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Deconfined quantum criticality of nodal d-wave superconductivity, Néel order,
and charge order on the square lattice at half-filling
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We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and
a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions
are chosen so that they match with those of the spinons of the π -flux spin liquid. Global symmetries of all
gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard
model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average
background π -flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in
a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2)
gauge theory displays several confining/Higgs phases: a nodal d-wave superconductor, and states with Néel,
valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions
between these phases that are very likely described by (2 + 1)-dimensional deconfined conformal gauge theories,
and we present large flavor expansions for such theories. These include the phenomenologically attractive case
of a transition between a conventional insulator with a charge gap and Néel order, and a conventional d-wave
superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply
our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond
solid (Kekulé), and Dirac semimetal phases.
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I. INTRODUCTION

The cuprate high-temperature superconductors display a
complex phase diagram involving low-temperature (T ) phases
with d-wave superconductivity, Néel antiferromagnetic order,
and charge order, and the higher T pseudogap and strange
metals [1]. The remarkable pseudogap metal phase is of cen-
tral importance, and many of its properties can be described
by a model of hole pocket Fermi surfaces [2–19]. Such Fermi
surfaces enclose an area distinct from the Luttinger volume,
and this requires the presence of a background spin liquid,
realizing a state that has been called a “fractionalized Fermi
liquid” (FL*) [20–22]. Recent works [18,23] have proposed
that the low-T cuprate phase diagram can be understood from
a theory of the confining instabilities of a FL* state with a
“π -flux” critical spin liquid on the square lattice. The critical
spin liquid emerges from a background into a central role in
such confining transitions, and a detailed understanding of
its role then becomes a central ingredient in unraveling the
mysteries of the cuprate phase diagram.

An important feature of the FL* theory is that its frac-
tionalized excitations have the same basic structure as that
in a Mott insulator at half-filling, even though the pseudogap
state is at nonzero doping. The doping is accounted for by
the hole pocket Fermi surfaces, which are coupled to the spin
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liquid. Given this relatively innocuous influence of nonzero
doping, the present paper will investigate a simpler model that
remains at half-filling, but has the same set of conventional
symmetry-breaking phases without fractionalization at low
temperatures, as at nonzero doping: a d-wave superconductor
with four nodal points for Bogoliubov quasiparticles, and
conventional states with Néel, valence-bond solid, charge, or
staggered current orders. There are quantum phase transitions
between these states that are very likely described by decon-
fined critical points, allowing a systematic study of associated
critical spin liquids. Our simpler model should be amenable
to numerical simulations by the well-developed methods of
lattice gauge theory of relativistic systems [24], and shed light
on the role of spin liquids in the phase diagram of the cuprates.

We begin by noting a few recent developments that relate
to the FL*-confinement proposal of Ref. [18]:

(i) Angle-dependent magnetoresistance measurements on
the underdoped cuprates [25] are consistent with hole pocket
Fermi surfaces [2–19].

(ii) A long-standing issue with the hole pocket model of the
pseudogap metal is that the pairing of quasiparticles around
the hole pocket leads to a d-wave superconductors with eight
nodal points [26]. This problem can be resolved by not view-
ing the onset of superconductivity from the pseudogap normal
state as a BCS-like pairing of electronic quasiparticles on
the Fermi surface. Instead, the spin liquid of the pseudogap
already features a singlet pairing of electrons [27], and we
should consider the onset of superconductivity as a confining
transition of the π -flux spin liquid by the condensation of a
fundamental Higgs scalar. (In both viewpoints, the nonzero
temperature transition of the onset of superconductivity
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remains in the Kosterlitz-Thouless universality class.) Then
the fermionic spinon nodal points of the spin liquid annihilate
four of the nodal points descending from the hole pockets,
and we obtain a d-wave superconductor with four nodal points
[23,28], as is expected in a conventional BCS state. Moreover,
the large velocity anisotropy of the nodal quasiparticles is
easily obtained in this approach.

(iii) Recent work [29] has proposed an explanation of the
high-field quantum oscillations by considering the influence
of the fermionic spinons across the transition from FL* to the
field-induced charge-ordered state.

(iv) Photoemission observations in the electron-doped
cuprates [30] show a gap maximum at an intermediate wave
vector away from the edge of the Brillouin zone, and not on
the Fermi surface. This feature is also obtained as a conse-
quence of the background spin liquid [23]. Indeed, even when
the pseudogap metal has no Fermi surfaces intersecting the
zone diagonals, the resulting d-wave superconductor still has
four nodal points along the zone diagonals, and these are
directly descended from the nodal spinons of the underlying
spin liquid [23].

(v) Numerical fuzzy sphere and other studies have found
evidence for π -flux spin liquid criticality, which ultimately
gives way either to “pseudocriticality” [31] or nearby multi-
criticality [32–35]. In contrast, the commonly used “staggered
flux” spin liquid [36] is expected to be strongly unstable to a
trivial monopole [37,38].

(vi) Numerical studies [39–43] of S = 1/2 square lattice
antiferromagnets with first- and second-neighbor exchange
interactions (the J1-J2 antiferromagnet) display a transition
from the Néel state to valence bond solid order [44,45], across
an intermediate spin-liquid regime that is likely described
by the π -flux spin liquid [46]. A gapless Z2 spin liquid has
also been proposed for this intermediate regime, and this
can be obtained naturally by condensing Higgs fields on the
π -flux spin liquid [47–50] (the model studied in the present
paper can be easily extended to include these Higgs fields,
but we will not present the extension here [51]). Doping this
square lattice spin liquid has recently been shown [52,53] to
lead to robust d-wave superconductivity, and this establishes
a close connection between the π -flux phase and d-wave
superconductivity [54,55].

(vii) Nuclear magnetic resonance experiments on
YBa2Cu3Oy [56] show the appearance of a secondary
spin gap that is possibly connected to the appearance of
charge order. This can be associated with the gapping out of
the spinon excitations upon a confining transition to charge
order, as we study in a simplified model in this paper.

(viii) Magnetotransport studies in HgBa2Ca2Cu3O8+δ [57]
indicate direct transitions between magnetic and charge or-
dered states. Such direct transitions are possible across
deconfined critical points considered here.

The “π -flux” critical spin liquid is described by a theory
of fermionic spinons with Nf = 2 massless Dirac points in
their dispersion coupled to a SU(2) gauge field [58]. This state
also has a dual description [46] in terms of the critical CP 1

theory of the bosonic spinons [44]. These dual descriptions
are important in understanding the low-temperature states of
the cuprate phase diagram as confinement/Higgs transitions
of this spin liquid:

(i) The onset of Néel order is described by the Higgs
condensate of the bosonic spinons in the CP 1 theory [59],
or equivalently, by the confinement of the SU(2) gauge field
of the fermionic spinon theory.

(ii) The onset of d-wave superconductivity with nodal Bo-
goliubov quasiparticles [28], along with the onset of charge
order, is described by the Higgs condensation of a charge e,
SU(2) fundamental boson B (introduced in Refs. [3,36]) of
the fermionic spinon theory.

As noted above, this paper will study a simpler limit of the
theory of Ref. [18]. We will move from the system at nonzero
doping, and instead consider only the half-filled square lattice
with a particle-hole symmetric Hamiltonian. Rather than in-
troducing superconductivity and charge-order by doping, we
will explore the onset of such phases at half-filling as may
be induced by reducing the Hubbard U [60], or by introduc-
ing additional short-range interactions including pair-hopping
terms [61,62].

At half-filling, there are no hole pocket Fermi surfaces,
and this simplifies the treatment of charge fluctuations. The
particle-hole symmetry leads to a Lorentz-invariant form for
the dispersion of the excitations at low energies. We will study
zero-temperature quantum phase transitions between (A) the
insulating Néel state, (B) a d-wave superconductor with four
gapless nodal quasiparticles, and (C) a state with charge order;
see Fig. 1 for the phase diagrams of the continuum field the-
ories to be introduced in Sec. III and Appendix A. This field
theory is a SU(2) gauge theory Nb = 2 relativistic scalars in
addition to the Nf = 2 massless Dirac fermions of the π -flux
state.

We note an earlier work [63], which considered a con-
tinuous Néel/d-wave superconductor quantum transition, but
without gapless nodal quasiparticles in the d-wave supercon-
ductors, and only easy-plane Néel order. Also, SU(2) gauge
theories of the cuprates have been studied extensively earlier,
as reviewed in Ref. [36], but in reference to a staggered-flux
spin liquid which breaks the gauge symmetry to U(1)—we
will not consider this spin liquid because it is expected to be
unstable to a trivial monopole [37,38].

In Sec. VII, we will consider the consequences of adding
charge fluctuations to the Néel-VBS transition on the hon-
eycomb lattice [64,65] (VBS order is also known as Kekulé
order on the honeycomb lattice). Following the same proce-
dure as for the square lattice, we find only a Dirac semimetal
phase with no broken symmetry, in contrast to the super-
conducting and charge-ordered phases on the square lattice.
As shown in Fig. 2, the Néel, VBS, and Dirac semimetal
phases of the honeycomb lattice are proposed to meet at a
multicritical point, as in the numerical study of the Hubbard
model on the honeycomb lattice in Ref. [66]. In our theory,
the multicritical point is bicritical [67], and it is described
by the Nf = 2, Nb = 1 case of the SU(2) gauge field theory
considered in the body of the paper. The same field theory was
considered earlier by Hermele [68] for a different proposed
transition on the honeycomb lattice.

Our main results here are obtained by two different large
flavor expansions of our SU(2) gauge theory. The resulting
phase diagrams in Fig. 1 contain first-order boundaries, a
multicritical point M where all three phases meet, and second-
order transitions between Néel/VBS order, charge order, and
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FIG. 1. We are interested in a SU(2) gauge theory with Nf fundamental Dirac fermions, and Nb = 2 fundamental complex scalars. We
show phase diagrams of two distinct large Nf and Nb limits, with Nf /Nb fixed. First-order phase transitions are denoted with a solid line,
while second-order phase transitions are denoted with a dashed line. (a) Phase diagram of the theory Lψ + LB in (3.1) and (3.7). There is a
USp(2Nf ) × USp(Nb) × U(1) global symmetry for v �= 0. (b) Phase diagram in an alternative large-Nb limit discussed in Appendix A of the
theory Lψ + L̃B in (3.1) and (A4), with a USp(2Nf ) × SU(Nb) × U(1) global symmetry for v �= 0. The theories in (a) and (b) coincide along
the line v = 0, when they both have USp(2Nf ) × USp(2Nb) global symmetry. The two theories are also identical for the physically interesting
case with Nf = Nb = 2 for all v.

nodal d-wave superconductivity. The multicritical point M
and the second-order transition are described by deconfined
critical SU(2) gauge theories. We will determine the scal-
ing dimensions of gauge-invariant Néel, valence bond solid
(VBS), d-wave superconductor, and charge order parameters
in these critical theories.

Of particular interest is the scaling dimension of the gauge-
invariant electron operator, which we also determine. This

FIG. 2. Schematic phase diagram for the SU(2) gauge theory of
an extended Hubbard model on the honeycomb lattice. The bicritical
point B [67] is described by the Nf = 2, Nb = 1 SU(2) gauge field
theory. The thick line indicates a first-order transition. The thin lines
indicate second-order transitions out of the Dirac semimetal phase
which are presumed to be described by Gross-Neveu-Yukawa field
theories [69] without gauge fields.

controls the manner in which gapless nodal quasiparticles
emerge in the d-wave superconductor across the transition
from an insulator with a nonzero gap to charged excitations.
We summarize the results on scaling dimensions in Table III.
Reference [23] considered a mean-field theory of the cor-
responding transition in the electron-doped cuprates: in this
case, the transition is to a pseudogap-metal, but the nodal re-
gion of the Brillouin zone can be gapped in the electron-doped
pseudogap metal. Thus our theory has a remarkable feature
not present in BCS theory: gapless nodal quasiparticles appear
in a superconductor at a momentum that is gapped in the
normal state. As we noted above, Ref. [23] pointed out con-
nections of this feature to recent photoemission experiments
in the electron-doped cuprates [30].

Section II introduces the square lattice SU(2) gauge theory
of interest in this paper. This theory is defined in terms of
fermionic spinons fiα , α =↑,↓ and charge e bosons Bi on the
sites i of the square lattice. Both the fermionic and bosonic
matter fields transform as SU(2) gauge fundamentals, and
there is also a dynamical SU(2) gauge field on the links of the
lattice. We then consider the most general lattice gauge theory
for these matter and gauge fields consistent with the projec-
tive symmetry transformations of the π -flux spin liquid, and
with gauge-invariant observables having the same symmetry
signatures as the Hubbard model with particle-hole symme-
try. In the limit of strong gauge couplings, we can perform
a strong-coupling expansion of our lattice gauge theory by
integrating out the lattice gauge fields [24], and this will lead
to the extended Hubbard model corresponding to our SU(2)
lattice gauge theory. See Chap. 14 of Ref. [70] for a simpler
example of a conventional theory of gauge-invariant degrees
of freedom obtained from a lattice gauge theory of partons.

Note that our method is the converse of that usually fol-
lowed in the condensed matter literature. We do not start from
a lattice model of correlated electrons, and then obtain a gauge
theory by fractionalizing the electrons. Instead, we start from
a lattice gauge theory and match it to the electronic problem of
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interest by general arguments based on gauge invariance and
global symmetry. This is a powerful method of incorporating
nonperturbative knowledge of a fractionalized state (in our
case, the π -flux spin liquid) in a very general setting.

Section III describes the continuum limit of the square
lattice gauge theory of Sec. II along the lines of Ref. [18]. This
leads to a quantum field theory of Nf = 2 Dirac fermions and
Nb = 2 complex scalars, both transforming as SU(2) gauge
fundamentals. We also discuss the generalizations of this the-
ory to general Nf ,b, and the operators corresponding to the
gauge-invariant observables of the Hubbard model.

Section IV examines the nature of fermion-boson cou-
plings in the continuum field theory without any spatial and
temporal gradients. We find that there are no allowed terms
that are relevant in the large Nf ,b expansion of critical theories.
However, we do need to consider the higher-order formally
irrelevant terms because they are important in determining the
fate of the spin gap in the Higgs phases where the bosons are
condensed.

Section V describes the Nb = ∞ saddle points of the con-
tinuum theories, which lead to the phase diagrams in Fig. 1.

