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Nonlinearity-induced nonreciprocity is studied in a system comprising two resonators coupled to a one-
dimensional waveguide when the linear system does not exhibit nonreciprocity. The analysis is based on
the Hamiltonian of the coupled system and includes the dissipative coupling between the waveguide and
resonators, along with the input-output relations. We consider a large number of scenarios which can lead
to nonreciprocity. We pay special attention to the case when the linear system does not exhibit nonreciprocal
behavior. In this case, we show how very significant nonreciprocal behavior can result from Kerr nonlinearities.
We find that the bistability of the nonlinear system can aid in achieving large nonreciprocity. Additionally, we
bring out nonreciprocity in the excitation of each resonator, which can be monitored independently. Our results
highlight the profound influence of nonlinearity on nonreciprocal behavior, offering an avenue for controlling
light propagation in integrated photonic circuits. Nonlinearity-induced nonreciprocity would lead to significant
nonreciprocity in quantum fluctuations when our system is treated quantum mechanically.
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I. INTRODUCTION

The nonreciprocal propagation of light is increasingly at-
tracting attention [1–5]. Time-reversal-symmetry breaking is
a necessary condition for nonreciprocity. Historically, this has
been achieved with magneto-optical (Faraday-rotation) crys-
tals that require an external magnetic bias. However, these
crystals are not compatible with semiconductor chip integra-
tion due to their bulkiness and complexity. More generally,
nonreciprocity often naturally arises if the medium is chiral
as is typical in magnetic systems [6]. Recent studies in chiral
quantum optics have shown that strong light confinement in
certain structures can lock the local light polarization along
its direction of travel, yielding direction-dependent emission
characteristics [7]. It is more challenging to produce nonre-
ciprocity in achiral systems. Some standard demonstrations of
nonreciprocity use phase matching conditions in a nonlinear
medium [8,9]. Clearly, the phase matching conditions cannot
be simultaneously satisfied for two opposite directions of
propagation and this would result in nonreciprocity. A recent
demonstration of nonreciprocity is based on the intrinsic non-
linearities of two-level superconducting artificial atoms [10].
Additionally, the use of synthetic electric and magnetic fields,
or a suitable modulation of the refractive index, is attracting
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considerable attention for producing nonreciprocity without
the need for traditional magnetic fields [11–18]. Synthetic
fields are preferable over magnetic fields [19,20] as imple-
mentation of synthetic fields is straightforward. It should be
noted that the nonreciprocal transport has consequences in
several other contexts like heat transport [21–24], one-way
amplification [25], and quantum fluctuations and quantum en-
tanglement [26–30]. One would like to have systems that are
scalable and integrable leading to the theoretical development
and experimental realization of nonreciprocal devices such as
isolators, circulators, and directional amplifiers.

Waveguide-coupled resonator systems are increasingly
capturing the interest of researchers for their pivotal role in
facilitating nonreciprocal light propagation, a critical mech-
anism for unidirectional wave transport, and a foundational
element for future quantum-information networks. These
systems are especially attractive because of the waveguide-
mediated dissipative coupling and the resulting bound states in
continuum which can be instrumental in enhancing nonrecip-
rocal effects [10,25,31–33]. One way to produce nonreciproc-
ity in such systems is to use both dissipative and dispersive
couplings among resonators. Unidirectional propagation was
demonstrated using the combined effect of the dispersive and
dissipative couplings [6]. The question that we address in
this work is how to achieve nonreciprocity if the resonators
are far apart so that dispersive coupling is almost zero. One
way is to use Kerr nonlinearity and unidirectional propaga-
tion of waves inside the resonators as would be the case of
resonators coupled by a waveguide [34–36]. This is differ-
ent from the bidirectional propagation inside the resonator,
which always produces nonreciprocity as demonstrated in
several experiments [37,38]. Generally, Kerr nonlinearity has
been small for most materials and requires higher powers;
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FIG. 1. Two resonators a and b, coupled through a parameter
J , are connected to a one-dimensional waveguide, facilitating the
interactions with incoming and outgoing waves. The separation xab

between resonators leads to a phase shift in wave propagation. �a,b

denotes the external damping rates, and γa,b denotes the intrinsic
damping rates.

however with the development of superconducting circuits,
this is no longer the case as the Kerr nonlinearity is then fairly
large [39].

