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Probing magnetic and triplet correlations in spin-split superconductors with magnetic impurities
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A superconductor (SC) in proximity to a ferromagnetic insulator (FMI) is predicted to exhibit mixed
singlet and triplet correlations. The magnetic proximity effect of FMI spin splits the energy of Bogoliubov
excitations and leads to a spin polarization at the surface for superconducting films that are thinner than
the superconducting coherence length. In this work, we study manifestations of these phenomena in the
properties of a magnetic impurity coupled via Kondo coupling to this FMI/SC system. Using the numerical
renormalization group (NRG) method, we compute the properties of the ground state and low-lying excited
states of a model that incorporates the Kondo interaction and a Ruderman-Kittel-Kasuya-Yosida (RKKY)-like
interaction with the surface spin polarization. Our main finding is an energy splitting of the lowest even
fermion-parity states caused by the proximity to the FMI. As the Kondo coupling increases, the splitting grows
and saturates to a universal value equal to twice the exchange field of the FMI. We introduce a two-site model that
can be solved analytically and provides a qualitative understanding of this and other NRG results. In addition,
using perturbation theory, we demonstrate that the mechanism behind the splitting involves the RKKY field and
the triplet correlations of the spin-split superconductor. A scaling analysis combined with NRG shows that the
splitting can be written as a single-parameter scaling function of the ratio of the Kondo temperature and the
superconducting gap, which is also numerically obtained.

DOI: 10.1103/PhysRevResearch.6.033022

I. INTRODUCTION

The search for superconductors with a spin-triplet electron
pairing mechanism is an ongoing endeavor motivated by their
potential to host unique excitations [1–3] with promising ap-
plications to quantum hardware [4,5]. Within this area, one
research direction focuses on studying candidate materials
where this type of pairing occurs intrinsically [6–8]. Alter-
natively, triplet correlations can be induced extrinsically in,
e.g., superconductor-ferromagnet hybrid systems [9], or con-
ventional superconductors in proximity to a ferromagnetic
insulator [10].

In a conventional superconductor, Cooper pairs condense
in a spin-singlet state. When the condensate interacts with a
local exchange field via the proximity effect either to a metal-
lic ferromagnet or ferromagnetic insulator, part of the singlets
transforms into triplet pairs. Theoretically, this has been ex-
tensively investigated using the quasiclassical approach in
Refs. [9,11–15]. In the particular case of a ferromagnetic insu-
lator (FMI)/superconductor (SC) heterostructure, an indirect
signature of the induced exchange field and triplet correlations
can be observed as a spin splitting of the density of states of
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thin SC layers, even in the absence of an externally applied
field, as confirmed in several experiments [16–18].

The ferromagnet-superconductor interaction can be de-
scribed by treating the magnetization of the ferromagnet as
a classical variable that provides an exchange field at the
boundary. On the other hand, the study of magnetic impurities
in a superconducting host is a longstanding area of research,
with current interest focusing on developing experimental
platforms that allow the control and tuning of quantum states
of such systems with high accuracy. Advances in scanning
tunneling spectroscopy (STS) allow one to probe impurities
on the surface of a superconductor with atomic-scale resolu-
tion [19–22]. Molecular junctions [23] and superconducting
nanowires coupled to a quantum dot [24–29] can be tuned to
regimes where they can be modeled as quantum impurities.

Furthermore, chains of magnetic impurities (adatoms)
on top of a superconductor have been extensively studied
to realize the paradigmatic Kitaev chain [1–3,30–32]. Re-
cently, two nearby magnetic impurities in a superconductor
have been proposed to realize an effective two-level system,
which is a key ingredient of a qubit, the building block
of a quantum computer [33]. Despite the proposals, con-
trol of the system parameters remains a major challenge,
requiring a deeper understanding of the magnetic interactions
between impurities and the substrate. When two impurities
are placed on a superconductor, their interaction is mediated
by the itinerant electrons, resulting in an effective long-
range interaction. Depending on the distance between the
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impurities, the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction [34–36] can be antiferromagnetic [37,38] or even
ferromagnetic at distances larger than the coherence length in
superconductors with strong spin-orbit coupling [39]. Some
recent proposals have also discussed tuning magnetic inter-
actions by applying microwave fields [40] or by varying the
orientation of an external magnetic field [41]. In this regard,
it is interesting to explore the possibility of manipulating the
magnetic interaction between impurities through an effective
exchange field generated via the proximity to an FMI/SC
system at zero external magnetic field. The first step in this
direction is to study how the exchange field affects the ground
state and the spectral properties of a single impurity.

In this work, we address this question by analyzing a
FMI/SC heterostructure coupled to a spin- 1

2 magnetic im-
purity. Such a system can be seen as a platform to study
the interplay between triplet correlations and the magnetic
interactions induced by the FMI. As mentioned above, an
FMI in proximity to an SC leads to spin polarization of the
quasiparticle states, resulting in spin splitting of the coher-
ence peaks in the density of states [16,18]. To capture this
effect, we introduce an effective homogeneous exchange field
h that couples to the electronic states described by the BCS
mean-field Hamiltonian as a Zeeman coupling. This is jus-
tified by assuming that the thickness of the superconducting
layer is smaller than the superconducting coherence length.
This effective h drastically modifies the exchange interaction
between the impurity spin and the electrons in the SC. In addi-
tion, Cooper pairs in the SC mediate an effective RKKY-like
interaction between the impurity spin and the FMI.

After introducing the model, we describe the results ob-
tained by solving it with the numerical renormalization group
(NRG) method [42–46] for the ground state and the low-lying
energy spectrum. In the absence of the FMI, the ground-state
properties of a superconductor/impurity system have been
studied extensively [47]. It was found that as the (Kondo)
exchange coupling with the impurity grows, the system un-
dergoes a quantum phase transition where the fermion parity
of the ground state changes from an even-parity doublet to
an odd-parity singlet state. Our main finding in this work is
that the presence of an exchange field induced by proximity to
the FMI lifts the spin degeneracy of the even-parity doublet.
The spin splitting of the doublet exists for any finite value
of the Kondo coupling. Furthermore, in the weak-coupling
regime, we find a shift of the threshold for continuum excita-
tions only for electrons tunneling with spin antiparallel to the
ground-state spin. Previously, Ref. [48] addressed the problem
of a quantum impurity coupled to a spin-split superconductor
using NRG. Similarly to this work, a splitting of the doublet
states was observed. However, in the model of Ref. [48],
this effect requires an in-plane external magnetic field, which
equally splits all electronic bands, while in our system, the
splitting stems from the proximity to FMI and affects only
electrons in the superconductor in a narrow energy window
around the Fermi energy.

Moreover, although the results obtained using NRG are
quantitatively accurate, they do not provide an intuitive pic-
ture of the underlying mechanisms leading to the splitting of
the doublet and the shift of the threshold for the continuum
of single-particle excitations. Thus, to gain a qualitative un-

derstanding, we introduce a minimal two-site model based
on zero-bandwidth approximation [22,49] that captures the
essence of the NRG results. Furthermore, in the limit of weak
Kondo coupling, we use perturbation theory to analytically
calculate the splitting. We find that the first-order energy
correction comes from the effective RKKY-like interaction
between the FMI and the impurity, while the second-order
contribution originates from triplet correlations present in an
FMI/SC substrate.

The findings described above have direct consequences
for the excitation spectrum causing a spin splitting of
the lowest-energy single-particle excitations, namely, the
Yu-Shiba-Rusinov (YSR) excitations [50–52] in the strong-
coupling regime of the magnetic impurity. This splitting can
be measured using tunneling probes on, e.g., a quantum dot
coupled to an FMI/SC nanowire or a magnetic adatom on the
surface of the FMI/SC heterostructure.

The rest of the article is organized as follows: In Sec. II, we
introduce the many-body Hamiltonian describing the system
under study. In Sec. III, we describe the results of the NRG
calculations of the ground state and the low-energy excita-
tions. In Sec. IV, we introduce a minimal two-site model
that qualitatively reproduces the key features of the results
obtained using NRG. In Sec. V, we describe the results of
perturbation theory applied to a two-site model and an ex-
tended superconductor in the limit of weak Kondo coupling.
In Sec. VI, we describe the effect of the exchange field on
other spectral features in the continuum part of the tunnel-
ing spectrum. Unless otherwise stated, we will work in units
where h̄ = 1.

II. MODEL

We consider a superconductor/ferromagnetic-insulator
(FMI/SC) heterostructure coupled to a spin- 1

2 magnetic im-
purity via an isotropic antiferromagnetic (Kondo) exchange
interaction. We introduce the following Hamiltonian to de-
scribe the system:

H = H0 + HK + HRKKY, (1)

H0 =
∑
kσ

εkc†
kσ

ckσ + h
∑
k,σσ ′

[
c†

kσ

(
2sz

σσ ′
)
ckσ ′

]

+ �
∑

k

[c†
k↓c†

−k↑ + ck↓c−k↑], (2)

HK = JS · s0, (3)

HRKKY = Jρ0hSz. (4)

Here, ckσ (c†
kσ

) is the annihilation (creation) operator for the
electrons in the superconductor.