Section VI computes the 1/Nf ,b corrections to the scal-
ing dimensions of the d-wave superconducting, Néel, and
charge order parameters, and the electron operator at momenta
(±π/2,±π/2). This is carried out by the SU(2) gauge the-
ory analog of the computations in Ref. [71] for U(1) gauge
theories.

Section VII describes the extension of our results to the
honeycomb lattice.

II. SU(2) SQUARE LATTICE GAUGE THEORY

We begin by recalling the SU(2) square lattice gauge theory
of Ref. [18] in the simpler setting of a half-filled square lattice,
with no Fermi surfaces in any of the states studied. We also
assume a particle-hole symmetry. This lattice gauge theory is
likely free of a sign problem in quantum Monte Carlo.

We write the electron spin operators as

Ci =
(

ci↑
c†

i↓

)
, (2.1)

on sites i of a square lattice. We fractionalize the electrons into
fermionic spinons fiα , α =↑,↓ and charge e bosons Bi via [3]

Ci = B†
i ψi, (2.2)

where

ψi ≡
(

fi↑
f †
i↓

)
, (2.3)

and

Bi ≡
(

B1i

B2i

)
, Bi ≡

(
B1i −B∗

2i
B2i B∗

1i

)
. (2.4)

This fractionalization introduces a SU(2) gauge symmetry,
where

ψi → Uiψi, Bi → UiBi, (2.5)

under a SU(2) gauge transformation Ui.
Remarkably, essentially all of the physics of the π -flux

spin liquid phase, and its descendants, studied here are

TABLE I. Projective transformations of the fiα spinons and
Bi chargons on lattice sites i = (x, y) under the symmetries Tx :
(x, y) → (x + 1, y); Ty : (x, y) → (x, y + 1); Px : (x, y) → (−x, y);
Py : (x, y) → (x,−y); Pxy : (x, y) → (y, x); time-reversal T ; and
particle-hole symmetry C. The indices α, β refer to global SU(2)
spin, while the index a = 1, 2 refers to gauge SU(2). Also shown
are the (nonprojective) transformations of the gauge-invariant
electron cα .

Symmetry cα fα Ba

Tx cα (−1)y fα (−1)yBa

Ty cα fα Ba

Px cα (−1)x fα (−1)xBa

Py cα (−1)y fα (−1)yBa

Pxy cα (−1)xy fα (−1)xyBa

T εαβcβ (−1)x+yεαβ fβ (−1)x+yBa

C (−1)x+yεαβc†
β εαβ f †

β (−1)x+yB∗
a

consequences of the SU(2) gauge symmetry, the spin rotation
symmetry, and the action of other symmetries on the spinons
as summarized in Table I. The action of the latter symmetries
on the B chargons follows from the decomposition (2.2), and
these are also shown in Table I. A key property of Table I is
the relation

TxTy = −TyTx, (2.6)

which ensures π -flux on both spinons and chargons, and at
least two degenerate minima in the dispersion the chargons.

The degrees of freedom of our square lattice gauge theory
are one SU(2) fundamental fermion ψi on each lattice site, one
SU(2) fundamental boson Bi on each lattice site, and a SU(2)
link field Ui j on each nearest-neighbor link of the square
lattice. We now describe the various terms in the Hamiltonian
coupling these degrees of freedom.

The simplest fermion spinon imaginary time (τ ) La-
grangian compatible with Table I is

L(ψ ) =
∑

i

ψ
†
i Dτψi − iJ

∑
〈i j〉

[ψ†
i ei jUi jψ j + i ↔ j], (2.7)

where Dτ is a covariant time derivative, i, j are nearest
neighbors, J is a real coupling constant of order the antifer-
romagnetic exchange, and

e ji = −ei j (2.8)

is a fixed element of the Z2 center of the gauge SU(2), which
ensures π flux per plaquette; we choose

ei,i+x̂ = 1, ei,i+ŷ = (−1)x, (2.9)

where i = (x, y), x̂ = (1, 0), ŷ = (0, 1). The link field Ui j =
U †

ji is the fluctuating SU(2) lattice gauge field, and the mean-
field saddle point of the π -flux phase is obtained by setting
Ui j = 1. The hopping term in L(ψ ) has been chosen purely
imaginary as that ensures a simple coupling to the SU(2)
gauge field, along with SU(2) spin rotation invariance. The
spin operator on each site Si = (1/2) f †

iασαβ fiβ (σ are the Pauli
matrices) can be expressed in terms of the ψi in the following
SU(2) gauge-invariant combinations:

2Szi = ψ
†
i ψi − 1, Sxi − iSyi = −εabψaiψbi, (2.10)
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where a, b = 1, 2 are SU(2) gauge indices, and εab is a unit antisymmetric tensor. The nearest-neighbor bond energy operator
can be identified with each individual term in L(ψ ),

bond energy: 〈Si · Sj〉 ∼ Q f ,i j = Q f , ji = −i[ψ†
i ei jUi jψ j + i ↔ j]. (2.11)

In the cuprates, modulations of Q f ,i j would show up as modulations in the charge density on the sites (and similarly for
modulations in Qb,i j below).

Turning to the bosonic partons, and following Ref. [18], we can also write down the most general effective Lagrangian for
the Bi, keeping only terms quadratic and quartic in the Bi, and with only on-site or nearest-neighbor couplings:

L(B) =
∑

i

|Dτ Bi|2 + r
∑

i

B†
i Bi − iw1

∑
〈i j〉

[B†
i ei jUi jB j + i ↔ j] + V (B). (2.12)

A linear time derivative term is allowed only in the absence of particle hole symmetry, and so has been omitted. The couplings
r,w1 are real Landau parameters, and the quartic terms are in V (B). These quartic terms are more conveniently expressed in
terms of quadratic gauge invariant observables. By examining the transformations in Table I, we can deduce the following
correspondences between bilinears of the B with those of the bilinears of the gauge-neutral electrons:

site charge density: 〈c†
iαciα〉 ∼ ρi ≡ B†

i Bi

(the correspondence between ρi and site charge density holds

only in the absence of particle-hole symmetry; see Sec. IV,

bond density: 〈c†
iαc jα + c†

jαciα〉 ∼ Qb,i j = Qb, ji ≡ Im(B†
i ei jUi jB j ),

bond current: i〈c†
iαc jα − c†

jαciα〉 ∼ Ji j = −J ji ≡ Re(B†
i ei jUi jB j ),

pairing: 〈εαβciαc jβ〉 ∼ 
i j = 
 ji ≡ εabBaiei jUi jBb j . (2.13)

Note that the bond density observable Qb,i j of bosons above
has the same symmetry signature as the bond energy Q f ,i j

of fermions in (2.11), and both are identical to the hopping
terms in L(B) and L(ψ ), respectively. Now we can write
an expression for V (B) by keeping all quartic terms which
involve nearest-neighbor sites:

V (B) = u

2

∑
i

ρ2
i + V1

∑
i

ρi(ρi+x̂ + ρi+ŷ) + g
∑
〈i j〉

|
i j |2

+ J1

∑
〈i j〉

Q2
b,i j + K1

∑
〈i j〉

J2
i j . (2.14)

We also have the usual flux energy term of lattice gauge
theory for the gauge field Ui j ,

L(U ) = −1

g

∑
i, j,k,l∈�

Tr[Ui jU jkUklUl i] + c.c., (2.15)

along with a gauge field kinetic energy [72].
Finally, we can consider quartic terms that couple the

spinons and chargons directly. From the composite operators
defined above, we can write down the following terms involv-
ing only nearest-neighbor sites:

L(Bψ ) =
∑
〈i j〉

[λ1 c†
iαc jα + λ1 c†

jαciα + λ2 Qb,i j Q f ,i j]. (2.16)

Our aim is to determine the phase diagram of the above
square lattice gauge theory as a function of the boson “mass”
tuning parameter r, and the various quartic boson couplings
in (2.14). The general physics is that of a transition between
Higgs and confining phases of the SU(2) gauge theory, with
deconfined conformal gauge theories describing continuous
transitions between the phases. When r is large and positive,

B excitations are gapped, and we can work with the fermion-
only theory in (2.7)—this theory is expected to confine into
an insulator with either Néel or VBS order [31,46,73]. On the
other hand, when r is negative, B condenses in Higgs phases,
and fully quenches the SU(2) gauge field. The Higgs phases
break one or more of the global symmetries, based upon the
correspondence in (2.13).

III. QUANTUM FIELD THEORY
AND ORDER PARAMETERS

Now we take the continuum limit of the square lattice
gauge theory action in Sec. II, and we obtain the quantum
field theory studied in the present paper. We will take the
simplest case in which the boson hopping terms are only
nearest-neighbor, as in (2.12), so there are only two valleys in
the boson dispersion. This will lead to a SU(2) gauge theory
with Nf = 2 flavors of SU(2) fundamental Dirac fermions ψ ,
and Nb = 2 flavors of SU(2) fundamental bosons B. As for
the lattice gauge theory in Sec. II, almost everything follows
from the symmetry transformations of the fields: the contin-
uum limits of the transformations in Table I are presented in
Table II.

For the continuum limit action of the fermionic spinons,
we follow the notation of Ref. [50], which follows that of
earlier related works [46,49,74], in obtaining from (2.7) the
fermionic Lagrangian

Lψ = iψ̄γ μ
(
∂μ − iAα

μσα
)
ψ, (3.1)

where σα are the Pauli matrices, α = x, y, z, γ μ are 2 × 2
Dirac matrices which act on the sublattice space, Aα

μ is the
SU(2) gauge field, and the ψ have an additional Nf = 2 valley
(“flavor”) index which is not shown. From the ψ bilinears, we
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TABLE II. We tabulate the action of the microscopic symmetries,
along with the SU(2) gauge transformations, on the continuum fields.
To concisely express the action of SU(2) spin rotation symmetry, we
represent the spinon degrees of freedom in terms of a matrix of Ma-
jorana fermions X . The γ matrix γ 0 labels the temporal component.

Symmetry Ba Xab

Tx −iμxBa μxXab

Ty −iμzBa μzXab

Px Ba −iγ xμzXab

Rπ/2 −μx+μz√
2

Ba eiπγ 0/4e−iπμy/4Xab

T B γ 0μyX ∗

C B∗ Xσ y

U(1)c eiθ Ba Xab

SU(2)g UgB XU †
g

SU(2)s B UsX

can make a gauge-invariant five-component real vector, which
represents the 3 + 2 components of the Néel and VBS order
parameters [46–48]; the Néel order is a staggered modulation
of the spin in (2.10), while the VBS order is a modulation of
the bond energy in (2.11). The properties of Lψ are invariant
under global SO(5) f rotations of this vector, and all our analy-
sis below will preserve this SO(5) f symmetry (the f subscript
merely denotes that the symmetry acts on the fermions).

It is a simple matter to generalize (3.1) to arbitrary in-
teger Nf : we allow the valley index to run over 1, . . . , Nf .
After transforming to Majorana fermions, the free fermion
Lagrangian has a SO(4Nf ) symmetry, and modding out the
gauge symmetry as in Ref. [46], we conclude that the La-
grangian Lψ has a USp(2Nf )/Z2 global symmetry.

In the bosonic matter sector, we express the lattice Bi

bosons in terms of complex bosons Bas, with a = 1, 2 the
SU(2) gauge index, and s = 1, . . . , Nb = 2 the valley (“fla-
vor”) index [18]:

Ba(r) =

⎧⎪⎪⎨⎪⎪⎩
−Ba1eiπ (x+y)/2 + Ba2(

√
2 + 1)eiπ (x−y)/2,

x even,

Ba1(
√

2 + 1)eiπ (x+y)/2 − Ba2eiπ (x−y)/2,

x odd.

(3.2)

Under particle-hole symmetry C, the transformations in Ta-
ble I now imply that Bas → B∗

as. Then (2.13) leads to the
following gauge-invariant order parameters in the continuum
limit [18]

d-wave superconductor : εabBa1Bb2,

x-CDW : B∗
a1Ba1 − B∗

a2Ba2 ≡ B†μzB ,

y-CDW : B∗
a1Ba2 + B∗

a2Ba1 ≡ B†μxB ,

d-density wave : i(B∗
a1Ba2 − B∗

a2Ba1) ≡ −B†μyB,

(3.3)

where μ acts on valley indices. In terms of the lattice order
parameters in (2.13), the d-wave superconductor has 
i,i+x̂ =
−
i,i+ŷ, but is independent of i. The charge density waves
(CDWs) have period 2 modulations of Qb,i j and ρi (the modu-
lations of ρi are absent when there is particle-hole symmetry;

see Sec. IV), and are site-centered, unlike the bond-centered
modulations of Q f ,i j in the VBS state. The d-density wave or-
der is odd under time-reversal, and has a staggered pattern of
electrical currents Ji j . Note that the CDW and d-density wave
orders can be written as a SO(3) vector B†μiB , i = x, y, z.
In combination with the complex superconducting order, the
order parameters in (3.3) form a SO(5)b vector, for reasons
very similar to the fermions [again the b subscript denotes
that this SO(5) acts on the bosons]. Computing the magnitude
of this SO(5)b vector, we obtain an important identity that is
easily verified by explicit evaluation,

(B†B)2 = (B†μiB)2 + 4|εabBa1Bb2|2. (3.4)

The continuum limit of the Lagrangian (2.12) for the
bosonic sector is

LB = ∣∣(∂μ − iAα
μσα

)
B
∣∣2 + r|B|2 + ū|B|4

+ v1(B†μzB)2 + v1(B†μxB)2

+ v2(B†μyB)2 + v3|εabBa1Bb2|2. (3.5)

The first three terms in LB have the SO(5)b global symmetry,
for reasons essentially identical to those for L f . All the order
parameters in (3.3) are degenerate in this limit. This degener-
acy and the SO(5)b symmetry are broken by the v1,2,3 terms
in (3.5), which are simply squares of the order parameters in
(3.3). The identity in (3.3) was overlooked in Ref. [18], and
has the consequence that the five quartic terms in (3.5) are
not all independent—this has no material consequence to the
mean-field results of Ref. [18], apart from a redundant label-
ing of couplings. In the Higgs phase where B is condensed,
one of the order parameters in (3.3) must be nonzero, and,
in mean-field theory, the choice is determined by the relative
values of v1,2,3 [18].

