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Periodic quantum Rabi model with cold atoms at deep strong coupling

Geram Hunanyan ,1,* Johannes Koch,1 Stefanie Moll,1 Enrique Rico ,2,3,4,5 Enrique Solano,6 and Martin Weitz 1

1Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, 53115 Bonn, Germany
2Department of Physical Chemistry, University of the Basque Country UPV/EHU, Box 644, 48080 Bilbao, Spain

3Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
4EHU Quantum Center, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain

5IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
6Kipu Quantum, Greifswalder Straße 226, 10405 Berlin, Germany

(Received 11 July 2023; revised 3 May 2024; accepted 12 June 2024; published 3 July 2024)

The quantum Rabi model describes the coupling of a two-state system to a bosonic field mode. Recent
theoretical work has pointed out that a generalized periodic version of this model, which maps onto Hamiltonians
applicable in superconducting qubit settings, can be quantum simulated with cold trapped atoms. Here, we
experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep
strong-coupling regime. The two-state system is represented by two Bloch bands of cold atoms in an optical
lattice, and the bosonic mode by oscillations in a superimposed optical dipole trap potential. The observed
dynamics beyond the usual quantum Rabi physics becomes relevant when the edge of the Brillouin zone is
reached, and evidence for collapse and revival of the initial state is revealed at extreme coupling conditions.

DOI: 10.1103/PhysRevResearch.6.033023

I. INTRODUCTION

The interaction of a two-state system with an oscillatory
mode, as in a fully quantized form described by the quan-
tum Rabi model, is among the most fundamental problems
of quantum optics [1,2]. Experimental work on the inter-
action of two-level systems with quantized field modes has
been carried out with Rydberg atoms in microwave cavi-
ties before being carried over to the optical domain [3].
The obtained experimental results, for which the coupling
strength between the atoms and the electromagnetic field
was above the decoherence rate, corresponding to the so-
called strong-coupling regime, are described by the celebrated
Jaynes-Cummings model, which predicts the emergence of
hybrid matter-light eigenstates [4–11]. Other than the Jaynes-
Cummings model, the quantum Rabi model (QRM) is valid
for arbitrary coupling strengths, given that beyond the co-
rotating terms, it also accounts for the counter-rotating terms
of the interaction Hamiltonian, which leads to counterintu-
itive effects as that excitations can be created out of the
vacuum. The quantum Rabi physics becomes relevant as the
coupling strength g becomes comparable or even exceeds
the bosonic mode frequency ω, with the regime g/ω � 1
being termed the deep strong-coupling (DSC) regime. Ex-
perimentally, quantum Rabi physics has been studied with
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superconducting Josephson systems, metamaterials, ion trap-
ping, and with cold atom settings [12–16]. In recent work,
by encoding the two-level system in the occupation of Bloch
bands of cold trapped atoms, we have demonstrated quan-
tum Rabi dynamics far in the DSC regime at interaction
times at which the dynamics remains within the first Brillouin
zone [17].

Here, we report the observation of collapse and revival of
quantum Rabi dynamics in the DSC regime with cold trapped
atoms. We monitor the atomic evolution at long interaction
times beyond the first Brillouin zone, with the two-level sys-
tem being encoded in the Bloch band structure and the bosonic
mode in the oscillatory motion of a superimposed optical
dipole trapping potential. In the investigated regime, the fact
that the qubit information is stored in the band structure
becomes significant such that the predictions of the QRM
and the periodic quantum Rabi model (pQRM) differ because
half of the phase space available to the QRM is mapped to
the external atomic structure. The pQRM can be considered
as a generalization of the QRM, where the growth of the
bosonic excitations is truncated at an earlier stage, generating
an echolike periodic cycle with doubled temporal periodic-
ity. It essentially acts as a different light-matter interaction,
emerging in a unique manner from the experimental context
of cold atoms in variable potentials. The achieved normalized
coupling strength of g/ω � 6.5, meaning that the coupling
clearly dominates over all other relevant system energies,
compares favorably to the parameters of state-of-the-art works
of g/ω � 1.9 obtained in the phase space of superconducting
fluxonium systems [18]. In our work, both collapse and re-
vival of the excitation number are observed, as well as phase
dependence of the prepared Schrödinger catlike states. We
attribute our experimental data to give evidence for a quantum
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FIG. 1. (a) Cold rubidium atoms are subjected to the potential obtained by superimposing a harmonic trap (left) and a periodic lattice
potential (right). The image also shows the corresponding oscillatory modes: an oscillation mode at frequency ω in the harmonic potential and
a mode at frequency ωq at the first band gap of the lattice. In the combined potential, the coupling of modes can exceed their eigenfrequencies.
(b) Atomic dispersion relation in a lattice of spatial periodicity λ/4. (c) Scheme of the setup. A near-the-center harmonic confinement for cold
rubidium atoms is realized with a focused dipole trapping laser beam. The additional high spatial periodicity lattice potential is realized by
driving with an optical beam of frequency ωlat and two counterpropagating components with frequencies ωlat + �ω and ωlat − �ω; see (d) for
the coupling scheme.

simulation of the periodic quantum Rabi model (pQRM) in an
atomic, molecular, and optical (AMO) physics system at deep
strong coupling.

