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PT -symmetry-enabled stable modes in a multicore fiber
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Open systems with balanced gain and loss, described by parity-time (PT -symmetric) Hamiltonians have been
deeply explored over the past decade. Most explorations are limited to finite discrete models (in real or reciprocal
spaces) or continuum problems in one dimension. As a result, these models do not leverage the complexity and
variability of two-dimensional continuum problems on a compact support. Here, we investigate eigenvalues of
the Schrödinger equation on a disk with zero boundary condition, in the presence of constant, PT -symmetric,
gain-loss potential that is confined to two mirror-symmetric disks. We find a rich variety of exceptional points,
re-entrant PT -symmetric phases, and a nonmonotonic dependence of the PT -symmetry breaking threshold
on the system parameters. By comparing results of two model variations, we show that this simple model of a
multicore fiber supports propagating modes in the presence of gain and loss.
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I. INTRODUCTION

Over the past 25 years, research on non-Hermitian Hamil-
tonians with real spectra has burgeoned across disparate
topics in physics, spanning mathematical physics [1–4], op-
tics and photonics [5–7], metamaterials [8], acoustics [9],
electrical circuits [10–13], condensed matter physics [14,15],
and open quantum systems [16–21]. It started with Bender
and Boettcher’s discovery [22] that the Schrödinger eigen-
value problem for a nonrelativistic particle on an infinite line
with complex potentials V (x) = VR(x) + iVI(x) has a purely
real spectrum that is bounded below. Similar results are ob-
tained for nonrelativistic particles on a line with compact
support [23–25], discrete tight-binding models on finite or
infinite lattices [26–29], and even minimal models with 2×2
Hamiltonians. In each case, the non-Hermitian Hamiltonian
H—a continuum, unbounded operator or a matrix—is invari-
ant under combined operations of parity P and time reversal
T . This antilinear PT symmetry guarantees purely real or
complex conjugate eigenvalues [30].

After their experimental realizations in numerous plat-
forms, it has become clear that PT -symmetric Hamiltonians
accurately model open systems with balanced, spatially sep-
arated gain (VI > 0) and loss (VI < 0) [31]. Their standard
phenomenology is as follows: starting from the Hermitian
Hamiltonian H0 with real spectrum and Dirac-orthogonal
eigenfunctions, as the imaginary part of the potential
VI(x) is increased, two or more real eigenvalues undergo
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level attraction, become degenerate, and then develop into
complex-conjugate pairs. This eigenvalue degeneracy, called
exceptional point (EP) degeneracy [32–34], is characterized
by the coalescence of corresponding eigenfunctions and low-
ering of the rank of the Hamiltonian operator. Due to the
antilinearity of the PT operator, an eigenfunction fn(x) is
simultaneously an eigenfunction of the PT operator with
unit eigenvalue if and only if the corresponding eigenvalue
λn is real; if λn is complex, then it follows that PT fn(x)
is an eigenfunction with complex-conjugate eigenvalue λ∗

n.
The transition across the EP from a real spectrum to one
with complex-conjugate eigenvalues is called PT -symmetry
breaking transition, since the corresponding eigenfunctions
lose that symmetry, PT fn(x) �= fn(x).

Here, we investigate a two-dimensional continuum model
on a compact domain subject to a hard-wall (vanishing eigen-
functions) boundary condition in the presence of constant
PT -symmetric complex-valued potentials. In one dimension,
such potential leads to a single PT -symmetry breaking tran-
sition when the strength of the imaginary part of the potential,
γ , exceeds a threshold γPT set by the Hermitian Hamiltonian
H0. We will show that the two-dimensional case differs dra-
matically. It leads to multiple transitions where pairs of stable
modes (real spectra) change into amplifying and leaky modes
(complex conjugate eigenvalues) as γ is increased. More sur-
prisingly, we also find PT -restoring transitions where, as the
pure gain-loss potential VI is increased, amplifying and leaky
modes are pairwise stabilized. We argue that this unusual
behavior arises due to complex interplay between the size of
the modes in the Hermitian limit, and the size of the gain-loss
region.