The generalization of the first three terms in (3.5) to arbi-
trary integer Nb � 2, Nb even is straightforward, but the v1,2,3

terms in require further consideration. We limit ourselves to
the case v1 = v2, so that the CDW orders and the d-density
wave orders become degenerate. Then we can write (3.5) as

LB = ∣∣(∂μ − iAα
μσα

)
B
∣∣2 + r|B|2 + ū|B|4

+ v1(B†μiB)2 + v3|εabBa1Bb2|2. (3.6)

Next, we use the redundancy implied by (3.4) to set v1 = 0 in
(3.6). Then one extension of (3.6) to general Nb for the bosonic
flavor indices is obtained by replacing εst in the v3 term by
Jst , the USp(Nb) invariant tensor, consisting of Nb/2 copies
of εst along the diagonal. (An alternative large Nb extension
in which v3 is set to zero is discussed in Appendix A.) In this
manner, we obtain a Lagrangian valid for any Nb (following
conventions in Ref. [75]),

LB = ∣∣(∂μ − iAα
μσα

)
B
∣∣2

+ u

2Nb
(|Bas|2 − Nb/g)2 − v

Nb
|BTJ εB|2. (3.7)

Recall that the indices a, b act on the SU(2) gauge indices, and
not the flavor indices, and so they do not need a large Nb gen-
eralization. For Nb = 2, the correspondence to the couplings
in (3.5) is u = 2Nbū, g = −u/r, v = −Nbv3/4. For general
Nb, the order parameters in (3.3) are replaced by the SU(2)
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gauge-invariant operators

d-wave superconductor : JstεabBasBbt ,

charge order : B∗
asT

i
st Bat , (3.8)

where T i are generators of USp(Nb) obeying

T i† = T i, T iTJ + J T i = 0. (3.9)

We refer to the combined and degenerate CDW and d-density
orders simply as “charge order.”

We can now use standard methods to generate a large Nb

expansion of (3.7) at fixed u, g, and v. The coupling g will be
used to tune across the transition, while v will determine the
fate of the Higgs phase where B is condensed. The theory in
(3.7) has a global USp(Nb) × U(1) symmetry, and the Higgs
phase with B condensed either breaks the U(1) symmetry
leading to d-wave superconductivity, or breaks the USp(Nb)
symmetry leading to degenerate CDW/d-density wave orders.

At v = 0, the global symmetry of (3.7) is enhanced to
USp(2Nb)/Z2 (as for the fermionic spinons [46]), and the
superconducting and charge orders all become degenerate.
The enhanced symmetry is evident in the matrix form of the
bosonic fields in (2.4), which generalizes in the continuum to

Bs =
(

B1s −B∗
2s

B2s B∗
1s

)
, (3.10)

obeying the reality condition

Bs = σ yB∗
s σ

y. (3.11)

The USp(2Nb) global symmetry Ug then acts as right multi-
plication B → BUg, where Ug is a 2Nb × 2Nb matrix acting
on both the s flavor index and the right matrix index of
(3.10). The condition (3.11) leads to the defining conditions
for USp(2Nb):

U †
g Ug = 1, U T

g σ yUg = σ y. (3.12)

Note, also, that the SU(2) gauge symmetry in (2.5) acts a
left multiplication Bs → UBs. As in the fermion case, the
USp(2Nb) and gauge SU(2) share a common Z2 center, and
hence the global symmetry is USp(2Nb)/Z2.

The full action of the microscopic symmetries on the
continuum fields is listed in Table II. To retain a concise
representation of the SU(2) spin rotation symmetry, we re-
express our spinon degrees of freedom in terms of Majorana
fermions. Following Ref. [46], we introduce the 4 × 2 matrix
of Majorana fermions Xa,s;b. Here a, s, b are the spin, valley,
and gauge indices, respectively. The relation between X and
the Dirac fermions is given by ψa,s = iσ y

a,bX1,s,b. The SU(2)

gauge symmetry acts as Xa,s;b → Xa,s;cU
†
cb, and SU(2) spin

rotation symmetry acts as Xa,s;b → UacXc,s;b. The action of
all the symmetries apart from spin rotation symmetry lifts
directly to the complex fermions, although a U(1) subgroup
corresponds to a uniform phase rotation ψ → eiθψ . Both
representations will be utilized here—the Majorana represen-
tation for when a complete symmetry analysis is required, and
the Dirac representation for perturbative computations.

Along with the gauge-invariant fermion and boson bilin-
ears noted above, we will also consider mixed gauge-invariant
bilinears, which lead to the electron operator measured
in photoemission experiments. The quantum field theory

yields the electron operator near the four nodal points
k = (±π/2, π/2). The particular combination of low-energy
spinons and chargons that correspond to these nodal exci-
tations is rather complicated, as the spinor structure of the
Dirac spinons must be unpacked, i.e., we consider the fields
ψasα with gauge index a, valley index s, and spinor index
α (which microscopically corresponds to a sublattice index).
Suppressing the valley index and taking the Pauli matrices μi

to act on both chargon and spinon valley indices, B∗
aμ

iψaα ≡
B∗

asμ
i
stψatα , we have

Ck=(π/2,π/2) ∝
(

B∗
aiμy[ψa1 + (

√
2 + 1)ψa2]

εabBa[(
√

2 + 1)ψa1 − ψa2]

)
,

Ck=(−π/2,π/2) ∝
(

−B∗
aiμz[(

√
2 + 1)ψa1 + ψa2]

εabBaμ
x[−ψa1 + (

√
2 + 1)ψa2]

)
.

(3.13)

As we will show, generic operators of the form B∗
asψas′α

and εabBasψbs′α are all renormalized in the same way at crit-
icality, so the details of Eq. (3.13) will not be relevant for
computing the scaling dimension of the electron operator.

We will analyze the theory Lψ + LB in (3.1) and (3.7) in
the limit of large Nf and Nb, with a fixed ratio Nf /Nb. We
obtain the leading 1/Nf ,b corrections to the scaling dimen-
sions of the gauge-invariant fermion and boson bilinear order
parameters, and also the electron operators in (3.13). We will
also obtain the corresponding properties in an alternative large
Nb limit in Appendix A.

IV. FERMION-BOSON INTERACTIONS AND SPIN GAPS

In Sec. III, we constructed a Lagrangian describing spinon
and chargon fluctuations and their coupling to a shared SU(2)
gauge field. Importantly, there exist three independent quartic
chargon interactions that are relevant at tree-level and must
be tuned in order to reach a continuous transition. In this
section, we consider symmetry-allowed interactions between
the spinons and chargons. The reason for this is twofold. First,
quartic interactions involving two spinons and two chargons
are marginal at tree-level, and corrections to their scaling
dimension are important for the behavior of the critical the-
ory. Second, condensation of the chargons can qualitatively
modify the dispersion of the spinons in the charge-ordered
phase, either by producing a gap or generating a Fermi sur-
face. Note that upon condensation of the chargons, the spinon
becomes associated with the electron, and these dispersion
modifications are reflected in the electronic spectral function.
We show that in fact no quartic chargon-spinon interactions
are allowed by the microscopic symmetries in the critical
theory, provided we enforce particle-hole symmetry. Relaxing
particle-hole symmetry admits two quartic interactions. In the
charge ordered phase, these terms shift the Fermi energy of
the Dirac spinons, thereby inducing a spinon Fermi surface.

In this section, we will use the Majorana representation
of the fermionic spinons; the explicit action of spin rotation
symmetry is essential in our symmetry analysis. In this lan-
guage, a generic quartic interaction that respects both charge
conservation and spin rotation invariance can be expressed in
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the form ∑
α,β, j

Aα,β, jTr[BμαB†Xγ jμβX ], (4.1)

where X̄ ≡ X †γ 0 and A is a coefficient tensor, not to be
confused with the gauge field. The indices α, β, j run over
four variables, namely the three Pauli and γ matrices as well
as an additional identity element. We perform a systematic
search for symmetry-allowed quartic couplings by deducing
the action of the microscopic symmetries on Aα,β, j , which we
regard as a 43 = 64-dimensional vector. Symmetry-allowed
quartic terms are given by choices of A which have eigenvalue
1 under all the symmetries, the existence of which can be
checked numerically.

With this approach, we deduce two terms that are allowed
by all the microscopic symmetries, but are odd under particle-
hole symmetry, which we assume to be emergent in the critical
theory:

Tr[BB†Xγ 0X ],

Tr[BμzB†Xμzγ xX ] + Tr[BμxB†Xμxγ yX ].
(4.2)

One can also consider analogous quartic couplings of the form∑
α,β, j Cα,β, jTr[BμαB†]Tr[Xγ jμβX ]. The tensor C trans-

forms identically to A; however, the two quartic couplings in
this case vanish identically due to the anticommutation rela-
tions of the Majorana fermions. These results are consistent
with taking the continuum limit of the quartic spinon-chargon
interactions on the lattice given by (2.16), where we find that
the leading-order terms with no derivatives vanish. Allowing
for quartic interactions that break particle-hole symmetry,
such as an on-site chemical potential or a second-neighbor
electron hopping, generates the continuum interactions in
(4.2). The first term acts as a chemical potential and, at each of
the two gapless points in momentum space, induces an equal
and opposite shift in the Fermi energy on the two species of
spinons.

Quartic interactions do not generate a spin gap in the
ordered phases. To find six-term interactions that can open
up a spin gap in the CDW phase, we take the approach of
considering the CDW order parameter, B†μzB and B†μxB
for x-CDW and y-CDW, respectively, and coupling them to
a quartic chargon-spinon interaction that has the same sym-
metry transformations. Multiple six-term interactions can be
obtained in this manner; however, only two are capable of
producing a spin gap, which are

B†μzBTr[BμxB†XμyX ],

B†μxBTr[BμzB†XμyX ].
(4.3)

Note that these terms vanish unless both the x-CDW and
y-CDW terms are nonzero. This is consistent with the fact
that, once we are in the CDW phase, one is allowed to
add non-gauge-invariant terms to the spinon dispersion which
break translational symmetry. The symmetry transformations
of gauge singlet and triplet spinon bilinears were tabulated
in Ref. [74]; from this analysis, one can conclude that the
only possible mass term in the CDW phase, Tr[σ aXμyX ],
must be odd under translations in both the x and y directions.
This term also breaks particle-hole symmetry; however, as

it is proportional to four powers of the chargon condensate,
it will generically be smaller than the previously discussed
perturbations, which generate a spinon Fermi surface.

V. LARGE Nb SADDLE POINT

This section examines the bosonic theory LB in (3.7), and
determines its phase diagram at Nb = ∞. We introduce de-
coupling fields λ and 
 to obtain from (3.7)

LB = |DμBas|2 + Nbλ
2

2u
+ Nb|
|2

v
+ iλ(|Bas|2 − Nb/g)

− 
JstεabB∗
asB

∗
bt − 
∗ JstεabBbt Bas. (5.1)

The saddle point value of iλ will determine the mass of the B
bosons, while (Nb/v)
 is the superconducting order param-
eter in (3.8). To carry out the Gaussian integral over the B
bosons, it is convenient to define a Nambu basis for B. We
would like the quadratic terms in B which are associated with
pairing to be completely off diagonal in our choice of basis
and for the rest of the terms to be diagonal. We therefore
use the fact that Jst is antisymmetric to construct the Nambu
basis:

Bm =

⎛⎜⎜⎜⎜⎝
B1,2m−1

B2,2m−1

B∗
2,2m

−B∗
1,2m

⎞⎟⎟⎟⎟⎠. (5.2)

Here we have used 1,2 to label the indices corresponding to
the SU(2) gauge symmetry and m = 1, . . . , Nb/2.

After integrating out the bosons, the effective action is

Seff. = Nb

2
Tr[ln(G−1)] + Nbλ

2

2u
+ Nb|
|2

v
− iλ

Nb

g
, (5.3)

where

G−1 =
⎛⎝iλ − (

∂μ + iA j
μσ j

)2 −2


−2
∗ iλ − (
∂μ + iA j

μσ j
)2

⎞⎠ (5.4)

is a 4 × 4 matrix. We assume Aj
μ = 0 at the saddle point

(preserving gauge and Lorentz symmetry). The saddle point
equation for λ is

iλNb

u
+ Nb

g
=
∫

d3 p

(2π )3
(iλ + p2)

2Nb

(iλ + p2)2 − 4|
|2 ,

(5.5)

and that for 
 is

Nb

v
=
∫

d3 p

(2π )3

4Nb

(iλ + p2)2 − 4|
|2 . (5.6)

At the saddle point where 
 = 0, setting λ̄ ≡ iλ we recover
the result of Ref. [71],∫

d3 p

(2π )3

1

(λ̄ + p2)
= λ̄

2u
+ 1

2g
. (5.7)

In what follows, we will always assume g > 0.

033018-8



DECONFINED QUANTUM CRITICALITY OF NODAL … PHYSICAL REVIEW RESEARCH 6, 033018 (2024)

FIG. 3. We show the saddle point solutions for λ as a function of
1
gc

− 1
g and v for u = 1.5 for the solution where only λ is condensed

and B and 
 are both zero. Such a solution only exists when g > gc

and we note that the value of λ has no dependence on v when 〈
〉=0.
The boundary after which λ is nonzero is denoted with a dotted red
line.

Solving saddle point equations

In integrating out the B bosons, we have assumed there is
no condensate in B. We will first solve the saddle point equa-
tions under the assumption that 〈B〉 = 0 and then consider
alternate solutions where B condenses. Under this assumption,
the saddle point equations for 
 and λ ≡ iλ obtained from
integrating (5.6) and (5.5) are

1

v
= 1

4π

1

|
| [
√

λ + 2|
| −
√

λ − 2|
|], (5.8)

λ

u
+ 1

g
= − 1

4π

[√
λ + 2|
| +

√
λ − 2|
| − 4π

gc

]
, (5.9)

where 1/gc = �/π2, with � the momentum space cutoff. We
first note the existence of a solution where 
 = 0 and λ is
condensed, and it is obtained by neglecting (5.6), setting 
=0
in (5.9), and solving (5.9) for λ. Such a solution is shown in
Fig. 3.