The paper is organized as follows. In Sec. II we present
details of our model and use a semiclassical approach and
temporal coupled-mode theory (TCMT) [40,41] to obtain ba-
sic equations for the fields in the two resonators dissipatively
coupled to a waveguide. We also present input-output rela-
tions. In Sec. III we derive equations for the transmission
amplitudes which depend nonlinearly on the fields in the
nonlinear medium. In Sec. IV, we derive conditions when
nonreciprocity without nonlinearity is possible and establish
connection with some of the existing results. In Sec. V,
we conduct a thorough analysis to understand how the sys-
tem’s parameters affect nonreciprocal behavior, highlighting
the substantial nonreciprocity due to nonlinearity. In certain
parameter domains the system exhibits bistability, and then
we present nonreciprocity in bistable transmission. In Sec. VI
we give nonreciprocity in the excitation of the resonators. In
Sec. VII we discuss the popular system consisting of a mag-
netic system coupled dissipatively to a resonator [6,42,43].
Our insights not only enhance the comprehension of nonre-
ciprocal behavior in both linear and nonlinear systems but also
facilitate the development of novel integrated photonic circuit
designs, where the control of light propagation is crucial. We
finally conclude with remarks about nonreciprocity in quan-
tum fluctuations if the system is described by full quantum
theory.

II. MODEL AND BASIC EQUATIONS

We consider a system composed of two resonators a and
b coupled to a one-dimensional waveguide, as depicted in
Fig. 1. The resonators have resonance frequencies ωa and
ωb, respectively. Resonator a can exhibit Kerr nonlinearity.
Positioned at a distance xab apart, the two resonators are cou-
pled directly via a complex parameter J . In addition, they also
interact through the propagating waves in the waveguide. The
waveguide modes, both incoming (ε1→, ε2←) and outgoing
(ε1←, ε2→), where 1 and 2 specify the port, are coherent and
operating at the driving frequency ωd . The resonant modes are
excited by the incoming waves (ε1→, ε2←) of two ports with
some coupling constants ka�, kb� (� = 1, 2). We can write the
Hamiltonian of the system (we set h̄ = 1) in the rotating frame

of the drive field as

H = �aa†a + �bb†b + Ja†b + J∗b†a

+ Ua†2a2i(ka1ε1→a† − k∗
a1aε

†
1→)

+ i(ka2eiφε2←a† − k∗
a2e−iφaε

†
2←)i(kb1eiφε1→b†

− k∗
b1e−iφbε†

1→) + i(kb2ε2←b† − k∗
b2bε†

2←). (1)

Here, �a = ωa − ωd , �b = ωb − ωd are the detuning of
the resonant frequencies ωa and ωb compared to the driv-
ing frequency, ωd . U quantifies the strength of third-order
nonlinearity in mode a. The phase shift is φ = ωd xab/vp,
experienced by the drive as it travels between the resonators,
with vp denoting the phase velocity of the drive.

In what follows, we use the semiclassical description and
adopt the TCMT. The dynamics of the system in the rotating
frame of the drive can be given as

d

dt
c = −i�c − �c + Kεin

−
(

0 iJ
iJ∗ 0

)
c − 2iU (a†a)

(
1 0
0 0

)
c, (2)

εout = C(εin − D†c), (3)

where c = (a, b)T , εin = (ε1→, ε2←)T , εout = (ε1←, ε2→)T ,
� = (�a − iγa 0

0 �b − iγb
) with the intrinsic damping rates γa and

γb due to the material loss included, and C = ( 0 eiφ

eiφ 0 ) for
the direct scattering in the absence of resonators. The matrix
� characterizes the exponential decay process. The matrices
K and D† describe the coupling of the resonator to the input
and output fields, respectively. The coupling matrix K follows
based on the structure of the Hamiltonian [Eq. (1)],

K =
(

ka1 ka2eiφ

kb1eiφ kb2

)
. (4)

In order to connect the � and D matrices to the coupling
parameters ka� and kb�, we look into the energy con-
servation constraint when γa = γb = J = U = 0. Followed
by energy conservation, d (c†c)/dt = ε

†
inεin − ε

†
outεout. With

an assumption of no incoming waves, εin = 0, the rate
of change of energy for resonators becomes d (c†c)/dt =
d (a†a + b†b)/dt = −c†(� + �†)c, and the outgoing power
is ε

†
outεout = c†DD†c. The energy conservation constraint

in this case leads to DD† = � + �†. For εin �= 0 and at
steady state where dc/dt = 0, we find DK−1� = �K−1†D†

and �†K−1†D† + DK−1� = � + �†, valid for any matrix
� [40,41]. Thus we can determine that D = K, and

� =
(

�a �b→a

�a→b �b

)
=

( |ka1|2+|ka2|2
2 ka2k∗

b2eiφ

k∗
a1kb1eiφ |kb1|2+|kb2|2

2

)
. (5)

Here, �a and �b are the external damping rates into the
waveguide modes, while �a→b(b→a) is the radiative interaction
between the two resonators via the waveguide.