II. THEORETICAL DESCRIPTION

The basic principle of the scheme realized in our work
is shown in Fig. 1. Figure 1(a) illustrates the two quantum
mechanical oscillation modes relevant here, which in the first
case are generated by the oscillation of atoms in a harmonic
trap potential, and in the second case by Bragg reflection
in a lattice potential from the splitting of the two lowest
Bloch bands, the latter realizing a two-state system. The su-
perposition of the two potentials leads to an extremely strong
coupling of the two quantized atomic oscillation modes. In our
implementation, the harmonic trap potential is generated by
a focused optical dipole trapping beam and the superimposed
lattice potential via the dispersion of multiphoton Raman tran-
sition [19,20], resulting in a spatial periodicity of λ/4, where
λ is the wavelength of the driving optical beams. Formally, the
system can be described by the Hamiltonian

Ĥ = p̂2

2m
+ mω2

2
x̂2 + V

2
cos(4kx̂), (1)

where x̂ and p̂ are the position and momentum operators, m
is the atomic mass, V is the lattice depth, k = 2π/λ, and ω

is the harmonic trap frequency. Figure 1(b) shows the disper-
sion relation of atoms in the lattice in a representation that
is centered around the position of the first band crossing at
p = ±2h̄k as a function of the atomic quasimomentum q.
At the band crossing, i.e., at q = 0, the eigenstates of the
two-level system are given by |g〉 = 1√

2
(|−2h̄k〉 + |+2h̄k〉)

and |e〉 = 1√
2
(|−2h̄k〉 − |+2h̄k〉), respectively.

We introduce an eigenbasis of the momentum operator
|k〉 = |q, nb〉 such that the description of the momentum
eigenvalue is split into a continuous part q defined in the
interval (−2h̄k, 2h̄k] and an integer part nb ∈ Z that defines
a band index. The wave functions for these states are given
by 〈x|q, nb〉 = eiqx/h̄e−i2kxei4nbkx. The position operator x̂ can

be represented by the derivative of the quasimomentum q
within a band, i.e., x̂ = −ih̄ ∂

∂q , but will also induce a cou-
pling between the bands at the boundaries of the interval (see
Appendix B). Within a band, the Hamiltonian of the system
is just given by the harmonic term, q̂2/2m + (m/2)ω2x̂2 =
h̄ω(â†â + 1/2), where â† = √mω

2h̄ (x̂ − i
mω

q̂) is the creation
operator of the bosonic field mode. If we project onto the two
lowest bands nb = {0, 1}, the structure of a two-level system
(qubit) appears. Within the first Brillouin zone, the resulting
quantum Rabi Hamiltonian can be written as

ĤQRM = h̄ωâ†â + h̄ωq

2
σ̂z + ih̄gσ̂x(â† − â). (2)

Here, σ̂x and σ̂z are Pauli matrices acting on coarse-grained
wave functions in upper and lower bands, respectively, while
h̄ωq denotes the splitting between bands corresponding to the
qubit spacing and with a coupling g = k

√
2h̄ω/m. Formally,

the quantum Rabi Hamiltonian of Eq. (2) is derived from
Eq. (1) in the absence of an Umklapp term [21]. The com-
plete dynamics also has a boundary term (see Appendix B),
which introduces the notion of a periodic quantum Rabi model
(pQRM) and is the subject of this manuscript. As we will see
below, already at an early stage of the evolution, exactly at
ωt/2π = 0.25, the wave function of the collective system ex-
periences an echolike return such that the collapse and revival
dynamics is modified. Interestingly, characteristic signatures
of the pQRM, such as a modified pattern of collapse and
revival compared to the QRM, can be described analytically
by using a perturbative approach in a position-momentum
(x, p) phase space picture, as shown in Appendix D.

Given that the two-level system in the used quantum Rabi
implementation is stored in the band structure, effects beyond
the usual quantum Rabi physics can arise when one reaches
the edge of the first Brillouin zone. For the lattice that is
used here, with spatial periodicity λ/4, the relation between
momentum and quasimomentum for the first two bands [see,
also, Fig. 1(b)] is q = p − 2h̄k for p � 0 and q = p + 2h̄k for
p < 0, respectively, such that the quasimomentum is restricted
to q ∈ (−2h̄k, 2h̄k]. Essentially, storage of the qubit in the
band structure itself introduces a folding in the Bloch band
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structure. This results in collapse and revival effects that are
distinctly modified with respect to predictions of the original
QRM.

III. EXPERIMENTAL SETUP AND PROCEDURE

Our setup [see also, the schematics of Fig. 1(c)] is a modi-
fied version of an apparatus used in earlier works [17,19,20].
Initially, a Bose-Einstein condensate of rubidium atoms
(87Rb) in the mF = −1 spin projection of the F = 1 ground
state is produced in the quasistatic optical dipole trapping
potential imprinted by a focused beam emitted by a CO2 laser
operating near 10.6 µm wavelength. The beam power P is then
adiabatically increased to reach a desired value of the trapping
frequency ω ∝ √

P for quantum Rabi manipulation. Atoms
are, in addition, exposed to a high spatial (λ/4) periodicity
lattice potential, where λ = 783.5 nm denotes the wavelength
of the driving laser beams. The potential of the corresponding
periodicity is generated by off-resonantly driving four-photon
Raman transitions between the mF = −1 and mF = 0 ground-
state sublevels of F = 1 over the 5P3/2 excited-state manifold
using a beam of frequency ωlat and two superimposed counter-
propagating beams of frequencies ωlat + �ω and ωlat − �ω

[Fig. 1(d)]. Following the adiabatic intensity ramp of the
dipole trapping beam, atoms are prepared at the position of the
first band crossing of the high spatial periodicity lattice [see,
also, the dispersion relation of Fig. 1(b)] by means of Bragg
diffraction. After subsequent activation of the lattice beams,
atoms are exposed to the combined potential as indicated
in Fig. 1(a). Typical experimental parameters are harmonic
trapping frequencies ω/2π ∈ [350, 750] Hz, resulting in nor-
malized coupling g/ω ∈ [4.1, 6.5], which is far in the DSC
regime. The investigated regime for the two-level qubit split-
ting is ωq/2π ∈ [0, 5.5] kHz.