The plan of the paper is as follows. In Sec. II we intro-
duce the model and recall the Hermitian-limit results for a
cylindrical waveguide. Section III contains the outline of the
numerical procedure we use for discretization. Results for
eigenspectra and eigenfunctions across multiple PT -breaking
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and restoring transitions are shown in Sec. IV. Section V
concludes the paper.

II. PT -SYMMETRIC FIBER WITH CIRCULAR
CROSS SECTION

As a physical example, we consider a lengthwise uniform,
multicore fiber with circular cross section of radius R = 1
(purple) centered at the origin in the x1-x2 plane, a lossy core
of radius ρ centered at distance d/2 from the origin (green),
and a gain-medium core of the same radius ρ centered at
the mirror-symmetric location (pink). The position-dependent
index of refraction in the fiber is given by n(x1, x2) = n0 +
δn(x1, x2) where n0 ∼ 1, and the index contrast δn ∼ 10−4 �
n0 [35,36]. Gain and loss can then be modeled by introducing
negative and positive imaginary parts to the index contrast,
respectively, δn = δnR ∓ iδnI . The Maxwell’s equation for a
transverse-magnetic (TM) mode, characterized by a vanishing
electric field at the boundary, implies that the field E(x) =
E (x1, x2) exp[i(k3x3 − ωt )]x̂3, propagating along the fiber, is
given by

−
[
�′ + 2n0ω

2

c2
δn

]
E (x) =

[
n2

0ω
2

c2
− k2

3

]
E (x), (1)

where �′ ≡ (∂2
x1

+ ∂2
x2

) is the in-plane Laplacian with di-
mensions of inverse area and c is the speed of light in
vacuum. After suitable rescaling, Eq. (1) can be mapped onto
a Schrödinger-like eigenvalue problem [37,38],

− � fn(x) + V (x) fn(x) = λn fn(x), (2)

V (x) = VB − 2n0R2ω2

c2
δn(x1, x2), (3)

λn = VB + n2
0R2ω2

c2
− R2k2

3 . (4)

Here, � = R2�′ is the dimensionless Laplacian, λn denotes
the dimensionless eigenvalue, fn is the corresponding eigen-
mode, and VB sets the zero for the dimensionless potential
V (x). Changing VB shifts the overall spectrum but does not
change the level differences �λmn ≡ λm − λn. We see from
Eq. (3) that a positive index contrast δn > 0 acts as an attrac-
tive potential for the electric field. We proceed to identify V (x)
for the specific geometry we will consider.

Let Br (x0
1, x0

2 )={(x1, x2)∈R2 : (x1−x0
1 )2+(x2−x0

2 )2<r2}
denote the disk of dimensionless radius r centered at x0.
Our problem is set in the domain 	 = B1(0, 0) where
a purely imaginary gain-loss potential is introduced into
nonintersecting left and right subdomains DL = Bρ (−d/2, 0)
and DR = Bρ (d/2, 0), where ρ < R and 2ρ � d � 2(R − ρ)
ensures that the two domains do not intersect (Fig. 1).
The eigenvalue problem is to find complex-valued,
square-integrable functions on 	, fn(x1, x2) ∈ L2(	), that
are in the domain of the operator A defined below, and that
vanish on the boundary ∂	, together with complex numbers
λn, such that

A fn(x) = (−� + V ) fn(x) = λn fn(x) in 	, (5)

FIG. 1. Schematic cross section of cylindrical, multicore fiber.
The radius R = 1 sets the length scale. The pink region DR, centered
at x1 = d/2 with radius ρ denotes the gain region, and the green
region DL , centered at mirror-symmetric point x1 = −d/2 with the
same radius denotes the loss region. When the gain-loss regions have
no real part for the index contrast with the rest of the fiber (purple),
i.e., V0 = 0, the eigenmodes are not just confined to the regions DL

and DR.

with

V (x1, x2) = VB +

⎧⎪⎨
⎪⎩

V0 − iγ if (x1, x2) ∈ DL,

V0 + iγ if (x1, x2) ∈ DR,

0 otherwise.

