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We propose Hamiltonian quantum generative adversarial networks (HQuGANs) to learn to generate unknown
input quantum states using two competing quantum optimal controls. The game-theoretic framework of the
algorithm is inspired by the success of classical generative adversarial networks in learning high-dimensional
distributions. The quantum optimal control approach not only makes the algorithm naturally adaptable to the
experimental constraints of near-term hardware, but also offers a more natural characterization of overpa-
rameterization compared to the circuit model. We numerically demonstrate the capabilities of the proposed
framework to learn various highly entangled many-body quantum states, using simple two-body Hamiltonians
and under experimentally relevant constraints such as low-bandwidth controls. We analyze the computational
cost of implementing HQuGANs on quantum computers and show how the framework can be extended to learn
quantum dynamics. Furthermore, we introduce a cost function that circumvents the problem of mode collapse
that prevents convergence of HQuGANs and demonstrate how to accelerate the convergence of them when
generating a pure state.
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I. INTRODUCTION

Generative adversarial networks (GANs) [1] are one of
the most powerful tools of unsupervised learning algorithms
in classical machine learning to generate complex and high-
dimensional distributions. The learning process of GANs is
based on an adversarial game between two players, a gener-
ator and a discriminator. The generator’s goal is to produce
fake data similar to real data, and the discriminator’s goal is
to discriminate between the data generated from the generator
and the real data. Such an adversarial game can be seen as
a minimax game that converges to a Nash equilibrium in
which the generator efficiently simulates the real data under
plausible assumptions [1]. GANs have worked successfully
on several realistic tasks including photorealistic image gen-
erations [2], image super-resolution [3], video generation [4],
molecular synthesis [5], etc.

Inspired by the success of classical GANs, a quantum
mechanical counterpart of GANs, a quantum GAN (QuGAN)
[6,7], has recently been proposed. Unlike classical GANs,
both input and output data in the QuGAN are quantum me-
chanical, such as an ensemble of quantum states (which could
themselves be generated from classical data). In this frame-
work, the generator can be viewed as a quantum circuit that
aims to reproduce the ensemble, and the discriminator makes
quantum measurements to distinguish the real ensemble from
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the generated (fake) ensemble. For convex cost functions,
such as 1-norm [6] or quantum Wasserstein distance of order
1 [8], the generator and the discriminator perform convex
optimization within compact and convex sets: consequently,
there always exists a Nash equilibrium point in the generator-
discriminator strategy space [6]. In fact, such an equilibrium
point is unique and is achieved when the discriminator is
unable to tell the difference between the true ensemble and the
generated ensemble [6]. Similar to classical GANs, QuGANs
have been used to learn random distributions [7], discrete dis-
tributions [9], and quantum states [10] and to generate images
[11]. Such applications make use of variational quantum al-
gorithms (VQAs) to train QuGANs: the generator and the dis-
criminator are parameterized quantum circuits, where the pa-
rameters are optimized via classical optimizers. This approach
makes QuGANs feasible to be implemented on near-term
noisy intermediate-scale quantum computers (NISQ) [12]. In
fact, implementations of QuGANs have already been explored
in quantum devices such as superconducting quantum proces-
sors to learn quantum states of small systems [13,14].

Rather than performing the computational task using pa-
rameterized quantum circuits, one can directly control the
parameters of the system Hamiltonian. How to control such
time-dependent Hamiltonians is a well-studied field: quantum
optimal control (QOC) [15]. The goal of QOC is to find
optimal sets of control parameters, or pulses, to achieve a
predefined goal by steering the dynamics of a given quan-
tum system. Examples of such objectives include optimizing
the fidelity between two quantum states, average gate fi-
delity, and expectation values of an observable [16,17]. In
fact, some applications of QOC give promising results in the
field of quantum computation, such as designing high-fidelity

2643-1564/2024/6(3)/033019(20) 033019-1 Published by the American Physical Society

https://orcid.org/0000-0001-7805-8219
https://ror.org/05fs6jp91
https://ror.org/042nb2s44
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033019&domain=pdf&date_stamp=2024-07-03
https://doi.org/10.1103/PhysRevResearch.6.033019
https://creativecommons.org/licenses/by/4.0/


LEESEOK KIM, SETH LLOYD, AND MILAD MARVIAN PHYSICAL REVIEW RESEARCH 6, 033019 (2024)

quantum entangling gates [18,19]. In addition, QOC can ef-
fectively reduce the latency of groups of quantum gates, which
current gate-based compilations for quantum systems suffer
from [20]. There have been extensive studies on develop-
ments and applications of popular methods of QOC including
gradient-based methods such as GRAPE [21] and Krotov [22]
and gradient-free methods such as CRAB [23], to many dif-
ferent quantum systems.

In this work, we introduce a Hamiltonian QuGAN
(HQuGAN), a framework to generate quantum resources,
such as quantum states or unitary transformations, by directly
controlling the native parameters of system Hamiltonians us-
ing two competing quantum optimal controls, one for the
generator and one for the discriminator.

The proposed HQuGAN has several favorable proper-
ties compared to circuit-model variational algorithms. First,
unlike parameterized quantum circuit models, HQuGANs per-
form the learning task by changing the native parameters of
the Hamiltonian itself. In the circuit model, each quantum
gate must be translated into control pulses, for example, elec-
trical signals, that implement the specified operations on the
underlying quantum device. But it is not necessarily the case
that the variational parameters specified by the algorithm, can
be directly translated to the control pulses implementing the
gate. This creates a barrier between the expressibility of the
logical gates and the set of operational instructions that can
be efficiently implemented on real experimental systems [24].
Besides, even if the approximate translation is possible, the al-
gorithm suffers from possible gate errors accumulated by each
translated gate, causing a mismatch between the ideal gates
and the implemented pulses [25]. Controlling the Hamiltonian
itself, however, avoids both barriers.

For these reasons, recent studies have indicated that re-
placing variational quantum circuits with QOC methods can
be advantageous for NISQ devices, which have a limited
gate depth due to a short coherent time and gate errors.
For instance, Ref. [26] introduces an algorithm for varia-
tional quantum eigensolver (VQE) simulations at the device
level using QOC, which significantly reduces the coherence
time required for the state preparation by several orders of
magnitude compared to using variational quantum circuits in
superconducting transmon platforms. Furthermore, Ref. [27]
has extended the work and demonstrated that one can prepare
target molecular ground states on the transmon processors
within the optimal time by directly controlling a device
Hamiltonian that describes coupled transmon qubits. Simi-
larly, Ref. [28] conducts a comparison between two methods
to approximate molecular ground states of various molecules.
The authors show that directly controlling Hamiltonians using
QOC generally has better convergence and requires fewer
quantum resources compared to the gate-based approaches.
In addition, when considering short evolution times, it outper-
forms the gate-based approaches.

Moreover, HQuGANs can benefit from overparameteriza-
tion due to the continuous nature of the control parameters,
leading to a better convergence on the minimax game. For
classical GANs, it has recently been shown that overpa-
rameterization appears to be a key factor in the successful
training of GANs to global saddle points [29]. Further-
more, overaparameterization appears to provide substantial

advantages in training deep neural networks [30]. In the (cir-
cuit model) quantum setting, it has been shown that while
underparameterized quantum neural networks (QNNs) have
spurious local minima in the loss landscape, overparame-
terized QNNs make the landscape more favorable and thus
substantially improve a trainability of QNNs [31–33]. Given
the fact that Hamiltonian quantum computing includes the
circuit model as a specific subcase, the advantage of the over-
parameterization phenomenon also applies to QOC models
[34]. Importantly, a key observation we make in this work is
that, for NISQ devices, directly controlling the parameters of
the experimentally available Hamiltonian provides a more nat-
ural route to achieve overparameterization. We quantify this
observation using optimal control bounds and verify the per-
formance using numerical simulations. We discuss methods
to incorporate experimentally relevant constraints on control
fields such as low-bandwidth controls and their effect on
overparameterization.

The paper is organized as follows. We begin by introducing
the concepts of GANs and QuGANs in Sec. II, followed by
an introduction to quantum optimal control (QOC) in Sec. III
with a specific focus on the GRAPE method. We then describe
in Sec. IV methods to incorporate bandwidth limitations of
the control fields and the effect on the parametrization of the
control problem. In Sec. V we introduce our Hamiltonian
QuGANs (HQuGANs), followed by numerical simulations
on generating different quantum states using the proposed
HQuGAN in Sec. VI. We then highlight in Sec. VII how
different cost functions can affect the convergence rate of the
HQuGAN. Specifically, we introduce a form of cost func-
tion for QuGANs to circumvent the issue of mode collapse
that was first raised in Ref. [10]. Executing the QOC for
large systems can be computationally infeasible using clas-
sical computers. Hence, we propose methods to use quantum
computers as subroutines of the HQuGAN to avoid such in-
tractability in Sec. VIII and analyze the required resources.

II. QUANTUM GAN

In classical GANs, to learn a distribution pg over data x,
we consider a parameterized generative neural network map
G(θg, z) where θg represents the parameters of the network
and pz(z) is a prior on the input noise variables. We also
define another parameterized map D(θd , x), corresponding to
the discriminative neural network, that outputs the probability
that a given x is sampled from the data set rather than the gen-
erator’s distribution pg. The goal of the generator is to fool the
discriminator by generating G(θg, z) that is indistinguishable
from D(x). The discriminator then tries to distinguish between
the true data distribution and the generator’s distribution, the
best she can. Hence, GANs alternate between the discrimina-
tor maximizing the probability of assigning the correct label
to both training examples and samples from G(θg, z) and the
generator minimizing the same loss that θd is maximizing.
Formally, the two players play the following minimax game
by solving

min
θg

max
θd

V (θg, θd ) = Ex∼pdata (x)[log D(θd , x)]

+ Ez∼pz (z)[1 − D(θd , G(θg, z))], (1)
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where a global Nash equilibrium point exists at pg = pdata [1].
In practice, however, training GANs to reach the desired equi-
librium point can be challenging for several reasons, such as
vanishing gradients [35] and mode collapse [36]. While none
of these issues have been completely solved, there are several
attempts to remedy the issues including by using Wasser-
stein GANs [37] and modifying the minimax cost function
[38]. Since similar problems have observed in quantum GANs
[10,39], we later discuss how to remedy them using quantum
Wasserstein GANs [8,40] and modifying the minimax cost
function in Sec. VII.