At the end of the atom manipulation phase, both the lattice
beams and the dipole trapping beam are extinguished, after
which absorption imaging is employed for detection. In the
course of the measurements, data were recorded analyzing the
real-space distribution, as probed by imaging directly after
manipulation, as well as recording of the momentum distri-
butions, for which time-of-flight imaging was used. For the
former measurements, except when recording mean displace-
ments, data analysis was performed after deconvolution with
the determined point spread function of the imaging system,
as to reduce systematic effects stemming from the � 6.5 µm
instrumental resolution of our imaging system. For the present
measurements investigating long interaction times of quantum
Rabi manipulation, relatively low atom numbers (∼800) are
used, to reduce interaction effects.

IV. RESULTS AND DISCUSSION

To begin with, we have investigated the temporal evolution
of the bosonic excitation number 〈N〉, with h̄ω(〈N〉 + 1

2 ) =
mω2

2 〈x2〉 + 1
2m 〈q2〉, for times up to and beyond the expected

revival. Atoms were initially prepared at the trap center with
a momentum of p = −2h̄k, for which the quasimomentum
q vanishes. The data points in Fig. 2(a) give the temporal
variation of the mean excitation number, as derived from
the rms spread of the experimental in situ and time-of-flight

FIG. 2. (a) Temporal evolution of the number of excitations,
〈N〉, for a qubit splitting ωq/2π → 0 (top), 800(14) Hz (middle),
and 1280(21) Hz (bottom), and a harmonic trapping frequency of
ω/2π = 346(8) Hz (relative coupling g/ω � 6.53). Atoms were ini-
tially prepared at a momentum of p = −2h̄k. The solid lines are
theory predictions based on the pQRM, and the dashed line for the
(usual) QRM. (b) Illustration of the temporal evolution of atomic
wave packets in phase space (x: position; p: momentum) for ωq = 0
(yellow solid line) and ωq > 0 (black dashed line), respectively.
(c) As in (b), now plotted in a position (x)–quasimomentum (q) rep-
resentation. The transparent dashed lines indicate the corresponding
trajectories predicted in the (usual) QRM, for which no remapping
of q onto the Brillouin zone of the lattice occurs.

imaging data, versus the interaction time of quantum Rabi
manipulation, for different lattice depths V = 2h̄ωq [top to
bottom: ωq/2π → 0, 800(14) Hz, and 1280(21) Hz]. We ob-
serve a periodic pattern of the excitation number oscillating
with a half temporal period of the harmonic potential T =
2π/ω, which, for larger qubit spacings, reduces in magni-
tude, creating the pQRM. The experimental data are in good
agreement with theoretical pQRM predictions; see Eq. (1)
with the described identifications between p and q as to keep
the quasimomentum q in the first Brillouin zone. However,
the observed physics does not follow the QRM predictions
of Eq. (2); see the solid and dashed lines, respectively.
Figures 2(b) and 2(c) qualitatively illustrate the expected
atomic dynamics in position (x)–momentum (p) and position
(x)–quasimomentum (q) phase-space representations, respec-
tively (see also, Appendix A for corresponding experimental
measurements). Here, the yellow solid line gives the expected
variation for the trivial case of ωq = 0, which corresponds to
a usual (shifted) harmonic oscillator dynamics in position-
momentum (position-quasimomentum) space, respectively,
and the dashed line illustrates an example for the nontriv-
ial case of ωq > 0. The observed temporal variations of the
mean excitation number [Fig. 2(a)], given it is proportional to
the rms distance from the origin in position-quasimomentum
space, of half the harmonic oscillator period T = 2π/ω, is
well understood from the corresponding trajectories, at least
for not-too-large values of ωq. For comparison, the dashed
lines in Fig. 2(c) illustrate the expected behavior predicted
in the (original) quantum Rabi model [Eq. (2)], for which
the periodicity equals the full harmonic oscillator cycle. To
study the effects of the band mapping in more detail, we
have analyzed the temporal variation of the mean Bloch
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FIG. 3. Temporal variation of the average value of the Bloch
band occupation 〈σx〉 for ω/2π = 346(8) Hz and qubit spacings of
ωq/2π → 0 (yellow circles) and 1750(25) Hz (green triangles). The
solid and dashed lines are theory predictions for the pQRM and the
usual QRM, respectively.

band occupation 〈σx〉, which can be expressed in the basis
of the band eigenstate numbers σ̂x = |nb = 0〉 〈nb = 0| −
|nb = 1〉 〈nb = 1|, with nb = 0, 1 for p = q − 2h̄k and p =
q + 2h̄k, respectively. The corresponding experimental data
are shown in Fig. 3 for different qubit splittings. While at
small lattice depth the expectation value of the band index re-
mains constant until the edge of the Brillouin zone is reached
and the bands are remapped, at higher lattice depth the modu-
lus of 〈σx〉 reduces and oscillations are observed (visible most
clearly near times t = 0 and 2π/ω), as attributed to the Rabi
oscillations between the momentum states ±2h̄k, respectively.
The oscillations are suppressed at smaller values of ωq since
then the coupling term, which is proportional to σ̂x [22],
dominates over all other energy scales and appear only for
larger values of the qubit splitting, upon which the dispersive
DSC regime is reached. Corresponding behavior for small
interaction times has also been observed in an earlier work
of our groups [17], and the present results generalize these
observations to beyond the first Brillouin zone. In subse-
quent measurements, we have prepared atomic wave packets
in the qubit eigenstates of the system, which are superposi-
tions of momentum picture eigenstates. For this, atoms were
irradiated by two simultaneously performed Bragg pulses of
counterpropagating momentum transfer, such that depend-
ing on the relative phase, different qubit initial states can
be prepared. Figure 4 gives data investigating the collapse
and revival of an initially prepared qubit eigenstate |g〉 =