III. TRANSMISSION PROPERTIES OF THE MODEL

We now set out to show how to derive the transmission
parameters for the forward propagation (ε1→ drive) and the
backward propagation (ε2← drive) from the basic equations in
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Sec. II. In the long-time limit, the operators in the Hamiltonian
[Eq. (1)] reduce to their expectation values. For conciseness,
we omit the notation 〈.〉, and the terms a, b and ε�� now
denote the complex amplitudes of the resonant and waveguide
modes, respectively. When achieving the steady state with
ȧ = 0, ḃ = 0, Eq. (2) results in the nonlinear response of the
system to the counterpropagating drives,

D(x)a = ε1→[−ka1(i�b + γb + �b) + kb1eiφ (�b→a + iJ )]

ε2←[−ka2eiφ (i�b + γb + �b) + kb2(�b→a + iJ )],
(6)

D(x)b = ε1→[ka1(�a→b + iJ∗)

− kb1eiφ (i�a + γa + �a + 2ix)]

+ ε2←[ka2eiφ (�a→b + iJ∗)

− kb2(i�a+ γa+ �a + 2ix)], (7)

where

D(x) = (�a→b + iJ∗)(�b→a + iJ )

− (i�a + γa + �a + 2ix)(i�b + γb + �b), (8)

and x = U |a|2. The value of x is obtained by solving the cubic
equation that results from taking the square of the norm of
both sides of Eq. (6). This may yield multiple solutions for x,
which will be discussed in detail in Sec. V.

The transmission parameters (t→ and t←) for both for-
ward and backward driving directions (ε1→ and ε2← drive,
respectively) can be determined analytically using the steady-
state solutions Eqs. (6) and (7), and the input-output relation
Eq. (3). When we set the backward drive ε2← = 0, x = x→
is determined, the transmission parameter for the forward
(rightward) propagation from port 1 is

t→ = ε2→
ε1→

= eiφ

D(x→)

[
iJ∗(�b→a − �∗

a→b + iJ )

−
(

i�a + γa − |ka1|2 − |ka2|2
2

+ 2ix→

)

×
(

i�b + γb − |kb1|2 − |kb2|2
2

)]
, (9)

and when we set the forward driving ε1→ = 0, x = x← is
determined, the transmission parameter for the backward
(leftward) propagation from port 2 is

t← = ε1←
ε2←

= eiφ

D(x←)

[
iJ (�a→b − �∗

b→a + iJ∗)

−
(

i�a + γa + |ka1|2 − |ka2|2
2

+ 2ix←

)

×
(

i�b + γb + |kb1|2 − |kb2|2
2

)]
. (10)

The parameter x in the transmission parameter contains the
effect of nonlinearity.

When considering just one nonlinear resonator, a, with
φ = J = kb1 = kb2 = 0, the transmission parameters for both
propagation directions are reduced to

t→ = i(�a + 2x→) + γa − (|ka1|2 − |ka2|2)/2

i(�a + 2x→) + γa + �a
, (11)

t← = i(�a + 2x←) + γa + (|ka1|2 − |ka2|2)/2

i(�a + 2x←) + γa + �a
. (12)

The nonlinear response of the resonator a to the input fields is

a = ka1ε1→ + ka2ε2←
i(�a + 2x) + γa + �a

. (13)

When |ka1| = |ka2|, as required by time-reversal symme-
try [40,41], the system exhibits reciprocal transmission even if
U �= 0, as indicated in Eq. (13), where x will be the same for
counterpropagating drives ε1→ and ε2←. In other models [35],
a different direct scattering matrix C results in different con-
straints when time-reversal symmetry is imposed. This leads
to nonreciprocal behavior in systems with a single nonlinear
resonator.