In a quantum GAN (QuGAN), the goal is to learn an
unknown quantum state σ , representing the true data. This
goal is achieved by an iterative game played by two quantum
agents: a generator and a discriminator. In each iteration, after
the generator updates his parameters θg to produce a density
matrix ρ(θg), the discriminator takes as input the quantum
state from the generator or the true data and performs a dis-
criminating measurement. In other words, the discriminator
attempts to find a Hermitian operator D that maximally sep-
arates the expected values with respect to the two quantum
states, i.e., maximizing Tr[D(σ − ρ)]. As a consequence, the
objective of QuGANs can be expressed as solving [6]

min
θg

max
D

Tr[D(σ − ρ(θg))]. (2)

The core idea of QuGANs, analogous to classical GANs, is
based on an indirect learning process of the minimax game
suggested above, where it aims to generate the true quan-
tum state σ without using classical descriptions of σ . While
including the optimal discriminative measurements the con-
straint ‖D‖∞ � 1 was considered in the original QuGAN
proposal [6], recently a QuGAN based on the quantum
Wasserstein distance of order 1 (or quantum W1 distance) has
been proposed [40].

The quantum W1 distance is based on the notion of neigh-
boring quantum states. Two states are called neighbors if they
differ only by one qubit. The quantum W1 distance is then
the maximum norm induced by assigning distance at most
one to every couple of neighboring states. Using the quantum
W1 distance dual formulation [40], minimizing the quan-
tum W1 distance can be expressed as the following minimax
game:

min
θg

max
D

{Tr[D(σ − ρ(θg))], ‖D‖L � 1}, (3)

where the quantum Lipschitz constant of an observable H is
defined as

‖H‖L = 2 max
i=1,... ,n

min{‖H − H (i)‖∞ : H (i) does not

act on the ith qubit}. (4)

In fact, a recent work [8] shows that the loss landscape in-
duced by using the quantum W1 distance as the cost function
for QuGANs can potentially provide an advantage in learn-
ing certain structured states like the GHZ states compared to
other metrics such as fidelity. In addition to the optimization
landscape, the choice of cost functions also can affect the rate
of convergence and the attainability of the equilibrium point.
The main obstacle preventing proper convergence of QuGANs
is mode collapse [10]. This happens because the generator in

Eq. (2) focuses on producing a state that aligns with D without
considering the target state σ . We introduce a novel form of
cost function that prevents this issue, as it will be discussed in
Sec. VII.

III. QUANTUM OPTIMAL CONTROL

The goal of quantum optimal control (QOC) is to find
control parameters, or control pulses {εi(t )}, that achieve a
predefined task, for example, generating a desired (known)
quantum state, using a given Hamiltonian such as

H (t ) = H0 +
∑

i

εi(t )Hi, (5)

where H0 is the drift Hamiltonian and {Hi} is the set of control
Hamiltonians. A standard approach in QOC is to optimize
an objective functional that depends on the control fields
J[{εi(t )}],

min
{εi}

J[{εi(t )}] (6)

subject to the Schrödinger equation of the time-dependent
Hamiltonian. A common choice for the main functional is
the infidelity between fully time-evolved quantum states and
a known target state, e.g.,

F = 1 − |〈ψtarg|ψ (T )〉|2 = 1 − |〈ψtarg|U (T )|ψ0〉|2, (7)

where U (T ) = T exp[−i
∫ T

0 H (t ) dt] is the total evolution
propagator of H (t ) from t ∈ [0, T ] and |ψ0〉 is an initial
state. Additional penalty terms can be added to the cost
function to achieve specific tasks such as realizing smooth,
low-bandwidth controls by suppressing rapid variations of
the control fields [41], which we will discuss in more detail
in Sec. IV. It is worth noting that quantum optimal control,
similar to a gate-based model, is subject to a phenomenon
known as barren plateaus in the control landscape associated
with variational optimizations [39,42]. This refers to a situ-
ation where the gradient of the objective functional J[εi(t )]
[such as Eq. (7)] vanishes exponentially in terms of the size
of the quantum system. To address the issue at hand, which is
particularly relevant when learning certain structured quantum
states such as GHZ states, it could be beneficial to consider
alternative cost functions such as the quantum W1 distance
[8,40]. Currently, it is an open problem to determine the extent
to which the quantum W1 distance can improve the landscape
of cost functions in quantum optimal control.

A popular QOC technique is Gradient Ascent Pulse En-
gineering (GRAPE) [21]. Since U (T ) is difficult to obtain
analytically, the GRAPE algorithm first discretizes the time
domain into N equal pieces of intervals (�t = T/N) and
approximates the Hamiltonian with a piecewise constant
Hamiltonian within each interval [t j, t j + �t ). The total time
evolution operator can then be expressed as a product of N
unitary matrices,

U (T ) =
N∏

j=1

U (t j ) =
N∏

j=1

exp

[
−i�t (H0 +

∑
i

εi(t j )Hi )

]
.

(8)
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Then the control fields at all the time steps are updated con-
currently using their gradients with respect to the objective
function J ,

εi(t j ) ←− εi(t j ) + α
∂J

∂εi(t j )
, (9)

where the gradient can be obtained via approximating the
propagator derivatives to the first order of �t [21],

∂U (t j )

∂εi(t j )
≈ −i�tHiU (t j ), (10)

which makes the computation very affordable. To achieve
faster and more stable convergence of the optimization pro-
cess, one can incorporate a quasi-Newton method, particularly
the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)
[43] or limited-memory BFGS (L-BFGS) [44] in the GRAPE
algorithm, which requires calculating the Hessian matrix of
the cost function.

Another quantum optimal control protocol we consider
in this paper is Krotov’s method [22]. The method is based
on a rigorous examination of conditions for calculating the
updated control fields such that it always guarantees a mono-
tonic convergence of the objective functional J[{εi(t )}] by
construction. An appealing feature of Krotov’s method is that
it mathematically guarantees that control fields are continuous
in time [45]. However, it is computationally more expensive
than GRAPE since a single optimization step requires solving
the Schrödinger equations 2N times, where N is the number
of time steps. We discuss the details of Krotov’s method and
its applications to HQuGANs in Appendix D.

IV. CONTROL BANDWIDTH
AND OVERPARAMETERIZATION

In practice, it is often desirable to generate bandwidth-
limited control fields, as high-frequency control pulses are
hard to implement with high accuracy in many experiments.
There exist various ways to constrain the bandwidth of control
fields in different quantum optimal control techniques [41,46–
48]. One of the most common methods is to penalize rapid
variations of control fields by adding the following penalty
term to the cost function [41]:

Jp = α
∑
i, j

|εi(t j ) − εi(t j−1)|2. (11)

Minimizing Jp reduces the variations of every pair of adjacent
control pulses and thus serves as a soft penalty term to limit
the control bandwidth. This penalty term has been success-
fully used to find low-bandwidth control in many quantum
optimal control settings [41,49].

In the circuit model, the number of independent parame-
ters that can be varied to implement an algorithm is directly
determined by the number of parameterized quantum gates.
In Hamiltonian quantum computing (HQC), determining the
number of independent parameters can be more involved.
Intuitively, the number of free parameters in the HQC setting
should increase linearly with the total evolution time T . Also,
a smaller cost function Jp, or equivalently, a smaller control
bandwidth should decrease the corresponding number of inde-
pendent parameters. Such intuition has been formally proven

via an information-theoretic argument on the information con-
tent of a classical field controlling a quantum system [50].

Such a bound can be derived by first defining a minimum
number of ε balls to cover the whole space of reachable states
of a given quantum system so that one of the balls identifies
a generic target state within a radius ε. To uniquely specify
which ball the target state is in, the control fields need to be
able to express at least as many configurations as the number
of balls. As a consequence, one can derive the following
fundamental quantum speed limit in terms of the bandwidth
of the control field:

T � D

�
κs
log2(1/ε), (12)

where D is the dimension of a set of reachable states of a given
quantum system (D = 22n in general, 2n for pure states), �


is the bandwidth of the control field, κs = log2(1 + �γ/δγ )
(�γ and δγ are the maximal and minimal allowed variations
of the control field), and ε is a maximum (any) norm differ-
ence between the target state and a state generated by the
control field [50]. This time-bandwidth quantum speed limit
thus tells us that control fields with higher bandwidth require
less evolution time T to steer a quantum system to achieve a
target state, compared to control fields with lower bandwidth.
The bound of Eq. (12) has been numerically verified in various
settings [51,52]. Since the number of independent parameters
is proportional to T �
, the time-bandwidth quantum speed
limit in Eq. (12) provides the dimension of a set of reachable
states D as the lower bound on the number of parameters
to reach any state in the set. This bound matches the result
of Ref. [31], where it has been shown that having as many
parameters as the dimension of the dynamical lie algebra of
a given system is enough to achieve overparameterization in
parametrized quantum circuits.

This relationship between the number of independent
variables and the control bandwidth provides us with a
tool to study the trade-off between the limited bandwidth
to implement control fields in experimental settings and
the advantage of overparameterization in the performance
of classical GANs [29] and also quantum neural networks
[31,32]. On the other hand, overparameterization in the circuit
model is solely determined by the number of parameterized
quantum circuits, which fails to account for experimental
constraints. We numerically verify this relationship by propos-
ing the penalty term in the cost function of HQuGANs in
Appendix E.

V. HAMILTONIAN QUANTUM GAN

We now introduce the HQuGAN algorithm to learn an
arbitrary unknown quantum state σ . As illustrated in Fig. 1,
the learning process is based on a minimax game consisting
of two players, a generator and a discriminator, where each
player has access to a Hamiltonian in the form of Eq. (5).
At each round of the HQuGAN, each player uses quantum
optimal control techniques to update the control parameters
of their Hamiltonians to optimize the cost function C while
fixing the other player’s parameters. More specifically, in each
round, the generator finds optimal control parameters {g} such
that the generated quantum state ρ({g}) minimizes the cost
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FIG. 1. (a) Schematic of a general Hamiltonian quantum generative adversarial network (HQuGAN) protocol. Given an unknown quantum
state σ generated from a black box (e.g., an unknown quantum process or experiment), the ultimate goal of the HQuGAN is to find control
fields that generate a fake quantum state ρ(g) close to σ as much as possible. To achieve this task, the HQuGAN employs an iterative game
with the objective function C between two players, a generator and a discriminator, who update control fields ({g}, {d}) in every round while the
other player’s fields are kept fixed. The generator aims to produce ρ({g}) to fool the discriminator by minimizing C, but the discriminator tries
to discriminate the two quantum states by maximizing C. Such protocol can be phrased as a minimax game min{g} max{d} C(ρ({g}), D({d}), σ ),
where the objective function C can be in various forms. (b) Examples of optimized control fields to generate generalized GHZ states. Optimized
control fields that successfully generate nine- and eight-qubit GHZ states using Krotov’s method and GRAPE in the HQuGAN setting are
presented respectively. Different colors represent the time-dependent control fields for the local Pauli X and Z terms in the Ising chain in
Eq. (15).

function C. Once the generator’s turn is finished, the discrim-
inator finds her optimal control parameters {d} that produce a
measurement operator D that maximally discriminates the two
quantum states σ and ρ({g}). As illustrated in Fig. 1, in this
work we restrict the measurements to the ones that can be de-
composed as a parameterized quantum dynamics [generated
by Hamiltonian in the form of Eq. (5)] followed by a fixed
quantum measurement D0. Hence, the measurement operator
D = U †({d})D0U ({d}). Therefore, the HQuGAN solves the

following game:

min
{g}

max
{d}

C(ρ({g}), D({d}), σ ). (13)

Such an iterative game between the two players continues
until the fixed point is approximately reached, or other desired
criteria, such as the Uhlmann fidelity between the generator’s
state and the target state, are achieved. The algorithm is also
described in Algorithm 1.

