ =
Vn. This implies

E(Vn+1|Fn, In = 1, τ � n) = Vn. (A3)

(ii) For the second term, when τ > n, we have f (θn) >
Laσ 2

∞d
μ

. Then taking the conditional expectation yields

E[Vn+1|In = 1, θ1, τ > n]

= E[ f (θn+1)In+1|In = 1, θ1, τ > n]

� f (θn) − a‖∇ f (θn)‖2 + La2

2
(‖∇ f (θn)‖2 + σ 2

∞d )

� (1 − μa) f (θn) + La2σ 2
∞d

2

< (1 − μa) f (θn) + μa

2
f (θn)

�
(

1 − μa

2

)
f (θn)In =

(
1 − μa

2

)
Vn, (A4)

where we use Assumption 3 and a < 1
L in the second inequal-

ity, τ > n in the third inequality.
Combining (A3) and (A4), we obtain

E(Vn+1|Fn) = VnP (τ � n) +
(

1 − μa

2

)
VnP (τ > n) � Vn.

(A5)

Thus, Vn is a supermartingale.
Now, we consider the Case 1 event:

�1 = {∃n > 1, θn /∈ N and f (θm) > ε with θm ∈ N ,

∀1 � m < n} ⊂ {sup
n

Vn � δ f }.

11We emphasize that Case 2 also includes the situation where f (θn)
remains in the basin and never achieves the small loss.

Because Vn is a supermartingale, we obtain Case 1 happens
with small probability:

P (�1) � V1

δ f
= f (θ1)

δ f
.

This concludes the proof. �

APPENDIX B: STOCHASTIC STABILITY OF NOISY RCD

In this section, we prove Lemma 6 with a slight modifica-
tion of the proof in Appendix A. From a theoretical viewpoint,
the difference between the noisy GD and RCD methods is
made by the construction of gradient estimate [e.g., see (5)
and (8)]. Compared to GD, the additional randomness of RCD
comes with the random selection of a component as in (8).
This difference affects the recursive inequality (A4) mainly in
the previous proof, where we considered the properties of the
gradient estimator. From this observation, it suffices to derive
a recursive inequality similar to (A4) to prove Lemma 6.

Note that the sampling of a component within RCD is
performed before estimating a partial derivative. Thus, the first
step is to take expectation on the partial derivative estimate,

Eξin
[ f (θn+1)] � f (θn) − aEξin

[∂in f (θn)gin (θn)]

+ Lin a2

2
Eξin

[|gin (θn)|2], (B1)

where in is uniformly sampled index and gin is the correspond-
ing unbiased estimate for the partial derivative. Let Fn, τ , In,
and Vn be as defined in the previous section. By considering
the inequality (B1) and the conditional expectation in (A4),
we achieve the following result by taking expectations with
respect to the random index in:

E[Vn+1|In = 1, θ1, τ > n]

= E[ f (θn+1)In+1|In = 1, θ1, τ > n]

�
[

f (θn) − a

d
‖∇ f (θn)‖2 + Lmaxa2

2d
‖∇ f (θn)‖2

+ Lavgσ
2
∞da2

2d

]
In+1

�
[(

1 − μa

d

)
f (θn) + Lavga2σ 2

∞
2

]
In+1

<
[(

1 − μa

d

)
f (θn) + μa

2d
f (θn)

]
In+1

=
(

1 − μa

2d

)
f (θn)In =

(
1 − μa

2d

)
Vn, (B2)

provided that f (θn) >
Lavgaσ2∞d

μ
and an = a < min

{ 1
Lmax

, d
μ
,

2μδ f

Lavgσ 2∞d }.
Similarly to (A5), in the case of RCD, (B2) implies

E(Vn+1|Fn) = VnP (τ � n) +
(

1 − μa

2d

)
VnP (τ > n) � Vn,

(B3)

which implies Vn forms a supermartingale. The remaining
proof of Lemma 6 follows the same steps as the proof of
Lemma 5, so we will not include them here.
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APPENDIX C: THE PROOFS OF THEOREM 7
AND THEOREM THEOREM 8

We first show the convergence rate of the noisy GD
method, followed by a similar analysis for the noisy RCD
method. The following proofs are similar to those in
Appendixes A and B with minor differences.

