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Electric double layer in ionic liquids: A result of interplay
between coupling effects and phase demixing

YeongKyu Lee*

Korea Institute for Advanced Study, Seoul 02455, Korea

JunBeom Cho,* Yongkyu Lee, and Won Bo Lee†

School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

YongSeok Jho ‡

Department of Physics and Research Institute of Molecular Alchemy, Gyeongsang National University,
52828 Jinjudae-ro 501, Republic of Korea

(Received 2 January 2024; accepted 17 June 2024; published 8 July 2024)

Ionic liquids (ILs) are appealing electrolytes for their favorable physicochemical properties. However, despite
their longstanding use, understanding the capacitive behavior of ILs remains challenging. This is largely due to
the formation of a nonconventional electric double layer (EDL) at the electrode-electrolyte interface. This study
shows that the short-range Yukawa interactions, representing the large anisotropically charged ILs, demix IL to
create a spontaneous surface charge separation, which is reinforced by the strongly coupled charge interaction.
The properties of the condensed layer, the onset of charge separation, and the rise of overscreening and crowding
critically depend on the asymmetry of Yukawa interactions.
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I. INTRODUCTION

Room-temperature ionic liquids (RTILs) are combinations
of large organic cations and organic, inorganic anions with de-
localized charges. Unlike conventional inorganic salts, these
structural characteristics prevent them from forming crys-
talline structures at room temperature [1–3]. As an electrolyte
solvent at ambient conditions, RTILs offer several advantages
for energy storage applications, such as low volatility, good
solvent properties, high thermal stability, and environmental
sustainability [4–9], which are especially fit for future energy
storage devices, supercapacitors, or ultracapacitors. Notably,
some essential features for high-technology devices (e.g.,
wireless devices and electric cars), such as higher-rate energy
harvesting and long-lasting supercapacitance, are related to
the electric double layer (EDL) structures in RTILs [10–14].
While conventional point-charge models predict the devel-
opment of a condensation layer at very large surface charge
densities, IL exhibits EDL at very low surface charge densities
and even overscreening and crowding, which are very difficult
to achieve without the presence of the multivalent counterions
within the point-charge models. The key differences are from
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the large shape of IL molecules and their delocalized charges.
Understanding how to embody these properties in the micro-
scopic mechanism is challenging and crucial in utilizing ILs
for energy device applications [15–18].

Bazant, Storey, and Korneyshev (BSK) [19] are among the
first to incorporate a short-range electrostatic correlation to
the EDL. They showed that a phenomenological modification
of the Poisson equation with an extra fourth-order potential
gradient term, reflecting a short-range electrostatic correla-
tion, explains the divergence of differential capacitance. They
further asserted that crowding beats overscreening at higher
external fields. Since the phenomenological description of the
BSK model, efforts have been made to uncover the micro-
scopic mechanism for unconventional EDL features. Démery
et al. solved one-dimensional (1D) lattice Coulomb gas (1D
LCG) under the constant-voltage ensemble. Their solvable
one-dimensional model showed that the 1D LCG undergoes
a first-order phase transition between dense and dilute phases
by adjusting fugacity [20,21]. They claimed the transition
is closely related to the discontinuous jump in differential
capacitance and the transition between camel- and bell-shape
capacitance. Limmer constructed a phenomenological model
of dense ionic solutions near the charged planar wall. He
found that charge-density ordering at the interface results in
the divergence of the differential capacitance [22].

Other directions of the approaches use statistical field the-
ory for charged many body. Earlier mobile point charges with
fixed macroions were treated within the framework of the
statistical field theory of ion systems [15,23–26]. Recently,
Bossa et al. adopted the free-energy analysis approaches in-
corporating Yukawa potential to consider the symmetric steric
term and successfully reproduced the fourth-order potential
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gradient in BSK equation [27,28]. They showed that the inter-
play between short-ranged Yukawa and long-ranged Coulomb
interactions can lead to the instability of ILs near an electrode.
This instability is characterized by a divergent differential
capacitance, indicating a first-order transition [27].