(6)

We set the background potential VB = 1. It is constant over the
entire domain 	. It does not affect the eigenvalue differences
and the resulting PT -symmetry breaking threshold where
the spectrum transitions between purely real and complex-
conjugate pairs. We define the parity operator P : L2(	) →
L2(	) by (P f )(x1, x2) = f (−x1, x2), i.e., P mirrors func-
tions about the second axis. It is easy to see that P is a
linear, self-adjoint, and unitary operator in L2(	). The an-
tilinear time-reversal operator T : L2(	) → L2(	) is given
by (T f ) = f ∗. An operator H is called PT symmetric if it
commutes with the antilinear operator PT ,

PT H = HPT . (7)

For unbounded operators H defined on a proper subspace
dom(H ) ⊂ L2(	) rather than all of L2(	), namely H :
dom(H ) → L2(	), Eq. (7) means f ,PT f ∈ domH and the
equality (7) holds. The operator of interest to us, A =
−� + V (x1, x2), is unbounded, and its domain is given
by dom(A) = H2(	) ∩ H̊1(	). Here Hk (	) denotes the
Sobolev space of square-integrable functions all of whose
derivatives of order at most k � 1 are also square integrable
and H̊1(	) denotes the subspace of H1(	) functions that
vanish on the boundary ∂	. It is straightforward to check that
A is PT symmetric.

Note that when the index contrast V0 < 0 is sufficiently
large in magnitude, the modes fn(x1, x2) become largely
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confined to the gain and loss regions. Then our problem re-
duces to the well-studied PT -symmetric coupler where the
size of the mode is comparable to the size of the gain-loss
region, the system can be effectively modeled by a 2×2
Hamiltonian, and undergoes a single PT -symmetry breaking
transition [5,39]. Instead, we choose V0 = 0 to ensure the
eigenfunctions fn(x1, x2) are spread over the entire disk 	.

To investigate the eigenvalues of A(γ ), we start with the
Hermitian limit of Eq. (6), γ = 0. In this case, the cylindrical
symmetry in the x1-x2 plane gives unnormalized eigenfunc-
tions in polar coordinates r, θ ,

f 0
±mp(r, θ ) = Jm(r

√
λmp − VB)e±imθ , (8)

for m � 0 and p � 1, where the corresponding eigenvalue λmp

is determined by the pth zero of the mth Bessel function,
Jm(

√
λmp − VB) = 0, which enforces the hard-wall bound-

ary condition f |∂	 = 0. Except for m = 0, these solutions
with exp(±imθ ) are degenerate, and represent positive and
negative angular momentum states, respectively. The semi-
analytically obtained eigenvalues λmp of A(γ = 0) are the
starting point for computing eigenvalue trajectories λmp(γ ).
They also serve to verify our numerical methodology by
benchmarking it against the γ = 0 case.

III. NUMERICAL DISCRETIZATION
IN ARBITRARY 2D DOMAINS

In a one-dimensional interval, the discretization of the
Schrödinger operator with hard-wall boundary condition leads
to a tridiagonal matrix with no corner elements, whose ab-
sence enforces the boundary conditions. Two-dimensional
domains, on the other hand, require more care. Let us denote
the complex L2(	)-inner product by 〈·|·〉. For any smooth
function g vanishing on ∂	, the eigenvalue equation (5)
implies

〈g|A fn〉 = 〈∇g(x)|∇ fn(x)〉 + 〈g(x)|V (x) fn(x)〉.
The finite element method imposes the same equation on the
Lagrange finite-element [40] space Xh consisting of contin-
uous functions, vanishing on the boundary ∂	, which are
polynomials of degree at most p in each mesh element; in our
computations, we use p = 5. Here the mesh is a geometri-
cally conforming mesh of triangles subdividing the domain,
respecting the material interfaces, with curved elements with
higher density near the circular boundaries and interfaces. The
subscript h indicates the maximal diameter of all elements
in the mesh. As h becomes smaller or p becomes larger, the
discretization becomes finer and dim Xh becomes larger.

