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The Boltzmann equation is a powerful theoretical tool for modeling the collective dynamics of quantum
many-body systems subject to external perturbations. Analysis of the equation gives access to linear response
properties including collective modes and transport coefficients, but often proves intractable due to computational
costs associated with multidimensional integrals describing collision processes. Here, we present a method to
resolve this bottleneck, enabling the study of a broad class of many-body systems that appear in fundamental
science contexts and technological applications. Specifically, we demonstrate that a Gaussian mixture model
can accurately represent equilibrium distribution functions, thereby allowing efficient evaluation of collision
integrals. Inspired by cold atom experiments, we apply this method to investigate the collective behavior of a
quantum Bose-Fermi mixture of cold atoms in a cigar-shaped trap, a system that is particularly challenging to
analyze. We focus on monopole and quadrupole collective modes above the Bose-Einstein transition temperature,
and find a rich phenomenology that spans interference effects between bosonic and fermionic collective modes,
dampening of these modes, and the emergence of hydrodynamics in various parameter regimes. These effects
are readily verifiable experimentally.
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I. INTRODUCTION

The Boltzmann equation is ubiquitous in modern physics
as it can model the nonequilibrium dynamics and near-
equilibrium collective behavior of a wide range of quantum
many-body systems. Phenomena such as hydrodynamics and
turbulence in quantum liquids as well as transport proper-
ties in metals and semiconductors fall under its purview.
Valid for systems where the length scales characterizing
quasiparticle interactions are shorter than typical distances
quasiparticles travel before colliding [1], the Boltzmann equa-
tion simplifies the typically challenging analysis of such
interacting many-particle systems by accurately capturing the
many-body dynamics with the evolution of single-particle
distribution functions. When studying the near-equilibrium
dynamics of a system, this approach gives efficient access to
its linear-response properties which characterize the possible
quantum phases of matter. Solving the Boltzmann equation,
even after it is linearized around equilibrium, however, can
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often be computationally challenging and precludes analy-
sis of a system. Approaches to the problem must contend
with non-Gaussian equilibrium distribution functions encod-
ing quantum statistics as well as quantum correlations in the
self-energies such as those arising from particle-exchange
processes [1,2]. Even with modern computational resources,
state-of-the-art techniques grant limited insight into scien-
tifically interesting phenomenona such as spin transport in
magnetic materials and electron hydrodynamics in 2D van
der Waals (vdW) semiconductors. Existing solution methods
also struggle to accurately compute transport properties in
technologically relevant systems such as lithium-ion batteries
[3] and photovoltaic cells [4].

State-of-the-art approaches make different levels of ap-
proximations to simplify the numerical task. The test particle
method [7,8] assumes that the dynamics of distribution func-
tions of a many-body system composed of around 1023

particles can be accurately estimated by sampling the trajec-
tories of a much smaller number of 104–106 particles. This is
typically a safe approximation, but simulation of the system
can remain challenging as collisions in the system corre-
late the trajectories and prevent their parallel computation.
The method easily admits details of experimental protocols,
but the computational cost often limits analysis of linear re-
sponse properties as only a few parameter choices can be
evaluated. Other methods also solve the Boltzmann equa-
tion numerically after simplifying the collision integrals via
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various assumptions [9–11], but are limited in scope to where
those assumptions are valid. The method of moments (MoM)
[12,13] takes an alternative approach to direct numerical sim-
ulation of the dynamics by variationally approximating the
response of the system in the frequency domain. The MoM
naturally captures collective behavior and, at the cost of some
analytical work, reduces the problem to matrix inversion of
a semianalytical solution. It can, however, require additional
work to incorporate certain experimental details such as com-
plicated drive protocols. The computational bottleneck of the
method comes from evaluating the matrix elements of the
multidimensional collision integrals. Estimating these matrix
elements via Monte Carlo sampling is often feasible for many
2D systems, albeit with difficulty, but fails for 3D systems.

In this work, we present two principal results. Our first
result is the development of an efficient approach to an-
alyze the linear response dynamics of many-body systems
without resorting to commonly used relaxation time approx-
imations. This method allows one to keep track of the exact
collision integrals in Boltzmann equations and treat both
2D and 3D systems. Our second result leverages the above
method to present an analysis of collective modes in quan-
tum Bose-Fermi mixtures that are under active experimental
investigation in ultracold atom systems [5]. We discover a
surprising richness in dynamical regimes that this system
manifests as the interactions between particles are tuned.