This work uncovers the microscopic origin of the uncon-
ventional EDL formation and the consequent phase transition
of RTIL capacitance employing a statistical field-theory
framework. We derive free-energy functionals for asym-
metric ionic liquids and extracted the modified Poisson
equations via saddle-point approximation. Our results reveal
that the phase transition is triggered by the interplay of the
strong electrostatic coupling and the phase demixing due
to the asymmetric short-range interaction. We validate our
theoretical predictions by comparing them with molecular
dynamics simulations. We further elucidate the influence of
external electric fields on the phase behavior. This work poten-
tially applies to the various systems related to the multipolar
solvents electrostatics, and the spontaneous surface absorption
of polyelectrolytes [29–34].

II. FIELD THEORETIC MODEL

We develop a lattice-based model for the electrode of sur-
face charge density σe at x = 0. The number of the particle at r
is n±(r) and

∑
r n± = N±. The local densities of each species

are ρ±(r) = n±(r)/ν, where ν is the volume of each lattice.
The local charge density is defined as ρc(r) = ρ+(r) − ρ−(r).

Particles interact with each other through Coulombic and
Yukawa interaction:

βu+,+ = lB
r

+ a
e−κr

r
,

βu+,− = − lB
r

+ c
e−κr

r
,

βu−,− = lB
r

+ b
e−κr

r
,

(1)

where lB is the Bjerrum length, and a, b, and c are the Yukawa
interaction parameters, and β = 1

kBT . Then, the total interac-
tion potential energy is represented by

βUtot = 1

2

∫
drdr′ρc(r)vc(r − r′)ρc(r′)

+ 1

2

∫
drdr′

(
ρ+(r)
ρ−(r)

)T

Ahvy(r − r′)
(

ρ+(r)
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)
, (2)

where Ah = (a c
c b)+, vc(r) = lB/r, and vy(r) = e−κr/r. Sim-

ilarity transformation decouples the Yukawa term with
eigenstates

βUtot = 1

2

∫
drdr′ρc(r)vc(r − r′)ρc(r′)

+ 1

2

∫
drdr′ρ1(r)vy,1(r − r′)ρ1(r′)

+ 1

2

∫
drdr′ρ2(r)vy,2(r − r′)ρ2(r′), (3)

where vy,i(r) = λivy(r) for i = 1, 2. The λi is

λ1 = a cos2 θ + 2c sin θ cos θ + b sin2 θ,

λ2 = a sin2 θ − 2c sin θ cos θ + b cos2 θ,

and ρi(r) is

ρ1(r) = ρ+(r) cos θ + ρ−(r) sin θ,

ρ2(r) = −ρ+(r) sin θ + ρ−(r) cos θ.

Here, θ is

tan 2θ = 2c

a − b
. (4)

The canonical partition function of the system is
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It is more practical to deal with the grand canonical
ensemble

Zλ =
∞∑

N+=0

∞∑
N−=0

λ
N+
+

N+!

λ
N−
−

N−!
Zc,

where fugacities λ± are function of the chemical potential
μ±, λ± = eβμ± . In equilibrium, satisfying charge neutrality
conditions λ+ = λ− = λs.

The grand canonical partition function after the Hubbard-
Stratonovich transformation yields

Zλ =
∫

DφeDφ1Dφ2 exp

(
− 1

8π lB

∫
dr(∇φe)2

− 1

8πλ1
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× exp

(
1

ν

∫
dr ln (λs(e1 + e2))

)
, (6)

where e1 = exp(−iφe − iφ1 cos θ + iφ2 sin θ ) and e2 =
exp(+iφe − iφ1 sin θ − iφ2 cos θ ). The free energy is