In Eq. (1), H0 describes the FMI/SC heterostructure in the
absence of magnetic impurity. � is the strength of the pairing
potential. Proximity to an FMI gives rise to an exchange field
h in the SC that couples to the electron spin as a Zeeman
field and therefore splits the Bogoliubov quasiparticle bands
[17,53]. However, unlike the Zeeman coupling to a uniform
magnetic field that equally splits all electronic bands, the
effective exchange field stems from the magnetic proximity
effect, and hence only splits the bands in an energy shell
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FIG. 1. Schematic representation of an FMI/SC heterostructure
coupled to an impurity spin S via a (Kondo) exchange coupling of
amplitude J . The superconducting layer has a thickness of d � ξ

(but larger than the electron mean free path), with ξ the supercon-
ducting coherence length. The FMI gives rise to the spin splitting of
the quasiparticle density of states in the SC and induces opposite spin
polarization on the two superconducting interfaces S1 and S2, i.e.,
P (S1) = −P (S2). This results in an effective RKKY-type interaction
between the FMI and the impurity spin. The blue arrow indicates the
orientation of the average magnetic moment in the FMI.

around the Fermi energy for which pairing correlations are
important [12,13] (in conventional SCs, for excitation energy
� ωD, ωD being the Debye frequency).

In most experiments where spin splitting has been observed
[16–18], superconducting films, such as those made of alu-
minum, are used. These films have a thickness d greater than
the typical elastic mean free path �, but smaller than the su-
perconducting coherence length ξ . In this case, the exchange
field at distances greater than � from the FMI/SC interface can
be considered homogeneous and proportional to 1/d [13,54].
From the mean-field perspective, the proximity-induced ex-
change field h plays a role akin to the superconducting pairing
potential. For simplicity, in Eq. (1) we choose h to be oriented
along the z axis.

HK describes an isotropic Kondo coupling between the im-
purity spin and the spin of the electrons in a superconductor,
where J is the exchange coupling, S the spin of the magnetic
impurity, and s0 is the spin density of the superconductor at
the position of the impurity, i.e., s0 = (1/	)

∑
kk′ c†

kσ
sσσ ′ck′σ ′ ,

where s = σ/2 are (half) the spin Pauli matrices and 	 the
system volume. The energy scales that determine the exis-
tence of a magnetic moment at the impurity and its interaction
with the host electrons are the intraorbital Coulomb energy U
and the orbital energy εd , which are typically much larger than
ωD. Between U and ωD, pairing fluctuations are negligible and
the electronic states are not spin split by the proximity to the
FMI. Therefore, at the scale where the pairing and exchange
potentials set in, the Kondo coupling can be considered spin
isotropic.

However, proximity to the FMI modifies the interaction
of the impurity spin with the superconductor by giving rise
to an effective RKKY-type interaction described by HRKKY

in Eq. (1). In the presence of the FMI, the superconductor
is locally polarized at the interface S1 (see Fig. 1). Since
the impurity is located at the interface S2, at a distance

d (d � ξ but d � �) to the FMI, the surface S2 exhibits
opposite spin polarization due to pairing correlations (see
Fig. 1). Therefore, an RKKY exchange field emerges at the
interface S2, which is modeled by HRKKY = J〈s〉S2 · S, where
〈s〉S2 is the polarization at S2 and it is estimated to leading or-
der as the Pauli susceptibility [55–58], i.e., 〈s〉S2 = −〈s〉S1 =
χSh 	 ρ0h, where h = hez, χS is the spin susceptibility, and
ρ0 is the density of state at the Fermi surface.

Taking into account all these considerations and neglecting
any weak scattering potential that breaks particle-hole sym-
metry, the total Hamiltonian describing the system is given
by Eq. (1). We stress that it is implicitly understood that this
model is an effective description of a magnetic impurity at
the surface of the FMI/SC system at energy scales ≈ ωD

or lower. The eigenstates of this model Hamiltonian can be
labeled by the z component of the total spin, i.e., Sz

T = Sz +∑
k,σσ ′ c†

kσ
sz
σσ ′ck′σ ′ , and the fermion-parity operator. The latter

is defined as P = ∏
k,σ (−1)nkσ , where nkσ = c†

kσ
ckσ .

In the absence of the FMI, i.e., for h = 0 and HRKKY =
0, this model has been extensively studied in the past
and its ground-state and low-lying excitation spectra are
fairly well understood [47,50–52]: As a function of the ex-
change coupling J , the many-body ground state undergoes
a (level-crossing) phase transition from a doublet at J < Jcr

(weak-coupling regime) to a Kondo singlet ground state at
J > Jcr (strong-coupling regime). At J < Jcr, the impurity
spin is weakly coupled to the electrons in a superconductor
and the ground state of the system is a twofold degenerate
doublet state that is well approximated as a product state of the
BCS ground state and the impurity-spin states, i.e., |BCS〉| ±
1/2〉. Thus, in the weak-coupling limit, the ground-state dou-
blet has even parity and its total spin is equal to the impurity
spin, i.e., 〈Sz

T 〉 = 〈Sz〉 = ±1/2. As the exchange coupling J
increases, the spin of the impurity couples more strongly to
the local spin fluctuations in the superconductor. Eventually,
for J > Jcr, the ground-state energy is lowered by forming
a collective singlet bound state (i.e., 〈Sz

T 〉 = 0) consisting of
the impurity spin and a polarization cloud of quasiparticle
excitations from the superconductor. In the strong-coupling
limit, the ground state has odd fermion parity and it is a singlet
[43–45,47].

When the single-particle excitation spectrum is probed by
a tunneling probe, the spectrum displays a pair of narrow
peaks at subgap energies symmetrically around zero bias
(i.e., E = 0). They correspond to the excitations known as
the Yu-Shiba-Rusinov (YSR) states [50–52] and can be ex-
cited by a single tunneling electron for E > 0 (or hole for
E < 0). The tunneling of electrons or holes couples states of
different fermion parity. Indeed, YSR excitations have pre-
viously been described as eigenstates of the Bogoliubov–de
Gennes equations obtained from the quadratic Hamiltonian
that results after replacing the impurity-spin operator with
a classical vector. However, this classical description ne-
glects quantum fluctuations of the impurity spin [43,43,59]
and important many-body effects related to, e.g., the parity
of the ground state [22,43,44,60] or the spin of the YSR
excitations [61].

Placing a thin superconducting layer in proximity to
the FMI brings about new features that are not encoun-
tered in conventional SCs. The exchange field h induced
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in the superconductor via the magnetic proximity effect
generates superconducting correlations in the triplet state,
which are “odd” in the Matsubara frequency and are
not present when h = 0 [9]. Here, we investigate how
triplet correlations affect the properties of the magnetic
impurity.

Below, we argue that the existence of the triplet correla-
tions has important consequences for the low-lying spectrum
of the system described by Eq. (1). Indeed, even if the sta-
bility of the (spin-split) superconductor requires |h| < �,
the exchange field cannot be treated as a weak perturba-
tion. It substantially alters the quasiparticle spectrum below
the energy scale for which superconducting correlations are
important (≈ ωD), and we need to treat its effects using a
nonperturbative method. This is accomplished by using the
numerical renormalization group (NRG) and the results are
described in the following section.

III. NRG RESULTS

In this section, we solve the model in Eq. (1) using the
numerical renormalization group (NRG) method [42–46].

Tunneling probes such as the scanning tunneling micro-
scope (STM) can access the single-particle spectrum of the
system. The tunneling current is proportional to the convo-
lution of the spectral function of the system with that of the
tunneling probe (e.g., the tip of the STM). The definition and
calculation using NRG of the spectral function, Aσ (ω), are
described below in Sec. VI and in Appendix E. Here, we shall
simply outline the key results.

Figure 2(a) shows the evolution with the Kondo coupling
J of the singlet (in black) and doublet (in blue and red) ex-
citation energies taking the strength of the pairing potential
in Eq. (1) to be � = 10−2D, where D 	 ωD is the energy
cutoff or bandwidth of the model. As the exchange coupling
grows, the level-crossing quantum phase transition takes place
at J/� 	 40. At J = 0, the ground state is a doublet with
Sz

T = ±1/2, while the lowest-in-energy excited state with
Sz

T = 0 and the energy approaching � − h is a singlet. The
energy of the singlet state as J → 0 can be qualitatively ex-
plained using the single-site approximation of this system (see
Refs. [61,62]).

In the weak-coupling regime, the degeneracy of the ground
state is lifted, giving rise to the splitting of the doublet states.
For small values of J , the splitting is linear in both J and
h (see inset of Fig. 3). This behavior is well reproduced by
the leading-order perturbation theory, as discussed in Sec. V.
Within perturbation theory, the splitting is given by δE0/h =
Jρ0 + (Jρ0)2c + O(J3), where c depends logarithmically on
the bandwidth D and the gap �. The first-order term stems
solely from the RKKY interaction and the second-order term
is due to the triplet correlations built in the spin-split super-
conductor. Qualitatively, all of these features at strong and
weak coupling are also captured by the minimal two-site
model introduced in Sec. IV.