The method we develop allows for efficient computation of
collision integrals, which we combine with the MoM frame-
work, thus removing the bottleneck to solving Boltzmann
equations. We term our approach GMM-MoM as it centers
around using a Gaussian mixture model (GMM) representa-
tion of the equilibrium distribution functions around which
the Boltzmann equation is linearized. We demonstrate that
this representation provides an accurate approximation of
the distribution functions and, critical to efficient solution of
the Boltzmann equation, enables semianalytical computation
of the multidimensional collision integrals. This latter step
is possible as the MoM basis functions are chosen to be
polynomials which, when combined with a Gaussian inte-
gral kernel, are analytically computable via Wick’s theorem
[1]. The efficiency of our approach results from the insight
that both Bose-Einstein and Fermi-Dirac equilibrium distri-
bution functions can be well approximated with a GMM
consisting of only a few Gaussians (see Sec. II for details).
Our GMM-MoM approach enables efficient analysis of the
linear response dynamics of a large range of systems that
can be described using Boltzmann equations, thus allowing
their characterization through quantities such as properties of
collective modes and transport coefficients. We release our
fitting codebase online [14] and include tables of Gaussian
fits to the equilibrium distribution functions in a broad range
of parameter regimes; these fits are generic and can be directly
applied to investigate a broad class of quantum many-body
systems.

A. Practical advantage and relevance of the GMM framework

Typical approaches to solving the (linearized) Boltzmann
equation either resort to approximations that make the anal-
ysis tractable at the cost of oversimplification, or employ

brute-force numerical methods that are computationally costly
and provide only limited information. By rendering multi-
dimensional collision integrals efficiently computable, our
GMM approach enables both fast and accurate analysis of the
Boltzmann equation, thereby allowing investigation of broad
classes of systems that have hereto remained intractable—see
Fig. 1.

A ubiquitous approach to simplifying Boltzmann equa-
tions is the relaxation time approximation (RTA), often used
to analyze transport properties of materials. This approxi-
mation assumes that all quantities of interest in the system
relax to thermal equilibrium on the same timescale. While
the RTA can capture the behavior of relatively simple systems
such as bulk crystalline silicon [15], it is often quantitatively
inaccurate even in these contexts [16]. The approximation
also fails to qualitatively describe the physics of 2D semi-
conductors [17–20], which foster both fundamental [21–24]
and technological interest [25]. A variety of other impor-
tant systems—including high-Tc superconductors, resonantly
interacting particles in neutron matter, and ultracold atoms
at unitarity—are also beyond the scope of RTA as these
systems are expected to exhibit a clear separation of relax-
ation timescales for quantities such as heat, charge, spin, and
momentum. The GMM framework introduced in this work
obviates the need for the RTA while preserving computational
efficiency. As a concrete demonstration of this capability, we
benchmark the method on strongly interacting systems in Ap-
pendix C. There, we compute the decay rate of a Bose polaron
in the unitary limit and the viscosity of a two-component
strongly interacting Fermi fluid.

Two additional simplifications are commonly applied to
the Boltzmann equation: the assumption of isotropic scatter-
ing and the assumption of position-independent collisions.
The former precludes, for instance, analysis of magnetic sys-
tems, including simple ferromagnets, as magnon collision
processes explicitly depend on the momenta of the scat-
tering particles [26]. The latter is strictly applicable only
to spatially homogeneous systems, which precludes systems
such as trapped gases, including dipolar atoms, that manifest
unique transport regimes of fundamental interest [27]. The
GMM framework is naturally suited to solve problems beyond
these simplifications, as evidenced by our detailed analysis of
trapped Bose-Fermi mixtures.

In contexts where the typical approximations fail, one must
resort to solving the full linearized Boltzmann equation. One
such context is material design. Ab initio methods like density
functional theory are combined with Boltzmann analysis to
design transport properties relevant to a wide range of tech-
nologies including thermoelectric materials [16], lithium-ion
batteries [3], and photovoltaic cells [4]. Accurate computa-
tion of transport coefficients often requires going beyond the
RTA for most 2D materials [17] as well as 3D materials like
diamond where three-phonon or higher processes are rele-
vant [28]. Anisotropic and position-dependent scattering must
also be accounted for in devices with nontrivial geometries
[28–30].