βF =
∫

dr

[
− 1

8π lB
(∇ψe)2 − 1

8πλ1

{
(∇ψ1)2 + κ2ψ2

1

}

− 1
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2

}] + η(ẽ1, ẽ2), (7)
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where

η(ẽ1, ẽ2) = −1

ν

∫
dr ln {λs(ẽ1 + ẽ2)},

and ẽ1 = exp(−ψe − ψ1 cos θ + ψ2 sin θ ) and ẽ2 =
exp(+ψe − ψ1 sin θ − ψ2 cos θ ). We introduced θ to
linearly separate the two Yukawa fields for the convenience
of calculations. The saddle-point field approximates the
functional integral as

1

4π lB
∇2ψe = 1

ν

ẽ2 − ẽ1

ẽ1 + ẽ2
,

1

4πλ1
(∇2 − κ2)ψ1 = 1

ν

− cos θ ẽ1 − sin θ ẽ2

ẽ1 + ẽ2
,

1

4πλ2
(∇2 − κ2)ψ2 = 1

ν

sin θ ẽ1 − cos θ ẽ2

ẽ1 + ẽ2
. (8)

While the point-charge model considers the source of the
Coulomb interaction, our modified case deals with both
sources of Coulomb and Yukawa interaction, similar to
Ref. [27].

III. MOLECULAR DYNAMICS SIMULATION

We performed molecular dynamics (MD) simulations
employing Ye’s coarse-grained model, which successfully
induced the divergence of differential capacitance [35]. To
compare the simulation results with our theory, we modified
the model by introducing asymmetric Yukawa interactions.
All simulations were performed using LAMMPS [45] in the
canonical ensemble and fundamental quantity scale input
parameters and output quantities. The main dimensionless
physical quantities are provided in Sec. A of the Supplemental
Material [49].

In EDLCs simulations, it is crucial to treat the interac-
tions between ions and electrodes properly. An image-charge
method effectively accounts for the dielectric discontinuity
between the electrolyte and the surrounding medium. When
the relative permittivity of the bounding material is lower
(higher) than that of the electrolyte, ions experience repulsion
(attraction) with their images [43,44].

The image-charge method, implemented in LAMMPS by
Dwelle and Willard [46], is based on the method proposed
by Hautman et al. [47]. It involves considering infinitely
repeating systems of image charges when simulating a three-
dimensional system with ions. The simulation system is
divided into two subsystems: a real system on the right side
(0 < x < Lx) and an image system on the left side (−Lx <

x < 0). The image particles possess charges opposite to those
of the real particles in the real system, and they are generated
at positions symmetric to the real particles relative to the elec-
trode located at x = 0. The whole simulation box is repeated
as a unit cell.

In this study, the system consists of 1000 real particles and
1000 image particles with a number density of ρ = 0.8, and
the temperature is set to T = 1 using Langevin thermostat.
The simulation box is created with the size of 2L × L × L
where the value of L is determined to satisfy the desired
number density ρ = N/V . Furthermore, wall potentials are
applied at x = 0 and x = L to represent two smooth planar

electrodes. The relative permittivity εr and Bjerrum length lB
are set to typical values used for RTIL systems [19,39,48], i.e.,
εr = 12 and lB = 10. Moreover, the elementary charges have
reduced magnitudes of q = √

εr lBT � 11.
In addition to the long-range Coulomb interaction, parti-

cles interact with each other through combined short-ranged
pair potentials. The short-range ion-ion correlation is modeled
by shifted Yukawa potential. For here, the potential has the
form

βUY (r∗
i j ) =

⎧⎪⎨
⎪⎩

Ci j

r∗
i j

(e−r∗
i j/lc − e−r∗

c /lc ), r∗
i j � r∗

c

0, r∗
i j > r∗

c

(9)

where Ci j represents Yukawa coefficient, which can be a for
cation-cation, b for anion-anion, and c for cation-anion. De-
tails of the rest of pair potentials are explained in Sec. B of
Supplemental Material [49].

To investigate the effect of asymmetric Yukawa potential
on the EDL formation, the zero-field simulations were per-
formed. For convenience, correlation strengths between ions
were expressed by scaling relative to the cation-cation cor-
relation a., i.e., b = a × αb, c = a × αc. In simulations, a was
fixed to −7.5 and αb and αc were varied within certain ranges:
0.1 � αb � 1.4 and 0.9 � αc � 1.2.