ALGORITHM 1. Hamiltonian Quantum Generative Adversarial Networks for Learning Arbitrary Quantum State.

Input: Time-dependent Hamiltonian H (t ), unknown target state σ , initial control fields {εi(0)}, initial state ρ0, evolution time T , Trotter steps
N , fixed measurement operator D0

Output: Control fields {εi} (which can be used to generate a quantum state ρ({εi}) close to the target state σ )

1: procedure Hamiltonian Quantum Generative Adversarial Networks

2: while F (ρ({gi}), σ ) � 0.999 do � Terminates when F (ρ({gi}), σ ) > 0.999

3: procedure Generator

4: if first round of QuGAN

5: Initialize initial control pulse {gi(0)} = {εi(0)} and fixed measurement operator D = D0

6: Minimize C(ρ({gi}), D({di}), σ ) using QOC

7: {gi(0)} ← {gi} � Updates optimize control fields

8: return ρ({gi}) � Returns time-evolved quantum state with optimized control fields

9: Procedure Discriminator

10: Initialize {di(0)} = {εi(0)}
11: Maximize C(ρ({gi}), D({di}), σ ) using QOC

12: D ← U †({di})D0U ({di}) � Updates new observable D

13: return D

14: {εi} ← {gi} � Obtain final control fields {gi}
15: return {εi}
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As discussed in Sec. II, we will study various forms of
the cost function C. Choosing C = Tr[D({d})(ρ({g}) − σ )]
recovers the trace distance, used in [6], when ‖D‖∞ � 1 and
the quantum W1 distance when ‖D‖L � 1 [the quantum Lips-
chitz constant is described in Eq. (4)]. The choice of the cost
function not only changes the optimization landscape, but can
also affect the reachability of the fixed point, which will be
discussed in Sec. VII. To study this issue, an additional cost
function that we consider is

C = |Tr[D({d})(σ − ρ({g}))]|2. (14)

In fact, the minimax game using the cost function above
has a Nash equilibrium point at the desired location. The Nash
equilibrium is a stationary point where no player can benefit
by changing their strategy while the other player keeps their
strategy unchanged. In other words, the Nash equilibrium is
a point ({g}∗, {d}∗) where {g}∗ gives a global minimum of
f (·, {d}∗) and {d}∗ gives a global maximum of f ({g}∗, ·).
Therefore, the above minimax game has the Nash equilibrium
at the desired location of ρ({g}∗) = σ .

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on the
performance of the proposed HQuGANs in learning various
many-body quantum states and quantum dynamics.

A. Setup

Motivated by current experimental capabilities [53–55], to
test the performance of the proposed algorithm we consider an
n-qubit 1D time-dependent longitudinal and transverse field
Ising model (LTFIM) Hamiltonian [56] with open boundary
conditions,

H (t ) =
n∑

i=1

εi(t )Xi +
n∑

i=1

εi+n(t )Zi − J
n−1∑
i=1

ZiZi+1, (15)

for both the generator and the discriminator. (We set h̄ = 1,
and therefore the coupling parameters are expressed in hertz.
For example, if the total evolution time T is in nanoseconds,
then εi(t ) is in gigahertz.) Note that the strength of all the ZZ
couplings is set to a fixed value (i.e. J = 1), and we assume
only the stringent condition of having control over the local
fields. (Of course, having more control, especially over the
entangling interactions, will introduce more degrees of free-
dom and therefore will reduce the required time to generate
arbitrary quantum states.) Hence, for an n-qubit system, each
player optimizes over 2n control pulses of the local Pauli
terms in the Hamiltonians.

The initial control fields are chosen as simple sinusoidal
shapes that can be easily generated by both players,

εi(t = 0) =
{

sin(10t/T ), for i = 1, . . . , n,

cos(10t/T ), for i = n + 1, . . . , 2n.
(16)

[We also consider a constant initial control, εi(t = 0) = 1, for
the bandwidth analysis in Appendix E.] We set the initial
state to be the easily preparable state |1〉⊗n, which is the
ground state of H (t ) at t = 0. We keep control pulses at
t = 0 unchanged for the generator by setting the gradients

of control fields at t = 0 to zero so that the generator al-
ways begins with |1〉⊗n. In addition, we set the observable
D0 to be a 1-local computational basis measurement, i.e.,
D0 = Z ⊗ I⊗n−1.

We consider the cost function of the form (14), and for
the discriminator, we consider the constraints ‖D‖∞ � 1 and
‖D‖L � 1, corresponding to the trace distance and the quan-
tum W1 distance. (We discuss the effect of the cost function
in more detail in Sec. VII.) Gradients of cost functions are
approximated to the first order of �t = T/N for both the
generator and the discriminator, and all experiments are op-
timized via the L-BFGS method. The termination criterion
we consider is achieving at least 0.999 fidelity with the target
state. We provide a comprehensive description of how the
generator and the discriminator are trained using the quantum
optimal control method in Appendix A. All the simulations
are performed using the optimal control module in QuTiP
[57], with the appropriate modifications for the various cost
functions studied in this work.

B. Learning three-qubit states

We attempt to learn 50 different three-qubit superposition
states,

|ψtarg〉 = cos θk|000〉 + sin θk|111〉, (17)

where θk = 2πk/50 for k = 0, 1, . . . , 49, using the proposed
HQuGAN protocol. The GRAPE algorithm is used for the
quantum optimal control for both the generator and the dis-
criminator, using a total evolution time T = 5 with N = 50
Trotter steps. Each player performs full optimization at each
round. (The optimization terminating criteria is if the cost
function is within 10−5 of the extreme point, or if the norm of
the gradients is smaller than 10−5, or if the maximum iteration
of 50 is reached.)

In Fig. 2 the number of iterations of the HQuGAN algo-
rithm to successfully learn to generate rotated GHZ states
with at least 0.999 fidelity is presented. Clearly, the HQuGAN
successfully generates all 50 states (red lines). To evaluate the
performance, we compare the result to an optimal discrimi-
nator that always chooses the Helstrom measurement (blue
lines), which we choose as a sum of two projectors onto pos-
itive and negative eigenspaces of ρ − σ (see in Appendix B).
For almost all instances, the blue line performs comparabil-
ity well, indicating that the discriminative models using the
GRAPE method are expressive enough for the HQuGAN to
successfully learn the target states. Indeed, we have numer-
ically observed that optimizing using the GRAPE algorithm
always produces a discriminator very close to the Helstrom
measurement that fully maximizes Tr[D(ρ − σ )]. Another
interesting point to note is that the optimal discriminator re-
sult can be achieved using GRAPE (instead of calculating it
analytically) by initializing the discriminator operator D0 as
a rank-2 operator, as the rank-2 Helstrom measurement op-
erator is unique. To demonstrate this, we attempt to generate
the same target states using the discriminator with GRAPE,
with the initial operator D0 = |0〉〈0|⊗n − |1〉〈1|⊗n, which is a
rank-2 operator. The performance is presented as the green
lines in the figure. As illustrated in the plot, we observe that
the performance of the blue and green lines match perfectly. In
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FIG. 2. HQuGAN experiments for learning three-qubit states.
The number of iterations required to generate 50 different three-qubit
generalized GHZ states, where θk are angles of the GHZ state in
Eq. (17), is presented for three different discriminators: a discrim-
inator that maximizes Eq. (14) using GRAPE with D0 = Z ⊗ I⊗n−1

(red) and D0 = |0〉〈0|⊗n − |1〉〈1|⊗n (green), and the optimal discrim-
inator performing the Helstrom measurement analytically (blue).
While the optimal discriminator performs overall the best, the dis-
criminator using GRAPE with D0 = Z ⊗ I⊗n−1 gives comparable
numbers of iterations. By setting the initial discriminator (with
GRAPE) operator D0 as a rank-2 operator, we can obtain the analytic
Helstrom measurement operator, given the uniqueness of the rank-2
Helstrom measurement operator. This is demonstrated by the perfect
match between the green and blue lines.

Sec. VII C and Appendix B, we discuss how using the optimal
discriminator can accelerate the convergence of the minimax
game. By fixing D0 to be a rank-2 operator, therefore, we can
achieve the speedup when the discriminator is using optimal
control protocols.

C. Learning generalized GHZ states

After the successful learning of various three-qubit super-
position states, we now shift gears to the challenging task of
generating generalized Greenberger-Horne-Zeilinger (GHZ)
states, which are extremely useful resource states in quantum
information and quantum metrology. We hence focus on gen-
erating n-qubit GHZ states,

|ψtarg〉 = 1√
2

(|0〉⊗n + |1〉⊗n), (18)

with keeping the HQuGAN settings unchanged from the pre-
vious experiment. We keep T proportional to the system sizes
and the number of time grids to N = 10T for all instances. As
before, we use both GRAPE-equipped and optimal discrimi-
nators to evaluate the performance of the HQuGAN. We set
D0 = Z ⊗ I⊗n−1.

The numerical experiments are summarized in Table I. The
HQuGAN successfully generates up to the six-qubit GHZ
state using the optimal control (GRAPE) discriminators with
a number of iterations similar to the iterations required for the
optimal discriminator.