Our numerical method computes the eigenvalues of a dis-
cretization Ah : Xh → Xh of the infinite-dimensional operator
A. It is defined by

〈gh|Ah fh〉 = 〈∇gh|∇ fh〉 + 〈gh|V fh〉 (9)

for all fh, gh ∈ Xh. Namely, we compute an eigenvalue ap-
proximation λh,n and right eigenfunction fh,n satisfying

Ah fh,n = λh,n fh,n. (10)

Standard finite-element theory [41] can be used to show that
the approximate eigenpairs ( fh,n, λh,n) converge to the exact
ones under suitable assumptions as h → 0; the symmetry of

the mesh is immaterial in obtaining such convergence. The
right eigenfunction fh ∈ Xh in (10) is equivalently given by

〈gh|Ah fh〉 = λh〈gh| fh〉 for all gh ∈ Xh. (11)

Using a nonorthogonal basis ψi of finite-element shape func-
tions, Eq. (11) can be converted to a matrix eigenvalue
problem

Ax = λBx, (12)

where Ai j = 〈ψi|Ahψ j〉 and Bi j = 〈ψi|ψ j〉. This generalized
eigenproblem is then solved for a cluster of selected eigen-
values using a contour integral method called the FEAST
algorithm [42,43], which can also compute the corresponding
eigenmodes for the nonselfadjoint eigenproblem [44, Algo-
rithm 1]. The size of the eigenproblem for each γ value,
namely dim Xh, is determined by the degree p, the geometrical
parameters (ρ and d), and how it constrains the mesh size h;
in our computations dim Xh ranged from 8000 to 16 000.

While much of our ensuing analysis use meshes without
symmetry, we have also experimented with meshes with parity
symmetry that are invariant under reflection by the vertical
axis (x1 = 0). On such meshes, the discretized Ah is exactly
PT symmetric; specifically, (9) implies that

PT Ah fh = AhPT fh (13)

for all fh ∈ Xh, recovering the perfect analog of Eq. (7) on
the discrete space Xh. In practice, this implies that exactly real
eigenvalues are recovered with imaginary parts of the order of
machine precision when using meshes with parity symmetry.
In contrast, when using meshes without the symmetry, the
same eigenvalues are approximated by numbers whose the
imaginary parts are generally not machine zero, but rather
approach zero up to discretization errors. Also note that since
eigenfunctions are defined only up to a scaling factor, the cor-
responding eigenmode intensities | fh|2 are also only defined
up to a scaling factor. Hence, we report intensities without
explicitly showing a color legend, with a blue-to-red colormap
where blue denotes zero and red denotes the maximum inten-
sity value.

Since the finite element discretization and the FEAST
eigensolver do not depend on the shapes of fiber cross section,
gain domain, or the loss domain, this approach is uniquely
suited to investigate the interplay among Hermitian mode
structure, gain-loss geometry, and the widely tunable effective
coupling between the gain and loss domains.

IV. NUMERICAL RESULTS

We start with the typical results for the flow of lowest few
eigenvalues λmp(γ ). Recall that at γ = 0, all eigenvalues ex-
cept the lowest one, m = 0, are doubly degenerate. However,
our judicious choice of the gain-loss domains ensures that
there are no matrix elements for V (x1, x2) between states ±m,

and therefore the spectrum λn(γ ) does not become immedi-
ately complex.