Subsequently, simulations with uniform electric field were
performed to elucidate the effect of asymmetric Yukawa inter-
action on the formation of crowding structure. Electric fields
with strength −1 � E � 1 were applied to model potential
differences with strength −118 � �V/VT � 118. For here,
VT = kBT/e ≈ 11 is the thermal voltage in LJ units, and a
and αc were fixed to −7.5 and 1.1, respectively, while αb is
varied.

For all simulations, energy minimization and equilibration
were performed over 105 time steps with a step size τ =
0.001. Another 3 × 106τ steps were spent for data production.

In our efforts to align parameters between MD simula-
tions and field-theoretic analysis, we encountered difficulties
in observing the formation of EDLs when directly applying
the theoretical parameters due to critical differences between
the two methodologies. To observe and investigate the EDL
structures such as overscreening and crowding, we adopted
a parameter set of Ref. [35]. This does not provide direct
comparisons but allows us to conduct qualitative comparisons
between the theory and simulations by observing the response
to the change of the Yukawa terms. The results of directly
applying the theoretical parameters are provided in Sec. F of
the Supplemental Material [49].

IV. THEORETICAL RESULTS

When the short-range interaction is symmetric, i.e., a = b,
Eq. (8) yields

ν

4π lB
∇2ψe = tanh (ψe + ψh),

ν

2π (c − a)
(∇2 − κ2)ψh = tanh (ψe + ψh), (10)
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where ψh = −ψ2/
√

2. To check correspondences, we used
boundary conditions [27,36]

ψ ′
e(0) = −κese,

(11)(
ψ ′

1(0) − κψ1(0)
ψ ′

2(0) − κψ2(0)

)
= −4πAh

(
σ1

σ2

)
,

where κ2
e = 4π lB/ν and se = κeσe/e. We set σ1 = σ2 = 0 for

the simplicity. The numerical solutions of these nonlinear
differential equations perfectly reproduce the previous results
[27] (Fig. S2). Setting a = b allows us to recover the equa-
tion in Ref. [27]. Further condition on c (a = b = −c) reduces
our equation to BSK equation.

To capture the behavior of the more realistic systems, we
study asymmetric cases a 	= b. We scale b and c relative to a,
b = a × αb, and c = a × αc, respectively.

Under the condition of σ1 = σ2 = 0, we explore the in-
fluence of αb by numerically solving Eq. (8), while fixing
αc. Figure 1(a) reveals a deviation of se(ψ0) from the sym-
metric solution, which transits at ψ0 = 0. The emergence of
hysteresis stems from the delayed reorganization of RTIL
double layers during the increase of surface charge den-
sity. This also indicates a first-order phase transition, which
can lead to charge separation [41,42]. The hysteresis in the
se(ψ0) curve coincides with a divergence in the differential
capacitance C̃diff = 1/(dψ0/dse), suggesting the first-order
transition during EDL formation, consistent with the previous
studies [27,36,41,42]. Notably, short-range attractions induce
overscreening or crowding, which is rarely observed in pure
electrostatic systems.

Next, we investigate the influence of the cation-anion in-
teraction αc. The surface charge density se is measured by
varying αb for a given αc value, and repeated this process for
multiple αc values. Figure 1(b) demonstrates that increasing
αc shifts the onset of C̃diff divergence toward lower αb. This in-
triguing trend can be attributed to the enhanced aggregation of
like-charged ionic liquids at larger αc. Stronger cation-anion
attraction elevates the energy penalty associated with mixing
oppositely charged species. We can get insight considering
the effective interaction parameter ξ = a(1 + αb − 2αc): as αc

increases, EDL transition becomes feasible even at lower αb.