Figure 2(b) shows the evolution of the spectral weight of
the YSR peaks in the spectral function. Notice that in the
weak-coupling regime for h �= 0, the absolute ground state
has total spin Sz

T = − 1
2 [see Fig. 2(a)]. Since a tunneling

electron (hole) can only couple states of the opposite fermion

(a)

(b)

FIG. 2. (a) Energies of the low-lying states of the Hamiltonian,
given by Eq. (1), as a function of exchange coupling J in the pres-
ence of exchange field, h = 0.3�. The black line corresponds to the
subgap singlet state extracted from the position of YSR peaks in the
spectral functions in weak coupling and the NRG spectrums in strong
coupling. The blue and red lines are the doublet states split by the
exchange field. Their energies are obtained from the NRG spectrum
in the weak-coupling limit and from the spectral functions in the
strong-coupling regime. In the weak-coupling limit, the singlet states
merge into the shifted continuum at � − h, which can be understood
using the single-site model [61]. (b) Spectral weights of the YSR
excitations as a function of exchange coupling. The blue and red
lines are the spin-resolved spectral weights of the spin-up and -down
components at the exchange field, h = 0.3�.

parity, in the weak-coupling regime at zero temperature,
the YSR excitation is only due to the transition from the
spin-down even-parity ground state to the singlet state. On the
other hand, in the strong-coupling regime, the ground state is
the odd-parity singlet, and therefore the YSR corresponds to
excitations to the two low-lying states of even-parity states,
which are split by the exchange field h. As a consequence,
while the spin-down spectral weight (red line) is continuous
across the transition, the spin-up spectral weight (blue line) is
nonzero only in the strong-coupling regime. In all cases, it is
also worth pointing out, as already noticed in Ref. [61], that
the YSR states exhibit a robust spin polarization.

IV. TWO-SITE MODEL

NRG provides a quantitatively accurate description of the
low-lying states and single-particle spectrum of the model in
Eq. (1). However, it does not shed much light on the physical
origin of various spectral features. In this section, we show
that some understanding of the latter can be obtained by
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(a)

(b)

FIG. 3. Ratio of the energy splitting of the two low-lying even-
parity states δE0 to the strength exchange field h as a function of
Kondo coupling J obtained via (a) NRG and (b) the minimal two-
site model of Eq. (5). In the weak-coupling regime, the splitting is
well reproduced by a linear + quadratic law derived using pertur-
bation theory (red curves). For the NRG, the nonuniversal constant
c 	 4.43 is obtained by curve fitting. Parameters used for the NRG
calculations: D = 1, � = 0.01D, h = 0.3�. Parameters used for the
two-site model: � = 0.2, t = 0.6�, h = 0.3�.

studying a minimal model consisting of a magnetic impurity
coupled to two superconducting sites. Previously, Ref. [61]
modeled a spin- 1

2 magnetic impurity coupled to the FMI/SC
heterostructure using a single-site model. In this model, the
spin-split superconductor is described by a single fermion site
coupled to a spin- 1

2 impurity. Although this model correctly
predicts that the YSR states are spin polarized, it cannot de-
scribe the variation of the spin splitting with J that is observed
in the NRG calculations [see Fig. 2(a)]. In the following, we
show that a minimal model capturing this and other effects
obtained using NRG necessarily requires two sites to describe
the spin-split superconductor. In addition, we demonstrate
that the splitting is the consequence of the magnetic RKKY
interaction and the existence of spin-triplet correlations in the
spin-split superconductor [63].

In the strong-coupling regime, the splitting of the lowest-
lying even-parity states approaches twice the exchange
energy, 2h [see Fig. 3(a)]. It may appear as counterin-
tuitive that strongly coupled impurity is sensitive to the
exchange field. However, as shown by the NRG method and
confirmed by the two-site model introduced below, in the
strong-coupling regime, the system exhibits a pair of spin-split
single-particle excitations that corresponds to the YSR peaks
of the spectral function [cf. Figs. 4(c)–4(e)].

A. Description of the model

Without further ado, let us introduce a two-site model
that describes the spin-split superconductor as two sites with
the same s-wave pairing (∝ �) and exchange (∝ h) poten-
tials. Tunneling of the electrons between the two sites with
amplitude t is also allowed. The impurity spin S is cou-
pled via Kondo coupling J to the spin of the electrons on
one of the two superconducting sites described by s0. The

(a) (b)

(c)

(d)

(e)

FIG. 4. (a) Low-energy spectrum of the two-site model [cf. Eq. (5)] labeled by the fermion parity P = ±1 and z component of the total
spin Sz

T . (b), (c) The spectral weights in the strong- and weak-coupling regimes, respectively, of the discrete excitation peaks, i.e., Wσ (ω) =
limε→0

∫ ω+ε

ω−ε
dω′ Aσ (ω′), where Aσ (ω) is the spin-resolved spectral function of the two-site model (see main text for details). (d), (e) Plots of

Aσ (ω) for the full model in the strong- and weak-coupling regimes, respectively. The dashed vertical lines indicate the positions of the threshold
for continuum excitations in the classical model described in Ref. [61]. Red and blue correspond to spin-up and spin-down components of
Aσ={↑,↓}(ω), respectively.
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Hamiltonian reads

H = H0 + HK + HRKKY,

H0 =
∑
i=0,1

[
�(c†

i↑c†
i↓ + H.c.) + h c†

iσ

(
2sz

σσ ′
)
ciσ ′

]
− t (c†

0σ c1σ + H.c.),

HK = J

2
(S+s−

0 + H.c.) + JSzsz
0,

HRKKY = JhαSz. (5)

In the above expression, we have explicitly written the spin-
flip and Ising parts of the exchange interaction by introducing
S± = Sx ± iSy, s±

0 = sx
0 ± isy

0, etc. Note that in the two-site
model, the spectrum is discrete and therefore there is no Pauli
paramagnetism. Thus, we have replaced the density of states
at the Fermi energy, ρ0, with a phenomenological constant
α, that parametrizes the strength of the RKKY interaction
between the impurity and the FMI.

The Hilbert space of this model has a relatively small
dimension (= 32) and thus full exact diagonalization of the
Hamiltonian (5) is possible. Moreover, the numerical calcula-
tions are aided by the existence of a few conserved quantities.
The fermion-parity operator takes the form P = (−1)

∑
iσ niσ ,

where niσ = c†
iσ ciσ (i = 0, 1). The system is also invariant

under a global spin rotation around the z axis and, therefore,
along with P, Sz

T = Sz + ∑
i=0,1 c†

iσ sz
σσ ′ciσ ′ is also conserved.

Thus, the eigenstates of the Hamiltonian in Eq. (5) can be
labeled by their fermion parity: even (P = +1) or odd (P =
−1), and the eigenvalue of Sz

T .

B. Exact-diagonalization results

We demonstrate that the two-site model qualitatively re-
produces the key spectral properties found in NRG. We
obtain the spectrum of the two-site model by diagonalizing
the Hamiltonian in Eq. (5). Figure 4(a) shows the low-
energy spectrum of the two-site model as a function of the
exchange coupling J . When J = 0, the system is in the even-
parity twofold (doublet) degenerate ground state with the
eigenvalue of Sz

T (Sz) equal to ±1/2 and the ground-state
energy is E0 = −2

√
�2 + t2. In the basis of bonding and

antibonding creation (annihilation) operators, c(†)
±σ = (c(†)

0σ ±
c(†)

1σ )/
√

2, the doublet is |GSm〉 = |BCS〉+|BCS〉−|m = ± 1
2 〉,

where |BCS〉± = (u±|0〉± + v±|2〉±)/
√

2 and c±σ |0〉± = 0,
|2〉± = c†

±↓c†
±↑|0〉. The expressions of u± and v± in terms of

�, t, h can be found in Appendix D.
The model has two different ground states, depending on

the strength of the exchange coupling J . In the weak-coupling
regime (J < Jcr), the impurity spin is weakly entangled
with the superconducting sites and remains unscreened. The
ground state is adiabatically connected with one of the states
of the J = 0 doublet, which is a product of even-parity states.
As J increases, the Kondo singlet, which roughly corresponds
to an entangled state of the impurity spin and a quasipar-
ticle localized in the two sites, is gradually pushed down
in energy [see Fig. 4(a)]. Eventually, at J = Jcr 	 1.5�, the
system undergoes a level-crossing phase transition, changing
the fermion parity of the ground state from even to odd, such

that the singlet state eventually becomes the ground state in
the strong-coupling limit (J > Jcr).