IV. NONRECIPROCITY WITHOUT NONLINEARITY

We first revisit the nonreciprocity in the waveguide-
coupled two-resonator system without any nonlinear effects,
setting U = 0, and thus x = U |a|2 = 0. The presence of the
second terms within parentheses in Eqs. (9) and (10) indi-
cates that even in the absence of a direct coupling J between
the resonators a and b, nonreciprocity of the transmission
can manifest if |ka1| �= |ka2| or |kb1| �= |kb2|. Conversely, if
|ka1| = |ka2| and |kb1| = |kb2|, then the nonreciprocity condi-
tion hinges on the condition that the coupling constant J �= 0.

In the system with |ka1| = |ka2| and |kb1| = |kb2|, from
Eqs. (9) and (10), we can find that the condition for nonre-
ciprocal transmission (t→ �= t←) is

Re[J (�a→b − �∗
b→a)] �= 0. (14)

For this system equipped with a real coupling constant J ,
the condition in Eq. (14) is reduced to

Re(�a→b) �= Re(�b→a), (15)

which is determined by the phases of the coupling con-
stants ka� and kb�, along with the phase shift φ accumulated
between the two resonators. When ka� and kb� are real, if
cos φ = 0, then there is no nonreciprocity; if cos φ �= 0, then
the nonreciprocity condition given by Eq. (15) simplifies to
the requirement that ka1kb1 �= ka2kb2. Since |ka1| = |ka2| and
|kb1| = |kb2|, achieving nonreciprocity requires ka1 = −ka2

and kb1 = kb2, or kb1 = −kb2 and ka1 = ka2 with φ �= (2N +
1)π/2 (N ∈ Z). These are exactly the conditions under which
experiments in [6] are done.

In order to see how to achieve ka1 = −ka2 or kb1 = −kb2,
let us consider one of the resonators to be magnetic. For a
magnetic resonator, the coupling strength can flip its sign due
to the reversal of the magnetic field’s direction with counter-
propagating directions. Most simply, a monochromatic wave
is governed by B = k × E/ω, where k denotes the wave
vector and ω denotes the wave frequency. The orientation of
B depends upon the direction of k. Accordingly, the poten-
tial energy of a magnetic dipole m in a magnetic field B,
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TABLE I. Summary of the parameter combinations leading to
nonreciprocity in transmission in the linear system when ka� and kb�

are real.

System Property
Nonreciprocity

Condition Notes

ka1 = ka2 and
kb1 = kb2

J �= 0 and
sin θ sin φ �= 0

J cannot be real

ka1 = −ka2 and
kb1 = kb2

J �= 0 and
cos θ cos φ �= 0

J can be real

given by E = −m · B, determines the sign of the coupling
strength between the magnetic resonator and the incoming
waves. Thus, when one of the resonators is magnetic, and the
other is optical, i.e., ka1 = −ka2 and kb1 = kb2, or ka1 = ka2

and kb1 = −kb2, with φ �= (2N + 1)π/2, the nonreciprocity
condition, as stated in Eq. (15), is achieved [6].

The above analysis reveals that the phases of the couplings
ka� and kb� are also important for nonreciprocity. In recent
works different phases of ka1 and ka2 have been realized in
connection with artificial atoms [44–46] where a single ar-
tificial atom can couple at different points of the waveguide
leading to pronounced nonreciprocity [47] and other impor-
tant physical effects [48].

In the system composed of two optical resonators where
the coupling strengths are equal for each resonator (ka1 = ka2

and kb1 = kb2), utilizing the phase of the complex coupling
strength J can aid in achieving nonreciprocal transmission.
When J is represented as J = |J|eiθ , the nonreciprocal trans-
mission condition can be achieved even when Eq. (15)
is violated, i.e., Re(�a→b) = Re(�b→a). Specifically, setting
ka1 = ka2 = ka, kb1 = kb2 = kb, Eqs. (9) and (10) can be re-
duced to

t→ = eiφ

D(0)
[−2|J|kakbe−iθ sin φ

− |J|2 − (i�a + γa)(i�b + γb)], (16)

t← = eiφ

D(0)
[−2|J|kakbeiθ sin φ

− |J|2 − (i�a + γa)(i�b + γb)], (17)

which indicates that nonreciprocal transmission (t→ �= t←)
can occur when sin θ sin φ �= 0, that is, θ �= Nπ , φ �= Nπ . To
summarize the results, we derived the conditions for nonre-
ciprocity without nonlinearity based on Eq. (14). These results
are summarized in Table I. A recent paper discusses nonre-
ciprocity from complex J within the context of magnetic films
using the coherent Dzyaloshinskii-Moriya interaction [25].