1√
2
(|−2h̄k〉 + |+2h̄k〉) for a harmonic trap frequency ω/2π �

650 Hz (g/ω � 4.8) and different values of the lattice depth.
For the measurement, after a variable interaction time in the
combined potential, a π/2 four-photon Raman pulse tuned to
drive transfer between the momentum states −2h̄k and 2h̄k
was applied such that when the initial state is fully revived,
atoms are transferred to the momentum state −2h̄k and we
have σz = 1. The vertical scale of the plots in Fig. 4 shows the
relative number of atoms observed with a negative momentum
(p < 0) in the time-of-flight images with respect to the total
atom number, which constitutes a measurement of 〈σz〉. The
top plot corresponds to a vanishing lattice depth (ωq → 0)
such that this experiment realizes a trapped atom interfer-
ometer, and shows a revival at a full oscillation time of t =
2π/ω. The middle and lower panels, as recorded for increased
lattice depth, show revivals with visible substructures. The

FIG. 4. Collapse and revival of an initial state. The data points
give the relative number of atoms, np<0 = (Np<0 − −Np>0)/(Np<0 +
Np>0), with Np<0 (Np>0) as the atom number detected with momen-
tum p < 0 (p > 0), vs the interaction time for ω/2π = 650(21) Hz
and qubit splittings ωq/2π → 0 (top), 800(14) Hz (middle), and
1280(21) Hz (bottom). The solid lines are theory for the pQRM, and
the dashed lines give the overlap with the initial state (see scale on the
right-hand side) as predicted in the (usual) QRM. The gray shaded
area indicates regions where the experimental signal is affected by
large instrumental phase fluctuations.

experimental data qualitatively agree with predictions based
on the periodic quantum Rabi model (solid lines), and we
attribute the reduced contrast of the revival signal mainly to
the finite atomic velocity distribution. The shaded area at near
half the revival time corresponds to a region where large phase
fluctuations, attributed to mechanical vibrations of the Raman
beams with respect to the dipole trapping beam, become rel-
evant due to the reversed propagation direction of the atomic
wave-packet paths with respect to preparation given here, and
we consider this region as inaccessible to the experiment. For
comparison, the dashed line gives the expected overlap of the
initial state predicted in the (standard) quantum Rabi model,
for which no revival at half the oscillation time is expected.

To study the dependence of pQRM evolution on the
qubit state encoded in the Bloch band structure, we have
analyzed the number of created system excitations when ini-
tially preparing atoms in both eigenstates |g〉 = 1√

2
(|−2h̄k〉 +

|+2h̄k〉) and |e〉 = 1√
2
(|−2h̄k〉 − |+2h̄k〉). Figure 5(a) gives

experimental data for the difference in the correspondingly
obtained excitations versus time for different lattice depths.
We observe a clear difference in the number of created exci-
tations for two different relative phases used at qubit splitting
above near ωq/2π � 700 Hz. This is in agreement with theory
[Fig. 5(b)], though in the experiment again the contrast is
reduced. As an example, Fig. 5(c) gives a plot of the tem-
poral variation of the difference in observed excitations for
ωq/2π � 1250 Hz. Formally, at a small qubit splitting, the
oscillating wave packets can be well described as Schrödinger
cat states, while they become highly entangled states at larger
values of the qubit splitting. The agreement of the exper-
imental data with the theory is evidence that coherence is
maintained in the dispersive DSC regime of the pQRM.
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FIG. 5. (a) Difference (N↑ − N↓) of observed mean excitation
numbers between when initially preparing atoms in the upper
and lower qubit states N↑ and N↓ vs both the interaction time
and the qubit spacing ωq/2π , in a color-coded representation for
ω/2π � 350 Hz, g/ω � 6.53. (b) Corresponding theory. (c) Data for
ωq/2π = 1250(23) Hz exemplary drawn as a diagram, along with
theory (solid line).

V. CONCLUSIONS

To conclude, we have observed collapse and revival effects
of the dynamics in a cold atom based quantum simulation of
the quantum Rabi physics at extreme parameter regimes. Our
experimental data are in good agreement with theory based on
a generalized, periodic variant of the usual QRM, the physical
origin being the periodic nature of the atomic Brillouin zone
of cold atoms in a lattice.