We can also find solutions of Eqs. (5.8) and (5.9), where
λ and 
 are both condensed. Multiplying the saddle point
equation for λ and 
 together yields a constraint on λ which
is independent of 
:

λ = u

(
1

gc
− 1

g
− v

4π2

)
. (5.10)

We then only need to assume the above relation for λ, substi-
tute this expression into Eqs. (5.8) or (5.9), and solve for 
.
The resulting solution is shown in Fig. 4, and it exists only on a
narrow strip for positive v and 1

gc
− 1

g . On the lower boundary

of this strip of solution, we have λ → 2|
|.
We now investigate a third class of solution, one where we

allow B to condense in addition to λ and 
 by allowing for a

FIG. 4. We show the saddle point solutions for λ (a) and 


(b) for the class of solution where 
 and λ are both nonzero but
B is assumed to not be condensed as a function of v and 1

gc
− 1

g . A

real, positive solution for λ and |
| only exists for the narrow strip
shown in the region where g > gc and v > 0. On the lower curve
of the region of existence of this solution, we have λ = 2|
|. The
boundary enclosing the region where each quantity becomes nonzero
is denoted with a dotted red line.

condensate in the m = 1 component of (5.2),

〈Bm〉 = √
Nb

⎛⎜⎜⎝
B1,1

B2,1

B∗
2,2

−B∗
1,2

⎞⎟⎟⎠δm1. (5.11)

After integrating out the m > 1 components, we obtain the
large Nb effective action generalizing (5.3),

Seff. = Nb

2
Tr[ln(G−1)] − Nbλ

2

2u
+ Nb|
|2

v
− λ

Nb

g

+ Nb[λ(|Ba1|2 + |Ba2|2) − 
B∗
asB

∗
btεabεst

− 
∗BasBbtεabεst ]. (5.12)

The saddle point equations for B are

λB∗
1,1 − 2
∗B2,2 = 0,

λB∗
2,1 + 2
∗B1,2 = 0,

λB∗
1,2 + 2
∗B2,1 = 0,

λB∗
2,2 − 2
∗B1,1 = 0. (5.13)

We note that combining the above equations produces the
constraint

λ = 2|
|. (5.14)

Additionally, we note that the saddle point equations for B
imply that if λ, 
, and B all condense, the d-wave order pa-
rameter in (3.3) must also condense. The saddle point equation
for λ becomes

2|
|
u

+ 1

g
− 1

gc
− (|Ba,1|2 + |Ba,2|2) = −

√|
|
2π

, (5.15)

while the saddle point equation for 
 when B is nonzero
becomes

1

v
− 1

|
| (|Ba,1|2 + |Ba,2|2) = 1

2π
√|
| . (5.16)
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FIG. 5. We show the saddle point solutions for λ (a), 
 (b), and B (c) for the class of solution where all are allowed to be condensed for
the first branch of the solution corresponding to Eq. (5.18) as a function of 1

gc
− 1

g and v for u = 1.5. The boundary enclosing the region where

each quantity becomes nonzero is denoted with a dotted red line. We note that a solution with a positive and real
√|
| only exists for v > 0

and g > gc. The upper boundary of this solution aligns with the lower boundary of the solution in Fig. 4.

Combining the two equations yields

|Ba,1|2 + |Ba,2|2 = −
√|
|

2π
+ |
|

v
⇒ |
|

(
1

2v
− 1

u

)
−

√|
|
2π

+ 1

2

(
1

gc
− 1

g

)
= 0, (5.17)

such that we have solutions corresponding to
√|
|:

√
|
| =

1
2π

±
√(

1
2π

)2 − 2
(

1
2v

− 1
u

)(
1
gc

− 1
g

)
2
(

1
2v

− 1
u

) . (5.18)

The two branches for which
√|
| is real and positive are

shown in Figs. 5 and 6.
The first-order phase boundary between phases A and B is

determined by where the argument of the square root in (5.18)
becomes negative and lies along the curve:

v = (1/gc − 1/g)
[
(2π )−2 + (2/u)(1/gc − 1/g)

]−1
.

(5.19)

Finally, there is a final type of possible solution where only
B is condensed, and 〈λ〉 = 〈
〉 = 0. Such a solution must

obey |B1|2 + |B2|2 = − 1
gc

+ 1
g , but unlike the solution where


 and λ are also condensed, there is no constraint from the
saddle point equations to determine which order parameters
in (3.3) are nonzero when 〈B〉 �= 0. We argue that the order
parameter that condenses can be determined from the sign of
v from the original action in (3.7) by noting that when v is
positive, it is energetically favorable for the superconducting
order parameter in the B’s to become nonzero, while if v is
negative, it is favorable for the d-density wave or CDW to
become nonzero.

We have presented four possible classes of solutions; a
solution where only B is condensed, a solution where only
λ is condensed, a solution where λ and 
 are condensed but
〈B〉 = 0, and a solution where λ, 
, and B all condense. The
phase diagram is then determined by plugging each solution
into (5.12) and choosing the one with the lowest free energy.

FIG. 6. We show the saddle point solutions for λ (a), 
 (b), and B (c) for the class of solution where all are allowed to be condensed for
the second branch of the solution corresponding to Eq. (5.18) as a function of 1

gc
− 1

g and v for u = 1.5. This class of solution exists only when
v > 0, and unlike the solution corresponding to the first branch of Eq. (5.18) plotted in Fig. 5, the solution corresponding to the second branch
exists when 0 < g < gc. We note the difference in scale of the magnitude of the plotted quantities as compared to Fig. 5 for the same range of
v. The boundary enclosing the region where each quantity becomes nonzero is denoted with a dotted red line.
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FIG. 7. We show the lowest-energy saddle point solutions for λ (a), |
| (b), and |Ba,1|2 + |Ba,2|2 (c) as a function of 1
gc

− 1
g and v. We

denote the boundaries between each phase with a black solid line if the phase boundary is first order and a black dotted line if the phase
boundary is second order. The lowest-energy solution for g > gc is the solution plotted in Fig. 3 with only 〈λ〉 �= 0 in the region where the
solution shown in Fig. 6 (the one where 
, B, and λ are all condensed) does not exist; this solution corresponds to either Néel or VBS order
since neither 
 nor B is condensed. In the region where v > 0 where the solution shown in Fig. 6 does exist, it is always the lowest-energy
solution; this solution corresponds to a d-wave superconductor. For 0 < g < gc and v < 0, the only possible solution is the one where only B
is condensed; based off our arguments in the text, since this solution is the lowest energy only for v < 0, such a solution corresponds to charge
order.

After integration, (5.12) becomes

Seff.

Nb
= − 1

6π
[(λ + 2|
|)3/2 + (λ − 2|
|)3/2] + 2

3π2
�λ − 2

9π2
�3 + 1

6π2
�3ln[(λ + �2)2 − 4|
|2] − λ

2

2u

+ |
|2
v

− λ

g
+ λ(|Ba1|2 + |Ba2|2) − 
B∗

asB
∗
btεabεst − 
∗BasBbtεabεst .

(5.20)

In practice, we compute the above with a cutoff � = 100, and
we find the low-energy phases shown in Fig. 7. We note that
when B is condensed such that λ = 2|
|, there is no direct
dependence of the effective action on B in the above.

VI. COMPUTATIONS AT ORDER 1/Nf ,b

For convenience, we present the complete Lagrangian L =
Lψ + LB in (3.1) and (5.1) for our SU(2) gauge theory,

L = iψ̄ /Dμψ + |DμBas|2 + Nbλ
2

2u
+ Nb|
|2

v

+ iλ(|Bas|2 − Nb/g) − Jstεab(
B∗
asB

∗
bt + 
∗Bbt Bas).

(6.1)

The kinetic term for boson should be understood as

|(DμBs)a|2 ≡ (
∂μB∗

a − iB∗
bσ

j
baA j

)(
∂μBa + iA jσ

j
abBb

)
. (6.2)

We will study (6.1) in a large Nf ,b expansion, with Nf /Nb

fixed. This is similar to the method followed in Ref. [71] for a
U(1) gauge theory.

A. Multicritical point at v = 0

First we consider the multicritical point M in Fig. 1, where
we can ignore the pairing field 
 in (6.1), and work with a La-
grangian with USp(2Nf ) × USp(2Nb)/Z2 global symmetry:

L0 = iψ̄ /Dμψ + |DμBas|2 + Nbλ
2

2u
+ iλ(|Bas|2 − Nb/g).

(6.3)

Taking the Fourier transformation and integrating over the
bosons and fermions, we write the free energy as

F0 = Tr ln G−1
b + Nb

(
λ2

2u
− λ

g

)
+ Tr ln G−1

f , (6.4)

where G−1
b is a 2Nb × 2Nb matrix of block-diagonal form

G−1
b = (G

−1
A 0
0 G−1

D
) in the Nambu basis:

G−1
A/D =1

[
δkk′k2 + iλ(k − k′)

+
∫

d3q

(2π )3
Aα (q)Aα (k − k′ − q)

]
± σα

[
(k + k′)μAμ

α (k − k′)
]
. (6.5)

G−1
f is the corresponding matrix for the fermionic sector,

G−1
f = γ μ[−δkk′kμ1 + Aα

μ(k′ − k)σα]. (6.6)

Next we expand near the saddle point by defining the
propagator

GB(k) = 1

k2 + λ̄
, Gψ = /k

k2
, (6.7)

where λ̄ = iλc is real and positive. We expand the matrix
log to second order; see Appendix B for details. The leading
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FIG. 8. Correction to boson propagators at v = 0 from fluctuations of (a) Aμ, and (b) λ.

correction to the free energy can be computed as

F (1)
0 = 1

2

∫
d3 p

(2π )3

{
�λ(p)λ(p)λ(−p) + Aμ

α (p)

(
δμν − pμ pν

p2

)
�A(p)Aα

ν (−p)

}
+ Nb

(
λ2

2u
− λ

g

)
, (6.8)

where the kernels are

�λ(p) = 2Nb

4π p
arctan

p

2
√

λ̄
,

�A(p) = 2Nb

(
4λ̄ + p2

8pπ
arctan

p

2
√

λ̄
−

√
λ̄

4π

)
+ Nf

p

16
.

(6.9)

The dressed propagators can also be read off,

Di j
A,μν = δi j

�A

(
δμν − ζ

pμ pν

p2

)
, Dλ = 1

�λ

. (6.10)

Here i, j are the gauge indices and μ, ν are the spacetime
indices. For simplicity, we introduce the standard notation
(Aμ)aa′ ≡ ∑

i Ai
μ(σ i )aa′ . The propagators then become

〈(Aμ)ab(Aν )a′b′ 〉(q) = (2δab′δba′ − δaa′δbb′ )Dμν (q)

= 2δab′δba′ − δaa′δbb′

�A(q)

(
δμν − ζ

qμqν

q2

)
.

(6.11)

Notice that at the critical point, the kernels reduce to

�λ → 2Nb

8p
, �A,μν → (2Nb + Nf )

p

16
. (6.12)

1. Dressed boson field

The anomalous dimension of the B field is

dim[Bas] = 3 − 2 + ηB

2
= 1

2
+ ηB

2
, (6.13)

where a is the gauge index, and s is the flavor index as
usual. The operator is not gauge-invariant on its own. The
corrections come from the gauge fields and λ. We draw the
corresponding diagrams in Fig. 13.

Since the boson propagator is the same for any flavor (a, s),
we can first compute the integral and then take care of the
indices. The integral corresponding to Fig. 8(a) is

IA;1 =
∫

d3 p

8π3
[GB(k + p)Dμν (−p)(2k + p)μ(2k + p)ν]|λ̄=0

→ − 4

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
k2 log k, (6.14)

where the right arrow means we are extracting the k2 log k
divergence. Computational details for all the integrals can be
found in Appendix B. Taking care of the trace over internal
gauge indices,∑

a′,a′′
σ

j
aa′σ

j
a′a′′ =

∑
a′,a′′

(2δaa′′ − δa′aδa′′a) = 3. (6.15)

The integral for Fig. 8(b) is

Iλ;1 = i2
∫

d3 p

8π3
[GB(k + p)Dλ(−p)]|λ̄=0 → 2

3Nbπ2
k2 log k.

(6.16)

Summing everything up, we have

ηB = 2

3Nbπ2
− 12

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
. (6.17)

2. Charge order parameter

Next we work out the vertex corrections (see Fig. 9) to get
the

dim
[
B†

asT
α

st Bat
] = 2 dim[B] + ηvertex, (6.18)

where T α is some generator of the USp(Nb) group that satis-
fies (3.9). Again we will first do the integrals and then take
into account the indices. The relevant diagrams are shown in
Fig. 14.

The following integral will contribute to panel (a):

IA;2 =
∫

d3 p

8π3
GB(k1 − p)GB(k2 − p)(2k1 − p)μ

FIG. 9. Diagrams contributing to the vertex correction of the
density wave scaling dimension at leading order.
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FIG. 10. Vertex corrections to the superconducting order
parameter.

× (2k2 − p)ν
1

�A,μν (p)

(
δμν − ζ

pμ pν

p2

)
. (6.19)

To extract the divergence, we can simplify the calculation
by choosing k1 = k2. The expression above then gives (more
details are presented in Appendix B)

IA;2 → − 8

(2Nb + Nf )π2
(1 − ζ ) log k. (6.20)

Comparing with the tree level diagrams, there is an additional
prefactor 3 coming from the trace over gauge indices,∑

j

∑
a

σ
j

a′′aσ
j

aa′ = 3δa′a′′ . (6.21)

Another useful integral that contributes to panel (b) is

Iλ;2 = i2
∫

d3 p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p) → 2

Nbπ2
log k,

(6.22)

where we again have imposed k1 = k2 and extracted the term
proportional to log k. Combining the contributions, we get

ηvertex = 2

Nbπ2
− 8 × 3

(2Nb + Nf )π2
(1 − ζ ). (6.23)

The dimension of the quadratic boson term is thus

dim
[
B†

asT
α

st Bat
] = (1 + ηB) + ηvertex

= 1 + 8

3(2Nb + Nf )π2

(
Nf

Nb
− 22

)
. (6.24)

At Nf = Nb = 2, we have the above equal to 1 − 28/3π2 =
0.054. Our anomalous scaling dimension is

ηB2 = 1 + 2ηB + 2ηvertex = 1 + 16

3(2Nb + Nf )π2

(
Nf

Nb
− 22

)
.

(6.25)

3. Superconducting order parameter

Next we work out the vertex corrections to get

dim[BasεabJst Bbt ] = 2 dim[B] + ιvertex. (6.26)

At v = 0, the result is guaranteed by symmetry to be the same
as that of the charge order computed in the previous section,
but we still present it here for completeness. The relevant
diagrams are shown in Fig. 10. We will again first compute
the integrals and then take into account the indices.