V. NONLINEARITY-INDUCED NONRECIPROCITY
IF LINEARITY DOES NOT ALLOW NONRECIPROCITY

As discussed in Sec. IV, if the direct coupling J is real and
all coupling constants are identical, then the linear medium
fails to achieve nonreciprocity. Here, we show how nonlinear-
ity can produce significant nonreciprocal behavior. We note
that nonlinearity-induced nonreciprocity has been studied be-
fore. Examples include intrinsic nonlinearities of two-level

systems [10,34], nonlinearities of Brillouin media [8,9], non-
linear PT-symmetric media [49–51], and systems with a
different scattering matrix subjected to conditions imposed
by time-reversal symmetry [35,36]. We now consider a
Kerr nonlinear system where there is no coherent coupling
J between the two resonators, i.e., J = 0, and the coupling
constants ka�, kb� are real and identical for counterpropagat-
ing directions, i.e., ka1 = ka2, kb1 = kb2. However, the mode
denoted by a is now characterized by third-order nonlinearity,
i.e., U �= 0. For simplification, we also assume that �a =
�b = �, ka� = kb� = √

�, where � denotes the total radiative
decay rate of an individual resonator into the waveguide port.
At the steady state with ȧ = 0, ḃ = 0, we have two equa-
tions for a and b following from Eqs. (2) and (3) (a, b and
ε�� denote the complex amplitudes as discussed in Sec. III),

2iŨ |a|2a + (i�̃ + γ̃a + 1)a + eiφb = ε̃1→ + eiφε̃2←,

(i�̃ + γ̃b + 1)b + eiφa = eiφε̃1→ + ε̃2←, (18)

along with two equations for the input-output relation,

ε̃2→ = eiφε̃1→ − eiφa − b,

ε̃1← = eiφε̃2← − a − eiφb, (19)

all of which are normalized with the scaling factor �, lead-
ing to the definitions Ũ = U/�, �̃ = �/�, γ̃a = γa/�, γ̃b =
γb/�, ε̃�� = ε��/

√
�. From Eq. (18), the nonlinear response

of resonator a is obtained,

4x̃3 + 4(Re δ̃)x̃2 + |δ̃|2x̃

= ±|(i�̃ + γ̃b + 1 − e2iφ )ε̄1→ + (i�̃ + γ̃b)eiφε̄2←|2
�̃2 + (γ̃b + 1)2

,

(20)

where we introduce x̃ = Ũ |a|2, iδ̃ = i�̃ + γ̃a + 1 − e2iφ

i�̃+γ̃b+1
,

ε̄1→ =
√

|Ũ |ε̃1→, ε̄2← =
√

|Ũ |ε̃2←, with a plus sign on the
right-hand side for Ũ > 0, and a minus sign for Ũ < 0. In
order to achieve nonreciprocity, in Eq. (20), the coefficients
before the input terms ε̄1→ and ε̄2← should differ, to ensure
distinct nonlinear responses to the counterpropagating drives.
Nonreciprocity for the Kerr nonlinear system then hinges on
the condition e2iφ �= 1, implying

φ �= Nπ, (N ∈ Z). (21)

Note that the cubic equation [Eq. (20)] can have three real
roots under the conditions

(Re δ̃)2 > 3(Im δ̃)2, ŨRe δ̃ < 0, (22)

leading to a bistability response [52]. Now we assmue Ũ > 0.
We plot x̃ against the scaled photon flux at the input |ε̄|2 with
experimentally feasible parameters which satisfy Eq. (22),
illustrated in Fig. 2. The |ε̄|2-x̃ curve features two turning
points subject to d (|ε̄|2)/dx̃ = 0. With a specific region of the
amplitude of the input, there exist three real solutions for x̃,
with two representing stable states and one an unstable state.
Fulfilling the nonreciprocity criterion in Eq. (21) results in two
distinct bistability regions for counterpropagating drives, as
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FIG. 2. The |ε̄|2-x̃ curves, (a) for ε1→ drive, (b) for ε2← drive.
The turning points x̃± are as denoted in the figure. The black lines are
for the unstable states. �/2π = 10 MHz, γ̃a = γ̃b = 0.1, �̃ = −0.5,
φ = 16π/15.

illustrated in Figs. 2(a) and 2(b). As drives increase nearing
the turning points x̃−, sharp jumps in x̃ from one stable state
to another occur.