In the future, it would be interesting to generalize the
reported observations to using atoms with tunable interactions
using Feshbach tuning (e.g., 85Rb or 39K), such that both the
limits of negligible and stronger interactions can be explored.
Other perspectives, inspired also by the formal analogy of
the system Hamiltonian to superconducting qubit systems, in-
clude quantum information processing applications [23–25],
as well as the search for novel quantum phase transitions
[26,27].
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APPENDIX A: ADDITIONAL DATA AND EXPERIMENTAL
DETAILS

The near harmonic trapping potential for the cold cloud of
rubidium atoms is generated with a focused laser beam (46 µm
diameter) derived from a CO2 laser operating at near 10.6 µm
wavelength. Despite the large detuning of the midinfrared
radiation from the lowest electronic resonances (the rubid-
ium D-lines) which results in a very low heating rate from

spontaneous scattering, the quasistatic atomic polarizability
leads to a confining potential. Both the optical lattice and
the optical Bragg pulses are generated using optical radiation
derived from a high-power diode laser operating near λ �
783.5 nm wavelength, which is detuned by approximately
3.3 nm to the red of the rubidium D2-line. The laser emis-
sion is split into two, and each of the partial beams pass
an acousto-optic modulator (AOM) used to imprint different
optical frequency components and then coupled into optical
fibers and guided to the vacuum chamber in which the cold
atom experiment takes place. The optical lattice potential,
which has a spatial periodicity of λ/4, is generated by the
dispersion of Doppler-sensitive Raman transitions [19]. For
this [see, also, Figs. 1(c) and 1(d) of the main text], atoms
are irradiated with two copropagating beams of frequencies
ωlat + �ω and ωlat + �ω and one counterpropagating beam
of frequency ω. Here, the mF = −1 and the mF = 0 spin
projections of F = 1 are the ground states of the three-level
scheme that is used, while the 52P3/2 manifold serves as the
electronically excited state. We use a frequency offset between
counterpropagating beams of �ω/2π � 945 kHz, which is
large enough to suppress unwanted standing-wave two-photon
processes. A magnetic bias field of B = 1.7 G removes the
degeneracy of the Zeeman sublevels, and the used value of the
two-photon detuning [see, also, Fig. 1(d)] is δ/2π � 210 kHz.
The optical fields exchange momentum with the atoms in units
of four photon recoils, which is a factor of two above the cor-
responding process in a usual standing-wave lattice, resulting
in a λ/4 spatial periodicity of the generated lattice potential.
We next give additional experimental data regarding the mea-
surement shown in Fig. 3, showing the temporal evolution
of the Bloch band occupation in the combined lattice and
harmonic trap for quantum Rabi manipulation. Figure 6 gives
the observed corresponding temporal evolution of mean val-
ues of the atomic position 〈x〉 and quasimomentum 〈q〉. As
described in the main text, atoms here were initially prepared
at a momentum of p = −2h̄k and, in the trap center, the
used bosonic mode frequency is ω/2π = 346(8) Hz, and the
qubit spacing is ωq/2π → 0 (yellow circles) and 1750(25) Hz
(green triangles). In all cases, the experimental data compare
well with predictions based on the periodic quantum Rabi
model. Note that the experimental resolution of the imaging
system (6.5 µm) is comparable to the trapped atomic cloud
size, which limits the significance of a detailed analysis of the
real-space data. Nevertheless, the measurements allow us to
qualitatively validate the illustrations for the expected atomic
wave-packet trajectories indicated in Figs. 2(b) and 2(c).

Figure 7 gives examples of the obtained time-of-flight
imaging data, as employed to evaluate the atomic momen-
tum distribution at the end of quantum Rabi manipulation
in the combined lattice and harmonic trap potential. The
used free expansion time is 8 ms, after which an absorption
image was recorded on a sCMOS camera. To begin with,
Fig. 7(a) shows an absorption image recorded to analyze the
atomic velocity distribution directly after preparing atoms in
the qubit state, |g〉 = 1√

2
(|−2h̄k〉 + |2h̄k〉), corresponding to

a superposition of two counterpropagating momentum pic-
ture states, and Fig. 7(b) shows an image after applying a
π/2-four-photon Raman pulse in addition, resulting in trans-
fer of atoms predominantly to state |−2h̄k〉. As described
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FIG. 6. Temporal evolution of the measured values for (a) the
mean atomic position 〈x〉 and (b) the mean quasimomentum 〈q〉, for
ωq/2π → 0 (yellow data points) and ωq/2π = 1750(25) Hz (green
data points), along with theory based on the periodic quantum Rabi
model (solid lines) and the (usual) quantum Rabi model (dashed
lines). Experimental parameters are as in Fig. 3.

in the main text, from the data, visible finite transfer effi-
ciency is attributed to the atomic velocity distribution. Next,
Fig. 7(c) shows a series of time-of flight images recorded
after different atomic interaction times in the harmonic trap
potential, again with atoms initially prepared in the qubit state,

|g〉 = 1√
2
(|−2h̄k〉 + |2h̄k〉), as a superposition of counterprop-

agating wave packets, and after the interaction time in the
harmonic trap applying a π/2-four-photon Raman pulse, as
to provide exemplary raw data for the top plot (ωq/2π = 0)
of Fig. 4. Both at near half the oscillation time and at a
full oscillation time (T = 2π/ω), an enhanced population
for atoms at negative final momentum p < 0 is observed, as
understood from the rephasing of the wave packets. Given
that this corresponds to a single realization of the experiment,
phase fluctuations between the trapping and Raman beams do
not affect the contrast, and the presence of revivals at both half
and full oscillation times is well understood. Upon subsequent
realizations of the experiment, only the data at a full revival
remain phase stable.