TABLE I. HQuGAN for learning generalized GHZ states. The
number of iterations required for the HQuGAN to learn generalized
n-qubit GHZ states with a discriminator that uses GRAPE and the
optimal discriminator. We observe that the numbers of iterations of
the HQuGAN for both cases are comparable.

n Iter. (GRAPE) Iter. (Helstrom) T N

1 3 3 5 50
2 6 3 5 50
3 21 8 5 50
4 38 35 10 100
5 56 62 20 200
6 88 111 30 300

D. Learning Haar random states

Finally, we attempt to learn 50 Haar random quantum
states, i.e., states drawn from the Haar measure, up to six
qubits. Similar to the previous experiments, the GRAPE al-
gorithm is used for the quantum optimal control for both
the generator and the discriminator. Table II shows both
the mean and standard deviation values for the number of
iterations of the HQuGAN to successfully learn to gener-
ate all 50 Haar random states with at least 0.999 fidelity.
We find that the mean number of iterations required by the
HQuGAN algorithm increases exponentially in terms of the
system size, which is not surprising considering the fact that
learning generic quantum states demands exponentially many
resources [58].

E. Krotov’s method

As discussed earlier, Krotov’s method is another popular
gradient-based QOC technique. In contrast to GRAPE, Kro-
tov’s method mathematically guarantees that the control pulse
sequences remain time-continuous throughout the optimiza-
tion process [59]. We conduct the same tasks of generating
50 entangled three-qubit states in Eq. (17) and the general-
ized GHZ states using the HQuGAN with Krotov’s method.
The HQuGAN generates all instances well as presented in
Fig. 3 and Table III. We further produce up to the nine-qubit
GHZ state using the optimal discriminator, and also using
experimentally realizable parameters. More details on the de-

TABLE II. HQuGAN experiments for learning Haar random
states. The table shows both the mean and standard deviation values
for the number of iterations needed for the HQuGAN algorithm
(using GRAPE for both players) to reach convergence across 50 Haar
random states. The HQuGAN successfully produces all states with a
fidelity of 0.999 or higher.

n No. of iterations T N

1 2.57 ± 0.70 5 50
2 6.9 ± 2.14 5 50
3 12.4 ± 3.50 5 50
4 29.79 ± 10.18 10 100
5 49.95 ± 26.59 20 200
6 89.78 ± 55.99 30 300
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FIG. 3. HQuGANs for learning three-qubit states using Krotov’s
method. The number of iterations required to generate 50 different
three-qubit states described in Eq. (17) for two different discrimi-
nators: a discriminator that maximizes Tr[D(ρ − σ )] using Krotov’s
method (blue) and the optimal discriminator (red). The two cases
give similar behaviors.

scriptions of Krotov’s method and the numerical results are
summarized in Appendix D 2.

F. Bandwidth limitation

HQuGANs are capable of producing low-bandwidth con-
trol fields by introducing the penalty term of Eq. (11) into
the generator’s cost function. In Appendix E we show that
HQuGANs with the penalty terms lead to low-bandwidth
optimal control fields, and demonstrate that increasing the
evolution time T allows lower bandwidth of the control fields
to accomplish the same learning task, numerically verifying
the time-bandwidth quantum speed limit in Eq. (12). These
results provide concrete tools to estimate the required time
for HQuGANs to learn a quantum state using bandwidth-
limited control fields, which shape HQuGANs into more
experimental-friendly algorithms for current devices.

G. Learning unitary transformation

In this section we extend the HQuGAN (with GRAPE) to
learn an unknown unitary transformation. This problem has

TABLE III. HQuGANs for learning generalized n-qubit GHZ
states using Krotov’s method. The number of iterations required by
the HQuGAN to learn the generalized n-qubit GHZ states using
Krotov’s method. We compare the case of a discriminator using
Krotov’s method to the case of the optimal discriminator. The two
cases require a comparable number of iterations for all instances.

n Iter. (Krotov) Iter. (Helstrom) T N

1 3 3 5 50
2 6 8 5 50
3 15 13 5 50
4 36 25 10 100
5 62 55 20 200
6 245 361 30 300

been widely studied across a range of settings and techniques
[60–65]. We focus on learning a desired unitary operation in
two different settings: given a Choi matrix and then pairs of
input-output quantum states for the unitary. Both settings are
illustrated in Fig. 4.

1. Learning using a given Choi matrix

First, we aim to generate an arbitrary unitary operation
Utarg given the Choi matrix for the operation,

C(Utarg) = (I ⊗ Utarg)|
〉〈
|(I ⊗ U †
targ), (19)

where |
〉 = 1√
d

∑d−1
i=0 |ii〉 is a maximally entangled state.

Hence, the HQuGAN sets C(Utarg) as a target state,

min
{g}

max
{d}

|Tr[D(ρ({g}) − C(Utarg))]|2, (20)

where ρ({g}) = [I ⊗ U ({g})|
〉〈
|(I ⊗ U †({g})] is generated
by a unitary operator U ({g}) that the generator creates. The
scheme is illustrated in Fig. 4(a). Note that the fidelity
between the Choi matrix C(Utarg) and the generator’s state
ρ({g}) is

F (C(Utarg), ρ({g}) = |〈
|(I ⊗ U †)(I ⊗ Utarg)|
〉|2

= 1

d2

∣∣∣∣∣∣
∑
i, j

〈i| j〉〈i|U †Utarg| j〉
∣∣∣∣∣∣
2

= 1

d2

∣∣∣∣∣
∑

i

〈i|U †Utarg|i〉
∣∣∣∣∣
2

= 1

d2
|Tr(U †Utarg)|2, (21)

which is 1 if and only if U and Utarg differ only by a global
phase, U = eiφUtarg. Therefore, as the generator learns to
generate the Choi matrix, it also learns the target unitary Utarg

up a global phase. It is worth noting that a similar approach
has been explored in the quantum-assisted quantum compiling
algorithm [62], which utilizes a hybrid quantum-classical
variational technique to maximize the Hilbert-Schmidt inner
product between U and Utarg, Eq. (21). The algorithm consists
of three main steps: first, it prepares the maximally entangled
state on 2n-qubits starting from |0〉⊗2n; second, it performs
both U and U T

targ in parallel; and finally, it measures the state
in the Bell basis, where the probability of measuring |0〉⊗2n

corresponds exactly to Eq. (21). While our approach may
appear similar to this algorithm, it is inherently distinct as we
incorporate a minimax game.

We use the HQuGAN with the cost function of Eq. (20) to
generate various unitary operations. We employ the GRAPE
algorithm for both players while maintaining the same setups
as described in Sec. VI A. The HQuGAN terminates when
the fidelity between the Choi matrix and the generator’s state
exceeds 0.999. We first focus on generating simple one-qubit
gates (X, H, I, and T ) and two-qubit gates (CNOT, SWAP,
and CZ). The number of iterations required by the HQuGAN
to successfully generate each target unitary operation is illus-
trated in Fig. 5(a). We find that the HQuGAN can generate
all unitary operations within 12 iterations. Next, we attempt a
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(b)
(a)

FIG. 4. Two different settings for learning an unknown unitary transformation using HQuGANs. (a) Learning using a Choi matrix. A target
unitary transformation Utarg can be represented by a quantum state (or a Choi matrix) C(Utarg ) as described in Eq. (19). Hence, the HQuGAN
sets the Choi matrix as a target state and plays the minimax game described in Eq. (20). The HQuGAN terminates if the fidelity between the
generator’s state ρ({g}) and the Choi matrix exceeds 0.999, which ensures that the two unitary operations are close up to a global phase, as
explained in Eq. (21). (b) Learning using input-output pairs. We are now given m input-output pairs of quantum states for the target unitary
Utarg: {|ψk〉, |φk〉} where |φk〉 = Utarg|ψk〉. The generator aims to find a unitary U ({g}) that maps the m input states to their corresponding
output states, while m discriminators (denoted as D1, . . . , Dm) each seek to discriminate between the corresponding pairs of quantum states.
Therefore, the HQuGAN optimizes a cost function described in Eq. (22), which is a linear combination of m cost functions associated with
each input-output pair. If the fidelity between the generator’s state and the output state for every exceeds 0.999, the HQuGAN terminates. This
guarantees that the minimum fidelity between the two operations also exceeds 0.999.

more challenging task of generating 50 Haar random unitary
operations. The optimal Helstrom measurement operator is
used for the discriminator. As shown in Fig. 5(b), HQuGANs
successfully generate all Haar random unitary operation up to
a gate fidelity of 0.999.

2. Learning using pairs of input-output quantum states

Next, we are given m input-ouput pairs of quantum states
for the target unitary Utarg: {|ψk〉, |φk〉}m

k=1 where |φk〉 =
Utarg|ψk〉. Given such pairs, the HQuGAN now optimizes the
following cost function:

min
{g}

max
{d}

m∑
k=1

|Tr[Dk ({d})(U ({g})ρkU
†({g}) − σk )]|2, (22)

(a)

(b)b)

FIG. 5. Learning various unknown unitary operations using Choi
matrices. (a) The changes in the fidelity of Eq. (21) during the
minimax game described in Eq. (20) are presented. Within 12 iter-
ations, the HQuGAN generate all unitary operations properly. (b) the
mean and standard deviation of the number of iterations taken by
the HQuGAN to generate 50 Haar random unitary operations are
presented. HQuGANs can generate every Haar random unitary op-
erations up to three qubits.

where ρk = |ψk〉〈ψk| and σk = |φk〉〈φk|. Hence, the cost
function above is a linear combination of m cost functions
associated with each pair of (ρk, σk ). The generator tries to
find a unitary that maps the m input states to the final states
respectively, and m discriminators find each Dk that separates
the corresponding pair of quantum states. The scheme is illus-
trated in Fig. 4(b). The HQuGAN terminates when the fidelity
between every pair of the generator’s state and the output state
exceeds 0.999, i.e.,

Fk = F (U ({g})|ψk〉, |φk〉) > 0.999∀k ∈ [m]. (23)

This will guarantee that the minimum gate fidelity [66] be-
tween the generator’s unitary operation U ({g}) and the target
unitary operation Utarg,

min
|ψ〉

F (U ({g})|ψ〉,Utarg|ψ〉), (24)

is also greater than 0.999. We use the HQuGAN with the cost
function of Eq. (22) to learn various unitary operations. we
have kept all setups unchanged from Sec. VI A, and try to
learn the same set of unitary operations as those in the previ-
ous section: one- and two-qubit gates, as well as 50 Haar ran-
dom unitary operations up to three qubits. To determine a tar-
get unitary up to a global phase, we begin by preparing input-
output pairs that can uniquely identify it. The input states
are chosen as {|0〉, . . . , |2n − 1〉, |0〉+|1〉√

2
, . . . ,

|2n−2〉+|2n−1〉√
2

},
where |k〉 is defined as the binary representation of integer
k, with |bi〉 representing a computational basis of qubit i. The
first 2n input states, {|0〉, . . . , |2n − 1〉}, provide elements to
every row of the target unitary matrix up to a phase, while the
the rest, { |0〉+|1〉√

2
, . . . ,

|2n−2〉+|2n−1〉√
2

}, remove the relative phases
between each row of the matrix. Therefore, by using these
input states and their corresponding output states, we can
uniquely identify the target unitary operation up to a global
phase.