V. COMPARATIVE ANALYSIS OF MOLECULAR
DYNAMICS SIMULATIONS AND THEORETICAL MODELS

The local charge-density profile ρc(x) = q(〈n+(x)〉
-〈n−(x)〉) is obtained by averaging simulation configurations,
where n+(x) and n−(x) are the number densities of cations
and anions, respectively. The densities are averaged over
surface-parallel directions. The surface charge density is
calculated by

se = εr�V

4πLx
− 1

Lx

∫ Lx

0
xρc(x)dx, (12)

where �V is the difference of constant potential between
electrodes [35].

Zero-field simulations (�V = 0) show the role of Yukawa
potentials in forming EDLs without the charge-coupling ef-
fects. Figure 2(a) displays that spontaneous surface charge
separation (SSCS) is absent until αc = 0.9. It emerges when

(a)

(b)

FIG. 1. (a) Scaled surface charge density (dotted) and scaled
differential capacitance (solid) as a function of surface electrostatic
potential by varying αb values for fixed αc. (b) Scaled surface charge
density as a function of αb for different values of αc.; (a) αb varies
from 0.1 (most right) to 1.3 (most left) with an increment of 0.2
while fixing αc = 1.442. Red markers indicate ψ0 at which se = 0.
The discontinuous surface charge densities at αb = 1.1 says surface
charge separation of the ions, and shows the onset divergence of
the C̃diff.

αc exceeds 1.0. In addition, the onset of SSCS shifts toward
lower values of αb as αc increases. This is analogous to our
theoretical results shown in Fig. 1(b). In other words, in-
creasing αc implies that charge separation occurs at lower αb,
indicating that charge separation occurs more easily, which
qualitatively matches the theoretical results. Notably, despite
exploring a reasonable range of Yukawa coefficients, the
crowding in EDLs was absent in our zero-field simulations.
The parameters inducing crowding structure without exter-
nal field, in Ref. [35], lead to the void formation in our
simulations, perhaps due to the unphysically strong Yukawa
interactions.

Applying external potentials, the crowding appears across
a wide range of the Yukawa coefficients. Figure 3 shows the
crowding emerges above a certain external potential threshold,
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(a) (b) (c)

FIG. 2. MD results of charge separation and differential capacitance: (a) No spontaneous surface charge separation (SSCS) is observed
below αc = 0.9. Above αc = 1.0, SSCS occurs, and the onset of SSCS shifts toward smaller αb consistent with the theory. (b) The results of
charge separation calculated from the field-theoretic results. Theory and simulation results are qualitatively similar in trends. (c) The peak of
C̃diffs emerge at the onset of SSCS. Without SSCS, C̃diff shows no peak.

while overscreening dominates below that value. Previous
works [19,37] have identified the external field as a cru-
cial factor governing the transition between overscreening
and crowding. Interestingly, our model predicts overscreen-
ing, crowding, and bulk phase demixing despite low external
fields. The short-range Yukawa interaction plays a critical role
in spontaneous surface charge separation and multiple-layer
formation inside EDL.

Without Yukawa interaction, the electric double layer is
formed only when the coupling parameter (≡ 2πq3l2

Bσe where
q is valence of counterions) is very large. In reality, the condi-
tion can be achieved either when the surface charge density
exceeds 1e/nm2 or counter ions are multivalent. However,
ionic liquids exhibit EDL formation even at very low voltages,
suggesting an additional driving force beyond simple charge
coupling. The multipolar interactions and hardcore repulsion
arising from the large, delocalized charges within the ionic
liquid induce an alternative way of EDL formation.

FIG. 3. Charge-density profiles obtained from the MD simula-
tions by varying external field.

Our model captures these nonelectrostatic interactions
through Yukawa interactions. In the limit that molecules
carry zero charges, the effective short-range interaction may
be described by χ = a(1 + αb − 2αc). But, in the opposite
limit, for example, κ = ∞, φ1 and φ2 are zero, the coupling
parameter � = q2lB/μ governs counterion condensation. In
between, both parameters come into play, influencing the EDL
formation. A negative value of χ leads to spontaneous sur-
face charge separations. At the beginning of the simulation,
two charges form local domains at both electrodes, which
may be metastable due to large line tensions [35]. Given
enough time, the metastable state transits to a stable state, in
which a single charge species is abundant in each electrode
[35,38]. The condensed layer easily overscreens the surface
charges, which is extremely difficult to achieve for pure
electrostatic cases.