The useful integral in panel (a) is

IA;3 =
∫

d3 p

8π3
GB(k1 − p)GB(−k2 + p)(2k1 − p)μ

× (−2k2 + p)ν
1

�A,μν (p)

(
δμν − ζ

pμ pν

p2

)
→ 8

(2Nb + Nf )π2
(1 − ζ ) log k. (6.27)

Notice the integral is different from that in (6.19) and the
result has opposite sign. Compared with the tree level, we just
have an additional factor −3 coming from the gauge indices,∑

a,b

σ
j

a′aεab(σ j )T
bb′ = −3 εa′b′ . (6.28)

The two minus signs therefore cancel each other and we have
the same result as in the charge-density-wave case.

The integral relevant to panel (b) turns out to have the same
result as that in (6.22),

Iλ;3 = i2
∫

d3 p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p) = Iλ;2,

(6.29)

with no additional prefactors compared with the tree-level
result. Combining all contributions, we get

ιvertex = 2

Nbπ2
− 8 × 3

(2Nb + Nf )π2
(1 − ζ ), (6.30)

which is not surprisingly the same as that found in (6.17). The
dimension of the pairing term is then

dim[BasεabJst Bbt ] = 1 + 8

3(2Nb + Nf )π2

(
Nf

Nb
− 22

)
.

(6.31)

Our anomalous scaling dimension is again

ιB2 = 1 + 2ηB + 2ιvertex = 1 + 16

3(2Nb + Nf )π2

(
Nf

Nb
− 22

)
.

(6.32)

4. Correlation length exponent

We compute the correlation length exponent ν of the order
parameters,

ξ ∝ (g − gc)−ν, (6.33)

following the method of Ref. [71]. As the correlation length
is gauge-invariant, the calculation can be performed in a fixed
gauge and ν = νB. We will use the relation

νB = γB

2 − ηB
, (6.34)

where the anomalous scaling dimension of single boson ηB

has been computed in (6.17), and γB is defined as

G−1
B (k = 0) = (g − gc)γB . (6.35)

We will calculate γB below. We start by defining a convenient
parameter λg to measure the deviation from the critical point,
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FIG. 11. Feynman diagrams that contribute to the (6.38). Gauge and flavor indices are suppressed.

satisfying

1

gc
− 1

g
=
√

λg

4π
. (6.36)

To leading order, it is related to λ̄ by

λ̄ = λg + �λ(k = 0, λ̄ = 0)

�λ(0, λ̄)
�(0, 0), (6.37)

where � is the boson self-energy, and its second argument
refers to the mass in the boson propagator. The boson propa-
gator can then be written as

G−1
B (0) = λ̄ − �(0, λ̄)

= λg −
(

�(0, λg) − �λ(0, 0)

�λ(0, λg)
�(0, 0)

)
, (6.38)

where the second argument of �λ also refers to the boson
mass. In the following, we will evaluate the λg log λg diver-
gence of the self-energy diagrams appearing in (6.38). The
relevant diagrams are shown in Fig. 11, and we list their
contributions below:

�(a) = 3IA;1,

�(b) = 3
∑
μ,ν

∫
d3 p

8π3

(
δμ,ν − ζ

pμ pν

p2

)
1

�A(p)
,

�(c) = Iλ;1,

�(d ) = 3i2

�λ(0, λ̄)

∫
d3 p

8π3
IA;1(p)(GB(p))2,

�(e) = i2

�λ(0, λ̄)

∫
d3 p

8π3
Iλ;1(p)(GB(p))2,

�( f ) = i2

�λ(0, λ̄)
�(b)

∫
d3 p

8π3
(GB(p))2 = −�(b),

(6.39)

where IA;1 and Iλ;1 have been defined in the first equalities
of Eqs. (6.14) and (6.16), respectively. Since (b) and ( f )

cancel each other, we just need to extract the divergence in
(a), (c), (d ), (e). The gauge field contributions �(a) + �(d )

give

�(a) + �(d ) → − 12

π2

(
7Nf − 18Nb

(2Nb + Nf )2
+ ζ

2Nb + Nf

)
λg log λg.

(6.40)

The remaining term to be evaluated is �(c) + �(e),

�(c) + �(e) → 3

π2Nb
λg log λg. (6.41)

Since the integrals are in parallel to those discussed in
Ref. [71], we will omit the details here. Combining the two
equations above, we have the total coefficient α in front of the
λg log λg divergence as

α = 3

Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+ ζ

Nf + 2Nb

)
. (6.42)

Then we reexponentiate the result and combine with
Eq. (6.38) to get

G−1(0) = λg

(
1 − α log

λg

�2

)
≈ |g − gc|2(1−α), (6.43)

such that

γB = 2 − 2α = 2 − 6

Nbπ2
+ 24

π2

×
(

7Nf − 18Nb

(Nf + 2Nb)2
+ ζ

Nf + 2Nb

)
. (6.44)

Using the scaling relation (6.34), we get

νB ≈ γB

2

(
1 + ηB

2

)
≈ 1 − 8

3Nbπ2

− 20

(2Nb + Nf )π2
+ 12

π2

7Nf − 18Nb

(2Nb + Nf )2
, (6.45)

where we have kept the leading terms. At Nb = Nf = 2, this
gives νB = −0.216.
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FIG. 12. Vertex corrections for the B†ψ (left) and BT ψ (right)
operators.

5. Dressed fermion field

Only the gauge field contributes to the correction. The
relevant integral is

IA;ψ =
∫

d3q

8π3
γμGψγν (k + q)Dμν (−q)

→ 8

(Nf + Nb)π2

(
1

3
− ζ

)
/k log k. (6.46)

Tracing over the gauge degrees of freedom, as in the boson
case, we just get a factor of 3:∑

b,b′
(2δab′ − δabδbb′ ) = 4 − 1 = 3. (6.47)

So the anomalous dimension for the dressed fermion propa-
gator is

ηψ = 3 × 8

(2Nb + Nf )π2

(
1

3
− ζ

)
, (6.48)

and the gauge-dependent fermion scaling dimension is

dim[ψ] = 1 + ηψ

2
= 1 + 3 × 4

(2Nb + Nf )π2

(
1

3
− ζ

)
. (6.49)

6. Boson-fermion composite

The physical electron is a composite of bosonic chargon
and fermionic spinon. We are interested in the scaling di-
mension of the electron operator at the four nodal points
k = (±π/2,±π/2), whose precise representation in terms of
the low-energy chargons and spinons is given in Eq. (3.13).
These are linear combinations of the operators

∑
a B∗

asψatα

and
∑

ab εabBasψatα , where α labels the spinor component. As

we show below, the details of this linear combination are not
essential as each of these terms is independently renormalized
in the same manner.

We first consider scaling corrections to the operator∑
a B∗

asψat . There exists a one-loop vertex correction by the
gauge field shown in Fig. 12, leading to

dim[B†ψ] = dim[B] + dim[ψ] + ηB†ψ

= 3

2
+ 1

3(2Nb + Nf )π2

(
Nf

Nb
− 118

)
. (6.50)

At Nb = Nf = 2, this gives 3
2 − 13

2π2 = 0.84. Importantly, this
vertex correction in (12) is unaffected by the presence of γ

matrices, so operators of the form (1 ± iγ x )
∑

a B∗
asψat , which

project to an individual spinor component, receive the same
scaling dimension correction.

Another gauge-invariant choice is
∑

a,b Basεabψbt , which
gives the same contribution as in (6.50). One can easily check
that further adding γ matrices acting in the spinor space of
fermions does not change the result either.

The scaling dimension of the quasiparticle residue of the
electron Green’s function, Z , is given by

dim[Z] = 2(dim[B†ψ] − 1). (6.51)

7. Fermion bilinear

The Néel and VBS correlation functions can be expressed
in terms of spinon bilinear operators, and corrections to the
scaling dimension of these operators can be calculated by
analyzing the renormalization of these composite operators.
In the absence of chargon fluctuations, corrections due to the
SU(2) gauge field have previously been computed [48]. To
leading order, the only consequence of charge fluctuations is
to modify the prefactor in the effective gauge propagator. The
anomalous exponent is hence

ηNéel, VBS = − 16

π2(Nf + 2Nb)
, (6.52)

where the results of [48] are recovered by setting Nb = 0.

B. Finite v

Next we consider nonzero v in the Lagrangian (6.1). The
matrix Mb in (6.4) now becomes

G−1
b =

(
G−1

A G−1
B

G−1
C G−1

D

)
, G−1

B = −2
(k − k′)1, G−1
C = −2
∗(k′ − k)1,

G−1
A/D = 1

[
δkk′k2 + iλ(k − k′) +

∫
d3q

(2π )3
Aj (q)Aj (k − k′ − q)

]
± σ j

[
(k + k′)μAμ

j (k − k′)
]
.

(6.53)

Notice that the matrix has indices {k, s, a; k′, s′, a′}, where a, a′ is the gauge index and s, s′ labels boson flavor. Trace performed
over k is simply a momentum integration. Further expanding the matrix log to second order, we obtain

Tr ln G−1
b GB = Nb

∫
d3 p

(2π )3

d3q

(2π )3

{
G(q)δp0

∫
d3 p′

(2π )3
Ajμ(p′)Aμ

j (−p′) − 1

2
G(q)G(q − p)

×
[
−λ(p)λ(−p) + 4
(p)
∗(p) +

∑
j

(2q − p)μAμ
j (p)(2q − p)νAν

j (−p)

]}
. (6.54)
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FIG. 13. Additional correction due to 
 field, compared with
Fig. 8.

The fermionic sector is the same as before. Plugging in the
integrals (B3), we arrive at

F (1) = 1

2

∫
d3 p

(2π )3

{
�λ(p)[λ(p)λ(−p) − 4
(p)
∗(p)]

+ Ajμ(p)

(
δμν − pμ pν

p2

)
�A(p)Aν

j (−p)

}

+ Nb

(
λ2

2u
− λ

g

)
, (6.55)

where the kernels are the same as before in (6.9). In addition
to the gauge and λ field propagators in (6.10), we now also
have the 
 propagator

D
 = −1

4
Dλ = − 1

4�λ

. (6.56)

1. Dressed boson propagator

Now we have an additional diagram in Fig. 13. The rele-
vant integral is simply − 1

4 Iλ;1, where Iλ;1 was computed in in
(6.16). The trace over indices is computed as∑

a′
εaa′εa′a′′

∑
s′

Jss′Js′s′′ = δaa′′δss′′ , (6.57)

which is no different from the tree-level diagram. Summing
everything up, we now have

ηB = 1

2Nbπ2
− 12

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
. (6.58)

The dimension of single boson can be computed from
dim[B] = (1 + ηB)/2.

2. Density wave order parameter

The additional diagram compared with the v = 0 case is
shown in Fig. 14. The relevant integral is − 1

4 Iλ;2 computed in
(6.20). Next we take care of the indices,(∑

a

εa′aεaa′′

)⎡⎣∑
s,t

Jt ′t T
α

ts Jss′

⎤⎦
= −δa′,a′′

⎡⎣−
∑
s,t

(T α )T
t ′tJtsJss′

⎤⎦ = −δa′,a′′T α
s′t ′ . (6.59)

In the first equality we have used (3.9). Note that there
is an additional sign compared with the tree-level result.
Combining all the contributions from the vertex corrections,

FIG. 14. Additional diagram contributing to the vertex correction
of the density wave scaling dimension at leading order, compared
with Fig. 9.

we get

ηvertex = 5

2Nbπ2
− 24

(2Nb + Nf )π2
(1 − ζ ). (6.60)

The dimension of the quadratic boson term is thus

dim
[
B†

asT
α

st Bat
] = (1 + ηB) + ηvertex

= 1 + 1

(2Nb + Nf )π2

(
3

Nf

Nb
− 58

)
.

(6.61)

Taking Nf = Nb = 2, the dimension is 1 − 55/6π2 = 0.07.

Our anomalous scaling dimension is

ηB2 = 1 + 2

(2Nb + Nf )π2

(
3

Nf

Nb
− 58

)
. (6.62)

3. Superconducting order parameter

The additional diagram is Fig. 15. The relevant integral is
the same as − 1

4 Iλ;2. Now we look at the indices,⎛⎝∑
a,b

εa′aεabεbb′

⎞⎠⎛⎝∑
s,t

Js′sJstJtt ′

⎞⎠ = εa′b′Js′t ′ , (6.63)

so again no additional prefactor is present compared with the
tree-level result. Combining all contributions, we get

ιvertex = 3

2Nbπ2
− 24

(2Nb + Nf )π2
(1 − ζ ). (6.64)

FIG. 15. Additional contribution to the SC vertex correction,
compared with Fig. 10.
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FIG. 16. Feynman diagrams in addition to Fig. 11 that contribute to G−1(0).

The dimension of this quadratic boson is thus

dim[BasεabJst Bbt ] = (1 + ηB) + ιvertex

= 1 + 2

(2Nb + Nf )π2

(
Nf

Nb
− 30

)
,

(6.65)

Taking Nf = Nb = 2, the dimension is 1 − 29/3π2 = 0.02.

The anomalous scaling dimension is then

ιB2 = 1 + 4

(2Nb + Nf )π2

(
Nf

Nb
− 30

)
. (6.66)

4. Correlation length exponent

In addition to the diagrams presented in Fig. 11, now we
also have Fig. 16(a) due to the 
 fields: Notice that the
diagrams in which, e.g., the dashed λ line in Fig. 11(d) is
replaced by the dotted 
 line, are not allowed, because the
two external boson propagators need to have the same gauge
and flavor indices. The self-energies corresponding to the
above two diagrams are

�(g) = − 1
4�(c), �(h) = − 1

4�(e). (6.67)

Both relevant integrals have been evaluated before, leading to

�(g) + �(h) → − 3

4π2Nb
λg log λg. (6.68)

Combining with the v = 0 results, we now have the modified
total coefficient

α = 9

4Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+ ζ

Nf + 2Nb

)
. (6.69)

The correlation function exponent is then [we also need to
use the modified anomalous scaling dimension of B in (6.58)]

νB ≈ 1 + 1

Nbπ2
− 20

(2Nb + Nf )π2
+ 12

π2

7Nf − 18Nb

(2Nb + Nf )2
.