Figure 6(a) shows how the minimum fidelity between the
generator’s state and the output state for every such pair [i.e.,
mink Fk , where Fk is defined in Eq. (23)] changes during the
minimax game. Clearly, the HQuGAN is able to generate
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(a)

(b)

(a)

(b)b)

FIG. 6. Learning various unknown unitary operations using
input-output pairs of quantum states. (a) The changes in the min-
imum fidelity between each pair of the generator’s state and the
output state, considered over all possible pairs [i.e., mink Fk , where
Fk is defined in Eq. (23)] during the minimax game described in
Eq. (22) are presented. Within 15 iterations, the HQuGAN generate
all unitary operations properly. (b) The mean and standard devia-
tion of the number of iterations taken by the HQuGAN to generate
50 Haar random unitary operations are presented. The HQuGAN
successfully generates every target unitary operation up to three
qubits.

every gate within 15 iterations. Moreover, Fig. 6(b) indicates
that the HQuGAN can successfully produce every Haar ran-
dom unitary operation up to three qubits. We observe that the
mean number of iterations increases exponentially, similar to
the previous scenario.

We remark that there exists a trade-off between the number
of qubits and the number of distinct discriminators in the two
different settings. The first setting requires a 2n-qubit system
to learn an n-qubit unitary operation, as well as the ability to
prepare a maximally entangled state every time the generator’s
state and the Choi matrix are prepared. The second setting
does not require any additional qubits, but it demands an expo-
nentially large number of input-output pairs of quantum states,
implying that exponentially many distinct discriminators are
required.

VII. COST FUNCTION

In this section we provide additional numerical simulations
to understand the role of cost functions in the convergence of
HQuGANs.

A. Mode collapse

Recently, it has been observed that the loss in the minmax
game

min
θg

max
D

Tr[D(σ − ρ(θg))] (25)

can oscillate between a few values and thus the game may
never converge to the desired Nash equilibrium point, a phe-
nomenon called mode collapse [10]. In the case of Eq. (25) the
fundamental reason for the mode collapse can be understood

from the form of the cost function, where the generator’s
optimization is independent of the target state σ . When
the generator minimizes −Tr[Dρ(θg)] or equivalently max-
imizes Tr[Dρ(θg)], independent of σ , there is a possibility
of overshooting by selecting a generator ρ(θg) that aligns
with D [10]. If D is chosen to be a previous generator’s
state, then the generator’s minimization will output the same
quantum state, falling into a loop, which prevents the game
from converging. This is in agreement with the results in
classical machine learning, where the generators of classical
GANs tend to characterize only a few modes of the true
distribution, but can miss other important modes [36]. In
fact, we observe that mode collapse occurs in almost all in-
stances of the HQuGAN simulations using the cost function
in Eq. (25).

To address this issue, we also use the following cost
function:

min
θg

max
D

|Tr[D(σ − ρ(θg))]|2. (26)

As was discussed in Sec. V, this cost function still guaran-
tees the existence of Nash equilibrium at the same location
as before, i.e., at ρ = σ . In addition, this choice of cost
function guarantees that the generator’s quantum state min-
imizing the cost function is underdetermined. Therefore
there are typically infinitely many states reaching the max-
imum of the cost function, which makes the mode collapse
measure zero. In Appendix C we provide a detailed ex-
planation for a one-qubit example in addition to numerical
experiments.

We have numerically verified that when using the original
cost function shown in Eq. (25), the global Nash equilibrium
cannot be reached for any instance of our numerical exper-
iments. However, when we use the modified cost function
presented in Eq. (26), the equilibrium point is always properly
reached. This result is summarized in Fig. 7, where we present
the change in fidelity between the generator’s state and the
corresponding target state as the HQuGAN proceeds the min-
imax game. Here we aim to generate 50 Haar random qubits
states up to five qubits and use the GRAPE algorithm for both
the generator and discriminator (the system setup remains
unchanged compared to the Sec. VI). The blue lines indicate
the results produced by using the modified cost function,
which successfully generates each target state with a fidelity
of 0.999. However, the original cost function represented by
the red lines fails to generate any states within the desired
fidelity. When considering the one-qubit result, all instances
fall into mode collapse within the first 10 iterations, as shown
in the graph on the far left. In other cases, the fidelity fluctuates
and fails to converge to the desired value. It is evident that for
four- and five-qubit cases, it is uncommon to achieve even a
relatively high fidelity when using the original cost function.
Moreover, even if it does achieve relatively high fidelity, it
eventually falls into mode collapse, resulting in the generator
repeatedly producing only two quantum states. These states
have an overlap of approximately 0.75 with the target state, as
indicated in the figure. Therefore, we have used the modified
cost function for all numerical experiments presented in
this work.
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FIG. 7. A comparison between two different cost functions of Eq. (25) and Eq. (26) for learning Haar random states. We compare the
performance of HQuGANs using GRAPE (for both players) with two different cost functions to generate 50 Haar random quantum states up
to five qubits. By using the modified cost function (blue lines), each state can be generated with a fidelity of 0.999, whereas the original cost
function (red lines) fails to produce any state correctly. Moreover, we notice that using the original cost function eventually falls into mode
collapse, resulting in the generator oscillating between two quantum states indefinitely.

B. Quantum Wasserstein distance of order 1

As discussed earlier, the dual form of the quantum W1

distance makes it possible to express the learning task in terms
of the minimax game described in Eq. (3). It has been shown
that such quantum Wasserstein GAN (qWGAN) exhibits more
favorable loss landscapes compared to other conventional
metrics such as fidelity in learning specific quantum states
[8]. An intuition behind such advantage lies in the fact that
while common (unitary invariant) metrics such as fidelity cap-
ture only the global properties of quantum states (which can
cause barren plateaus [39]), the quantum W1 distance is sensi-
tive to local operations. In fact, the cost function described
in Eq. (14) with ‖D‖∞ � 1 is precisely the trace distance
squared, which is unitary invariant. Hence, we expect that
the quantum W1 distance can give a faster convergence rate
compared to Eq. (14), similar to what was observed in [8].

We thus explore the performance of HQuGANs using the
quantum W1 distance to learn up to the six-qubit GHZ state.
Figure 8 compares the number of iterations of HQuGANs
using the Lipschitz discriminator that calculates the quantum
W1 distance (blue lines) to the optimal discriminator (red
lines) and the quantum optimal control discriminators (green
lines) that exploit both GRAPE and Krotov’s method. For
generating five- and six-qubit GHZ states, we observe that the
HQuGAN using the quantum W1 distance converges faster.

C. Hybrid cost functions

Depending on the nature of the learning task, using multi-
ple cost functions can be more advantageous than using one
cost function. Here we discuss one such scenario.

Although the cost function (25) can lead to mode collapse
in the long run, in Appendix B we show analytically that after
using it only for the first two iterations, the generator generates
a state that is relatively close to the target state. To avoid
the mode collapse we can then switch the cost function to
Eq. (14), which robustly improves the fidelity to the desired
value. Our numerical experiments show that using such a
combined method can generate up to the eight-qubit GHZ
state using extremely smaller numbers of iterations compared
to previous results in Table I. For example, while using the
single cost function of Eq. (C1) takes ∼120 iterations to
generate the six-qubit GHZ state as illustrated in Table I,
the combined method takes only four iterations to generate

the eight-qubit GHZ state. Furthermore, while generating six-
qubit Haar random states on average requires ∼90 iterations,
as demonstrated in Table II, the hybrid approach requires an
average of only ∼7 iterations to generate (up to) eight-qubit
Haar random quantum states. We discuss more details on the
analytical descriptions and numerical results in Appendix B.

VIII. IMPLEMENTATION ON A QUANTUM COMPUTER

To perform gradient-based quantum optimal control tech-
niques such as GRAPE, in addition to estimating the value
of the cost function, we need to estimate the gradients of
the pulses. Calculating the gradients can quickly become
intractable as the system size grows due to the curse of di-
mensionality. To remedy this bottleneck, one can use quantum
computers to directly estimate not only the cost function but
also the gradients of control pulses required [67]. A similar
method called parameter-shift rules [68,69] has been widely

FIG. 8. HQuGANs for learning n-qubit GHZ states using the
quantum W1 distance. Comparing the number of iterations required
by the HQuGAN to learn generalized GHZ states using the quantum
W1 distance discriminator to the previously discussed discriminators.
The utilization of the quantum W1 distance leads to a smaller number
of iterations for learning n = 5 and six-qubit GHZ states compared
to other cases.
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used in the circuit model variational quantum algorithms to
evaluate the gradients of cost functions. Following the same
approach, in this section, we show how one can directly in-
corporate the GRAPE algorithm into the implementation of
the HQuGAN and then analyze the computational costs of
the quantum algorithm, such as sample complexity and other
classical/quantum resources.

A. Estimation of gradients

The gradients for the generator’s cost function in Eq. (14),
to the first order of �t , is [67]

∂

∂εi(t j )
|Tr[D(σ − [σ − ρ({g}])]|2

= 2�t (Tr[D(ρ({g}) − σ )])
[
Tr

(
Dρ

k j
i+

) − Tr
(
Dρ

k j
i−

)]
,

(27)

where ρ
k j
i± = U (tN ) · · ·U (t j+1)Rk

α (±π/2)U (t j ) · · ·U (t1)ρ0

[U (tN ) · · ·U (t j+1)Rk
α (±π/2)U (t j ) · · ·U (t1)]† and Rα is a

(single-qubit) rotation around α axis, corresponding to the
Hamiltonian term in front of εi. Hence, the gradient at time
t j can be calculated by estimating expectation values of
operator D with respect to two quantum states ρ

k j
i+ and ρ

k j
i− .

These quantum states can be prepared by implementing
three unitary transformations on a quantum annealer: (1)
U (tN , t j+1), (2) Rk

α (±π/2), and (3) U (t j, t1), where U (tm, tn)
is a unitary from time tn to tm. Likewise, calculating cost
functions require only use of the annealer once. Note that
penalty terms (JP) can be efficiently calculated via classical
computers.

B. Complexity analysis

HQuGANs find parameters of a given time-dependent
Hamiltonian to generate an unknown quantum state. The
closest, but not necessarily directly comparable, approach to
accomplish the same task is to simply perform quantum state
tomography (QST) on the unknown state to obtain the full
classical descriptions of the state and then perform an optimal
control method to find the parameters of the Hamiltonian that
generates the state. Each step of this approach requires ex-
ponential, in the number of qubits, resources to learn general
quantum states. The proposed HQuGAN framework provides
an alternative method to generate the unknown quantum state
directly, without using the classical description of the state. To
examine this more rigorously, we analyze the computational
cost of the HQuGAN using GRAPE.