Notice that for h = 0, time-reversal symmetry is restored
and the (Kramers) degeneracy of the ground state in the weak-
coupling limit is guaranteed. In this regime, provided there
is no bias in the preparation of the system, the ground state
is described by a mixed state with equal (classical) probabil-
ity for the two states of the doublet [61]. However, setting
h �= 0 breaks time-reversal symmetry and lifts the degener-
acy of the even-parity ground-state doublet. Thus, as found
in the NRG results for the full model (1), in the two-site
model for J < Jcr, we also observe that the degeneracy of
the h = 0 doublet is lifted and a finite splitting between the
two lowest-lying even-parity states (denoted δE0 from here
on) appears. Notice that δE0 �= 0, even for small J , and it
increases with J up to a maximum �E0 = 2h, that is, twice
the Zeeman energy caused by the exchange field. Therefore,
the behavior of δE0 qualitatively reproduces the NRG re-
sults (compare the two panels of Fig. 3). Furthermore, in the
two-site model, as shown below analytically, the splitting is
linear in J at vanishing hopping amplitude (i.e., for t = 0). In
this limit, the two-site model reduces to a single-site model
studied in Ref. [61] in an RKKY-like (magnetic) field ∝ J .
This model fails to reproduce the spectral features observed
in NRG.

The two-site model offers a rather simple explanation for
the saturation of the splitting δE0 to twice the Zeeman en-
ergy at large Kondo coupling, i.e., δE0(J → +∞) → 2h (cf.
Fig. 3). This saturation is observed both in NRG and in the
two-site model and can be understood as follows: For large
J , the impurity captures a quasiparticle and localizes it in
the first site of the chain (i.e., the i = 0 site). The captured
quasiparticle and the impurity form a tightly bound Kondo
singlet with binding energy ∼ − 3

4 J for large J � t,�, h. In
this limit, the RKKY interaction acting on the impurity spin
alone has zero expectation value, and hopping from the site
i = 1 into the site i = 0, and vice versa, is also suppressed.
Thus, the single-particle excitations of the system must “live”
on the site(s) with i > 0. If we neglect the hopping amplitude
t in this large-J limit, the lowest quasiparticle excitations at
energy � are spin split due to the exchange field by an amount
equal to 2h. Notice that since the (Kondo) singlet ground
state has odd fermion parity, the lowest-energy quasiparticle
excitations over this ground state have even parity, and there-
fore 2h is the smallest spin splitting of even-parity states for
J → +∞.

V. PERTURBATION THEORY

In what follows, we use perturbation theory to analyti-
cally obtain the splitting δE0 in the weak-coupling regime
where J � �, h, t . In this regime, there are two contributions
responsible for the splitting of the lowest-lying even-parity
states: the effective RKKY interaction induced by the FMI,
which is of the order of O(J ) and the different kind of triplet
correlations built into the spin-split superconductor, which
appears at O(J2),

δE0 = δE (1)
0 + δE (2)

0 , (6)
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where the term linear in both J and h is given by

δE (1)
0 = 〈

GSm=+ 1
2

∣∣HRKKY

∣∣GSm=+ 1
2

〉
(7)

− 〈
GSm=− 1

2

∣∣HRKKY

∣∣GSm=− 1
2

〉
. (8)

For the calculation of the second-order contribution, the start-
ing point is the following expression of the energy splitting
of the lowest-lying even-parity states, whose derivation is
discussed in Appendix A:

δE (2)
0 = J2

4
(χ+− − χ−+), (9)

where

χab = −
∫ +∞

0
dτ Cab(τ ) (10)

=
∑

E

〈BCS|sa|E〉〈E |sb|BCS〉
E − E0

, (11)

Cab(τ ) = −〈BCS|T [sa(τ )sb(0)]|BCS〉. (12)

Equation (11) is most useful when dealing with the finite-size
system described by Eq. (5). The expression in terms of the
time-ordered spin correlation functions Cab(τ ) will be useful
for carrying out the perturbative calculation in the case of an
extended (infinite) superconductor. In Eq. (11), |BCS〉 and |E〉
are, respectively, the ground-state and excited states of the
superconductor Hamiltonian H0 [cf. Eqs. (1) and (5)].

A. Two-site model

Let us first consider the two-site model. The first-order-in-
J correction to the spitting of the ground-state energy comes
from the RKKY term HRKKY in the Hamiltonian (5) and it
reads

δE (1)
0 = Jhα. (13)

In order to compute χ+− and χ−+, we use

s±
0 |BCS〉 = ∓λ|t±1〉, (14)

where λ is a function of t,�, h (for details, see Appendix D),
|BCS〉 = |BCS〉+|BCS〉−, and we have introduced the spin-
triplet quasiparticle states:

|t+1〉 = |↑ ↑〉 = γ
†
+,↑γ

†
−,↑|BCS〉, (15)

|t0〉 = (|↑ ↓〉 + |↓ ↑〉)√
2

= 1√
2

[γ †
+,↑γ

†
−↓ + γ

†
−,↑γ

†
+,↓]|BCS〉, (16)

|t−1〉 = |↓ ↓〉 = γ
†
+,↓γ

†
−,↓|BCS〉, (17)

where γ±,σ (γ †
±,σ ) destroys (creates) a quasiparticle in the

bonding (–) and antibonding (+) orbitals with spin σ .
The triplet states have eigenenergies E = {Et+1 , Et0 , Et−1} =
{2h, 0,−2h}, respectively. The ground-state energy is E0 =
−2

√
�2 + t2.

To the lowest order in perturbation theory, the doublet
|GSm〉 = |BCS〉|m = ± 1

2 〉 is coupled to spin-triplet quasipar-
ticle excitations via the Kondo exchange HK . Since the energy

of |t±1〉 is split by the exchange field, this results in the fol-
lowing splitting of the lowest-energy even-parity states:

δE (2)
0 = J2t2h

16(t2 + �2)(�2 − h2 + t2)
, (18)

	 J2t2h

16(t2 + �2)2
+ O(h3), (19)

to the leading order in J and h. Notice that the splitting in
Eq. (18) vanishes either in the absence of exchange field h =
0 or for t = 0, which is the limit of a single-site model, in
agreement with the previous findings in Ref. [61].

To summarize, in the weak-coupling limit, the two-site
model shows the splitting of the two lowest-lying even-parity
states. In this model, the contribution of O(J2) to the splitting
originates from the coupling of the doublet states at J = 0 to
the spin-split triplet states containing two quasiparticles. This
result also clarifies why the single-site model of Ref. [61] does
not describe this second-order contribution to the splitting
δE (2)

0 . Indeed, the minimum number of independent orbitals
required to construct a spin-triplet with two quasiparticles is
two (the bonding and antibonding orbitals ± for the two-site
model).

B. Extended superconductor

In the case of the extended superconductor, the first-order
contribution to the splitting is determined by the expectation
value of HRKKY according to Eq. (7). This yields

δE (1)
0 = Jhρ0. (20)

Concerning the contribution of O(J2), starting from Eq. (9),
this contribution can be written in terms of singlet and
triplet components of the local single-particle Green’s func-
tion G0(iω) as follows:

δE (2)
0 = J2

4

∫
dωdω′

2π

Tr[gs(iω)gt (iω − iω′)]
iω

, (21)

where the 2 × 2 Nambu matrices gs(iω) and gt (iω) are the sin-
glet and triplet components of G0(iω) [see Eqs. (B4) and (B5)
in Appendix B for explicit expressions]. Since the triplet com-
ponent gt (iω) → 0 for h → 0, the above result clearly shows
that δE (2)

0 vanishes in the absence of the triplet correlations.
Interestingly, in the opposite strong-coupling regime, where
the above perturbative treatment does not apply, the triplet
correlations encoded in gt are also responsible for the splitting
of the quasiparticle bands, which results in δE0 → 2h. This
intuition is confirmed by the NRG analysis for the extended
model and the exact-diagonalization results for the two-site
model shown in Fig. 3: The energies of the two lowest-lying
even-parity states evolve smoothly from the weak- to the
strong-coupling regime. This is also important from the exper-
imental point of view because, in the tunneling spectrum, the
splitting can only be observed in the strong-coupling regime;
see center and right panels of Fig. 4.