(6.70)

At Nb = Nf = 2, this gives νB = −0.03.

5. Boson-fermion composite

One gauge-invariant combination is
∑

a B†
asψat . In

the expression dim[B†ψ] = dim[B] + dim[ψ] + ηB†ψ =
3
2 + ηB+ηψ

2 + ηB†ψ, the only change compared with (6.50) lies
in dim[B]. The result is thus

dim[B†ψ] = 3

2
+ 1

4(2Nb + Nf )π2

(
Nf

Nb
− 158

)
. (6.71)

Other gauge-invariant choices such as
∑

a,b Basεabψbt , or with
γ matrices inserted, give the same results as in (6.71). At Nf =
Nb = 2, the above expression gives dim[B†ψ] = 0.837.

We summarize the calculations of scaling dimensions in
Table III.

VII. HONEYCOMB LATTICE

The ground state of the large-U Hubbard model on the hon-
eycomb lattice at half-filling has long-range Néel order, as for
the square lattice. Also as for the square lattice, adding frus-
trating interactions leads to a phase with VBS (i.e., Kekulé)
order [64–66]. But in contrast to the square lattice, at smaller
U the honeycomb lattice features a semimetal phase with
no broken symmetry, and an electronic dispersion with two
massless Dirac fermion points in the Brillouin zone.

In this section, we extend the SU(2) gauge theory analysis
to the honeycomb lattice. We find just the three phases noted
above, with no additional superconducting or charge-ordered
phases. This difference from the square lattice case can be
traced to the fact that the bosonic chargons, B, move in a back-
ground zero flux on the honeycomb lattice [68]. Consequently,
the B dispersion has only a single minimum in the Brillouin
zone, and the Higgs phase where B is condensed breaks no
symmetries and realizes the Dirac semimetal. We sketched a
phase diagram for the honeycomb lattice SU(2) gauge theory
in Fig. 2.

The details of such a theory have previously been worked
out in Ref. [68], but with the interpretation of the decon-
fined phase as being stable—our interpretation is that this

TABLE III. Summary of scaling dimensions at the multicritical point (second column), with the Lagrangians in (5.1) (third column) and
(A1) (last column), respectively. c ≡ Nf /Nb is a constant.

v = 0 SC channel DW channel

dim[B†
asTst Bat ] 1 + 8(c−22)

3(2Nb+Nf )π2 1 + (3c−58)
(2Nb+Nf )π2 1 − 16(c+14)

3(2Nb+Nf )π2

dim[BasεabJst Bbt ] 1 + 8(c−22)
3(2Nb+Nf )π2 1 + 2(c−30)

(2Nb+Nf )π2 1 + 4(5c−38)
3(2Nb+Nf )π2

dim[B†ψ] 3
2 + (c−118)

3(2Nb+Nf )π2
3
2 + (c−158)

4(2Nb+Nf )π2
3
2 − 2(c+62)

3(2Nb+Nf )π2

νB 1 − 8
3Nbπ2 − 20

(2Nb+Nf )π2 + 12
π2

Nb(7c−18)
(2Nb+Nf )2 1 + 1

Nbπ2 − 20
(2Nb+Nf )π2 + 12

π2
Nb(7c−18)
(2Nb+Nf )2 1 + 7

3Nbπ2 − 20
(2Nb+Nf )π2 + 12

π2
Nb(7c−18)
(2Nb+Nf )2
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phase is ultimately unstable to either Néel or VBS order. The
low-energy theory consists of Nf = 2 Dirac fermions with an
emergent SO(5) symmetry rotating between Néel and Kekulé
VBS order. As there is only a single minimum of the chargon
dispersion at k = (0, 0), the spinons are coupled to Nb = 1
bosonic chargons, with the full symmetry of the low-energy
action being SO(5) × SU(2), with the SU(2) chargon sym-
metry corresponding to the pseudospin. An important point
that is not explicitly discussed in Ref. [68] is the possibility of
symmetry-allowed quartic interactions between the chargons
and spinons, which would be marginal at tree level. However,
this is rather simple to rule out due to the fact that the char-
gon minimum is at k = (0, 0), and hence transforms trivially
under all the lattice symmetries (an exception are transforma-
tions that exchange the A and B sublattice, where the sublattice
structure of the chargon eigenvalue causes the chargon to
acquire a minus sign—this has no effect on chargon bilin-
ears). As a result, symmetry-allowed chargon/spinon quartic
interactions demand that the spinon bilinear component is
independently allowed by symmetry, and one can easily verify
that no such term exists.

The large-Nf , Nb expansion proceeds identically to the one
discussed previously in the paper, with the exception that the
chargon sector does not contain any quartic interactions aside
from a B4 term (in other words, we take v = 0). The results
for the various scaling dimensions in Sec. VI carry over to this
scenario, although some of the chargon bilinears studied can
only be defined for even Nb.

We note an interesting relation between the model of
Ref. [76] and the SU(2) gauge field theory with Nf = 2 and
Nb = 1. The global symmetry of the quantum field theory
of Sec. III is SO(5) f in the fermionic sector for Nf = 2, and
USp(2)/Z2 in the bosonic sector for Nb = 1. Reference
[76] considered a honeycomb lattice model in which
quantum spin Hall, superconducting, and Dirac semimetal
phases meet at a multicritical point, and proposed a SO(5)
Gross-Neveu-Yukawa field theory for the multicriticality. The
GNY field theory has no gauge fields, and hence there is an
additional SO(3)∼= USp(2)/Z2 global symmetry that acts on
the Dirac fermions. So the global symmetries of our SU(2)
gauge field theory at Nf = 2 and Nb = 1 are identical to those
of the SO(5) GNY theory. It remains an interesting open
question whether these two theories are the same conformal
field theory.

VIII. DISCUSSION

The discovery of high-temperature superconductivity in
the cuprates sparked decades of theoretical work on quan-
tum phases proximate to the familiar Néel ordered state of
the S = 1/2 square lattice antiferromagnet. Early work [44]
argued that the proximate insulator has valence bond solid
(VBS) order. The nature of the Néel-VBS quantum transition
has also been extensively studied [46,77,78], and recent fuzzy
sphere investigations [31] have concluded that it is described
by a “pseudocritical” theory with an approximate conformal
symmetry, and a nearly exact global SO(5) symmetry that
rotates between the 3 + 2 components of the Néel and VBS
orders. One formulation of the pseudocritical theory has a
SU(2) gauge field coupled to Nf = 2 fundamental massless

Dirac fermions: we have used the fuzzy sphere results to
conclude that this gauge theory is confined in the infrared
with either Néel or VBS order, and the Néel-VBS transition is
weakly first order. The ordering is selected by terms that are
formally irrelevant in the continuum theory, and we assume
here that Néel order is selected.

The present paper extends these investigations by allowing
for charge fluctuations while remaining at half-filling and pre-
serving particle-hole symmetry. Following earlier work [18],
we have shown that adding charge fluctuations to the SU(2)
gauge theory leads naturally to a d-wave superconductor with
nodal quasiparticles, and states with period-2 charge order. We
can then consider quantum transitions between the Néel state
and the d-wave superconductor, or between the Néel state
and charge order. Such transitions are described by a direct
extension of the SU(2) gauge theory with Nf = 2 fundamental
massless Dirac fermions—there are additional fundamental
Nb = 2 massless complex scalars. Given the weakly bro-
ken conformal symmetry for Nf = 2, Nb = 0 [31,32,73],
and the stability of conformal gauge theories at large Nf ,b,
it is very plausible that the Nf = 2, Nb = 2 case exhibits
true deconfined criticality with an exact emergent conformal
symmetry.

The Nf = 2, Nb = 2 quantum field theory studied in this
paper is defined by the Lagrangian Lψ + LB in (3.1) and (3.5).
Here r is the tuning parameter, which takes the system from
the Néel state (present when r is large and positive and B is not
condensed) to the states allowed by charge fluctuations (with
d-wave superconductivity or charge order). The coefficients
of the quartic couplings v1,2,3 in (3.5) select among the latter
states.

We studied two different large Nf ,b generalizations of
this theory, defined by the extensions (3.7) and (A4) in the
bosonic sector. The phase diagrams of these theories at Nb =
∞ appear in Fig. 1. The 1/Nf ,b expansions of the second-
order quantum phase transitions are described in Sec. VI
and Appendix A. We computed the scaling dimensions of
the gauge-invariant order parameters, which are composites
of two fermions or two bosons, and the electron opera-
tors at momenta (±π/2,±π/2), which are the composites
of one fermion and one boson in (3.13). Our results are
summarized in Table III. The results are not expected to be ac-
curate at Nf = Nb = 2, when the 1/Nf ,b corrections are quite
large.

The scaling dimension of the electron operator determines
a novel feature of the quantum transition out of the d-wave
superconductor. The d-wave superconductor itself is conven-
tional, and has four nodal points with gapless Bogoliubov
quasiparticles. In BCS theory, such gapless quasiparticles are
remnants of the Fermi surface of the parent metal, and so
the electronic quasiparticle residue remains nonzero across
the metal-superconducting transition. However, for the tran-
sition from the d-wave superconductor to the Néel state,
there is no longer a simple relationship between the Bo-
goliubov quasiparticles and the Fermi surface excitations of
a parent metal. Instead, the Bogoliubov quasiparticles of
the superconductor are connected to the spinons of the de-
confined quantum critical point. As there are no gapless
electronic excitations in the Néel state, the electronic quasi-
particle residue vanishes at the transition out of the d-waves
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superconductor with an exponent determined by the scaling
dimension of the electron operator at the deconfined quantum
critical point.

A recent paper [23] has shown that a similar phenomenon
can also happen in the electron doped case in a situation in
which the normal state has no Fermi surface crossing the
zone diagonals: nevertheless, gapless nodal quasiparticles do
appear in the proximate d-wave superconductor, in a region of
the Brillouin zone that is gapped in the normal state. Further-
more, there are connections of this remarkable phenomenon
to the recent photoemission observations of Ref. [30] on the
electron doped cuprates.

Along the same lines, we believe the d-wave supercon-
ductor found in the quasi-one-dimensional numerical study of
Ref. [53], by doping the spin liquid of the J1-J2 antiferromag-
net, will have four nodal points in the two-dimensional limit.

Finally, we note the analysis of Sec. VII, where we ap-
plied the same line of thought to the Néel-VBS transition
on the honeycomb lattice [64,65]. We found only a single
additional phase upon including charge fluctuations: a Dirac
semimetal with no broken symmetries. All these phases [Néel,
VBS (Kekulé), Dirac semimetal] have been observed in ex-
periments on monolayer graphene [79,80]. It is interesting
to speculate that the absence of a superconducting phase on
the honeycomb lattice in our theory, in contrast to the square
lattice, is the underlying reason for the low superconducting
Tc’s observed in the graphene family of compounds.
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APPENDIX A: ALTERNATIVE LARGE Nb LIMIT

This Appendix considers an alternative large Nb limit of the
Nb = 2 case of the action LB in (3.7). We use the identity (3.4)

to write (3.7) at Nb = 2 as

L̃B = ∣∣(∂μ − iAα
μσα

)
B
∣∣2 + u

2Nb
(|Bas|2 − 1/g)2

+ v

Nb

(
B∗

asσ
i
st Bat

)2
. (A1)

[For simplicity, we have ignored a renormalization of the
values of u and g arising from the left-hand side of (3.4).] Note
that v now appears with the opposite sign in the last quartic
term compared to (3.7). The form (A1) is not suitable for a
large Nb generalization because it has “flavor” Pauli matrices
that will generalize to the N2

b − 1 generators of SU(Nb). To
overcome this difficulty, we use the following Nb = 2 identity
to transfer the Pauli matrices from the flavor to the gauge
indices:

σ i
ss′σ

i
tt ′B∗

asB
∗
bt Bbt ′Bas′ = σ

j
aa′σ

j
bb′B∗

asB
∗
bt Bb′t Ba′s. (A2)

Here the index j = 1, 2, 3 labels the adjoint gauge SU(2)
components; (A2) can be established by applying the follow-
ing identity to both sides:

σ i
ss′σ

i
tt ′ = −δss′δtt ′ + 2δst ′δts′ . (A3)

Then we can write (A1) as

L̃B = ∣∣(∂μ − iAα
μσα

)
B
∣∣2 + u

2Nb
(|Bas|2 − Nb/g)2

+ v

Nb

(
B∗

asσ
j

aa′Ba′s
)2

, (A4)

and the flavor indices s, t can be extended to range over gen-
eral Nb values. The theory L̃B in (A4) has a SU(Nb) × U(1)
global symmetry, in contrast to the theory LB in (3.7) with a
USp(Nb) × U(1) global symmetry. By construction, the two
theories are the same at Nb = 2, but are distinct for Nb > 2.

We can now proceed with a large Nb expansion of (A4).
We decouple the v term in (A4) by a real Higgs field Hj

which is an adjoint under gauge SU(2), but a singlet under
flavor SU(Nb). In this manner, we obtain, in place of (5.12),
the action

S̃eff. = Nb

2
Tr[ln(G−1)] + Nbλ

2

2u
− NbH2

j

4v
− iλ

Nb

g
+ iλ(|Ba1|2 + |Ba2|2) − HjB

∗
a1σ

j
aa′Ba′1− HjB

∗
a2σ

j
aa′Ba′2, (A5)

where

G−1 =
(

iλ − (
∂μ + iA j

μσ j
)2 − Hjσ

j 0

0 iλ − (
∂μ − iA j

μσ T
j

)2 + Hjσ
j

)
(A6)

is a 4 × 4 matrix. As in the main text, we assume Aj
μ = 0 at the saddle point.