Proof of Theorem 7. Define the probability filtration:
Fn = σ (θk|k � n) and the stopping time

τ = inf {k : f (θk ) � ε},
which is the smallest timepoint where the noisy GD achieves
f (θk ) � ε. Then, our ultimate goal is to show that the event
that inf1�n�N f (θn) � ε occurs with high probability, say,
at least 1 − η. Then, our goal is to show that for any η ∈
( f (θ1 )

δ f
, 1), there exists a sufficiently large N such that

pfail := P (τ > N ) � η. (C1)

Define the indicator function In:

In =
{

1, if {θk}n−1
k=1 ⊂ f −1([0, δ f ))

0, otherwise
,

and the stochastic process

Vn =
{

f (θn)In, n < τ

f (θτ )Iτ , n � τ
.

Define the unstable event:

� = {∃n > 1, θn /∈ N and f (θm) > ε,

∀1 � m < n} ⊂ {sup
n

Vn � δ f }.

According to Lemma 5 and the proof in Appendix A, for

learning rate a with Laσ 2
∞d

μ
< ε, we obtain � happens with

small probability:

P (�) � V1

δ f
= f (θ1)

δ f
. (C2)

Recalling (C1), we note that, for any n � N ,

P (τ > n) � pfail.

Plugging this into (A5), we obtain that

E(Vn+1|Fn) =
[
1 − P (τ > n) +

(
1 − μa

2

)
P (τ > n)

]
Vn

=
[

1 − μaP (τ > n)

2

]
Vn

�
(

1 − μapfail

2

)
Vn.

(C3)

By taking the total expectation on both sides and using a
telescoping trick, we achieve that

E(Vn+1) �
(

1 − μapfail

2

)n
V1 =

(
1 − μapfail

2

)n
f (θ1).

(C4)

This means that if the probability of failure, pfail, is large, the
expectation of Vn+1 decreases quickly. By Markov’s inequal-
ity, we have

P (VN > ε) �
(
1 − μapfail

2

)N−1
f (θ1)

ε
,

equivalently,

P (VN � ε) � 1 −
(
1 − μapfail

2

)N−1
f (θ1)

ε
.

Now, if we consider the event {VN � ε}, then it is the union
of the following two events (not necessarily exclusive and
complementary), which are slightly different from the ones
in Appendix A:

(i) �1: There exists n � N such that f (θn) � ε and θn ∈
N . This means

inf
1�n�N

f (θn) � ε.

We want to show that �1 happens with high probability.
(ii) �2: There exists n < N such that f (θn) > δ f and

f (θm) > ε for any m < n.
We note that, when �2 happens, we have Vn+1 = 0 with

f (θn) > δ f , which implies �2 ⊂ �. According to (C2), we
obtain

P (�2) � P (�) � f (θ1)

δ f
.

Now we give a lower bound for the event �1:

P [ inf
1�n�N

f (θn) � ε] = P (�1) � P (VN � ε) − P (�2)

� 1 −
(
1 − μapfail

2

)N
f (θ1)

ε
− f (θ1)

δ f
.

(C5)

Notice

P [ inf
1�n�N

f (θn) � ε] � P (τ � N ) = 1 − pfail.

Combining the above two inequalities, we have

pfail �
(
1 − μapfail

2

)N
f (θ1)

ε
+ f (θ1)

δ f
. (C6)

Next we show (C1) using the proof by contradiction. Assume
that the conclusion of the theorem is not true, meaning that for
some η ∈ ( f (θ1 )

δ f
, 1) and every N ,

pfail > η.