The expression in Eq. (21) can be evaluated explicitly and
in the wide band limit, with logarithmic accuracy, it takes the
form

δE (2)
0 	 (Jρ0)2h ln

(
D

�

)
, (22)
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FIG. 5. (a) Normal and (b) anomalous Feynman diagrams con-
tributing in second-order perturbation theory to the energy splitting
of the two lowest-lying eigenstates with even fermion parity. The
energy splitting is the difference between the m = + 1

2 and m =
− 1

2 diagrams. The dashed lines describe the impurity state and the
continuous lines correspond to the superconductor. The normal con-
tribution (a) is logarithmically divergent. See Appendices A and C
for details.

where D (∼ωD in conventional superconductors) is the band-
width of the superconductor described by H0 term in Eq. (1)
(see Appendix C for details). Thus, combining the two contri-
butions, we find the ratio of the splitting to the exchange field
h to be

δE0/h = Jρ0 + (Jρ0)2 ln

(
D

�

)
+ O(J3). (23)

Figure 2 shows that this behavior reproduces the splitting in
the regime of small J observed in the NRG results. How-
ever, the prefactor in the second-order term predicted by the
above perturbative treatment is different because the NRG
implements a different (lattice) regularization of the impurity
Hamiltonian. In other words, the presence of a logarithm is a
clear indication that the perturbative expression for δE (2)

0 /h is
not universal in the weak-coupling limit. In the case of the
two-site model, the lack of universality of the perturbative
result is manifested in that δE (2)

0 /h ∝ t , where t ∼ D is a
hopping amplitude between the two superconducting sites.
Indeed, closer examination reveals that the logarithmic cor-
rection in Eqs. (22) and (23) arises from the noncommutative
spin-flip scattering processes that appear in the perturbation
theory of the Kondo Hamiltonian and, specifically, from the
normal contribution whose Feynman diagram is depicted in
Fig. 5(a). Indeed, using renormalized perturbation theory, we
could have anticipated the appearance of the logarithm. Let
us begin by assuming ρ0J → 0, so that the energy splitting is
well approximated by the first-order result δE0 = ρ0Jh. Un-
der renormalization, the exchange coupling constant g(D) =
ρ0J (D) flows according to [64]

D̄
dg(D̄)

dD̄
= −g2(D̄). (24)

This equation can be integrated from the scale of the initial
bandwidth D ∼ ωD down to the scale of the gap �, where the
renormalization stops. This yields

ρ0J (�) = 1

[ρ0J]−1 − ln(D/�)

= ρ0J + (ρ0J )2 ln
D

�
+ · · · , (25)

where J = J (D) is the bare Kondo coupling at the scale of
D ∼ ωD. Provided the coupling remains small, i.e., ρ0J (�) �
1, it is still possible to approximate δE0/h by the first-order
perturbative result, i.e., δE0/h = ρ0J (�). Rewriting ρ0J (�)
in terms of the bare coupling ρ0J , we find an infinite series
of logarithmic corrections. Furthermore, using this approach,
we can also remove the unpleasant dependence of δE0 on the
nonmeasurable quantities D and J by replacing them with
a much more physical energy scale, namely, the scale at
which the renormalized coupling g(D̄) = ρ0J (D̄) diverges and
defines the Kondo temperature, TK = D exp[−1/(ρ0J )] [64].
Inserting TK into Eq. (25), we obtain

ρ0J (�) = 1

ln
(

�
TK

) , (26)

and, therefore, provided TK � � (i.e., the weak-coupling
regime),

δE0/h = ρ0J (�) = 1

ln
(

�
TK

) . (27)

In the opposite limit, the strong-coupling regime where TK �
�, NRG yields δE0/h → 2, independent of TK/�. It is possi-
ble to interpolate between the two regimes by writing the ratio
δE0/h as a single-parameter scaling function of TK/�, i.e.,

δE0 = F

(
TK

�

)
, (28)

where F (x) 	 (− ln x)−1 for x � 1 and F (x) → 2 for x →
+∞. The shape of this scaling function, as obtained when
plotting the NRG data for δE0/h as a function of TK/�, is
shown in Fig. 6.

Finally, let us emphasize that none of these features are
captured by the classical treatment [50–52,61]. Indeed, as we
shall describe below, there are also other features of the NRG
results that are not captured by the classical treatment.

VI. OTHER SPECTRAL FEATURES

Next, we turn our attention to describing the effect of the
exchange field of the FMI on the quasiparticle continuum
which may be observed in the tunneling spectra. Indeed, NRG
shows that other interesting features concern the continuum
threshold of single-particle excitations; see Figs. 4(d) and
4(e). To understand the origin of these features, it is worth
recalling the expression of the spectral function at positive
energies and zero temperature,

Aσ (ε > 0) =
∑

α

|〈�α|O†
σ |�0〉|2δ(ε + Eα − E0), (29)
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FIG. 6. Ratio of the energy splitting of the two lowest even-parity
states δE0 to the exchange field of the ferromagnetic insulator h vs
the ratio of the Kondo temperature TK to the superconducting gap
�. The Kondo temperature is extracted from the half width at half
maximum [65] of the Kondo peak computed from NRG for a spin- 1

2
impurity with Kondo coupling J to a normal metal. For TK/� �
1, the splitting behaves as 1/ ln(�/TK ) and saturates to 2 for
TK/� � 1.

where |�0〉 is the ground state and |�α〉 the excited state of
the system. We have introduced the operators O†

σ = [HK , c†
0σ ],

where c†
0σ = ∑

k c†
kσ

/
√

	 creates a fermion with spin σ at the
position of the impurity. Evaluating the expressions for O†

σ

explicitly, we find

O†
↑ = J

2
(S+c†

0,↓ + Szc†
0↑), (30)

O†
↓ = J

2
(S−c†

0,↑ − Szc†
0↓). (31)

When the spin is treated as a classical vector, i.e.,
Refs. [50–52], the terms proportional to S± are neglected and
the above operators are approximated as Oσ ≈ ±Szc0σ (where
+ is for σ =↑ and – for σ =↓) [66]. Thus, Aσ (ε) reduces to
the imaginary part of the Fourier transform of the local (re-
tarded) Green’s function, GR

σ (t ) = −iθ (t )〈{c0σ (t ), c†
0σ (0)}〉.

The calculation of the spectral function for a magnetic
impurity coupled to a spin-split superconductor in the clas-
sical approximation was reported in Ref. [61]. It yields
spin-dependent threshold energies, εBσ = � ± h, for the con-
tinuum of single-particle excitations, which does not differ
from the one obtained from the unperturbed Green’s functions
of the superconductor [cf. (B5) in Appendix B], independently
of whether the impurity is in the strong- or weak-coupling
regime.

On the other hand, NRG yields a very different picture;
see Figs. 4(d) and 4(e). In the strong-coupling limit, the value
of the threshold energy is εBσ = � ± h and agrees with the
result obtained from the classical approximation. However,
in the weak-coupling limit, where the classical approxima-
tion is expected to be more accurate, NRG shows that εB↑
undergoes a downward shift from its “classical” value � + h
and becomes almost equal to εB↓ 	 � − h [see Fig. 4(d)]. To
better understand the origin of this shift in εB↑, let us first
recall that for h > 0, the ground state in the weak-coupling
regime is an eigenstate of Sz

T with eigenvalue m = − 1
2 , i.e.,

Sz
T |�0〉 = (− 1

2 )|�0〉. As pointed out above, this state is, to a
large extent, well approximated by the product state |BCS〉| −
1
2 〉. Mathematically, this is expressed by the following
equation:

|�0〉 = Z1/2|BCS〉∣∣ − 1
2

〉 + · · · , (32)

where Z � 1 and the ellipsis stays for other components of the
state containing, e.g., quasiparticle triplet excitations similar
to those discussed in Sec. V A for the two-site model. Using
this insight, we notice that for h > 0, the action of the opera-
tors O†

σ on the ground state produces quite different results,

O†
↑|�0〉 = J

2

(
Z1/2c†

0↓|BCS〉∣∣ + 1
2

〉
− 1

2
Z1/2c†

0↑|BCS〉∣∣ − 1
2

〉) + · · · , (33)

O†
↓|�0〉 = J

2
Z1/2c†

0↓|BCS〉∣∣ − 1
2

〉 + · · · . (34)

Equation (33) shows that when an electron with spin an-
tialigned with the ground-state projection of Sz

T tunnels, it
can flip in the impurity spin. However, no such spin flip is
produced when the spin is aligned with the Sz

T projection of
the weak-coupling ground state. The spin flip has important
consequences for the single-particle excitations created in the
superconductor by c0↓: By flipping the spin of the impurity
from | − 1

2 〉 to | + 1
2 〉, the Ising term of HK , that is, JSzsz

0,
changes from repulsive to attractive for single-particle exci-
tations with σ =↓. In other words, some of the excitations
created by S+c†

0↓ live in a sector of the Hilbert space where the
Ising term has the opposite sign to those excitations created
by Szc†

0↑. The attractive character of the Ising term induces
an “excitoniclike” [67] shift of the excitation energies and
therefore the threshold energy for the continuum εB↑ becomes
lower than the classical value � + h. Let us point out that
for h = 0, no such shift occurs because the ground state is a
degenerate doublet and the spectral function must be averaged
over the two states of the doublet [61]. Thus, the spin-flip
contribution is equal to zero by time-reversal symmetry. Sim-
ilarly, for h �= 0 in the strong-coupling regime, the ground
state is a singlet and therefore contains components of both
spin orientations of the impurity, which are strongly entangled
with a cloud of quasiparticle excitations in the superconductor.
Since the spin projection of the impurity rapidly fluctuates in
a singlet, the Ising term of HK should not affect the energy of
single-particle excitations.