Remarkable progress has been made in brute force nu-
merical methods in such systems; recent approaches have,
for example, enabled solving the fully coupled electron-
phonon transport kinetic equations relevant to thermoelectric
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FIG. 1. Overview of the linearized Boltzmann equation and its applications. We develop a solution framework based on Gaussian mixture
models (GMM) which enables efficient and accurate analysis of the Boltzmann equation. Applications in red are showcased in this work. We
demonstrate the method in detail in the context of trapped Bose-Fermi mixtures of cold atoms—see Fig. 2. Comparisons with experiment are
provided in Ref. [5]. We also compute transport coefficients for strongly coupled fermion systems—see Fig. 11. In Ref. [6], we have applied
the method to magnon hydrodynamics experiments, computing transport coefficients for systems with anisotropic interactions.

and thermopower applications [31,32]. These state-of-the-art
methods, however, are extremely time-consuming, as typi-
cal calculations take several months of CPU time [32]. We
expect that the GMM framework introduced in this work
can significantly ameliorate the cost of such computations.
Indeed, in Appendix C 3, we compute the viscosity of a
strongly interacting Fermi fluid with momentum-dependent
scattering—see Fig. 11(b), evidencing the ability to efficiently
compute transport properties as in semiconductor material
applications. In Ref. [6], we apply the method to magnon hy-
drodynamics experiments, showcasing the ability to compute
transport coefficients for systems with anisotropic interac-
tions. Here, we demonstrate the accuracy and efficiency of the
GMM approach in a class of systems where the RTA, isotropic
scattering, and position-independent collision assumptions all
fail: Bose-Fermi mixtures.

B. Analysis of Bose-Fermi mixtures

Bose-Fermi mixtures are a salient class of systems, ubiq-
uitous in both cold-atom and solid-state platforms, which
exhibit rich collective dynamics and are challenging to ana-
lyze. Examples include electron-phonon and electron-magnon
mixtures in both conventional and high-Tc superconductors,
He3-He4 mixtures in dilution refrigerators, and quark-gluon
plasmas in high-energy physics [33–44]. Bose-Fermi mixtures
may also naturally appear in transition-metal-dichalcogenides
(TMDs), two-dimensional semiconductors which exhibit
novel physics promising for quantum optics applications;
TMDs manifest optical excitons and charged fermions, and
interactions between them can be tuned via physical processes
similar to Feshbach resonances [45–48].

As a concrete context, we focus on the case of Bose-
Fermi mixtures of cold atomic gases trapped in a cigar-shaped
optical potential [49–55], illustrated in Fig. 2. We choose
this system to demonstrate our GMM-MoM method for three
reasons. Firstly, the system is described by one of the most

challenging types of Boltzmann equations to solve due to its
spatial inhomogeneity, resulting from the asymmetric cigar-
shaped optical trap, and the particle-conserving nature of
collisions in the system. Making experimentally verifiable
predictions [5] in this context thus provides confidence in the
GMM-MoM analysis method for arguably simpler systems
such as semiconductors relevant to thermoelectric and other
materials applications. Secondly, quantum gases of bosonic
and fermionic atoms have emerged as a leading quantum
simulation platform to study several quantum many-body
systems, as cold-atom setups provide a highly controllable
setting to investigate different prototypical models [56]. Un-
til recently, they have primarily been used to study purely
bosonic or fermionic systems due to the experimental diffi-
culty of simultaneously trapping both types of atoms. The
collective behavior of such bosonic and fermionic gases has
been explored in several experiments, including precise mea-
surements of collective modes [57–59], observation of first
and second sound modes [60,61], measurements of viscosi-
ties in the unitary regime [62,63] and transport properties in