The saddle point equation for λ is as before after interchanging 4|
|2 for H2
j :

iλNb

u
+ Nb

g
− Nb(|B1|2 + |B2|2) =

∫
d3 p

(2π )3
(iλ + p2)

2Nb

(iλ + p2)2 − H2
j

, (A7)

and that for Hj is identical to the saddle point for 
 after after interchanging 4|
|2 for H2
j and taking v → −v:

−Nb

2v
− Nb

Hz

(
B∗

a,1σ
j

aa′Ba′,1 + B∗
a,2σ

j
aa′Ba′,2

) =
∫

d3 p

(2π )3

2Nb

(iλ + p2)2 − H2
j

. (A8)
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In working out the saddle point equation for B, we will assume
that if Hj is condensed, it aligns only with Hz to simplify
the saddle point equations. Under this assumption, we obtain
the saddle point equation for B:

iλB1,1 = HzB1,1, iλB2,1 = −HzB2,1,

iλB1,2 = HzB1,2, iλB2,2 = −HzB2,2. (A9)

After integration, these saddle point equations for Hz and
λ ≡ iλ obtained from integrating (A8) and (A7) are

− 1

2v
− 1

Hz

(
B∗

a,1σ
z
aa′Ba′,1 + B∗

a,2σ
z
aa′Ba′,2

)
= 1

4π |Hz| [
√

λ + |Hz| −
√

λ − |Hz|], (A10)

λ

u
+ 1

g
− (|B1|2 + |B2|2)

= − 1

4π

[√
λ + |Hz| +

√
λ − |Hz| − 4π

gc

]
, (A11)

where 1/gc = �/π2, with � the momentum space cutoff.
If we set B to zero, then we will find all the same saddle
point solutions in the main text where B = 0 if we exchange
v → −v and 2|
| → Hz. If we allow B, Hz, and λ to all con-
dense, we will find that the saddle point equations will again
enforce λ = |Hz| and the saddle point equation for Hz can be
rewritten as

− 1

2v
− 1

λ
(|B1|2 + |B2|2) =

√
2

4π
√

λ
. (A12)

This is again the same as our previous saddle point equation
for 
 if we exchange v with −v and 2|
| with |Hz| = λ. We
also note the types of solutions we find when B is condensed.
An example solution that solves the saddle point equation for
B when Hz is nonzero has

B1,1 �= 0, B1,2 = 0, B2,1/2 = 0. (A13)

Such a solution will condense the CDWx order parameter in
[23]. We could also have chosen a different example solution
for B:

B1,1 = B1,2 �= 0, B2,1,2 = 0, (A14)

which would result in condensing the CDWy order in [23]:
Finally, we could have chosen a solution where only the

d-density wave is condensed with

B1,1 ∝ i, B1,2 ∝ 1, B2,1/2 = 0. (A15)

A general solution will have different nonzero strengths for
each of the above continuum order parameters. There is no

FIG. 17. Additional correction due to 
 field, compared with
Fig. 8.

FIG. 18. Additional diagram contributing to the vertex correction
of the density wave scaling dimension at leading order, compared
with Fig. 9.

solution allowed by the saddle point equations where the d-
wave pairing continuum order parameter is also condensed.
The phase diagram for this large-Nb limit is shown in Fig. 1(b).

1. Large-N corrections for the alternative formulation

The leading correction to the free energy is now

F (1) = 1

2

∫
d3 p

(2π )3

{
�λ(p)[λ(p)λ(−p) − Hj (p)Hj (−p)]

+ Ajμ(p)

(
δμν − pμ pν

p2

)
�A(p)Aν

j (−p)

}

+ Nb

(
λ2

2u
+ H2

j

2w
− λ

g

)
. (A16)

We now have the propagator of the Hj fields,

DH = −Dλ = − 1

�λ

. (A17)

a. Dressed boson propagator

Now we have an additional diagram in Fig. 17. The rel-
evant integral is simply −Iλ;1, where Iλ;1 was computed in
(6.16). The trace over indices simply gives an additional factor
of 3, such that

ηB = 2

3Nbπ2
(1 − 3) − 4 × 3

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
= − 4

3Nbπ2
− 12

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
. (A18)

The dimension of the single boson can be computed from
dim[B] = (1 + ηB)/2.

b. Density wave order parameter

The additional relevant diagram is shown in Fig. 18. The
relevant integral is −Iλ;2 computed in (6.20). The indices give
a factor of 3, leading to

ηvertex = 2

Nbπ2
(1 − 3) − 8 × 3

(2Nb + Nf )π2
(1 − ζ )

= − 4

Nbπ2
− 24

(2Nb + Nf )π2
(1 − ζ ). (A19)
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FIG. 19. Additional contribution to the SC vertex correction,
compared with Fig. 10.

The dimension of the quadratic boson term is thus

dim[B†
asT

α
st Bat ] = (1 + ηB) + ηvertex

= 1 − 16

3(2Nb + Nf )π2

(
Nf

Nb
+ 14

)
. (A20)

Taking Nf = Nb = 2, the dimension is 1 − 40/3π2 = −0.35,
which is unfortunately negative but an artifact of the small N’s
chosen. Our anomalous scaling dimension is

ηB2 = 1 − 32

3(2Nb + Nf )π2

(
Nf

Nb
+ 14

)
. (A21)

c. Superconducting order parameter

The additional diagram is Fig. 19. The relevant integral is
the same as −Iλ;2. Index summation gives −3 as in the gauge
field correction, resulting in

ιvertex = 4

2Nbπ2
(1 + 3) − 8 × 3

(2Nb + Nf )π2
(1 − ζ )

= 8

Nbπ2
− 24

(2Nb + Nf )π2
(1 − ζ ).

(A22)

The dimension of this quadratic boson is thus

dim[BasεabJst Bbt ] = (1 + ηB) + ιvertex

= 1 + 4

3(2Nb + Nf )π2

(
5

Nf

Nb
− 38

)
.

(A23)

Taking Nf = Nb = 2, the dimension is 1 − 22/3π2 = 0.26.

The anomalous scaling dimension is then

ιB2 = 1 + 8

3(2Nb + Nf )π2

(
5

Nf

Nb
− 38

)
. (A24)

d. Correlation length exponent

In addition to the diagrams presented in Fig. 11, now we
also have Fig. 20 due to the Hj field: Notice that other dia-
grams such as replacing the dashed λ line in Fig. 11(d) by
the dash-dotted Hz line will cancel each other since we need
to sum over boson bubbles with different gauge indices. The
self-energies corresponding to the above two diagrams are

�(g) = −�(c), �(h) = −�(e). (A25)

Both relevant integrals have been evaluated before, leading to

�(g) + �(h) → − 3

π2Nb
λg log λg. (A26)

Combining with the v = 0 results, we now have the modified
total coefficient

α = − 3

Nbπ2
− 12

π2

(
7Nf − 18Nb

(Nf + 2Nb)2
+ ζ

Nf + 2Nb

)
. (A27)

The correlation function exponent is then [we also need to use
the modified anomalous scaling dimension of B in (A18)]

νB ≈ 1 + 7

3Nbπ2
− 20

(2Nb + Nf )π2
+ 12

π2

7Nf − 18Nb

(2Nb + Nf )2
.

(A28)

At Nb = Nf = 2, this is νB = 0.037.

e. Boson-fermion composite

In the expression, dim[B†ψ] = dim[B] + dim[ψ] +
ηB†ψ = 3

2 + ηB+ηψ

2 + ηB†ψ ; the only change compared with
(6.50) lies in dim[B]. The result is thus

dim[B†ψ] = 3

2
− 2

3(2Nb + Nf )π2

(
Nf

Nb
+ 62

)
. (A29)

Again other gauge-invariant choices such as
∑

a,b Basεabψbt ,
or with γ matrices inserted, give the same result. At Nb =
Nf = 2, we have dim[B†ψ] = 3

2 − 7
π2 = 0.79.

APPENDIX B: USEFUL INTEGRALS

Below we present some details of the integrals that appear
in the main text.

FIG. 20. Feynman diagrams in addition to Fig. 11 that contribute to G−1
B (0).
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We first present more details for the derivation of the effective action in Sec. VI A. Expansion of the matrix log gives, in the
bosonic sector,

Tr ln G−1
b GB = 2Nb

∫
d3 p

(2π )3

d3q

(2π )3

{
G(q)δp0

∫
d3 p′

(2π )3
Aαμ(p′)Aμ

α (−p′)

− 1

2
G(q)G(q − p)

[
−λ(p)λ(−p) +

∑
j

(2q − p)μAμ
α (p)(2q − p)νAν

α (−p)

]}
. (B1)

For the fermion sector, we have

Tr ln G−1
f Gψ = −Nf

2

∫
d3 p

(2π )3

d3q

(2π )3
Tr
[
Gψ (q)γ μAα

μ(p)σαGψ (p + q)γ νAβ
ν (−p)σβ

]
. (B2)

The integrals can be evaluated, and we summarize the results here:∫
d3q

(2π )3

1

q2 + λ̄
= −

√
λ̄

4π
,

∫
d3q

(2π )3

Tr[γ μ
/qγ ν (/p + /q)]

q2(p + q)2
= − 1

16q
,∫

d3q

(2π )3

1

(q2 + λ̄)
(
(q − p)2 + λ̄

) = 1

4π p
arctan

p

2
√

λ̄
,

∫
d3q

(2π )3

(2q − p)μ(2q − p)ν
(q2 + λ̄)

(
(q − p)2 + λ̄

) = −
(

δμν + pμ pν

p2

)√
λ̄

4π
−
(

δμν − pμ pν

p2

)(
4λ̄ + p2

8pπ
arctan

p

2
√

λ̄

)
. (B3)

The leading correction to the free energy is thus (6.8). Notice that the first- and second-order bosonic contributions to �A

combine to give a simple expression.
Next we evaluate the integrals IA;i and Iλ;i with i = 1, 2 that appear in the main text,

IA;1 =
∫

d3 p

8π3
[GB(k + p)Dμν (−p)(2k + p)μ(2k + p)ν]|λ̄=0

= − 16

2Nb + Nf

∫
d3 p

8π3

4kμkν + 2kμ pν + 2pμkν + pμ pν

p(k + p)2

(
δμν − ζ

pμ pν

p2

)
= − 16

2Nb + Nf

∫
d3 p

8π3

1

p(k + p)2

[
(4k2 + 4k · p + p2) − ζ

p2
(4(k · p)2 + 4p2(k · p) + p4)

]
= − 16

2Nb + Nf

∫
d p

4π2

∫
dθ

p sin θ

(k2 + p2 + 2kp cos θ )

[
(4k2 + 4kp cos θ + p2) − ζ (4k2 cos θ2 + 4kp cos θ + p2)

]

= − 16

2Nb + Nf

∫
d p

4π2

[
4p + 2k2 − p2

2k
log

(
k + p

k − p

)2

+ 2ζ
k2 − p2

p
− ζ

k3

2p2
log

(
k + p

k − p

)2]
→ − 4

(2Nb + Nf )π2

(
10

3
+ 2ζ

)
k2 log k, (B4)

where the right arrow in the last line means we are extracting the k2 log k divergence.
For (6.16), we have

Iλ;1 = i2
∫

d3 p

8π3
[GB(k + p)Dλ(−p)]

∣∣
λ̄=0

= 8

2Nb

∫
d3 p

8π3

p

(k + p)2

= 8

2Nb

∫
d p

4π2

∫
sin θdθ

p3

k2 + p2 + 2kp cos θ

= 2

2Nbπ2

∫
d p

p3

2kp
log

(
k + p

k − p

)2

→ 2

3Nbπ2
k2 log k. (B5)
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As for (6.20), we have

IA;2 → 16

2Nb + Nf

∫
d3 p

8π3

(2k − p)μ(2k − p)ν
(k − p)4

1

p

(
δμν − ζ

pμ pν

p2

)
= 16

2Nb + Nf

∫
d3 p

8π3

1

p

[
(2k − p)2

(k − p)4
− ζ

[(2k − p) · p]2

p2(k − p)4

]
= 16

2Nb + Nf

∫
d p

4π2

∫
dθ sin θ

[
p

4k2 − 4kp cos θ + p2

(k2 + p2 − 2kp cos θ )2
− ζ

(2kp cos θ − p2)2

p(k2 + p2 − 2kp cos θ )2

]
→ 16

2Nb + Nf

1

4π2
(1 − ζ )(−2 log k) = − 8

(2Nb + Nf )π2
(1 − ζ ) log k. (B6)

In the last line, we have again extracted the term proportional to log k.
In (6.22),

Iλ;2 = i2
∫

d3 p

8π3
GB(k1 − p)GB(−k2 + p)Dλ(p)

= − 8

2Nb

∫
d3 p

8π3

p

(k1 − p)2

1

(k2 − p)2

= − 8

2Nb

∫
d p

4π2

∫
dθ

p3 sin θ

(k2 − 2kp cos θ + p2)2

= − 8

2Nb

∫
d p

4π2

2p3

(k2 − p2)2

→ − 8

2Nb

1

4π2
(−2 log k) = + 2

Nbπ2
log k.

(B7)
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Středa’s formula, Phys. Rev. Lett. 131, 236601 (2023).

[20] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi liq-
uids, Phys. Rev. Lett. 90, 216403 (2003).

033018-23

https://doi.org/10.1038/nature14165
https://doi.org/10.1103/PhysRevB.49.6770
https://doi.org/10.1103/PhysRevLett.76.503
https://doi.org/10.1103/PhysRevLett.80.2193
https://doi.org/10.1103/PhysRevB.74.125110
https://doi.org/10.1103/PhysRevLett.97.136401
https://doi.org/10.1103/PhysRevB.73.174501
https://doi.org/10.1103/PhysRevB.75.235122
https://doi.org/10.1038/nphys790
https://doi.org/10.1103/PhysRevLett.102.056404
https://doi.org/10.1103/PhysRevB.81.115129
https://doi.org/10.1103/PhysRevB.85.134519
https://doi.org/10.1088/1361-6633/ab31ed
https://doi.org/10.1103/PhysRevResearch.2.023172
https://doi.org/10.1103/PhysRevB.106.045109
https://doi.org/10.1103/PhysRevLett.130.156702
https://doi.org/10.1038/s41467-023-42773-7
https://doi.org/10.1073/pnas.2302701120
https://doi.org/10.1103/PhysRevLett.131.236601
https://doi.org/10.1103/PhysRevLett.90.216403


CHRISTOS, SHACKLETON, SACHDEV, AND LUO PHYSICAL REVIEW RESEARCH 6, 033018 (2024)

[21] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-
Fermi liquids near heavy-fermion critical points, Phys. Rev. B
69, 035111 (2004).

[22] A. Paramekanti and A. Vishwanath, Extending Luttinger’s the-
orem to Z2 fractionalized phases of matter, Phys. Rev. B 70,
245118 (2004).

[23] M. Christos and S. Sachdev, Emergence of nodal Bogoliubov
quasiparticles across the transition from the pseudogap metal to
the d-wave superconductor, npj Quantum Mater. 9, 4 (2024).