In Fig. 2(a) we track the real (pink) and imaginary (blue)
parts of the lowest seven dimensionless eigenvalues as a func-
tion of dimensionless gain-loss strength γ for a geometry with
d/R = 0.3 and ρ/R = 0.1. As γ is increased, we see level
attraction, leading to degeneracy and emergence of complex
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(a)

(b)

(c)

FIG. 2. Flow of eigenvalues λmp(γ ) for the first seven eigen-
values. All of them except m = 0 cases are doubly degenerate at
γ = 0 and this degeneracy is lifted with increasing γ . The first
PT -symmetry breaking transition occurs at γ = γPT ≈ 97 immedi-
ately followed by a PT -restoring transition near γPT = 102 (detailed
in the second plot). This is followed by a significantly broad
PT -broken region, and another small PT -breaking and restoring
transition. This re-entrant PT -symmetric phase in a model with sin-
gle gain-loss parameter is uncommon. These results are independent
of the background potential value VB = 1, changing which uniformly
shifts all eigenvalues λn while leaving the flow-diagram unchanged.

conjugate pairs, indicated by equal and opposite imaginary
parts. The first such transition occurs near γ = 97, shown in
detail in the second plot, Fig. 2(b) (with rescaled axes), and is
followed by a PT -restoring transition where the spectrum be-
comes purely real again near γ = 102. It is followed by a large
PT -symmetry broken region in the range 110 � γ � 265,
followed by another PT -symmetric region. Figure 2(c) shows
the zoomed-in and rescaled view of another such small win-
dow near γ = 290.

The surprising emergence of multiple PT -symmetry
breaking transitions induced by variations of a single param-
eter γ reflects the two dimensional nature of the underlying
model. One-dimensional lattice or continuum models require
potentials with different spatial ranges or functional forms for
re-entrant PT -symmetric phases to arise [25,45,46]. It is also
worth noting that, in contrast to traditional models, the lowest
few eigenvalues continue to remain real.

In Fig. 3 we show the evolution of the mode intensities
with γ for the pair of eigenvalues that become complex and
then again real, see Fig. 2(b). These results are for d/R = 0.3
and ρ/R = 0.1. Each panel shows the triangular mesh, the
gain-loss domains (black circles), and mode intensities. When

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Mode-intensity evolution for pair of eigenvalues in
Fig. 2(b) that become complex and then real again. The black cir-
cles denote the gain-loss regions with d = 0.3 and ρ = 0.1. Mode
intensities in (a) and (b), at γ = 96, are PT symmetric. Modes in
(c) and (d), at γ = 99, are in the PT -symmetry-broken region: the
intensities of the two modes are mirror images of each other, while
each intensity, by itself, shows a broken PT symmetry. In (e) and (f),
gain-loss strength is increased further to γ = 102, the eigenvalues
become real again, leading to mode intensities that are individually
mirror symmetric.

the spectrum of the system is purely real at γ = 96, (a) and
(b), the intensities have equal weights on mirror-symmetric
locations x1 ↔ −x1. When the spectrum changes into a
complex-conjugate pair, the modes are preferentially local-
ized in the loss region, (c), or its mirror-symmetric gain
region, (d). We also note that although the x1 ↔ −x1 sym-
metry is broken, the mirror symmetry about the horizontal
axis x2 ← −x2 continues to be obeyed by all eigenfunctions.
When the gain-loss strength is further increased to γ = 102,
the spectrum becomes real again, and as shown in (e) and
(f), the eigenmodes have equal weights in the gain and the
loss regions. These typical results show that irrespective of
the symmetry of the underlying mesh used for discretization,
the numerically obtained eigenmodes also clearly show the
PT -symmetry breaking and restoring transitions.

Although we have shown results only for a single param-
eter set, Fig. 2, the re-entrant PT -symmetric phase occurs
generically over a wide range of gain-loss domain sizes and
separations. It is also important to note that when the index
contrast is increased, |V0| � 1, PT -symmetry breaking oc-
curs via hybridization of the lowest m = 0,±1 modes, and
the re-entrant PT -symmetric phase disappears. These results
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FIG. 4. Dependence of γPT, where first complex-conjugate
eigenvalues emerge, on the dimensionless radius ρ of the gain-loss
domain. (a) At distance d/R = 0.5, γPT varies inversely with the
ρ � 2d . (b) This inverse behavior, expected from the effective-
strength model with δ-function gain-loss points, is valid for different
values of d .

suggest that the large spatial extent of the modes relative to
the size of the gain-loss domains plays an important part.