The transmission parameter can be obtained by substituting
the expressions for a and b, derived from Eq. (18), into the
input-output relation given by Eq. (19). Once the value of x̃
is determined from Eq. (20) for incoming drives (ε1→, ε2←)
from each direction, we can calculate out the value of a from
Eq. (18),

a = (i�̃ + γ̃b + 1 − e2iφ )ε̃1→ + (i�̃ + γ̃b)eiφε̃2←
(i�̃ + γ̃a + 1 + 2ix̃)(i�̃ + γ̃b + 1) − e2iφ

, (23)

which exhibits distinct behaviors based on the propagation
direction if Eq. (21) is satisfied. When we set the backward
driving ε2← = 0, the steady-state solution x̃ = x̃→ is deter-
mined from Eq. (20), and the transmission parameter for the
forward (rightward) direction is

t→ = ε2→
ε1→

= eiφ (i�̃ + γ̃a + 2ix̃→)(i�̃ + γ̃b)

(i�̃ + γ̃a + 1 + 2ix̃→)(i�̃ + γ̃b + 1) − e2iφ
.

(24)
Similarly, when we set the forward driving ε1→ = 0, the
steady-state solution x̃ = x̃← is determined from Eq. (20),
and the transmission parameter for the backward (leftward)
direction is

t← = ε1←
ε2←

= eiφ (i�̃ + γa + 2ix̃←)(i�̃ + γ̃b)

(i�̃ + γ̃a + 1 + 2ix̃←)(i�̃ + γ̃b + 1) − e2iφ
.

(25)
Both transmission parameters share the same dependence

on the parameter x̃, which can be different between counter-
propagating drives. When the phase shift φ = Nπ [violating
Eq. (21) and leading to x̃→ = x̃←], the system exhibits re-
ciprocal behavior, i.e., t→ = t←. Nonetheless, with φ �= Nπ ,
resulting in x̃→ �= x̃←, it leads to t→ �= t←, indicating non-
reciprocal transmission. The drive power P is related to the
coherent photon flux at the input, through P = h̄ωd |ε|2, for
the respective directions. Equation (20) shows that the value
of x̃ depends on the scaled input, i.e., |ε̄|2 = UP/h̄ωd�

2. For
a certain value of x̃, the input power P will be lower if U
becomes higher.

The nonreciprocal behavior of the system is illustrated in
Fig. 3, where the transmission amplitude |t | is plotted against
the scaled photon flux at the input |ε̄|2 for counterpropa-
gating inputs. In Fig. 3(a), the phase φ = π/2 satisfies the

FIG. 3. Transmission spectrum as a function of the scaled photon
flux at the input |ε̄|2. The blue lines are for ε1→ drive, and the
yellow lines are for ε2← drive. γ̃a = γ̃b = 0.1. (a) �̃ = 0.5, φ = π/2.
(b) �̃ = −0.5, φ = 16π/15, consistent with Fig. 2. Sudden jumps in
|t | at x̃− are found as drives increase.

nonreciprocity condition in Eq. (21), but does not fulfill the
bistability condition in Eq. (22). As a comparison, in Fig. 3(b)
with the same parameters as Fig. 2, the phase φ = 16π/15,
slightly detuned from π , satisfies both the nonreciprocity and
bistability conditions. As counterpropagating drives increase
nearing x̃−, corresponding sudden jumps in the transmission
amplitude |t | within distinct regions found in Fig. 3(b) due to
bistability aid in achieving large nonreciprocity. To measure
the nonreciprocity, we define the nonreciprocity parameter of
the nonreciprocal system as I = (|t→| − |t←|)/(|t→| + |t←|).
This is graphically represented as a function of the phase shift
φ, with a period of π , as depicted in Fig. 4. Additionally, we
plot the nonreciprocity parameter when U < 0 as shown in
Fig. 5.

In this section, both the resonators are considered optical.
When the resonator a is switched to magnetic, i.e., ka1 = −ka2

and kb1 = kb2, it results in merely a phase transformation,
φ → φ + π/2, as discussed in Sec. VII.