Finally, let us point out that the effects described above are
also qualitatively captured by the two-site model introduced
in Sec. IV. For this model, we can also compute the spectral
function using the same operators Oσ as in the NRG case.
For J < Jcr, we find that the spin-down component of the
continuum part of the spectral function shifts by −h − δh,
while the spin-up component shifts by a different amount of
−h. Figures 4(b) and 4(c) show this different behavior of the
spin-up and spin-down components of the spectral function in
the weak- and strong-coupling regimes of J .
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VII. CONCLUSIONS

We have investigated a system of a single mag-
netic impurity on the surface of a ferromagnetic insulator
(FMI)/superconductor (SC) heterostructure, where the SC has
a thickness smaller than the coherence length. Under such
conditions, the proximity effect of the FMI on the SC and im-
purity is twofold: First, it splits the energy of the Bogoliubov
quasiparticle states without destroying the superconducting
state. Second, it leads to a spin polarization of the surface of
the superconductor that contains the impurity, which results in
an RKKY-like interaction between the latter and the FMI. We
have studied this system by applying the numerical renormal-
ization group method (NRG).

From the NRG calculations, we obtained the ground-state
and low-energy excitations of the system as a function of
the (Kondo) exchange of the impurity. The latter drives a
quantum phase transition from a unique even-parity ground
state to a (unique) singlet ground state. Our main result
is the energy splitting of the even-parity doublet with to-
tal spin ± 1

2 induced by the magnetic proximity effect.
The splitting already occurs in the regime of weak ex-
change coupling J and grows smoothly with J saturating
in the strong-coupling limit to twice the value of the ex-
change field with the FMI. In the strong-coupling regime,
the splitting is observable in the spectra acquired using the
scanning tunneling microscope as the splitting of the YSR
excitations.

In the limit of weak Kondo coupling J , we have computed
the splitting using perturbation theory. The splitting contains
a first-order correction in J from the RKKY-like interac-
tion and a second-order correction from the noncommutative
Kondo-like scattering with the host electrons. The second-
order correction has the form of a typical Kondo logarithm,
which is cut off by the superconducting gap �. This result
has also been rederived using scaling, and when combined
with the numerical observation of the saturation at large J , it
allows us to conjecture that the ratio of the splitting to the FMI
exchange field can be written as a single-parameter scaling
function of TK/�, where TK is the Kondo temperature of the
impurity. Additionally, we have also discussed the shift of the
threshold for the continuum of single-particle excitations ob-
served in the spin-resolved spectral function computed using
NRG. The shift occurs in the weak-coupling regime only for
tunneling electrons with the spin opposite to the spin of the
impurity in the ground state and has been qualitatively ex-
plained as an excitoniclike effect. Together with the splitting
of the even-parity ground-state doublet, this effect cannot be
captured by the classical approach of Yu, Shiba, and Rusinov
[50–52] when generalized to the quantum impurity model in
Ref. [61].

For a qualitative understanding of the underlying physics
of this system, we have employed a two-site model, where
the superconductor is represented by two spinful fermion sites
with the impurity spin coupled to one of them. This minimal
model correctly captures the behavior of energy splitting of
the even-parity doublet and provides an intuitive picture in
terms of coupling to triplet excitations to explain the physics
behind it. It also qualitatively explains the shift of the thresh-
old referred to above.

The splitting is proportional to the exchange field of the
FMI and it can be quite sizable for a sufficiently large Kondo
coupling. It therefore allows using the FMI to control the spin
of the impurity and its excitations in the absence of an external
magnetic field. This happens even though the FMI is located
rather far (typically tens of nm) from the impurity. It was
already pointed out in Ref. [61] that the exchange field of
the FMI leads to robust spin polarization of the YSR states.
This effect is further enhanced by the magnetic and triplet
correlations discussed in this work. Besides the STM in the
strong-coupling regime, where the splitting of the doublet
is observable as the splitting of the YSR peaks for the two
spin orientations, the splitting may also be observable by
measuring the microwave absorption of a dilute ensemble of
impurities on the surface of the FMI/SC.
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APPENDIX A: SPIN SPLITTING
IN PERTURBATION THEORY

The Hamiltonian describing a magnetic impurity in the
spin-split superconductor has been introduced in Sec. II. In
this Appendix, to make the notation more compact, we shall
rewrite it as follows:

H = H0 + HI , (A1)

HI = JS · s0 + Jρ0hSz, (A2)

where H0 describes the clean spin-split superconductor [cf.
Eq. (2)] and HI = HK + HRKKY describes all the interactions
of the impurity with its host; s0 is the spin-density operator
of the superconductor at the location of the impurity; S is the
impurity spin operator.

Let us compute the free energy in perturbation theory. We
start with the following perturbation theory result for the shift
of the grand-canonical free energy at absolute temperature T ,

�F m = F m − F0

= −T ln

{
〈m|

〈
T exp

[
−

∫ 1/T

0
dτ HI (τ )

]〉
|m〉

}

= T
∫ 1/T

0
dτ1 〈m|〈HI (τ1)〉|m〉
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− T

2

∫ 1/T

0
dτ1dτ2 〈m|〈T [HI (τ1)HK (τ2)]〉|m〉

+ O(J3). (A3)

In the above expression, 〈·〉 stands for the average over the
canonical ensemble of the eigenstates of the superconductor
Hamiltonian H0 and |m = ± 1

2 〉 are the eigenstates of de-
coupled magnetic impurity with Sz = ± 1

2 . In this basis, the
first-order term vanishes because 〈s0〉 = 0. Note that we do
not allow the state of the impurity to fluctuate thermally be-
cause we are interested in computing the ground-state energy
difference between the m = + 1

2 and m = − 1
2 configurations.

Since the unperturbed ground state is the product state of the
BCS wave function and a single impurity spin, the first-order
contribution of HK vanishes. The first-order term is simply
given by the RKKY contribution,

�F (1,m) = Jρ0hm, (A4)

that leads to the splitting in energy,

�E (1)
0 = Jρ0h. (A5)

Introducing Eq. (A2), we obtain the second-order contribu-
tion,

�F (2,m) = − J2T

2

∫ 1/T

0
dτ1dτ2〈m|T [Sa(τ1)Sb(τ2)]|m〉

× 〈
T
{[

ρ0hδa,z + sa
0(τ1)

][
ρ0hδb,z + sb

0(τ2)
]}〉

+ O(J3). (A6)

Next, we compute the impurity-spin correlation function. As-
suming S to be a spin- 1

2 operator, we have

〈m|T [Sa(τ1)Sb(τ2)]|m〉
= θ (τ1 − τ2)〈m|SaSb|m〉

+ θ (τ2 − τ1)〈m|SbSa|m〉

= 1

4
δab + i

2
εabc〈m|Sc|m〉 × sgn(τ1 − τ2),

where we used the Pauli-matrix identity SaSb = 1
4δabI +

i
2εabcSc. Note that 〈m|Sc|m〉 = δz,cm because Sz is the only
diagonal spin operator in the basis |m〉. Hence, since, we
are interested only in the difference between �F (2,m=+ 1

2 and
�F (2,m=− 1

2 ), the splitting of the free energy is given by

�F (2)
0 = �F (2,m=+ 1

2 ) − �F (2,m=− 1
2 )

	 iJ2T

4

∫ 1/T

0
dτ1dτ2 Cz(τ1 − τ2)sgn(τ1 − τ2). (A7)

In the last line, we have introduced the correlation function

Cz(τ ) = εab,zCab(τ1 − τ2), (A8)

Cab(τ1 − τ2) = −〈
T
[
sa

0(τ1)sb
0(τ2)

]〉
. (A9)

Next, let us introduce the Fourier transform of the above spin
correlation function,

Cab(τ1 − τ2) = T
∑
ωn

e−iωn (τ1−τ2 )Cab(iωn), (A10)

which yields

�F (2)
0 = J2T

2

∑
ωn

Cz(iωn)

ωn
. (A11)

In the last line, we have used that (ωn = 2πnT )

∫ 1/T

0
dτ1dτ2 sgn(τ1 − τ2)e−iωn (τ1−τ2 ) = − 2i

T ωn
. (A12)

In addition, using S± = Sx ± iSy, we have

Cz(ωn) = i

2
[C+−(iωn) − C−+(ωn)], (A13)

where we have used that C++(ωn) = C−−(ωn) = 0 because of
conservation of the total spin z projection, i.e., Sz

T . Therefore,

�F (2)
0 = iJ2T

4

∑
ωn

C+−
0 (iωn) − C−+

0 (iωn)

ωn
+ O(J3). (A14)

Taking the T → 0 limit, the above sum becomes an integral,
which equals the ground energy splitting,

δE (2)
0 = −J2

4

∫
dω

2π

[C+−(iω) − C−+(iω)

iω

]
+ O(J3).