[24] H. J. Rothe, Lattice Gauge Theories, 4th ed. (World Scientific,
Singapore, 2012).

[25] Y. Fang, G. Grissonnanche, A. Legros, S. Verret, F. Laliberte, C.
Collignon, A. Ataei, M. Dion, J. Zhou, D. Graf, M. J. Lawler,
P. Goddard, L. Taillefer, and B. J. Ramshaw, Fermi surface
transformation at the pseudogap critical point of a cuprate su-
perconductor, Nat. Phys. 18, 558 (2022).

[26] E. G. Moon and S. Sachdev, Underdoped cuprates as fractional-
ized Fermi liquids: Transition to superconductivity, Phys. Rev.
B 83, 224508 (2011).

[27] P. W. Anderson, The resonating valence bond state in La2CuO4

and superconductivity, Science 235, 1196 (1987).
[28] S. Chatterjee and S. Sachdev, Fractionalized Fermi liquid with

bosonic chargons as a candidate for the pseudogap metal, Phys.
Rev. B 94, 205117 (2016).

[29] P. M. Bonetti, M. Christos, and S. Sachdev, Quantum oscilla-
tions in the hole-doped cuprates and the confinement of spinons,
arXiv:2405.08817.

[30] K.-J. Xu, Q. Guo, M. Hashimoto, Z.-X. Li, S.-D. Chen, J. He,
Y. He, C. Li, M. H. Berntsen, C. R. Rotundu, Y. S. Lee, T. P.
Devereaux, A. Rydh, D.-H. Lu, D.-H. Lee, O. Tjernberg, and
Z.-X. Shen, Bogoliubov quasiparticle on the gossamer Fermi
surface in electron-doped cuprates, Nat. Phys. 19, 1834 (2023).

[31] Z. Zhou, L. Hu, W. Zhu, and Y.-C. He, The SO(5) deconfined
phase transition under the fuzzy sphere microscope: Approx-
imate conformal symmetry, pseudo-criticality, and operator
spectrum, Phys. Rev. X 14, 021044 (2024).

[32] B. Zhao, J. Takahashi, and A. W. Sandvik, Multicritical de-
confined quantum criticality and lifshitz point of a helical
valence-bond phase, Phys. Rev. Lett. 125, 257204 (2020).

[33] S. M. Chester and N. Su, Bootstrapping deconfined quantum
tricriticality, Phys. Rev. Lett. 132, 111601 (2024).

[34] B.-B. Chen, X. Zhang, Y. Wang, K. Sun, and Z. Y. Meng,
Phases of (2+1)D SO(5) non-linear sigma model with a topo-
logical term on a sphere: multicritical point and disorder phase,
arXiv:2307.05307.

[35] J. Takahashi, H. Shao, B. Zhao, W. Guo, and A. W. Sandvik,
SO(5) quantum tri-criticality in two-dimensional quantum mag-
nets, arXiv:2405.06607.

[36] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (2006).

[37] J. Alicea, Monopole quantum numbers in the staggered flux
spin liquid, Phys. Rev. B 78, 035126 (2008).

[38] X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, From
spinon band topology to the symmetry quantum numbers of
monopoles in Dirac spin liquids, Phys. Rev. X 10, 011033
(2020).

[39] L. Wang and A. W. Sandvik, Critical level crossings and gap-
less spin liquid in the square-lattice Spin-1 /2 J1-J2 Heisenberg
antiferromagnet, Phys. Rev. Lett. 121, 107202 (2018).

[40] F. Ferrari and F. Becca, Gapless spin liquid and valence-bond
solid in the J1-J2 Heisenberg model on the square lattice: In-
sights from singlet and triplet excitations, Phys. Rev. B 102,
014417 (2020).

[41] Y. Nomura and M. Imada, Dirac-type nodal spin liquid revealed
by refined quantum many-body solver using neural-network
wave function, correlation ratio, and level spectroscopy, Phys.
Rev. X 11, 031034 (2021).

[42] W.-Y. Liu, J. Hasik, S.-S. Gong, D. Poilblanc, W.-Q. Chen,
and Z.-C. Gu, Emergence of gapless quantum spin liquid from
deconfined quantum critical point, Phys. Rev. X 12, 031039
(2022).

[43] X. Qian and M. Qin, Absence of spin liquid phase in the J1 −
J2 Heisenberg model on the square lattice, Phys. Rev. B 109,
L161103 (2024).

[44] N. Read and S. Sachdev, Valence-bond and spin-Peierls ground
states of low-dimensional quantum antiferromagnets, Phys.
Rev. Lett. 62, 1694 (1989).

[45] N. Read and S. Sachdev, Large-N expansion for frus-
trated quantum antiferromagnets, Phys. Rev. Lett. 66, 1773
(1991).

[46] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil,
Deconfined quantum critical points: Symmetries and dualities,
Phys. Rev. X 7, 031051 (2017).

[47] Y. Ran, Spin liquids, exotic phases and phase transitions, Ph.D.
thesis, MIT Physics Department, 2007.

[48] Y. Ran and X.-G. Wen, Continuous quantum phase transi-
tions beyond Landau’s paradigm in a large-N spin model,
arXiv:cond-mat/0609620.

[49] H. Shackleton, A. Thomson, and S. Sachdev, Deconfined
criticality and a gapless Z2 spin liquid in the square-lattice
antiferromagnet, Phys. Rev. B 104, 045110 (2021).

[50] H. Shackleton and S. Sachdev, Anisotropic deconfined critical-
ity in Dirac spin liquids, J. High Energy Phys. 07 (2022) 141.

[51] The theory of Ref. [49] can exhibit a bicritical point where the
Néel, VBS, and gapless Z2 spin liquids meet. This bicritical
point can realize a SO(5)-symmetric bicritical point in the stud-
ies of Refs. [33,35] if the Yukawa couplings between the Higgs
fields and spinons are irrelevant at the bicritical point.

[52] H.-C. Jiang and S. A. Kivelson, High temperature superconduc-
tivity in a lightly doped quantum spin liquid, Phys. Rev. Lett.
127, 097002 (2021).

[53] H.-C. Jiang, S. A. Kivelson, and D.-H. Lee, Superconducting
valence bond fluid in lightly doped eight-leg t-J cylinders, Phys.
Rev. B 108, 054505 (2023).

[54] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, A renormalised
Hamiltonian approach for a resonant valence bond wavefunc-
tion, Supercond. Sci. Technol. 1, 36 (1988).

[55] D. A. Ivanov and T. Senthil, Projected wave functions for frac-
tionalized phases of quantum spin systems, Phys. Rev. B 66,
115111 (2002).

[56] R. Zhou, I. Vinograd, M. Hirata, T. Wu, H. Mayaffre, S. Krämer,
W. N. Hardy, R. Liang, D. A. Bonn, T. Loew, J. Porras, B.
Keimer, and M. H. Julien, Deconstructing the spin susceptibility
of a cuprate superconductor, arXiv:2402.02508.

[57] V. Oliviero, I. Gilmutdinov, D. Vignolles, S. Benhabib, N.
Bruyant, A. Forget, D. Colson, W. A. Atkinson, and C.
Proust, Charge order near the antiferromagnetic quantum crit-
ical point in the trilayer high Tc cuprate HgBa2Ca2Cu3O8+δ ,
arXiv:2401.15224.

033018-24

https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1038/s41535-023-00608-0
https://doi.org/10.1038/s41567-022-01514-1
https://doi.org/10.1103/PhysRevB.83.224508
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/PhysRevB.94.205117
https://arxiv.org/abs/2405.08817
https://doi.org/10.1038/s41567-023-02209-x
https://doi.org/10.1103/PhysRevX.14.021044
https://doi.org/10.1103/PhysRevLett.125.257204
https://doi.org/10.1103/PhysRevLett.132.111601
https://arxiv.org/abs/2307.05307
https://arxiv.org/abs/2405.06607
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevB.78.035126
https://doi.org/10.1103/PhysRevX.10.011033
https://doi.org/10.1103/PhysRevLett.121.107202
https://doi.org/10.1103/PhysRevB.102.014417
https://doi.org/10.1103/PhysRevX.11.031034
https://doi.org/10.1103/PhysRevX.12.031039
https://doi.org/10.1103/PhysRevB.109.L161103
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1103/PhysRevX.7.031051
https://arxiv.org/abs/cond-mat/0609620
https://doi.org/10.1103/PhysRevB.104.045110
https://doi.org/10.1007/JHEP07(2022)141
https://doi.org/10.1103/PhysRevLett.127.097002
https://doi.org/10.1103/PhysRevB.108.054505
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1103/PhysRevB.66.115111
https://arxiv.org/abs/2402.02508
https://arxiv.org/abs/2401.15224


DECONFINED QUANTUM CRITICALITY OF NODAL … PHYSICAL REVIEW RESEARCH 6, 033018 (2024)

[58] I. Affleck and J. B. Marston, Large-n limit of the Heisenberg-
Hubbard model: Implications for high-Tc superconductors,
Phys. Rev. B 37, 3774 (1988).

[59] A. Nikolaenko, J. von Milczewski, D. G. Joshi, and S. Sachdev,
Spin density wave, Fermi liquid, and fractionalized phases in
a theory of antiferromagnetic metals using paramagnons and
bosonic spinons, Phys. Rev. B 108, 045123 (2023).

[60] S. Raghu, S. A. Kivelson, and D. J. Scalapino, Superconduc-
tivity in the repulsive Hubbard model: An asymptotically exact
weak-coupling solution, Phys. Rev. B 81, 224505 (2010).

[61] F. F. Assaad, M. Imada, and D. J. Scalapino, Quantum Tran-
sition between an antiferromagnetic Mott insulator and dx2−y2

superconductor in two dimensions, Phys. Rev. Lett. 77, 4592
(1996).

[62] X. Y. Xu and T. Grover, Competing nodal d-wave supercon-
ductivity and antiferromagnetism, Phys. Rev. Lett. 126, 217002
(2021).

[63] Y. Ran, A. Vishwanath, and D.-H. Lee, A direct transition
between a Neel ordered Mott insulator and a dx2−y2 supercon-
ductor on the square lattice, arXiv:0806.2321.

[64] N. Read and S. Sachdev, Spin-Peierls, valence-bond solid, and
Néel ground states of low-dimensional quantum antiferromag-
nets, Phys. Rev. B 42, 4568 (1990).

[65] L. Fu, S. Sachdev, and C. Xu, Geometric phases and competing
orders in two dimensions, Phys. Rev. B 83, 165123 (2011).

[66] Z.-X. Li, S.-K. Jian, and H. Yao, Deconfined quantum crit-
icality and emergent SO(5) symmetry in fermionic systems,
arXiv:1904.10975.

[67] J. M. Kosterlitz, D. R. Nelson, and M. E. Fisher, Bicritical and
tetracritical points in anisotropic antiferromagnetic systems,
Phys. Rev. B 13, 412 (1976).

[68] M. Hermele, SU(2) gauge theory of the Hubbard model and
application to the honeycomb lattice, Phys. Rev. B 76, 035125
(2007).

[69] R. Boyack, H. Yerzhakov, and J. Maciejko, Quantum phase
transitions in Dirac fermion systems, Eur. Phys. J.: Spec. Top.
230, 979 (2021).

[70] S. Sachdev, Quantum Phases of Matter (Cambridge University
Press, Cambridge, UK, 2023).

[71] R. K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge
theories with fermionic and bosonic matter in two spatial di-
mensions, Phys. Rev. B 77, 155105 (2008).

[72] J. B. Kogut, The lattice gauge theory approach to quantum
chromodynamics, Rev. Mod. Phys. 55, 775 (1983).

[73] J. Takahashi and A. W. Sandvik, Valence-bond solids,
vestigial order, and emergent SO(5) symmetry in a two-
dimensional quantum magnet, Phys. Rev. Res. 2, 033459
(2020).

[74] A. Thomson and S. Sachdev, Fermionic spinon theory of square
lattice spin liquids near the Néel state, Phys. Rev. X 8, 011012
(2018).

[75] D. Podolsky and S. Sachdev, Spectral functions of the Higgs
mode near two-dimensional quantum critical points, Phys. Rev.
B 86, 054508 (2012).

[76] T. Sato, Z. Wang, Y. Liu, D. Hou, M. Hohenadler, W. Guo, and
F. F. Assaad, Simulation of fermionic and bosonic critical points
with emergent SO(5) symmetry, Phys. Rev. B 108, L121111
(2023).

[77] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Deconfined quantum critical points, Science 303, 1490
(2004).

[78] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.
Fisher, Quantum criticality beyond the Landau-Ginzburg-
Wilson paradigm, Phys. Rev. B 70, 144407 (2004).

[79] A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K.
Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero,
Tunable symmetry breaking and helical edge transport in a
graphene quantum spin Hall state, Nature (London) 505, 528
(2014).

[80] A. Coissard, D. Wander, H. Vignaud, A. G. Grushin,
C. Repellin, K. Watanabe, T. Taniguchi, F. Gay, C. B.
Winkelmann, H. Courtois, H. Sellier, and B. Sacépé, Imaging
tunable quantum Hall broken-symmetry orders in graphene,
Nature (London) 605, 51 (2022).

033018-25

https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.108.045123
https://doi.org/10.1103/PhysRevB.81.224505
https://doi.org/10.1103/PhysRevLett.77.4592
https://doi.org/10.1103/PhysRevLett.126.217002
https://arxiv.org/abs/0806.2321
https://doi.org/10.1103/PhysRevB.42.4568
https://doi.org/10.1103/PhysRevB.83.165123
https://arxiv.org/abs/1904.10975
https://doi.org/10.1103/PhysRevB.13.412
https://doi.org/10.1103/PhysRevB.76.035125
https://doi.org/10.1140/epjs/s11734-021-00069-1
https://doi.org/10.1103/PhysRevB.77.155105
https://doi.org/10.1103/RevModPhys.55.775
https://doi.org/10.1103/PhysRevResearch.2.033459
https://doi.org/10.1103/PhysRevX.8.011012
https://doi.org/10.1103/PhysRevB.86.054508
https://doi.org/10.1103/PhysRevB.108.L121111
https://doi.org/10.1126/science.1091806
https://doi.org/10.1103/PhysRevB.70.144407
https://doi.org/10.1038/nature12800
https://doi.org/10.1038/s41586-022-04513-7