FIG. 2. Schematic of an atomic quantum Bose-Fermi mixture
trapped into a cigar-shaped optical potential. A time-dependent
(transverse) perturbation of the trap launches collective modes of the
system, which characterize the equilibrium state of matter.
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strongly interacting gases [64–70]. Systems in the polaronic
regime, where one gas is much more dilute than the other,
have been predicted to exhibit novel collective behavior [71]
and nonequilibrium dynamics [72,73]. Experiments have in-
vestigated the emergence of quasiparticles in such systems
[74] and, more recently, have started to explore the collective
behavior of mixtures of bosonic and fermionic cold atoms [5]
beyond the polaronic regime, thus opening the door to study-
ing Bose-Fermi mixtures in a controlled setting leveraging the
entire cold-atom toolbox [75–77]. Thirdly, on the theoretical
side, Bose-Fermi mixtures beyond the zero-temperature im-
purity regime host potentially rich physics which has been
unexplored in prior work due to the difficulty of numerical
analysis and lack of experiment-guided motivation.

We analyze the collective behavior of the trapped Bose-
Fermi cold-atom mixture across a variety of relative densities
and interaction strengths. Motivated by modern cold-atom
experiments [5], we study monopole and quadrupole col-
lective modes, focusing on a quantum mixture above the
Bose-Einstein transition temperature T > Tc; the gases are
cold enough for particle statistics to matter and therefore
form a quantum Bose-Fermi mixture. We find that this system
exhibits a rich phenomenology which we summarize below
for various regimes of relative densities of the atomic species.

(i) Single-component interacting Bose fluid (no fermions).
The system exhibits a collisionless-to-hydrodynamic
crossover as the boson-boson interaction strength is tuned.
Both the monopole and quadrupole mode lifetimes manifest
a nonmonotonic behavior, being the shortest in the crossover
region. We also find frequency mixing between transverse
and longitudinal monopole modes for sufficiently strong
interactions; these modes are distinct from each other due to
the asymmetry of the cigar-shaped trap.

(ii) Impurity regime (dilute fermions). When the fermions
are dilute, they act as impurities; the bosons remain largely
unaffected and behave as the single-component Bose fluid
described above. The fermions and bosons have different
monopole mode frequencies, and we can therefore under-
stand the system in terms of coupled harmonic oscillators
corresponding to the respective collective modes. When the
boson-boson interaction is such that the boson fluid is not in its
crossover regime and therefore manifests long-lived modes,
we find typical Fano interference lineshapes encoding co-
herent mixing between the bosonic and fermionic oscillators
(see Fig. 6 and discussion in Sec. IV C for details). Upon in-
creasing the boson-fermion coupling, initially sharp fermionic
resonances become completely featureless in frequency, indi-
cating that the fermions no longer have independent dynamics
and instead follow the bosonic atoms. In addition to the above
phenomenona, we find that the fermionic spectral functions
exhibit Stokes and anti-Stokes sidebands due to the mixing
between longitudinal and transverse monopole modes.

(iii) Mixture regime (comparable densities of bosons and
fermions). The Bose-Fermi mixture exhibits a collisionless-
to-hydrodynamic crossover as the boson-fermion interaction
strength is tuned. The emergent hydrodynamic behavior of the
whole many-body system manifests as mode locking between
bosons and fermions. Intriguingly, we find coherent mixing
between bosonic and fermionic collective modes even when
the bosons are hydrodynamic and fermions are collisionless.

Some of the phenomenology summarized above, such
as the collisionless-to-hydrodynamic crossover of single-
component Bose fluids, has been discussed in previous papers
[8,78]. Other effects we uncover, however, such as the Fano
lineshapes and the emergence of sidebands, are indicative
of previously unexplored physics exhibited by Bose-Fermi
mixtures. Additionally, many-body mode mixing and locking
in the mixture regime has not been confirmed theoretically
due to the collision integral computational bottleneck. The
above results are therefore both a concrete window into the
rich physics of Bose-Fermi cold-atom mixtures, as well as
evidence of the power of the GMM-MoM method to analyze
previously inaccessible many-body systems.

II. GAUSSIAN MIXTURE MODEL

The main challenge in the computation of Boltzmann equa-
tions is the evaluation of multidimensional collision integral
matrix elements. Energy and momentum conservation laws,
as well as other symmetries of the problem (such as those
of the trapping potential), can partially simplify the compu-
tation, for example, reducing the 15-dimensional integrals in
Eqs. (48)–(52) to 11 dimensions. Nevertheless, the resulting
expressions are still too complicated for accurate numerical
evaluations, especially in three-dimensional problems.