APPENDIX B: THEORETICAL METHODS

1. Periodic term of the Hamiltonian

The system is composed of a cloud of ultracold atoms
exposed to two laser-induced potentials: a periodic lattice
and a harmonic trap. When the atom density is suffi-
ciently low, interactions among the atoms are negligible
and the system can be described with a single-particle
Hamiltonian,

Ĥ = p̂2

2m
+ V

2
cos (4kx̂) + mω2

2
x̂, (B1)

where p̂ = −ih̄ ∂
∂x and x̂ are the momentum and position of

an atom of mass m, respectively. Here, ω is the angular fre-
quency of the atom motion in the harmonic trap, while V and
4k are the depth and wave vector of the periodic potential,
respectively. The periodic lattice results from a four-photon
interaction with a driving field of wave vector k.

We will assume that the harmonic trap is slowly varying on
the length scale of the periodic potential. Under this assump-
tion, the most suitable basis is given by the Bloch functions
〈x|φn(x)〉 = eiqx/h̄e−i2kxei4nkx, where the first Brillouin zone is
defined q ∈ (−2h̄k, 2h̄k] and the band index n ∈ Z.

It is straightforward to see that the momentum op-
erator is diagonal in the Bloch basis, while the pe-
riodic potential introduces a coupling between adjacent

FIG. 7. (a) Time-of-flight image analyzing the atomic momentum distribution following the preparation of atoms in the qubit state, |g〉 =
1√
2
(|−2h̄k〉 + |2h̄k〉). (b) Image recorded following an additional π/2 four-photon Raman pulse. (c) Series of time-of flight images recorded

with an additional, variable delay between the preparation pulse and the final π/2 readout pulse.
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bands,

p̂2

2m
+ V

2
cos (4kx̂)|q, n〉

= 1

2m
[q + (2n − 1)2h̄k]2|q, n〉

+ V

4
(|q, n + 1〉 + |q, n − 1〉). (B2)

Assuming that the system dynamics is restricted to the
two bands with the lowest energy, the periodic part of the
Hamiltonian can be rewritten in the Bloch basis as

Ĥp = q2

2m
+ 2h̄k

m
σzq + V

4
σx. (B3)

Hence, the periodic potential allows one to encode the two-
level system in the lowest two bands of the Bloch band
structure. If the dynamics is kept in the same band, the
harmonic potential introduces an operator which can be ex-
pressed as x̂ = −ih̄ ∂

∂q in the Bloch basis. This allows us
to define the quasimomentum operator q̂ and the position
operator x̂, which satisfy the usual commutation relation
[x̂, p̂] = ih̄.

In this way, we can rewrite the Hamiltonian as

Ĥ = q̂2

2m
+ mω2

2
x̂2 + 2h̄k

m
σzq̂ + V

4
σx. (B4)

2. Quadratic potential in the Bloch basis

Let us now discuss the quadratic term mω2

2 x̂2 in the main
Hamiltonian. In the Bloch basis, we can write

〈q̃, ñ|x̂2|q, n〉 =
∫ +∞

−∞
dx x2ei[4(n−ñ)k+(q−q̃)/h̄]x. (B5)

Considering diagonal elements in the qubit Hilbert space,
i.e., setting ñ = n, we have

〈q̃, n|x̂2|q, n〉 =
∫ +∞

−∞
dx x2ei(q−q̃)x/h̄ = −h̄2〈q̃, n| ∂2

∂q2
|q, n〉.

(B6)
Hence, we see that the harmonic potential introduces an

operator, diagonal in the qubit Hilbert space, which can be
expressed as r̂ = −ih̄ ∂

∂q , in the Bloch basis. This allows us
to define the quasimomentum operator q̂ and the position
operator r̂, which satisfy the commutation relation [r̂, q̂] =
ih̄. On the other hand, for ñ = n, the integral is different
from zero only if 4h̄(n − ñ)k = q − q̃. Hence, the quadratic
potential introduces a coupling between neighboring bands,
for states whose momenta satisfy 4h̄k = q − q̃, of the kind
(|2h̄k, nb〉〈−2h̄k, nb + 1| + H.c.). This effective coupling is
due to the periodicity of the quasimomentum, which mixes the
bands n = {0, 1} at the boundaries of the Brillouin zone. Such
a coupling can be neglected as far as the system dynamics
involves only values of the quasimomentum q̂ included within
the first Brillouin zone.

APPENDIX C: MAPPING TO FLUXONIUM SYSTEMS

The fluxonium system is a circuit where we have, in paral-
lel, a capacitor, an inductor, and a Josephson junction, when
the energies of each of the elements are, in comparison with

one another, EJ > EC > EL. An analogy between the peri-
odic quantum Rabi model presented in the main text and a
superconducting fluxonium system [18] can be shown in the
following. In principle, we only have one active node a. The
equation of the flux going through this node is

Cφ̈a = −φa

L
− J sin

(
2π (φa + 
clas)


0

)
, (C1)

where 
clas is the external magnetic flux going through the
spire defined by the Josephson junction and the inductor. From
these equations, we can propose the following Lagrangian:

LFlux = C

2

̇2

a − 
2
a

2L
+ J
0

2π
cos

(
2π (φa + 
clas)


0

)
. (C2)

With this, we are already in the situation of obtaining the
Hamiltonian,

H = q2
a

2C
+ 
2

a

2L
− J
0

2π
cos

(
2π (φa + 
clas)


0

)
. (C3)

We will rewrite it as follows:

H = 4ECn2
a + 1

2
EL
2

a − EJ cos

(
2π (φa + 
clas)


0

)
, (C4)

where we have defined EC = 2e/8C, n = q/2e, EL = 1/L,
and EJ = J
0

2π
. After this, we will have to quantize the system,

therefore getting

Ĥ = 4ECn̂2
a + 1

2
EL
̂2

a − EJ cos

(
2π (φ̂a + 
clas)


0

)
. (C5)

This is as if we had a particle with mass inversely proportional
to EC in the potential V (φ̂) = 1

2 EL
̂2
a − EJ cos( 2π (φ̂a+
clas )


0
).