(A15)

Finally, recalling that at T = 0,

∫ +∞

0
dτ Cab(τ ) =

∫
dω

2π

Cab(ω)

iω
, (A16)

we arrive at

δE (2)
0 = −J2

4

∫ +∞

0
dτ [C+−(τ ) − C−+(τ )] + O(J3). (A17)

Indeed, using the spectral representation of the spin correla-
tion functions Cab(τ ) at T = 0, i.e.,

χab = −
∫ +∞

0
dτ Cab(τ )

=
∫ +∞

0
dτ

〈
T
[
sa

0(τ )sb
0(0)

]〉

=
∑

E

〈BCS|sa
0|E〉〈E |sb

0|BCS〉
E − E0

, (A18)

we can rewrite Eq. (A17) as the difference,

�E (2)
0 = J2

4
[χ+− − χ−+]. (A19)

Indeed, a quicker way to arrive at this expression is
to start from the second-order perturbation theory formula
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at T = 0,

�E (2)
m=1/2 =

∑
E ,n=± 1

2

|〈n|〈E |HK |BCS〉|m = +1/2|2
E0 − E

= −J2
∑

E

⎡
⎢⎣1

4

〈BCS|s−|E〉〈E |s+|BCS〉
E − E0

∑
n=± 1

2

〈
m = +1

2

∣∣∣∣S+|n〉〈n|S−
∣∣∣∣m = +1

2

〉⎤⎥⎦

− J2
∑

E

⎡
⎢⎣ 〈BCS|sz|E〉〈E |sz|BCS〉

E − E0

∑
n=± 1

2

〈
m = +1

2

∣∣∣∣Szn〉〈n|Sz

∣∣∣∣m = +1

2

〉⎤⎥⎦ (A20)

= −J2
∑

E

[
1

4

〈BCS|s−|E〉〈E |s+|BCS〉
E − E0

〈
m = +1

2

∣∣∣∣S+S−
∣∣∣∣m = +1

2

〉]

− J2
∑

E

[ 〈BCS|sz|E〉〈E |sz|BCS〉
E − E0

〈
m = +1

2

∣∣∣∣(Sz )2

∣∣∣∣m = +1

2

〉]
. (A21)

The last term involving (Sz )2 is the same for the other ground state of the doublet with m = − 1
2 and does not contribute to the

splitting. Therefore,

�E (2)
0 = −J2

4

∑
E

[ 〈BCS|s−|E〉〈E |s+|BCS〉
E − E0

〈
m = +1

2

∣∣∣∣S+S−
∣∣∣∣m = +1

2

〉]

+ J2

4

∑
E

[ 〈BCS|s+|E〉〈E |s−|BCS〉
E − E0

〈
m = −1

2

∣∣∣∣S−S+
∣∣∣∣m = −1

2

〉]
(A22)

= J2

4
(χ+− − χ−+), (A23)

where we have used that 〈m = − 1
2 |S−S+|m = − 1

2 〉 = 1, etc.

APPENDIX B: DEPENDENCE
ON TRIPLET CORRELATIONS

In this Appendix, we evaluate the energy splitting as given
by Eq. (A15) by computing the correlation functions C+−(iω)
and C−+(iω). To this end, we recall that in terms of the (four-
component) Nambu spinor,

�0 =

⎛
⎜⎜⎜⎜⎝

c0↑
c0↓

−c†
0↓

c†
0↑

⎞
⎟⎟⎟⎟⎠ =

(
C0

C†
0 iσ 2

)
, (B1)

the local spin operator reads s0 = 1
2�

†
0 sτ 0�0. Thus, using this

notation, we can write the correlation functions of interest as
follows:

Cab(τ ) = −〈T [sa(τ )sb(0)]〉
= 1

2 Tr[G0(−τ )saτ0G0(τ )sbτ 0]. (B2)

To obtain the expression in the last line, we have em-
ployed Wick’s theorem and rewritten Cab(τ ) in terms
of the fermion local Green’s function G0(τ ) (see fur-
ther below for the explicit expression of the latter).
Next, upon performing the Fourier transform at T = 0,

we arrive at

Cab(ω) =
∫

dτ eiωτCab(τ )

= 1

2

∫
dω′

2π
Tr[G0(iω′)saτ0G0(iω − iω′)sbτ 0]. (B3)

In the last line, we have relabeled ω1 as ω′.
It is convenient to write the local Green’s function as

follows:

G0(iω) = g0
s (iω)s0 + g0

t (iω)sz,

g0
s (iω) = 1

2 [G0
+(iω) + G0

−(iω)], (B4)

g0
t (iω) = [G0

+(iω) − G0
−(iω)],

where (in the wide band limit)

G0
±(iω) = −πρ0

(iω ∓ h)τ 0 + �τ x√
�2 − (iω ∓ h)2

. (B5)

Hence,

Cab(iω) = 1
2 {Tr[(gs � gs − gt � gt )(iω) ⊗ sasb]

+ Tr[(gt � gs − gs � gt )(iω) ⊗ szsasb]}. (B6)

In the above expression, we have used the notation

( f � g)(iω) =
∫

dω′

2π
f (iω′)g(iω − iω′) (B7)

033022-12



PROBING MAGNETIC AND TRIPLET CORRELATIONS IN … PHYSICAL REVIEW RESEARCH 6, 033022 (2024)

for the convolution of two functions f (iω) and g(iω) of the
Matsubara frequency iω; ⊗ stands for the Kronecker product
of the matrices in the (particle-hole) Nambu and spin indices.
The energy shift is determined by the difference,

C+−(iω) − C−+(iω) = 1
2 Tr(gt � gs − gs � gt )(iω). (B8)

In the last line, we have used that Tr[m ⊗ sz] = 0 and Tr[m ⊗
s0] = 2 Tr (m) for any 2 × 2 matrices in Nambu indices. No-
tice that gs and gt are 2 × 2 matrices in the (particle-hole)
Nambu indices. We have also used that sa, sb ∈ {s+, s−} and
therefore anticommute with sz. Hence,

χ+− − χ−+ = −
∫

dω

2π

C+−(iω) − C−+(iω)

iω

= 1

2

∫
dω

2π

Tr[gs � gt − gt � gs](iω)

iω

=
∫

dω

2π

Tr[gs � gt ](iω)

iω
. (B9)

In the last line, we have used the identity

Tr[ f � g](iω) =
∫

dω′

2π
Tr f (iω′)g(iω − iω′) (B10)

=
∫

dω′′

2π
Tr f (iω′′ + iω)g(iω′′)

=
∫

dω′′

2π
Tr g(iω′′) f (iω′′ + iω)

= Tr[g � f ](−iω). (B11)

Thus, we arrive at the following expression for the energy
splitting to second order in J:

δE0 = Jhρ0h + J2

4
(χ+− − χ−+)

= Jhρ0 + J2

4

∫
dω

2π

Tr[gs � gt ](iω)

iω
. (B12)

As discussed in the main text, this expression vanishes as
h → 0 due to the vanishing (odd-frequency) triplet correla-
tions described by gt ∝ h → 0.

APPENDIX C: LOGARITHMIC DIVERGENCE

In this Appendix, we explicitly show that the expression
for the energy splitting depends logarithmically on the ratio
of the bandwidth to the gap. It turns out that this can be
most conveniently shown by performing the integral over
imaginary time τ using Eq. (A17). Let us recall that s+

0 =
c†

0↑c0↓ and s− = c†
0↓c0↑. For the calculation of the correlation

functions,

C+−(τ ) = −〈T [s+
0 (τ )s−

0 (0)]〉, (C1)

C−+(τ ) = −〈T [s−
0 (τ )s+

0 (0)]〉, (C2)

using Wick’s theorem, we need the local correlation func-
tions for spin-up and -down single-particle excitations, whose
Fourier transform is displayed in Eq. (B5). Computing their
inverse Fourier transforms in imaginary time for T = 0,

we find

G0
ασ

(τ ) = −
〈
T
{(

c0σ (τ )

c†
0,−σ (τ )

)
⊗ [c†

0σ (0) c0,−σ (0)]

}〉

= −πρ0

∫
dω

2π
e−iωτ [(iω − αh)τ 0 + �τ x]√

�2 − (iω − ασ h)2

= −ρ0�e−ασ hτ [sgn(τ )K1(�|τ |)τ 0

+ K0(�|τ |)τ x], (C3)

where α↑ = +1 and α↓ = −1. The last expression in terms of
the Bessel K0 and K1 functions is valid in the wide band limit
where |τ | � τc, with τc ∼ D−1, and D being the bandwidth.
Hence, we obtain and introduce the result of Eq. (C3),

C+−(τ ) = −ρ2
0�2e+2hτ

[
K2

1 (�|τ |) − K2
0 (�|τ |)], (C4)

C−+(τ ) = −ρ2
0�2e−2hτ

[
K2

1 (�|τ |) − K2
0 (�|τ |)]. (C5)

Therefore, for |τ | � τc,

C+−(τ ) − C−+(τ ) = −2ρ2
0�2

[
K2

1 (�|τ |) − K2
0 (�|τ |)]

× sinh(2hτ ), (C6)

and, introducing the cut off τc at short times, we have

χ+− − χ−+ 	 −
∫ +∞

τc

dτ [C+−(τ ) − C−+(τ )]

= 2ρ2
0�2

∫ +∞

τc

dτ
[
K2

1 (�τ ) − K2
0 (�τ )

]
sinh(2hτ ).