In this section, we provide an efficient method for com-
puting these collision integrals. Our approach is based on the
observation that the integrals are hard to evaluate because of
the complexity of the equilibrium Bose-Einstein and Fermi-
Dirac distribution functions. To further appreciate this point,
we note that in a classical system, where the distribution
functions have Gaussian (Boltzmann-Maxwell) forms, one
could compute the collision integrals analytically, by means
of Wick’s theorem [78]. With this in mind, we offer an ap-
proximation to the equilibrium distribution functions that, on
the one hand, can be made arbitrarily accurate and, on the
other hand, also acquire a Gaussian-like structure, in turn
enabling us to semianalytically evaluate the collision matrix
with essentially arbitrary precision.

We argue that locally, i.e., for a given real-space point
r, the equilibrium distribution functions (both bosonic and
fermionic) can be accurately approximated using the follow-
ing ansatz:

nGMM(r, p) =
M0∑

n=1

an(r) exp

(
− p2

2γ 2
n (r)

)
. (1)

Here M0 is the total number of Gaussians that we take into
consideration, implying that we have 2 × M0 fitting parame-
ters an(r) and γn(r) that, in general, are allowed to depend on
the real-space coordinate r. In the machine learning literature
[79], the ansatz in Eq. (1) is referred to as Gaussian mixture
model (GMM), though in contrast to the most generic GMM,
here we set all the means to zero. In the following subsections,
we first consider a few situations of increasing complexity,
where we explicitly construct such GMM fittings and discuss
their limitations. Then, in Sec. II D, we briefly summarize and
further discuss the presented approach.
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FIG. 3. Performance of the Gaussian mixture model (GMM). (a) The fermionic function f1(x) (solid line), Eq. (3), that encodes the
Fermi-Dirac distribution function for any zF � 1, and its GMM fit (dashed line) are not distinguishable by eye from each other. The inset
shows the dependence of the absolute error of the fit LF, Eq. (6), on the total number of Gaussians M0 that are involved in the fitting: for
M0 = 10, we obtain LF � 10−10. (b) Similar analysis as in (a) but now we consider the bosonic function f2(x) (solid line), Eq. (9), in a range
x ∈ [xmin,∞), where xmin (vertical dashed lines) is set by the maximal fugacity we consider: xmin ≈ 0.46 for zB = 0.9 and xmin ≈ 0.14 for
zB = 0.99. The GMM fits provide excellent approximations to f2(x) in their respective domains of applicability (dashed line for zB = 0.9
and solid dashed line for zB = 0.99): The inset shows that the bosonic error LB, Eq. (10), can be as small as 10−8 with only about 10 (17)
Gaussians for zB = 0.9 (zB = 0.99). (c) The fermionic function f3(x) (solid line), Eq. (13), that captures the Fermi-Dirac distribution function
for any 1 � zF � zmax, can be well fitted with the complex version of the GMM, Eq. (14). Here, the domain x ∈ [xmin, ∞) is determined by the
maximal fermionic fugacity we consider: xmin = − ln(zmax). As shown in the inset, the absolute error of the fit LF decreases with increasing
the total number M0 of complex conjugate Gaussian pairs; for M0 � 25, we obtain LF � 10−8 at zmax = 105.

A. Dilute fermions, zF � 1

We begin by considering the Fermi-Dirac distribution func-
tion, which in the appropriately chosen units, can be written
as

nF(z, p) =
[

1

z
exp

(
p2

2

)
+ 1

]−1

. (2)

The local fugacity z = z(r) is a monotonic function of the
density, and, for reasons that will become apparent shortly, we
first focus on the case z � 1, corresponding to dilute fermions.
It is then suggestive to change variables as z = exp(−q2/2)
and consider the following one-variable function:

f1(x) =
[

exp

(
x2

2

)
+ 1

]−1

. (3)

In other words, f1(x) is nothing but the Fermi-Dirac dis-
tribution for z = 1. If this function f1(x) can be accurately
approximated with a GMM

f1(x) ≈
∑

n

αn exp

(
− x2

2γ 2
n

)
, (4)

then we immediately get a GMM approximation for nF(z, p)
for any z � 1:

nF(z, p) = f1(p2 + q2)