When pfail > η and N = 2
μaη

ln{ f (θ1 )

[η− f (θ1 )
δ f

]ε
}, then

(
1 − μapfail

2

)N
f (θ1)

ε
+ f (θ1)

δ f

<

(
1 − μaη

2

)N
f (θ1)

ε
+ f (θ1)

δ f

� exp
(−μaηN

2

)
f (θ1)

ε
+ f (θ1)

δ f
= η < pfail,
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FIG. 10. A QAOA-like ansatz motivated by Ref. [91] is used for the TFIM model (10) with 10 qubits. For the result in Fig. 1, 36 parameters
are assigned with 18 layers of alternating rotation ZZ gates and rotation X gates.

where we use pfail > η in the first inequality and (1 − x)N �
exp(−xN ) in the second inequality. This contradicts to (C6).
Thus, (C1) must be true and we conclude the proof. �

Proof of Theorem 8. Denote the probability of failure

pfail = P (τ > N ).

Similarly to the calculation in the previous proof, from
(B3), we have

P [ inf
1�n�N

f (θn) � ε] � 1 −
(
1 − μapfail

2d

)N
f (θ1)

ε
− f (θ1)

δ f
.

(C7)

With the same logic below (C5), we conclude the proof of
theorem Theorem 8. �

APPENDIX D: PARAMETERIZED CIRCUIT
FOR THE VQE

The quantum circuit described in Fig. 10 is utilized for the
numerical result in Fig. 1.

APPENDIX E: PARAMETERIZED CIRCUIT FOR THE VQE
IN QUBO EXPERIMENTS

Figure 11 depicts the quantum circuit for the QUBO exper-
iments in Secs. IV D 1, IV D 2, and IV D 3.

APPENDIX F: ADDITIONAL HISTOGRAMS OF PARTIAL
DERIVATIVE ESTIMATES

Figure 1 plots the histograms with respect to the first 12
parameters among 36. The rest of 24 histograms are shown in

FIG. 11. A parametrized quantum circuit is employed in the QUBO experiments. This circuit features alternating layers of single rotation
gates and entangling controlled-z gates. The adjustable parameters are exclusively found in the single rotation gates, and these parameters vary
across different layers and qubits.
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FIG. 12. The histogram of partial derivative estimates with respect to the 13th to the 26th parameters are plotted with the same setup as
in Fig. 2.

Figs. 12 and 13. It is observed in all figures that the variances
of partial derivative estimates in all directions are a similar
magnitude of value.

APPENDIX G: COST FUNCTION FOR THE TSP

First, the cost function is defined as

C(x) =
∑
i, j

wi j

∑
p

xi,px j,p+1 + A
∑

p

(
1 −

∑
i

xi,p

)2

+ A
∑

i

⎛
⎝1 −

∑
p

xi,p

⎞
⎠

2

,

where A = 10 000, w12 = w21 = 48, w13 = w31 = 91, and
w23 = w32 = 63, and wii = 0, i = 1, 2, 3.

We can introduce a new Boolean variable, denoted by
x̃3i+ j−4 = xi, j , where i, j = 1, 2, 3. For simplicity, in the fol-
lowing formula, we will use x0, . . . , x8 to represent x̃0, . . . , x̃8.
With this notation, the expanded form of the cost function can
be expressed as:

C(x) = − 200000x0 − 200000x1 − 200000x2 − 200000x3

− 200000x4 − 200000x5 − 200000x6 − 200000x7

− 200000x8 + [200000x0x1 + 200000x0x2

+ 200000x0x3 + 48x0x4 + 48x0x5 + 200000x0x6
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FIG. 13. The histogram of partial derivative estimates with respect to the 27th to the 36th parameters are plotted with the same setup as in
Fig. 2.

+ 91x0x7 + 91x0x8 + 200000x1x2 + 48x1x3

+ 200000x1x4 + 48x1x5 + 91x1x6 + 200000x1x7

+ 91x1x8 + 48x2x3 + 48x2x4 + 200000x2x5

+ 91x2x6 + 91x2x7 + 200000x2x8 + 200000x3x4

+ 200000x3x5 + 200000x3x6 + 63x3x7 + 63x3x8

+ 200000x4x5 + 63x4x6 + 200000x4x7 + 63x4x8

+ 63x5x6 + 63x5x7 + 200000x5x8 + 200000x6x7

+ 200000x6x8 + 200000x7x8] + 600000.