(C7)

Note that this expression makes sense only if |h| < �, which
is the requirement for stability of the spin-split supercon-
ductor. Next, we show that this expression is logarithmic
divergent in the limit where τc → 0. To see this, let us recall
that for small argument u = �τ ,

K0(u) = − ln(u/2) − γ + O[u2 ln(u)], (C8)

K1(u) = 1

u
+ O[u ln(u)], (C9)

where γ is Euler’s constant. Thus, we see that the term involv-
ing K2

1 (�τ ) is most singular and behaves as ∼τ−1 as τ → 0,
which means that the above integral

χ+− − χ−+ 	 ρ2
0�2

∫ 1/�

τc

dτ
4h

�2τ
+ regular terms

= 4ρ2
0 h ln

(
D

c�

)
+ regular terms, (C10)

where we have set τc = c/D, where c ∼ 1 is a constant to be
specified below. The (regular) contribution from the anoma-
lous diagram in the limit where h/� � 1 can be expressed in
terms of the integral,∫ +∞

τc�

duK2
0 (u) sinh

(
2h

�
u

)

= 2h

�

∫ +∞

τc�

du uK2
0 (u) + O

(
h2

�2

)
= h

�
+ O

(
h2

�2

)
,

(C11)
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where we have taken the (wide band) limit where τc� ∼
�/D → 0 and used

∫ +∞
0 du uK2

0 (u) = 1
2 .

Thus, for small h, we find that the energy shift takes the
form

δE0 = Jρ0h + (Jρ0)2h

[
ln

(
D

c�

)
− 1

2

]
+ O(J3, h2).

(C12)

We can set the freedom to define the imaginary-time cutoff τc

in terms of D−1 and choose c = e−1/2 in order to absorb the
anomalous contribution into the logarithm, which yields the
following results quoted in the main text:

δE0/h = Jρ0 + (Jρ0)2 ln

(
D

�

)
+ O(J3, h). (C13)

APPENDIX D: PERTURBATION THEORY
FOR THE TWO-SITE MODEL

For J = 0, the ground state of a two-site model can be
obtained by diagonalizing the following two-site quadratic
Hamiltonian:

H0 =
∑
j=0,1

[�(c†
j↑c†

j↓ + H.c.) − h(c†
j↑c j↑ − c†

j↓c j↓)]

− t
∑

σ

(c†
0σ c1σ + H.c.). (D1)

To this end, it is convenient to rewrite the Hamiltonian in the
basis of bonding and antibonding orbitals described by the
operators,

c±,σ = 1√
2

(c0σ ± c1σ ), (D2)

and thus,

H0 =
∑
l=±

�(c†
l↑c†

l↓ + H.c.) − h(c†
l↑cl↑ − c†

l↓cl↓)

− t
∑

σ=↑,↓
(c†

+σ c+σ − c†
−σ c−σ ). (D3)

This Hamiltonian can be diagonalized through the following
Bogoliubov transformation:

γ±↑ = u±c±↑ − v±c†
±↓,

(D4)
γ±↓ = u±c±↓ + v±c†

±↑,

where

u+ = t + √
t2 + �2

�

√
1 +

(
t+√

t2+�2

�

)2
, (D5)

v+ = − 1√
1 +

(
t+√

t2+�2

�

)2
, (D6)

u− = −t + √
t2 + �2

�

√
1 +

(
−t+√

t2+�2

�

)2
, (D7)

v− = − 1√
1 +

(
−t+√

t2+�2

�

)2
. (D8)

The ground state is given by

|GSm〉 = |BCS〉∣∣m = ± 1
2

〉
, (D9)

where |BCS〉 = |BCS〉+|BCS〉−, with |BCS〉± = u±|0〉± −
v±c†

±↓c†
±↑|0〉±. The first-order energy correction is given by

Eq. (13) in Sec. IV. The second-order correction is defined in
Eqs. (9) and (11). Using

s±
0 |BCS〉 = ∓λ|t±1〉, (D10)

where λ = 1
2 (u+v− − v+u−), and |t±1〉 are the spin-triplet

states in Eq. (17), we arrive at Eq. (18) of the main text.

APPENDIX E: DETAILS OF THE NRG CALCULATIONS

Considering only the s-wave scattering channel, the Hamil-
tonian in Eq. (1) can be represented as a (Wilson chain)
one-dimensional lattice using the adaptive scheme introduced
in Ref. [68] for a constant density of states, ρ(ε) = 1/(2D), in
the interval [−D, D]. The discretization parameter is taken to
be � = 2. This procedure yields the following Wilson chain
Hamiltonian:

H =
∑
i�0

ti[ fi,σ f †
i+1,σ + H.c.] + �[ f †

i↑ f †
i↓ + H.c.]

+ h[ f †
↑ (i) f↑(i) − f †

↓ (i) f↓(i)] + JS · s(0) + Jh

2D
Sz,

(E1)

where the hopping decays exponentially as tN ∼ �−N/2. No-
tice that the pairing potential term does not conserve the
particle number. To render the computation more efficient,
we follow the method described in Ref. [43] and apply a
Bogoliubov transformation,

b†
i,↑ = 1√

2
( f †

i,↑ + fi,↓), (E2)

bi,↓ = 1√
2

( f †
i,↑ − fi,↓), (E3)

followed by a particle-hole transformation,

c†
2i,↑ = b†

2i,↑, (E4)

c2i,↓ = b2i,↓, (E5)

c†
2i−1,↑ = b2i−1,↓, (E6)

c2i−1↓ = −b†
2i−1,↑. (E7)

Thus, we arrive at the following model:

H =
∑
i�0

{
ti
∑

σ

(ci,σ c†
i+1,σ + H.c.) + �(−1)iQz

i + 2hsz
i

}

+ JS · s0 + Jh

2D
Sz. (E8)
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To reduce the size of the matrices required to diagonalize, the
NRG is applied using the following conserved U(1) quantities
(Qz, Sz

T ):

Qz =
∑

i

Qz
i =

∑
i

[ni,↑ + ni,↓ − 1], (E9)

Sz
T = Sz +

∑
i

sz(i) = Sz + 1

2

∑
i

[ni,↑ − ni,↓], (E10)

which is suitable for the case with external magnetic fields.
At each iteration, we keep at least 1024 states and discard
the states above the energy scale ω ≈ 10ωN = 10�(1−N )/2. In
the presence of the (superconducting) gap, the NRG iteration
must be truncated at iterations with energy scale ωN � �

[69]. Thus, we stop our NRG computation at iterations with
energy scale ∼10−5�, which is sufficient to accurately obtain
the spectral properties. We set the temperature T � � so
effectively that we can consider our results to be in the zero-
temperature limit. For the Kondo model, the spectral weights,
Wσ (ε), are defined using the T matrices [65]. The spectral
weight reads

Wσ (ε) = − 1

π
Im CR

σ (ε), (E11)

CR
σ (ε) =

∫
dt eiεtCR

σ (t ), (E12)

CR
σ (t ) = −iθ (t )〈{Oσ (t ), O†

σ (0)}〉, (E13)

where Oσ = [ f0σ , HK ] with HK = JS · s0. Note that f0σ is the
operator in the original fermion basis of the superconducting
model. To carry out the computation, we obtain the spectral
weights using the full density matrix scheme described in

Ref. [70] and broaden the discrete data set using a hybrid
kernel. The spectral function Aσ (ω) is thus computed from
the following expression:

Aσ (ω) =
∑

ε

Wσ (ε){�(ε)[�(ε − ε+
gap)lG(ω, ε, a)

+ �(ε+
gap − ε)G(ω, ε, b)]

+ �(−ε)[�(ε−
gap − ε)lG(ω, ε, a)

+ �(ε − ε−
gap)G(ω, ε, b)]}, (E14)

where

lG(ω, ε, a)

= �(ωε)

a|ω|√π
Exp

[
−
(

ln(|ω|) − ln(|ε|)
a

− a

4

)2
]
,

(E15)

G(ω, ε, b) = 1

b
√

π
Exp

[
−
(

ε − ω

b

)2
]
. (E16)

ε+
gap and ε−

gap are the positions of the BCS gap at positive
and negative sides. They are determined from the data of
the spectral weights. Outside the gap, we use a logarithmic
mesh binning ∼500 points per decade with respect to the gap
and a log-Gaussian kernel with a narrow broadening param-
eter, a = 0.2. Inside the gap, we accumulate all the spectral
weights and broaden the weights using a Gaussian kernel with
width b = �/1000. To eliminate the oscillatory artifacts in
the continuum due to discretization, the spectral functions
are z-averaged [71] using 16 z-points spanning the interval
[1/16, 1].
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