In our case, because the Yukawa coefficients modify the
electrostatic interactions also, χ cannot fully explain the sur-
face phase demixing. For instance, increasing a or b has a
distinct effect compared to decreasing c, even though both
yield the same χ . This is because they also adjust the Coulom-
bic interactions (in other words, the total interaction differs for
both cases.). Smaller αb makes large anionic domain forma-
tion difficult, while larger αc enhances it. If αc is unreasonably
large enough to ignore the Coulomb interaction, it provokes a
bulk phase transition of the binary demixing.

Within the parameter range explored in this study, an
external field can induce the development of multiple lay-
ers of charges, also known as crowding, at the surface (see
Fig. 3). While a large surface charge density is required to
trigger crowding [39,40], the onset voltage varies depending
on the Yukawa interactions. Stronger short-range repulsion
between opposite charges or attraction between like charges
reduces the onset voltage [Fig. 1(b)]. These findings high-
light the interplay between the multipolar nature of the ionic
liquid (which translates into the strength of the short-range
interaction) and the external electric field in determining the
overscreening and crowding inside EDL.

The internal structure of EDL at the divergence of C̃diff

is controversial [19]. At the onset of divergence, our model
reveals that the counterion arrangement is not determined by
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FIG. 4. Local charge-density profiles at the onsets of the C̃diff

divergence obtained from the theoretical results.

a single EDL structure, such as conventional screening, over-
screening, or crowding. To better understand, we investigate
the local charge-density profiles at the onset of C̃diff divergence
using our model. The average number of ions is

N± = λ±
∂ lnZλ

∂λ±
. (13)

The local charge-density profile is obtained from the loop
expansion adopted in the zeroth order:

ρc(r) =
∑
i=±

Ni

V
=

〈
ẽ1 − ẽ2

ẽ1 + ẽ2

〉
= ē1 − ē2

ē1 + ē2
, (14)

where the potential in ē1,2 is used as saddle-point solutions
of ψe, ψ1, and ψ2. From the local charge-density profiles in
Fig. 4, we find that condensed counterions screen the surface
charge at c � 1.742. They start to overscreen the surface
charge at 1.342 � c � 1.642. It is plausible that large re-
pulsion between different species may induce spontaneous
surface charge separation even at low-surface charge densities
and, hence, below the overscreening condition.

VI. LIMITING CASES

Some limiting behaviors may provide insights. Setting
a = b allows us to recover the equation in Ref. [27]. Further
condition on c (a = b = −c) reduces our equation to BSK
equation. When c  |a − b|, θ � π/4, we can remove one
of the fields to obtain a fourth-order differential equation since
the Yukawa interaction is only meaningful between oppositely
charged ILs. Conversely, if c � |a − b|, θ � 0, the Yukawa
interactions are decoupled for each sign of charges so that one
field is deduced by rewriting Eq. (8) in terms of ψe + ψ1 and
ψe − ψ2.

If we assume that ψe, ψ1, ψ2 � 1, the differential equa-
tions in Eq. (8) can be linearized, and can be expressed only

in terms of ψe. Linearization yields

ẽ1 � 1 − ψe − ψ1 cos θ + ψ2 sin θ,

ẽ2 � 1 + ψe − ψ1 sin θ − ψ2 cos θ. (15)

Using Eq. (15), we can re-express Eq. (8) as

∇2ψe = κ2
e ψe + κ2

e

2
ψ1(cos θ − sin θ )