In order to build the corresponding Hamiltonian, we align
the binary variables xi with the Pauli Z matrices, which
operate on individual qubits, and are represented by Zi.
Taking into account the relationship between the binary vari-
ables xi and the Pauli Z matrices, defined by the equation
xi = 1−Zi

2 , we can express the Hamiltonian for QUBO as

follows,

HTSP = 600303.0 − 100069.5Z0 − 100055.5Z4 + 12.0Z4Z0

− 100069.5Z1 − 100055.5Z5 + 12.0Z5Z1

− 100069.5Z2 − 100055.5Z3 + 12.0Z3Z2

− 100077.0Z7 + 22.75Z7Z0 − 100077.0Z8

+ 22.75Z8Z1 − 100077.0Z6 + 22.75Z6Z2

+ 12.0Z3Z1 + 12.0Z4Z2 + 12.0Z5Z0

+ 15.75Z7Z3 + 15.75Z8Z4 + 15.75Z6Z5

+ 22.75Z6Z1 + 22.75Z7Z2 + 22.75Z8Z0

+ 15.75Z6Z4 + 15.75Z7Z5 + 15.75Z8Z3

+ 50000.0Z3Z0 + 50000.0Z6Z0 + 50000.0Z6Z3

+ 50000.0Z4Z1 + 50000.0Z7Z1 + 50000.0Z7Z4

+ 50000.0Z5Z2 + 50000.0Z8Z2 + 50000.0Z8Z5

+ 50000.0Z1Z0 + 50000.0Z2Z0 + 50000.0Z2Z1

+ 50000.0Z4Z3 + 50000.0Z5Z3 + 50000.0Z5Z4

+ 50000.0Z7Z6 + 50000.0Z8Z6 + 50000.0Z8Z7
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FIG. 14. Comparison of the performance of GD (red) and RCD (blue) for optimizing the Hamiltonian (10). The result in the top panels is
obtained from a slight modification of the ansatz in Ref. [92]. For the result in the bottom panels, we used an ansatz [93].

APPENDIX H: TECHNIQUE USED
IN QUANTUM FACTORING

The introduced technique proposes an alternative formu-
lation for equations of the type AB + S = 0. Here A and B
represent Boolean variables, while S denotes integers with
S ∈ Z. The optimization algorithm targets the minimization
of the quadratic version of this equation.

Given the problem Hamiltonian, defined as H = (AB +
S)2, it can be restructured as:

H = 2

[
1

2

(
A + B − 1

2

)
+ S

]2

− 1

8
. (H1)

While the two Hamiltonians are not generally equivalent,
they do share the same minimizer due to their underlying
Boolean function properties. For instance:

(i) When AB = 1: The minimizer for the first Hamiltonian
dictates S = −1. In the reformulated version, we get

H = 2

[
1

2

(
1 + 1 − 1

2

)
− 1

]2

− 1

8

= 0.

(ii) When AB = 0: At least one of A or B is zero. As-
suming A = 0 (without loss of generality) and due to the
minimizer, we get S = 0. This also minimizes the reformu-
lated Hamiltonian since, regardless of whether B is 0 or 1, the
result remains 0.

Thus, the reformulated version can be employed in-
terchangeably in certain scenarios. However, this updated

representation leads to a significant reduction in the many-
body interactions observed experimentally. Specifically, the
quartic terms in the Ising Hamiltonian are eliminated, simpli-
fying experimental realizations. As a result, the third Hamilto-
nian term (p2q1 + p1q2 − 1)2 in Eq. (34) is reformulated as:

H ′ = 2

[
1

2

(
p1 + q2 − 1

2

)
+ p2q1 − 1

]2

− 1

8
.

APPENDIX I: ADDITIONAL RESULT FOR THE TFIM
WITH DIFFERENT ANSATZES

In addition to the QAOA-like ansatz depicted in Fig. 10,
we incorporate hardware-efficient ansatzes [92,93] to evaluate
the GD and RCD methods within the context of TFIM (10).
The ansatzes, named HEA and HEA2 following the works
of Refs. [92] and [93], respectively, were modified in our
approach. Notably, we replaced the CNOT gates with rotation
ZZ gates in the HEA configuration. For our numerical analysis
in Fig. 14, HEA was configured with 36 parameters while
HEA2 was equipped with 240 parameters, which correspond
to 18 layers of HEA and 12 layers of HEA2. We also did
numerical tests for the two ansatzes with more parameters, for
example, 30 layers of HEA and 18 layers of HEA2. We found
that performance with RCD method applied to the ansatzes
with more layers was degraded in comparison to the case of
the smaller numbers of layers.