It is important to note that both the sample complexity
and classical postprocessing time for the HQuGAN are pro-
portional to the total number of iterations of the algorithm
which is unknown in general even for classical GANs. (While
the computational complexity of solving approximate local
solutions in GANs has been studied [70], a precise bound for
global Nash equilibria is not known.) This sets a barrier to
comparing the complexity of the HQuGAN to other existing
algorithms such as QST in adaptive measurement settings
[71,72]. Characterizing the set of quantum states that can
provably be learned more efficiently using the direct approach

of the HQuGAN framework compared to the QST approach
is an open question.

1. Sample complexity

In terms of sample complexity, recall that we need to es-
timate four distinct expectation terms in calculating Eq. (27),
where each estimation takes O(‖D‖2/ε2) copies of σ, ρ, ρ

k j
i+

or ρ
k j
i− with precision ε. Similarly, the discriminator takes

O(‖D‖2/ε2) copies of all four states. In our setting, a sin-
gle optimization step of the generator then requires O(N/ε2)
copies of all four states in order to estimate the gradients
for all the N time grids/Trotter number (∵ ‖D‖2 = 1). For
Trotter error δ and a fixed evolution time T , we need the Trot-
ter number N = O(nT 2/δ) in the first-order product formula
[73]. Although a rigorous (global) convergence rate for the
optimization required for the optimal control of the generator
and discriminator is unknown in general, a favorable scaling is
expected for generic problems with a high number of control
parameters [74,75].

2. Classical storage

The maximum storage amount that the HQuGAN requires
is proportional to the size of the gradient vector (or Hes-
sian matrix if we utilize quasi-Newton optimization methods)
of the cost function at each time for all the control pulses.
Since the HQuGAN can forget about past gradient values, the
required classical storage is O(poly(n)), independent of the
number of iterations. This shows a substantial improvement
compared to the classical storage required by quantum state
tomography (QST) or self-guided QST [76], which is (at least)
exponential in n. Hence, the HQuGAN could prove valuable
when we need to generate an unknown quantum state without
the need to store an extensive classical memory for its classi-
cal representation.

IX. CONCLUSION

We have introduced a framework to learn arbitrary
(unknown) quantum states using two competing optimal con-
trol techniques. This framework leverages techniques from
QuGANs and quantum optimal controls (QOC), leading to in-
sights and methodology for learning unknown quantum states
under time-continuous dynamics. Applying optimal control
directly to the time-dependent Hamiltonian explores a larger
set of unitaries than the gate-based approach and is applicable
to a wide variety of quantum information processing plat-
forms such as superconducting processors, ion-trap quantum
computers, and diabatic quantum annealers. We demonstrated
the capabilities of the proposed framework by performing nu-
merical experiments to generate various many-body quantum
states using the two popular gradient-based QOC methods,
GRAPE and Krotov’s method, under experimentally realistic
constraints on pulse amplitudes and bandwidths. Also, we
extended the HQuGAN to learn quantum processes.

We discussed the role of the cost function in reaching the
equilibrium point, by avoiding mode collapse and also the
convergence rate. We provided numerical experiments that
show that the quantum W1 distance gives faster convergence
of the minimax game when generating generalized GHZ states
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for higher system sizes. Moreover, we observe that exploiting
multiple forms of cost functions properly could give a large
advantage in terms of the rate of convergence of the algorithm.
Since computations for QOC methods become intractable as
system size increases, we remark that estimating the required
cost functions and their gradients can be directly incorporated
into the HQuGAN framework.

A promising direction to extend this work would be consid-
ering the effect of noise and control errors in preparing pure
or more generally mixed quantum states. Also, it is natural to
extend our unitary learning procedures to learn quantum chan-
nels. Given the iterative nature of the algorithm, we expect the
framework to provide a natural robustness to noise, similar to
what has been observed in variational quantum circuits [77].
From an algorithmic perspective, finding rigorous bounds on
the total iterations of the minimax game is a major open
problem.
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APPENDIX A: TRAINING A GENERATOR
AND A DISCRIMINATOR USING GRAPE

We give a detailed explanation of how the generator and the
discriminator are trained with respect to the GRAPE method,
i.e., lines 6 and 11 in Algorithm 1. Here we focus on the
minimax cost function we used to obtain our main numerical
results in Sec. VI:

min
{g}

max
{d}

|Tr[D({d})(σ − ρ({g})]|2, (A1)

where {g} and {d} indicate control fields for the genera-
tor and the discriminator, respectively. Let N , T , �t , and
H (t ) = H0 + ∑

k εk (t )Hk denote the Trotter step, the evolu-
tion time, T/N , and the time-dependent Hamiltonian given to
either the generator or the discriminator with control fields
εk (t ). The GRAPE algorithm discretizes the time domain into
small pieces and approximates the Hamiltonian to be time-
independent. We denote H (t j ) = H0 + ∑

k εk (t j )Hk by the
time-independent Hamiltonian within interval [t j, t j + �t].

1. Training a generator

The GRAPE method requires a gradient of the cost func-
tion with respect to the control field gi at a time grid t j ∀i ∈
[1, m],∀ j ∈ [1, N], which can be expressed as

∂

∂gi(t j )
|Tr[D(σ − ρ({g}))]|2

= 2|Tr[D(σ − ρ({g}))]| ∂

∂gi(t j )

× (Tr[D(σ − ρ({g}))])

= 2|Tr[D(σ − ρ({g}))]| ∂

∂gi(t j )
Tr[Dρ({g})], (A2)

where the last equality is because the target state σ is inde-
pendent of the generator’s control fields gi(t j ) ∀i, j. In the
GRAPE method, we usually approximate the gradient to the
first order of �t [21]:

≈2|Tr[D(σ − ρ)](−i�tTr[Dj[Hi, ρ j]]), (A3)

where Dj=U †(t j+1) . . . U †(tN )DU (tN ) . . . U (t j+1), ρ j=U (t j )
. . . U (t1)ρ0U †(t1) . . . U †(tN ), and U (t j ) = exp[−i�tH (t j )].
Hence, training the generator consists of two steps. First,
we calculate and store ρ j ∀ j ∈ [1, N], and similarly for
Dj ∀ j ∈ [1, N]. Then we update control fields for all time
grids by calculating Eq. (A3) ∀i, j. The update procedure
is repeated until termination criterion is achieved, which is
when either the norm of the gradient or the objective function
|Tr[D(ρ − σ )]|2 is less than 10−5. Although these calculations
are performed classically, it is possible to reformulate the
gradient equation Eq. (A3) in a manner that allows for the use
of quantum computers to compute gradients, as described in
Eq. (27) [67].

2. Training a discriminator

Recall that the discriminator aims to find a sequence
of control fields {d} that generate a unitary transformation
U ({d}) before a fixed measurement operator D0, which maxi-
mizes Eq. (A1). This is equivalent to

max
{d}

Tr[U †({d})D0U ({d})(ρ − σ )]. (A4)

By cyclic property of trace, the objective function is
identical to

Tr[D0U ({d})(ρ − σ )U †({d})], (A5)

which can be viewed as an expectation value of the fixed
measurement operator D0 with respect to a time-evolved state
from an initial state of ρ − σ . Hence, similar to the previous
section, we can approximate the gradient to the first order
of �t :

∂

∂di(t j )
Tr[D0U ({d})(ρ − σ )U †({d})] (A6)

≈ −i�tTr[Dj[Hi, (ρ − σ ) j]], (A7)

where Dj = U †(t j+1) . . . U †(tN )DU (tN ) . . . U (t j+1), ρ j = U
(t j ) . . . U (t1)(ρ − σ )U †(t1) . . . U †(tN ), and U (t j ) = exp
[−i�tH (t j )]. Hence, similar to the generator’s turn, training
the discriminator consists of two steps. First we calculate and
store (ρ − σ ) j ∀ j ∈ [1, N] and similarly for Dj ∀ j ∈ [1, N].
We then update control fields for all time grids by calculating
Eq. (A6) ∀i, j. The update procedure is repeated until
termination criteria is achieved, which is the norm of
the gradient is less than 10−5. It is worth noting that the
convergence criteria for the discriminator should be based
solely on the norm of the gradient, rather than the value
of the cost function. This is because, in practice, it is not
feasible to obtain knowledge of the extreme value of the cost
function. We also remark that, like the generator, the gradient
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of the discriminator can also be computed using quantum
computers. This can be accomplished by substituting ρ − σ

for ρ0 in Eq. (27).

3. Evaluating fidelity between generated and target states

After each round of the minimax game between the gen-
erator and the discriminator is completed, it is important to
calculate the fidelity between the generated state and the target
state to determine the convergence of the HQuGAN algo-
rithm. The discriminator’s cost function can be used to obtain
this fidelity: if the discriminator successfully maximizes its
cost function, it will ultimately become equivalent to the trace
distance between the two quantum states. However, it should
be noted that there is no guarantee that the discriminator will
converge to the optimal Helstrom measurement operator that
fully maximizes its cost function. Nonetheless, as mentioned
in Sec. VI, numerical evidence suggests that the discriminator
always approaches this optimal measurement operator. This
enables it to converge to the trace distance between the two
quantum states, which can be utilized to calculate the fidelity
(for pure states). When working with mixed states, the trace
distance can be used as the figure of merit instead of fidelity.

APPENDIX B: USING HYBRID COST FUNCTIONS

In this Appendix we suggest a method to speed up the
convergence of the proposed HQuGAN by using two different
cost functions. We first observe that the measurement operator
D that maximizes Tr[D(ρ − σ )] can be chosen to be propor-
tional to ρ − σ , if ρ and σ are pure quantum states.

The constant of proportionality depends on the Schatten
p-norm constraint on D (i.e., ||D||p � 1) and a positive eigen-
value of ρ − σ .

Lemma 1. For any p and any two pure states ρ and σ , the
maximum of the cost function

max
||D||p�1

Tr[D(ρ − σ )] (B1)

can be achieved by the following operator:

D∗ = 2− 1
p (|P+〉〈P+| − |P−〉〈P−|) = 2− 1

p

λ
(ρ − σ ), (B2)

where |P±〉〈P±| are projection operators onto positive and
negative eigenspaces of ρ − σ respectively, and ±λ are eigen-
values of ρ − σ .