− κ2
e

2
ψ2(cos θ + sin θ ),(∇2 − κ2

1

)
ψ1 = −α2

1ψe,(∇2 − κ2
2

)
ψ2 = −α2

2ψe, (16)

where κ2
e = 4π lB/ν, α2

1,2 = −4πλ1,2(cos θ − sin θ )/2ν, and
κ2

1,2 = κ2 + 4πλ1,2/2ν.
When λ2 = 0, the differential equation simplifies to a

fourth-order equation. This condition is satisfied when tan θ =
1 or tan θ = b

a . The first condition corresponds to the symmet-
ric case where (a = b), while the second condition represents
some asymmetric scenario where 2c = a + b. In this case, the
linearized equation of electrostatic potential becomes

∇4ψe − (
κ2

1 + κ2
e

)∇2ψe + (
κ2

1 κ2
e + α̃2

1

)
ψe = 0, (17)

where α̃2
1 = α2

1κ
2
e (cos θ − sin θ )/2. Thus, small correction

term α̃2
1 would be considered in the solution of ψe. We numeri-

cally solved the above equation and obtained ψe(x) depending
on the strength of Yukawa interaction. As shown in Fig. S7,
when a = b, ψe shows exponential decay, indicating only real
value of ω1 and ω2. However, if there is asymmetry between
a and b, ω1,2 becomes a complex value, and this makes ψe

oscillate.
Without assumption, in general, the linearized equation of

electrostatic potential satisfies

∇6ψe − ξ∇4ψe + μ∇2ψe − χψe = 0, (18)

where

ξ = (
κ2

e + κ2
1 + κ2

2

)
,

μ = (
κ2

1 κ2
2 + κ2

e

(
κ2

1 + κ2
2

) + α̃2
1 + α̃2

2

)
,

χ = (
κ2

e κ2
1 κ2

2 + α̃2
1κ

2
2 + α̃2

2κ
2
1

)
.

Its solution of ψe(x) = A1e−ω1x + A2e−ω2x + A3e−ω3x, adopt-
ing boundary condition ψe(x → ∞) = 0, we get

ω2
1 + ω2

2 + ω2
3 = ξ,

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

1ω
2
3 = μ,

ω2
1ω

2
2ω

2
3 = χ.

With the boundary conditions and linearized equations, we
can find ψ0 = A1 + A2 + A3 by

MA = b,
(19)

A = M−1b,
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where

M =

⎛
⎜⎜⎜⎝

ω1 ω2 ω3

−α2
1 (ω1+κ )
ω2

1−κ2
1

−α2
1 (ω2+κ )
ω2

2−κ2
1

−α2
1 (ω3+κ )
ω2

3−κ2
1

−α2
2 (ω1+κ )
ω2

1−κ2
2

−α2
2 (ω2+κ )
ω2

2−κ2
2

−α2
2 (ω3+κ )
ω2

3−κ2
2

⎞
⎟⎟⎟⎠,

A =
⎛
⎝A1

A2

A3

⎞
⎠, b =

⎛
⎝κese

s1

s2

⎞
⎠,

where s1 = −4π (aσ1 + cσ2) and s2 = −4π (cσ1 + bσ2).
Thus, one can find analytic solution of ψ0 by obtaining
M−1. Differential capacitance also can be obtained by C̃diff =

1
∂ψ0/∂se

= ∑3
i=1(∂Ai/∂se).

VII. DISCUSSION

This study presents the intricate mechanisms of EDL
formation at electrode-IL interface. It unveils the delicate in-
terplay between two key interactions, the long-range Coulomb
potential and the short-range Yukawa potential. The Yukawa
potential arises from IL’s large delocalized charges.

The Yukawa potential induces spontaneous surface charge
separations (or charge condensation), and the Coulomb force
enhances the condensation to develop further overscreening
or crowding by reinforcing the strong coupling of counterions
at the surface. At the onset of the divergence of differential
capacitance, SSCS occurs. At this critical point, the external
field may increase the condensed charges, but the coions
would compensate them immediately.

No unique internal structure of EDLs arises at the onset
of divergence of C̃diff. The strength of short-range ion-ion
correlations and surface charge density orchestrate the internal
structure of EDLs. Considering these ionic liquids’ properties,
we can apply these results to real-world problems such as
supercapacitors and solid-state electrolyte design.
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