Our analysis revealed a notable performance disparity
between the two ansatzes, with the RCD method demon-
strating superior efficiency over GD, as depicted in Fig. 14.
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Specifically, the optimization of HEA2 required a signifi-
cantly larger number of derivative computations in compar-
ison to HEA. This discrepancy is largely attributed to the
structural differences between HEA and HEA2. In HEA2,
each parameter influences a singular qubit rotation Pauli gate,
whereas in HEA, a single parameter adjustment can concur-
rently modify multiple gates. Thus, parameter alterations in
HEA2 affect only one parameterized gate at a time, con-
trasting with HEA where multiple gates are simultaneously
updated with each parameter change.

From the results shown in Figs. 1 and 14, our findings
indicate that achieving a fidelity threshold of 0.9 with HEA2
demands a substantially higher number of partial derivative
calculations than with HEA and the QAOA-like ansatz il-
lustrated in Fig. 10. We also see that the QAOA-like ansatz
performs slightly better than HEA. Precisely, the maximum
and average fidelities at the last iterates of 10 simulations
with the QAOA-like ansatz are 0.99 and 0.97, whereas those
with HEA are 0.95 and 0.94, respectively. This compari-
son underscores the relative efficacy of QAOA-like ansatz
in approximating the ground state of the TFIM (10) over
the hardware-efficient designs HEA and HEA2, despite their
intended hardware optimization benefits.

APPENDIX J: COMPARISON OF RCD WITH SPSA USING
THE TFIM MODEL

We now present results from another numerical experi-
ment where we compare the performance of RCD and SPSA.
The numerical tests are based on the TFIM model (10) us-
ing the ansatz shown in Fig. 10. Specifically, we consider
the problem (10) with n = 12, the number of qubits. In the
implementation, both methods are subject to measurement
noise, and we set the number of shots to 1000 to estimate
gradients within both optimization methods. We assigned 80
trainable parameters to the ansatz, that is, 40 layers within
the circuit in Fig. 10. Figure 15 shows results from five
numerical experiments. All results are obtained from 10 inde-
pendent simulations with the same fixed initial configuration,
but different learning rates, specifically a = 0.008 for RCD,
a = 0.001, 0.0005, 0.00001 for SPSA_1, SPSA_2, SPSA_3,
and a default setting in Qiskit for SPSA_4. Note that the two
methods have the same complexity of derivative estimation,

FIG. 15. Comparison of the performance of RCD (red) and
SPSA (other colors) for optimizing the Hamiltonian of the TFIM
(10) defined in Sec. I E. The x axis labels the number of parameter
shift rule (PSR) or finite-difference (FD) evaluations as an indication
of the computational complexity, which corresponds to RCD and
SPSA, respectively. Both evaluations involve the same measurement
complexity. The y axis indicates the fidelity with the ground state
from the iterations.

employing the finite-difference formula (SPSA) and the pa-
rameter shift rule (RCD).

From Fig. 15, it is evident that RCD outperforms SPSA sig-
nificantly, even after fine-tuning the parameters of SPSA. We
observe that hyperparameter tuning in RCD is easier than that
in SPSA: RCD requires only a constant learning rate, while
SPSA requires scheduling a decreasing learning rate and a
diminishing perturbation parameter for the finite-difference
scheme. To obtain successful SPSA training, a small learning
rate must be selected. Compared to RCD, to achieve stable
training for SPSA, the learning rate must be selected 80
times smaller, rendering the algorithm much less efficient than
RCD. This can be clearly observed in Fig. 15, where RCD
(with learning rate a = 8 × 10−3) attains a fidelity exceeding
0.95 at the end, already reaching over 0.9 between 200 and
400 parameter shift rule evaluations. In contrast, only SPSA_3
(with learning rate a = 10−4) achieves a fidelity greater than
0.9, but with a much slower rate.
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