Next, we investigate the dependence of the PT -threshold
strength γPT on the radius ρ of the gain-loss domains DL, DR

and the center-to-center distance d between them, using the
results shown in Fig. 4. Plot (a) shows that γPT varies inversely
with ρ at d/R = 0.5. This is expected because the “effec-
tive gain-loss strength” is given by γπρ2. In the limit when
ρ/d � 1, the system goes over to two, localized δ-function-
like gain and loss potentials [25,47] with a finite threshold that
depends on this effective strength. This inverse relationship
is valid for general d , Fig. 4(b), over the possible range of
ρ < 2d .

Lastly, in Fig. 5 we show the variation of γPT with the
center-to-center distance d . Recall that in traditional PT -
dimer models, where the modes are confined to the gain-loss
regions, as the distance d between the gain and loss re-
gions increases, the effective coupling between them, and

FIG. 5. Dependence of the first threshold γPT on the distance d
for a fixed radius ρ = 0.1 of the gain-loss domains. After an initial
decay, the threshold is recovered even as the gain and loss regions
move farther away from each other.

subsequently the PT -breaking threshold, decreases. Here,
however, we see that after an initial decay, γPT shows
nonmonotonic behavior. In particular, the threshold γPT is
recovered even as the distance is increased six-fold from
d ∼ 0.2 to d ∼ 1.2. This increase is due to competing ef-
fects of boundary proximity for the gain and loss regions,
and increased distance between them [25,28]. Note that for
small values of d in Fig. 5, when d < 2ρ, the gain and loss
disks overlap; within the overlap, since gain and loss cancel
each other out, the values of V are real. Then the breaking
thresholds are high, being determined by small nonoverlap-
ping slivers of gain and loss. As d is increased, the overlap
decreases (with no overlap when d > 2ρ), thus explaining the
initial decay of the breaking threshold values.

V. CONCLUSION

In this work, we have numerically investigated the rich
diversity of PT -symmetry breaking and restoring transi-
tions that arise in a two-dimensional, continuum, circular
domain with uniform gain or loss potentials confined to
parity-symmetric disk-shaped regions. The resulting two-
dimensional geometry lacks any continuous symmetry and
the hope of any effective, dimensional reduction. Therefore,
using an interface-conforming discretization, we have numer-
ically solved the resultant generalized eigenvalue problem
for the lowest few eigenvalues. We have found multiple
PT -symmetry breaking and restoring transitions that occur
generically as the gain-loss strength γ is increased while
other system parameters are fixed. We have also found that
while the threshold γPT scales inversely with the size of the
gain-loss regions, it shows a nonmonotonic dependence on
the separation d , with a marked increase in γPT that occurs
as the gain-loss domains approach the boundary of the fiber.
Our results show that stable, propagating modes are supported
in multicore fiber with gain and loss regions. The difference
in the nominal size of the modes and size of gain-loss cores,
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due to the absence of index contrast, is primarily responsible
for the nontrivial dependence of γPT on the location of gain
and loss domains.

The lattice and continuum PT -symmetric models, particu-
larly those relevant in optics, have focused on two categories.
For models in the first category, the gain regions span half
the domain, with the loss-region spanning the remaining,
parity-symmetric counterpart [5–7,24,33,34]. For models in
the second category, the gain-loss regions are highly localized
(measure zero) relative to the size of the domain [26,28,35]. In
each case, increasing the gain-loss strength in the PT -broken
region leads to more unstable modes. On the other hand, our
single-parameter model shows that when gain-loss regions
occupy a finite, tunable fraction of the domain, multiple PT -
breaking transitions are possible. The emergence of stable,

propagating modes with real eigenvalues in response to in-
creasing gain-loss strength means that such fibers can serve to
support both amplifying and propagating modes. These results
suggest that significant threshold engineering can be carried
out by using spatially distributed gain and loss domains in a
bounded region with no symmetries beyond the discrete, PT
symmetry.
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