Proof. It is straightforward to check that the proposed D∗
saturates the upperbound posed by Hölder’s inequality,

Tr(AB) = ||A||p||B||q, (B3)

for any p and q satisfying 1 − 1
p = 1

q . First using the defini-

tions we have ||ρ − σ ||q = 2
1
q λ and

||D∗||p = (|2− 1
p |p + |2− 1

p |p)1/p = 1. (B4)

The proof is then completed by noting that

Tr[D∗(ρ − σ )] = Tr[2− 1
p (|P+〉〈P+| − |P−〉〈P−|)

× λ(|P+〉〈P+| − |P−〉〈P−|)]
= 2− 1

p 2λ

TABLE IV. Learning Haar random and generalized GHZ states
using HQuGANs with a hybrid cost function. The table summarizes
the number of iterations required to learn generalized n-qubit Haar
random and GHZ states using the HQuGAN with a hybrid cost
function. We generate 50 Haar random states and report the mean and
the standard deviation of number of iterations. Using the hybrid cost
function requires substantially fewer iterations than using a single
cost function (see Tables I and II). The generator is optimized using
the GRAPE algorithm. T and N refer to the evolution time and the
Trotter number, respectively.

n Iter. (GHZ) Iter. (Haar) T N

5 4 7.44 ± 3.11 20 200
6 5 6.24 ± 4.32 30 300
7 4 6.26 ± 3.67 40 400
8 4 5.55 ± 10.29 50 500

= 1 × 21− 1
p λ

= ||D∗||p||ρ − σ || 1
1− 1

p

. (B5)

Now consider the HQuGAN optimizing a minimax game
described in Eq. (2),

min
ρ

max
D

Tr[D(ρ − σ )], (B6)

where a target state σ and an initial choice for D are arbitrarily
chosen. We consider the optimal discriminator that analyt-
ically calculates her operator via Eq. (B2). Here we argue
that, after two rounds of interactions between two players, the
generator will output a quantum state with high fidelity to the
target state.

In the first round, the generator minimizes Tr(Dρ1), which
will output a random quantum state ρ1 as D is initialized ran-
domly. In the next round, the optimal discriminator chooses
D1 ∝ (ρ1 − σ ) as shown in Lemma 1. The generator then
tries to find ρ2 such that Tr(D1ρ2) ∝ Tr[(ρ1 − σ )ρ2] is mini-
mized. Since ρ1 and σ are random quantum states, the fidelity
between the two states would generically be exponentially
small. Therefore, assuming that the generator always outputs
a pure state, ρ2 ≈ σ . As a consequence, the generator at
the second round of the algorithm already gives a quantum
state that achieves a high fidelity with the target state. To avoid
the described mode collapse in future rounds, and improve the
fidelity to any desired accuracy, we then switch our cost func-
tion to Eq. (14). Subsequently, we can combine two different
cost functions to make the algorithm converge faster.

We numerically confirm that using such a protocol, the
HQuGAN successfully generates up to eight-qubit Haar ran-
dom and GHZ states with substantially fewer iterations. As
shown in Table IV, it took only four iterations to generate the
eight-qubit GHZ state whereas using a single cost function of
Eq. (14) described in the main part (see Table 1) took ∼90
iterations to generate the six-qubit GHZ state. Furthermore, it
took on average only ∼7 iterations to generate up to seven-
qubit Haar random quantum states, whereas using a single
cost function took ∼90 iterations for generating six-qubit
Haar random states. In fact, Fig. 9 shows the mean and the
standard deviation of the fidelity between the generator’s state
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FIG. 9. Fidelity between the generator’s state and the target state
after two rounds of the minimax game. We plot the mean and the
standard deviation of the fidelity between the generator’s state and
the target state after two rounds of the minimax game for learning
50 Haar random states (blue). As expected, the generator generates
a state with a high fidelity with the target state after two rounds of
the game, and this fidelity approaches 1 as the system size increases.
For example, when generating eight-qubit GHZ state (purple), the
generator after the second iteration already gives a very high fidelity
≈0.999. Thus, only two more iterations are needed to achieve a
desired fidelity >0.999.

and the target state after two rounds of the minimax game
for learning 50 Haar random states. The fidelity approaches
1 as the system size increases. As previously stated, the pri-
mary reason for this is that two random states, ρ1 and σ , in
general have small overlaps, which decreases exponentially
as the system size increases. Therefore, the generator in the
second round of the game will have more support on σ rather
than ρ1 as the system size grows. In fact, as shown in the
figure, the fidelity for the six- seven-, and eight-qubit system
is approximately 0.9965, 0.9976, and 0.9986 respectively. As
a result, by switching the cost function to Eq. (14), it takes
only a few additional iterations to achieve the desired fidelity
of 0.999.

When the discriminator uses quantum optimal control
methods to find the measurement, we can still achieve the
advantage by initializing D0 as a rank-2 matrix because the
rank-2 Helstrom measurement is unique (we have numerically
validated this in Fig. 2.) However, if D0 has a higher rank,
the aforementioned advantage cannot be necessarily achieved.
This is due to the fact that the optimal choice of the dis-
criminator will have a higher rank than two, and therefore
the generator’s state in the next round can have support on
eigenvectors of the discriminator that are not proportional to
ρ1 − σ . It is also worth noting that if either the generator’s
state or the target state is a mixed state, then the hybrid
approach no longer accelerates convergence, as the optimal
Helstrom measurement must have a rank greater than 2.

APPENDIX C: MODE COLLAPSE

A QuGAN might not always converge to a good Nash
equilibrium point due to the mode collapse phenomenon. In
this Appendix we review this issue raised in Ref. [10] and
study how alternative cost functions can remedy this problem.

To be consistent with the notations used in Ref. [10], we
assume all discriminator operators D are POVMs (only in this
section).

1. Mode collapse example

Below we review a concrete example of mode collapse
presented in [10], by considering the minimax game

min
θg

max
D

Tr[D(σ − ρ(θg))]. (C1)

It is important to note that for this cost function, the gener-
ator always tries to align his state ρ with the discriminator’s
previous operator D, independent of the target state σ , and
therefore can overshoot. More concretely, starting from the
following generator’s initial state ρ and target state σ :

σ = 1 + cos(π/6)X + sin(π/6)Y

2
, (C2)

ρ = 1 + cos(π/6)X − sin(π/6)Y

2
, (C3)

the players will follow the following steps:
Step 1 (Discriminator): Since σ − ρ = Y/2, the optimal

Helstrom measurement operator is D1 = P+(σ − ρ) = (1 +
Y )/2.

Step 2 (Generator): Given D1, the generator tries to min-
imize (C1), or equivalently to maximize Tr[D1ρ(θg)]. If we
set ρ1 = (1 + axX + ayY + azZ )/2, then Tr(D1ρ1) = 1/2 +
ay/2 is maximized when ay = 1, which yields ρ1 = D1 =
(1 + Y )/2 as the unique solution.

Step 3 (Discriminator): The optimal Helstrom measure-
ment operator is D2 = P+(σ − ρ1) = ρ.

Step 4 (Generator): Again, the generator tries to align
his state ρ2 with D2 = ρ to maximize Tr(D2ρ2), which is
achieved uniquely by choosing ρ2 = ρ. Therefore, we are
back to Step 1 and the algorithm repeats forever.

2. Cost function with absolute value

In this section we consider a cost function that is minimized
only if the generated state has the same expected value as the
target state σ with respect to the discriminator D,

min
θg

max
D

|Tr[D(σ − ρ(θg))]|2, (C4)

and first show that this cost function can prevent the mode
collapse issue discussed in the previous section.

Step 1 (Discriminator): This round is the same as the pre-
vious section; the (optimal) Helstrom measurement operator
is D1 = P+(σ − ρ) = (1 + Y )/2.

Step 2 (Generator): Unlike before, the generator this
time tries to find ρ(θg) such that Tr[D1ρ(θg)] is equal to
Tr(D1σ ) = 3/4. Since Tr(D1ρ1) = 1/2 + Tr(ρ1Y/2) must be
3/4, any ρ1 satisfying Tr(ρ1Y/2) = 1/4 is a solution or equiv-
alently any ρ1 = (1 + axX + Y/2 + azZ )/2 where a2

x + a2
z =

3/4 (assuming unitary dynamics) satisfies this constraint.
Note that in contrast to the previous section, there are in-
finitely many values of ax and az that the generator chooses to
produce ρ1, and therefore the probability of a random choice
of generator in the next round producing ρ2 = ρ is zero.

It is important to remark that the modified cost function
in Eq. (C4) can cure mode collapse more generally, beyond
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the example shown above. The main observation is that the
equation Tr(Diρi ) = Tr(Diσ ) is always underdetermined, and
therefore there are infinitely many ρi satisfying this equation.
[The only exception is when Di is rank one, and Tr(Diρi ) =
Tr(Diσ ) = 1, but this is only possible if Di = σ = ρi, which
is the desired fixed point.] Although there are infinitely many
choices for ρi, mode collapse only occurs when ρi = ρi−2.
This indicates that the set of states that cause mode collapse
using the modified cost function has measure zero. Indeed,
using the modified cost function, mode collapse is never ob-
served in our numerical experiments.

APPENDIX D: HQUGANS USING KROTOV’S METHOD

In this Appendix we describe more details about Krotov’s
method [22] as well as additional numerical experiments
using HQuGANs with Krotov’s method. Krotov’s method
rigorously investigates the conditions for updating a time-
continuous control field such that the updated field guarantees
to decrease a cost function. To achieve this task, the method
carefully updates a control field at time t j based on all of
the control fields at tk for ∀k < j that are previously updated.
This guarantee of monotonic convergence for time-continuous
control fields is what distinguishes Krotov’s method from
other quantum optimal control methods. We discuss Krotov’s
method more in detail below.

1. Krotov’s method

Krotov’s method [22] is based on the rigorous examination
of the conditions for calculating the updated control fields
such that it always guarantees monotonic convergence of
J[{εi(t )}] by construction. Krotov’s method considers a more
standard form of the cost functional [22],

J[{εi(t )}, {|ψ (t )〉}] = JT [{|ψ (T )〉}]

+
∫ T

0
dt g[{εi(t )}, {ρ(t )}, t], (D1)

where JT is the main objective functional that depends on
the final time T [e.g., F in Eq. (7)] and g = ga[{εl (t )}, t] +
gb[{|ψk (t )〉, t] captures additional costs or constraints at inter-
mediate times, for instance, by restricting the field spectra or
by penalizing population in certain subspaces.