Bear in mind that this potential depends on the 
clas parameter
and that by tuning it, we can achieve different potentials which
will lead to significantly different systems. Explicitly, if we
substitute of 
̂a = 4kx̂, EC = 2 k2

m , EJ = ωq, EL = mω2

16k2 , g =
(8ELE3

C )1/4, and 
class = π , we arrive at an exact mapping
between the atomic physics model and the superconducting
circuit model. Comparing the energy scales given in [18] to
the parameters used in our setup yields a relative coupling
strength of g/ω ≈ 1.91 and a ratio between the qubit splitting
and bosonic mode of ωq/ω ≈ 2.42.

APPENDIX D: PERTURBATIVE DEEP
STRONG-COUPLING REGIME: ANALYTICAL

TREATMENT

In this Appendix, we present an analytical approach to de-
rive the dynamics of the pQRM using perturbation theory. To
begin, we evaluate the expectation value of the mean position
〈x〉 (see, also, in Fig. 6), employing a perturbative approach
applied to the system Hamiltonian described by Eq. (1). This
perturbative analysis offers a different perspective on the sys-
tem Hamiltonian, complementing the approach outlined in the
main text via Bloch band mapping. In earlier works regard-
ing the spectral classification of the quantum Rabi model, it
has been shown that when increasing the relative coupling
strength g/ω, with ω being the bosonic mode frequency to the
dominating energy in the system, one moves from the “usual”
deep strong-coupling regime (DSC, g/ω � 1) to the so-called
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perturbative deep strong-coupling regime (pDSC, g/ω � 1)
[28]. It is in this limit where, in contrast to the earlier dis-
cussed regimes where the coupling strength was assumed to
be a perturbation of the system, now it is the dominating
energy, while the normalized qubit frequency ωq/ω is now
regarded as the perturbation. Hence, by using perturbation
theory, predictions of observables of the pQRM in a real-space
description based on using the variables x and p can be given.
To compare the effectiveness of this perturbative method with
a straightforward numerical approach, we will also present
the overlap and fidelity of the respective systems in the fol-
lowing. It is noteworthy to mention that a similar perturbative
approach can be used to derive the dynamics in the QRM far
in the deep strong-coupling regime using the parity symmetry
of the system [10].

The Hamiltonian of the model is [see Eq. (1)]

H = p2

2m
+ mω2

2
x2 + V

2
cos (4kx).

In this note, we use the following units: m = h̄ = ω = 1; then
the Hamiltonian takes the form

H = p2

2
+ 1

2
x2 + V

2
cos (4kx). (D1)

By standard definition,

x = 1√
2

(a† + a), p = i
1√
2

(a† − a).

The Hamiltonian (D1) can be written as

H = a†a + 1

2
+ V

2
cos[2g(a† + a)], (D2)

where

g = 2k

√
h̄ω

2m
=

√
2k.

For purposes of a perturbative calculation, it is convenient to
choose the unperturbed wave functions as Fock states. We
seek a solution of the Schrödinger equation,

i
∂

∂t
|�〉 =

{
a†a + 1

2
+ V

2
cos[2g(a† + a)]

}
|�〉, (D3)

in the form

|�(t )〉 =
∞∑

n=0

an(t )|n〉.

Then an(t ) obey the equation

i
∂

∂t
an(t ) =

(
n + 1

2

)
an(t )

+ V

2

∞∑
m=0

〈m| cos[2g(a† + a)]|n〉am(t ). (D4)

If the perturbation V
2 cos[2g(a† + a)] is small, we can replace

the eigenenergy of the Hamiltonian in Eq. (D2),

En ≈ n + 1

2
+ V

2
〈n| cos[2g(a† + a)]|n〉,

and the eigenstates by the Fock state |n〉. For the validity of
the perturbation theory, the matrix elements

〈n| cos[2g(a† + a)]|m〉

must satisfy the condition

V

2
|〈m| cos(2

√
2gx)|n〉| << |n − m|, (D5)

for any |m〉 and |n〉 Fock states.
The cosine matrix elements can be expressed in terms of

generalized Laguerre polynomials [29]. We will consider only
m = n + 2l ,

〈n| cos(2
√

2gx)|n + 2l〉

=
√

n!

(n + 2l )!
(−1)l (4g2)l exp(−2g2)L2l

n (4g2). (D6)

In this experiment, the parameter g is large, which means that
the average number of excitations is also large, N ≈ g2. This
fact allows us to use the following asymptotic expression for
L2l

n (4g2). With this approximation, we arrive at the following
expression for the maximum of the cosine matrix element:

max
n,l �=0

|〈n| cos(2
√

2gx)|n + 2l〉| ≈ 1√
2πg

.