VI. NONRECIPROCITY IN EXCITATION
OF EACH RESONATOR

Driving the two resonators coherently from either the left
side or the right side gives rise to the excitation energies in
the resonators. For magnetic resonators, the resulting excited
magnetization can be electrically detected through the spin
currents via the inverse spin Hall effect [53]. For the linear
system (U = 0), when driving from the left side, i.e., ε1→ �= 0
and ε2← = 0, the energy ratio of the resonant mode a relative

FIG. 4. Nonreciprocity parameter I = (|t→|−|t←|)/(|t→|+|t←|)
as a function of the phase shift φ. The parameters are the same as
Fig. 3 (Ũ > 0). (a) |ε̄|2 = 2, �̃ = 0.5. (b) |ε̄|2 = 0.9, �̃ = −0.5.
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FIG. 5. Nonreciprocity parameter I as a function of the phase
shift φ. Now we consider the case when Ũ <0. (a) |ε̄|2 =2, �̃=−0.5.
(b) |ε̄|2 = 0.9, �̃ = 0.5.

to the incoming power is found from Eq. (6) and Eq. (7),∣∣∣∣ a→
ε1→

∣∣∣∣
2

= 1

|D(0)|2 (|ka1|2|i�b + γb + �b|2

+ |kb1|2|�b→a + iJ|2)

− 1

|D(0)|2 [�a→b(−i�b + γb + �b)

× (�b→a + iJ ) + c.c.]. (26)

When driving from the right side, i.e., ε2← �= 0 and ε1→ = 0,
the energy ratio of the resonant mode a relative to the incom-
ing power is similarly found as∣∣∣∣ a←

ε2←

∣∣∣∣
2

= 1

|D(0)|2 (|ka2|2|i�b + γb + �b|2

+ |kb2|2|�b→a + iJ|2)

− 1

|D(0)|2 [�∗
b→a(−i�b + γb + �b)

× (�b→a + iJ ) + c.c.]. (27)

Nonreciprocal excitations can be achieved by ensuring
asymmetric external emission into counterpropagating waveg-
uide modes, characterized by differing coupling strengths, i.e.,
|ka1| �= |ka2| or |kb1| �= |kb2|, similar to nonreciprocal trans-
mission as discussed in Sec. IV.

For a system where |ka1| = |ka2| and |kb1| = |kb2|, if
�b→a + iJ = 0, then the excitation is always reciprocal. If
�b→a + iJ �= 0, the necessary condition to achieve nonrecip-
rocal excitation (|a→/ε1→|2 �= |a←/ε2←|2) is

�a→b − �∗
b→a �= 0. (28)

When ka� and kb� are real, the condition in Eq. (28) is reduced
to φ �= Nπ . This condition demonstrates that the reciprocity
of excitations can be broken through the manipulation of the
phase shift accumulated between two resonators.

For the Kerr nonlinear system with �a = �b = �, ka� =
kb� = √

�, and J = 0, the necessary condition for nonrecip-
rocal excitations is φ �= Nπ . This condition, serving as the
basis for nonreciprocal transmission as discussed in Sec. V,
can similarly be extracted from Eq. (20). We plot the ratio
(|a/ε̃1→|2, |a/ε̃2←|2) for counterpropagating drives as a func-
tion of the scaled photon flux as shown in Fig. 6.

Our Kerr nonlinear system can be configured with the
resonator a as either an optical type or a magnetic type for

FIG. 6. The ratio of the excitation energy in nonlinear resonator
a (U > 0) relative to the input photon flux for counterpropagat-
ing drives as a function of drive power. (a) �̃ = 0.5, φ = π/2.
(b) �̃ = −0.5, φ = 16π/15.

experimental realization. For an optical resonator, anhar-
monicity originates from the nonlinear response of the elec-
trical polarization. Recent experimental advancements have
shown cavities with significant Kerr nonlinearity, measured by
a Kerr coefficient of U/2π = −12.2 ± 0.1 kHz/photon [39].
For a magnetic resonator, anharmonicity originates from
nonlinear magnetization. Recent research into nonlineari-
ties within ferrimagnetic spheres indicates that ferromagnetic
materials, such as yttrium iron garnet (YIG), can exhibit
robust coupling with microwave fields against temperature.
With the growing research interest in YIG, it stands out as
an active Kerr medium for exploring nonlinearity-induced
nonreciprocity [54,55].