To minimize the field intensity and to smoothly switch the
field on and off, ga can be chosen to be in the following
form [59]:

ga[{ε(t )}] = λ

S(t )
[ε(t ) − εref (t )]2, (D2)

where εref (t ) denotes some reference field, S(t ) is a shape
function and λ is a step size (we discuss more details on
these parameters later). Given such a specific choice of the
functional ga, Krotov’s method updates control fields [22,78]

�ε
(k)
i (t ) = Si(t )

λi
Im

[
〈χ (k−1)(t )

∣∣∣∣
(

∂H

∂εi(t )

)∣∣∣∣
(k)

|φ(k)(t )〉
]
.

(D3)

|φ(k)(t )〉 and |χ (k−1)(t )〉 are forward-propagated and
backward-propagated under the guess controls {ε (k−1)

i (t )} and
optimized controls {ε (k)

i (t )} in each iteration k, respectively,
through

∂

∂t
|φ(k)(t )〉 = − i

h̄
H (k)|φ(k)(t )〉, (D4)

∂

∂t
|χ (k−1)(t )〉 = − i

h̄
H†(k−1)|χ (k−1)(t )〉 + ∂gb

∂〈φ|
∣∣∣∣
(k−1)

, (D5)

with the boundary condition of

|χ (k−1)(T )〉 = − ∂JT

∂〈φ(T )|
∣∣∣∣
(k−1)

. (D6)

The optimization process of Krotov’s method proceeds as
follows: It first constructs |χ (k−1)(T )〉 according to Eq. (D6),
which is propagated through the backward propagation of
Eq.(D5) over the entire time grid from t = [T, 0]. During
the back-propagation stage, all states |χ (k−1)(t )〉 at each time
t = tk must be stored in a memory. Then, starting from a
given initial state |φ(k)(0)〉, the method updates a control pulse
at the first time grid t = t1 using the update equation (D3),
where 〈χ (k−1)(0)| is one of the back-propagated states we
stored in the first step. From this updated control field, we
obtain a time-evolved state |φ(k)(t1)〉. We then update the next
control field at t = t2 via the update equation in Eq. (D3)
using the previously obtained |φ(k)(t1)〉. The procedure is
repeated until control fields at all N time grids are updated.
This updated control field guarantees to decrease the cost
functional J [45].

In a single iteration, Krotov’s method thus requires more
resources compared to GRAPE because it needs to solve
the Schrödinger equation 2N times where N is the number of
time grids. In addition, the method requires an exponentially
large memory to store all the backward-propagated states.
However, due to the monotonic convergence of Krotov’s
method, the method not only is more stable but can also
converge faster than other quantum optimal control techniques
depending on the cost functions [79].

2. Numerical experiments with limited control amplitudes

In Sec. VI E we presented the numerical results of generat-
ing various entangled states using the HQuGAN with Krotov’s
method. In this section, we perform two additional numerical
experiments by constraining amplitudes of control fields to
show that the HQuGAN successfully works for larger systems
and can be experimental-friendly. First, we bound the control
amplitudes by ±1 and try to generate generalized GHZ states
using the HQuGAN with the optimal discriminator. To reduce
the simulation time, we use less number of steps for the gener-
ator for a high number of qubits. As summarized in Table V,
the HQuGAN using Krotov’s method successfully generates
(up to) the nine-qubit GHZ state. As we monotonically in-
crease the evolution time T by 10 for one-qubit increment, the
number of iterations of the HQuGAN grows exponentially.
To see how T affects the number of iterations, we generate
the nine-qubit GHZ state with three different T = 60, 70,
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TABLE V. HQuGANs using Krotov’s method for learning n-
qubit GHZ states using the optimal discriminator. The number of
iterations required to learn n-qubit GHZ states up to n = 9, with
limited control amplitudes using the Krotov’s method. Gen. iter. and
Tot. iter. refer to the maximum number of generator’s steps in each
round and the total number of iterations taken by the HQuGAN
to converge respectively. (To reduce simulation time, an optimal
discriminator for all instances and a smaller number of generator
steps for larger systems are used.)

n Gen. iter. Tot. iter. T N

1 10 3 5 50
2 10 8 5 50
3 10 18 5 50
4 10 52 10 100
5 10 128 10 100
6 10 264 20 200
7 5 530 30 300
8 3 1330 40 400
9 3 1234 60 600
9 3 911 70 700
9 3 415 100 1000

and 100. When T is increased, the number of iterations of
the HQuGAN reduces significantly. This behavior numeri-
cally validates the intuition that longer T introduces more
parameters that assist to achieve a faster convergence rate,
and provides a way to examine a more rigorous relationship
between the convergence rate and the number of parameters.

We next consider an experimental setup where the co-
efficient for ZZ-interaction term in Eq. (15) is set to
J = 100 (MHz) and the amplitudes of control fields are lim-
ited by |εi(t )| � 1 (GHz). We try to learn the GHZ state for
various total evolution times from T = 20 to 100 (ns). We use
the optimal discriminator and set the generator’s optimiza-
tion steps to be 10 for all instances. As shown in Fig. 10,
the HQuGAN successfully produces the GHZ state for all
instances. As we increase evolution time from T = 20 to 70,

FIG. 10. HQuGANs for learning the GHZ state using Krotov’s
method under experimental parameters. For the LFTIM Hamiltonian
described in Eq. (15), we set J = 100 (MHz) and aim to generate the
GHZ state by limiting control amplitudes as |εi(t )| � 1. The learning
task was performed for various evolution time from T = 20 to 100
(ns). The step size is kept the same for all cases (λ = 10).

the number of iterations decreases monotonically and stays
around similar values after then, which again verifies that
more evolution time improves the convergence rate of the
algorithm.

3. Parameters of Krotov’s method

In this section, we describe the parameters of Kro-
tov’s method used in the numerical experiments. First, note
that Krotov’s method primarily requires backpropagating the
Schrödinger equation from the boundary condition |χ (T )〉 in
Eq. (D6), which depends on the cost function JT . Since the
generator of the HQuGAN minimizes JT = |Tr[D(ρ − σ )]|2,
the boundary condition becomes

|χk (T )〉 = − ∂JT

∂〈ψ (T )| = −2Tr[D(ρ(T ) − σ )][D|ψ (T )〉].

(D7)

We can define the boundary condition similarly for the dis-
criminator.

In addition, there are two main hyperparameters of Kro-
tov’s method that we need to set: the shape function S(t ) and
the step width λ, as introduced earlier in Eq. (D2). The shape
function contributes to the update size of the control pulses
at each time grid and is encouraged to be smoothly switched
on and off around t = 0 and T to make the optimized pulses
smooth, ensuring the boundary condition of pulses, if needed.
The step width λ determines the overall magnitude of �ε as
can be observed in Eq. (D3). If λ is too large, then the size
of the pulse update �ε becomes very small, causing a slow
convergence. If λ is too small, on the other hand, then �ε

becomes very large, causing the optimization unstable [45].
For all numerical experiments that we have performed us-

ing Krotov’s method, the shape function S(t ) is chosen as the
following flat-top function:

S(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2[πt/(2 t.rise)], if t � t.rise

sin2[π (t − T )/(2 t.fall)], if t � T − t.fall
0 if t = 0 or t = T
1 otherwise,

(D8)

where t.rise = t.fall = T/20 (This shape function, which has
been used in previous studies [45,79], ensures a boundary
condition and switches on and off smoothly around t = 0
and t = T .) As there is no rigorous method to find an ideal
value for the step width λ, we found proper values of λ

for different numerical experiments by trials and errors. For
learning n = 1, . . . , 6-qubit GHZ states shown in Table III,
we set λ = 2, 5, 10, 10, 50, 50, respectively. For generating
Table V and Fig. 10, we set λ = 2 and 10 to generate,
respectively.

APPENDIX E: BANDWIDTH LIMITATIONS

Generating bandwidth-limited control fields is an im-
portant task as precise high-bandwidth control pulses
are difficult to implement in many experiments. In this
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FIG. 11. (Zoomed) The fast Fourier transforms (FFTs) of the
optimized control fields. The FFTs of optimized control fields that
generate the GHZ state under the LFTIM Hamiltonian with a single
control field (E1) for T = 10 and 20, where the optimization is
performed (a) without the penalty term and (b) with the penalty
term. In (b) the HQuGAN generates low-bandwidth control fields
[compared to the free optimization case in (a)] with the assistance of
the penalty term. In addition, as the evolution time gets doubled, for
both cases, the maximum frequency or the bandwidth of controls de-
creased significantly, which is in agreement with the time-bandwidth
quantum speed limit.

section, we show that the proposed HQuGAN with GRAPE
can generate low-bandwidth control fields by proposing the
penalty term Jp described earlier in Eq. (11). Also, we verify
that the algorithm obeys the time-bandwidth quantum speed
limit in Eq. (12).

We consider a three-qubit LTFIM Hamiltonian with only a
single control field ε(t ) that controls all local Pauli terms in

the Hamiltonian,

H (t ) = ε(t )
n∑

i=1

(Xi + Zi ) −
n−1∑
i=1

ZiZi+1, (E1)

where ε(0) = 1 is set to be a constant pulse. The reason for
having only one control field is to compare the bandwidths
of optimized control fields in different cases more directly.
The goal of the HQuGAN is to produce the GHZ state, and
we consider two different evolution times T = 10 and 20 to
examine how the bandwidth of optimal control fields depends
on T . To estimate the bandwidth of a control field, we perform
the fast Fourier transform (FFT) of the control field and then
record the maximum value of frequency where its amplitude
component is greater than 0.05. For accurate FFT, the number
of samples (i.e., Trotter number) is set to be 100T in both
cases.

We first optimize the HQuGAN without the penalty term Jp

to generate the GHZ state. The FFTs of the optimized control
fields are displayed in Fig. 11(a). In the figure, the bandwidth
wmax for each case is marked using a red dot and a dashed line:
wmax = 1.5 × 2π for T = 10 and wmax = 0.95 × 2π for T =
20. We then conduct the same task by adding the penalty term
Jp to the cost function. Since such constrained optimization
highly depends on the values of the hyper-parameter α in Jp,
we try different values of α and report the case that gives the
smallest value of Jp in Fig. 11(b). The bandwidths are reported
as wmax = 2π for T = 10 and wmax = 0.6 × 2π for T = 20.
This clearly shows that introducing Jp to the HQuGAN leads
the algorithm to produce a control field with lower bandwidth.
We also observe that doubling T lowers the bandwidth of the
control field almost by half. This numerically validates the
time-bandwidth limit in Eq. (12), which allows us to under-
stand a rigorous relationship between a number of parameters
of the HQuGAN that depends on total evolution time T and
permissible values of the bandwidth of controls.
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