Hence, in the worst case, we demand that

V

2

1√
2πg

<< 2. (D7)

Then the condition (D5) will be fulfilled automatically. Or, in
ordinary units,

V

2ω
= ωq

ω
<< 2

√
2π

g

ω
≈ 5

√
g

ω
. (D8)

For the experimental parameters of the experimental system
that is discussed here (e.g., for the data of Fig. 4, ωq

ω
�

2, 2
√

g
ω

≈ 11), this condition is approximately fulfilled.
Upon introducing the displacement operator D(α), the last

term in the Hamiltonian (D2) can be brought to a more pleas-
ant form,

cos[2g(a† + a)]

= 1
2 {exp[2ig(a† + a)] + exp[−2ig(a† + a)]}

= 1
2 [D(2ig) + D(−2ig)]. (D9)

By using the representation of the displacement operator in
the Fock basis (see [30]), we get

〈n|D(α)|n〉 = exp

(
−|α|2

2

)
Ln(|α|2),

where Ln are the Laguerre polynomials. The eigenvalues and
the solution of our problem can be written as

En ≈ n + V

2
exp(−2g2)Ln(4g2),

|�(t )〉 ≈ exp [−it (A + D)]
∞∑

n=0

an(0)|n〉, (D10)

where A and D are diagonal matrices in the Fock space,

Anm + Dnm =
[

n + V

2
exp(−2g2)Ln(4g2)

]
δnm.
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We apply the solution (D10) when the state is initially prepared as

|�(0)〉 → N1[|2k〉 + |−2k〉] → N2[|ig〉 + |−ig〉],
where N1 and N2 are normalization parameters and |g〉 is the coherent state with the displacement g.

After normalization, it takes the following form:

|�(0)〉 = 1√
2
√

1 + exp (−2g2)
exp

(
−g2

2

) ∞∑
n=0

(ig)n + (−ig)n

√
n!

|n〉. (D11)

Then the state at time t is

|�(t )〉 = 1√
2
√

1 + exp (−2g2)
exp

(
−g2

2

) ∞∑
n=0

(
(ig)n + (−ig)n

√
n!

)
exp

{
−it

[
n + V

2
exp(−2g2)Ln(4g2)

]}
|n〉. (D12)

The overlap with the initial state is equal to

〈�(0) |�(t )〉 = exp(−g2)

2[1 + exp (−2g2)]

( ∞∑
n=0

[(ig)n + (−ig)n]2

n!
exp

{
−it

[
n + V

2
exp(−2g2)Ln(4g2)

]})

= exp(−g2)

[1 + exp (−2g2)]

( ∞∑
n=0

g2n[1 + (−1)n]

n!
exp

{
−it

[
n + V

2
exp(−2g2)Ln(4g2)

]})

= 1

cosh (g2)

( ∞∑
n=0

g4n

(2n)!
exp

{
−it

[
2n + V

2
exp(−2g2)L2n(4g2)

]})
. (D13)

1. Dynamics of the mean position 〈x〉
In Fig. 8, we have calculated the mean position coor-

dinate 〈x〉 and can directly compare this observable to the
numerical solution which was used in the main text and in
the Appendix to calculate the theoretical predictions for the
experimental data in Fig. 6. We find good agreement of the
perturbative method with the behavior of the mean position,
which among other things is used to calculate the bosonic
excitation number in Fig. 2.

2. Overlap |〈�(0)|�(t )〉|2

In Figs. 9 and 10, we compare the overlap |〈�(0)|�(t )〉|2
obtained from the numerical solution of Eq. (D3) for the initial
state (D11) with the overlap according to Eq. (D13). A notable
feature of this expression is that due to the anharmonic nature
of the spectrum, the wave function does not recover after
one oscillator period. Moreover, it quite accurately predicts
the amplitude of the overlap of the wave function with the

FIG. 8. Temporal evolution of the measured values for the mean
atomic position 〈x〉 for a qubit frequency of ωq/2π = 1750(25) Hz
(green data points), along with theory based on the periodic quan-
tum Rabi model (dotted black lines) and the perturbative approach
presented above. Experimental parameters are as in Fig. 3.

initial state. There is room to improve the accuracy of this
perturbative solution by taking into account higher-order cor-
rections. However, these correction are outside of the scope of
this paper.

3. Fidelity |〈�p (t )|�(t )〉|
In order to further justify the validity of this alternative

method, we have calculated the fidelity of the exact and per-
turbative solutions,

F (t ) = ∣∣〈�p (t ) |�(t )〉∣∣,
where |�(t )〉 is the exact solution of the Schrödinger equa-
tion and |�p (t )〉 is the perturbative one [see Eq. (D10)], with

FIG. 9. Variation of the overlap |〈�(0)|�(t )〉|2 vs time (units of
ωt/2π ). The initial state here is 1√

2
[|2k〉 + | − 2k〉]. The other pa-

rameters are ωq

ω
= V

2ω
= 1280

650 ≈ 1.96 , g
ω

= 4.8, the same as in Fig. 4.
The blue line corresponds to the numerical calculations of Eq. (D3).
The purple dashed line corresponds to the perturbative analytic ex-
pression (D13). The black dotted line is the numerical calculation
of the “usual” QRM (see, also, Fig. 4), which, as mentioned before,
shows temporal dynamics at half of the periodicity of the pQRM
(first revival at ωt/2π = 1).
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FIG. 10. Same as in Fig. 9, but for a smaller value of the qubit
splitting, ωq

ω
= 1.2.

the initial state

|�(0)〉 = exp

(
−g2

2

) ∞∑
n=0

(−ig)n

√
n!

|n〉. (D14)

FIG. 11. Temporal evolution of the fidelity F (t ) =
|〈�p (t )|�(t )〉| for different values of the qubit frequency:
ωq/2π = 650 Hz (black), 800 Hz (blue), and 1280 Hz (red).

As can be seen in Fig. 11, there is good agreement between
the exact solution and the perturbative method. Increasing the
qubit frequency leads to a larger deviation in the calculated
value for F (t ), which is expected.
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