VII. NONRECIPROCITY INDUCED BY NONLINEARITY
WITH A MAGNETIC RESONATOR

In this section, we investigate the transmission property
of the Kerr nonlinear system, focusing on a case different
from the one presented in Sec. V. Here, the resonator a is
magnetic with third-order nonlinearity, while the resonator
b is optical, characterized by different conditions ka1 = −ka2

and kb1 = kb2. Similarly, there is no coherent coupling J be-
tween the two resonators (J = 0); the coupling constants ka�,
kb� are considered real. For convenience, we also assume
�a = �b = �, ka1 = −ka2 = √

�, kb� = √
�. At the steady

state with ȧ = 0, ḃ = 0,

2iŨ |a|2a + (i�̃ + γ̃a + 1)a − eiφb = ε̃1→ − eiφε̃2←,

(i�̃ + γ̃b + 1)b + eiφa = eiφε̃1→ + ε̃2←, (29)

along with two equations for the input-output relation,

ε̃2→ = eiφε̃1→ − eiφa − b,

ε̃1← = eiφε̃2← + a − eiφb, (30)

where Ũ , �̃, γ̃a, γ̃b, ε̃�� are as defined in Sec. V. From
Eq. (29), the nonlinear response of resonator a is obtained,

4x̃3 + 4(Re δ̃′)x̃2 + |δ̃′|2x̃

= |(i�̃ + γ̃b + 1 + e2iφ )ε̄1→ − (i�̃ + γ̃b)eiφε̄2←|2
�̃2 + (γ̃b + 1)2

, (31)

where we define x̃, ε̄1→, ε̄2← as outlined in Sec. V, and
introduce iδ̃′ = i�̃ + γ̃a + 1 + e2iφ

i�̃+γ̃b+1
, with the assumption
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that Ũ > 0. When we set the backward driving ε2← = 0, the
steady-state solution x̃ = x̃→ is determined from Eq. (31),
which then yields the transmission parameter for the forward
(rightward) propagation,

t→ = ε2→
ε1→

= eiφ (i�̃ + γ̃a + 2ix̃→)(i�̃ + γ̃b)

(i�̃ + γ̃a + 1 + 2ix̃→)(i�̃ + γ̃b + 1) + e2iφ
.

(32)

Similarly, when we set the forward driving ε1→ = 0, the
steady-state solution x̃ = x̃← is determined from Eq. (31),
which then yields the transmission parameter for the back-
ward (leftward) propagation,

t← = ε1←
ε2←

= eiφ (i�̃ + γa + 2ix̃←)(i�̃ + γ̃b)

(i�̃ + γ̃a + 1 + 2ix̃←)(i�̃ + γ̃b + 1) + e2iφ
.

(33)

Comparing the nonlinear response and the transmission
parameters with those discussed in Sec. V, the only crucial
alteration is the transformation e2iφ → −e2iφ , equivalent to a
phase shift, φ → φ + π/2. Consequently, in comparison to
the case detailed in Sec. V, switching the resonator a from
an optical to a magnetic type results in a transformation in
phase; thus in this case with no coherent coupling (J = 0), the
system shows no nonreciprocity in the absence of nonlinearity
but would show significant nonreciprocity if the phase is not
equal to an odd multiple of π/2. With this transformation, the
parameters in Fig. 3(a) should be adjusted to φ = π , and for
Fig. 3(b), the parameters should be adjusted to φ = 47π/30
to achieve corresponding results.

VIII. CONCLUSIONS

In our exploration of Kerr nonlinearity induced nonre-
ciprocity in a system with two waveguide-coupled resonators,
we unveil the potential of Kerr nonlinearity to manifest
nonreciprocal behavior, particularly when linear systems fail
to exhibit nonreciprocal behavior. We derive the conditions
inducing nonreciprocity and study its dependency on various
system parameters. Our analysis reveals that nonreciprocal
transmission is not only possible but can be significantly
enhanced through the strategic exploitation of nonlinearity;
thus in the case with no coherent coupling J = 0, the system
shows no nonreciprocity in the absence of nonlinearity but can
show significant nonreciprocity with an appropriately chosen
phase φ.

Finally, it may be noted that we can discuss nonreciprocity
in a full quantum framework by converting the classical equa-
tion (2) into nonlinear quantum Langevin equations for the
mode operators. The very commonly used linearization treat-
ment of quantum fluctuations [56] gives quantum fluctuations
in terms of the values of the mean fields which are determined
by Eq. (2). Thus, the existence of nonreciprocal behavior of
mean field equations would imply nonreciprocity in quantum
fluctuations as well. We hope to report on these aspects in the
future.
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