≈
∑

n

αn exp

(
− q2

2γ 2
n

)
exp

(
− p2

2γ 2
n

)

=
∑

n

αnz1/γ 2
n exp

(
− p2

2γ 2
n

)
. (5)

Importantly, the quality of this fit for nF(z, p) is entirely deter-
mined by the quality of the approximate form (4) for f1(x).
Moreover, by comparing Eqs. (1) and (5), we observe that

the amplitudes an(r) in Eq. (1) do explicitly depend on the
local fugacity z (and, as such, on the real-space coordinate r),
whereas the variances γn, which are the same for both Eqs. (1)
and (5), are universal, i.e., independent of z.

In our numerics, we optimize the coefficients αn and γn

using standard fitting routines that eventually minimize the
absolute error

LF = max
x

| f1(x) − f1,GMM[αn, γn](x)|. (6)

Specifically, we use the Levenberg-Marquardt optimization
algorithm, which we supply with gradients, that is imple-
mented in Matlab via the lsqcurvefit function. The result of
such fitting is shown in Fig. 3(a): Remarkably, we find that LF

can be made as small as ∼10−10 with only ∼10 Gaussians
and can be further reduced by increasing the total number
of Gaussians M0 [see the inset of Fig. 3(a)]. While f1(x) is
expected to be well approximated with a GMM [80], what is a
bit surprising is how few Gaussians turn out to be needed for
such a high quality of fitting.

To further appreciate this point, we note that for z < 1,
one can formally Taylor expand the fermionic distribution
function:

nF(z, p) =
∞∑

n=1

(−1)n+1zn exp

(
−1

2
np2

)
. (7)

The fact that this expansion exists in the first place confirms
the expectation that the GMM in Eq. (1) can, in principle, be
made arbitrarily accurate. We note, however, that the results
in Fig. 3(a) clearly demonstrate that the GMM significantly
outperforms the truncated Taylor series, especially for z ap-
proaching unity, where more and more Gaussians in the Taylor
series are needed to keep the same quality of the approxima-
tion. For instance, one needs to consider about 150 Taylor
series coefficients for z = 0.9 to get the same precision as
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one has from only 10 GMM Gaussians. Importantly, the cost
of computing the collision matrices scales as ∼M4

0 , which
implies that the GMM dramatically facilitates otherwise too
demanding calculations. We also remark that both the GMM
in Eq. (5) and the Taylor series in Eq. (7) share the property
that their variances γn do not depend on z.

We briefly comment that in our numerics, perhaps the most
nontrivial step turns out to be the initial choice of the fitting
parameters for the optimization algorithm. Whenever avail-
able, one can start from the coefficients of the truncated Taylor
series, which we find then lead to excellent GMM fits. In
more complicated situations, where Taylor series is no longer
an option, one can try to sequentially sample over random
Gaussians with subsequent optimization. This approach gives
fits of high precision, but it can be further improved by simple
post-processing that then gives a more efficient fit with fewer
Gaussians, as we discuss below.

B. Bosons

We switch to the analysis of the Bose-Einstein distribution
function:

nB(z, p) =
[

1

z
exp

(
p2

2

)
− 1

]−1

. (8)

For bosons, the local fugacity has to be smaller than unity
z � 1 so that essentially all the discussion from the preced-
ing subsection applies here as well. One notable difference,
however, is that the bosonic one-variable function f2(x), now
defined as

f2(x) ≡ nB(x)

∣∣∣∣
z=1

=
[

exp

(
x2

2

)
− 1

]−1

, (9)

diverges for x → 0. In particular, this implies that the function
f2(x) cannot be fitted with a GMM (1) in the entire range
x ∈ [0,∞). In practice, this is not an issue because one can
always choose a maximal bosonic fugacity zmax that cuts
off the range to x ∈ [xmin,∞), with xmin = √−2 ln (zmax).
Physically, by choosing such a cutoff, one limits the analy-
sis to temperatures T outside a small window near Tc since
the bosonic fugacity can approach unity only in the imme-
diate vicinity of the BEC transition. For instance, based on
mean-field theory, the choice of zmax = 0.9 would correspond
to temperatures |T − Tc|/Tc � 5%; and zmax = 0.99 implies
that |T − Tc|/Tc � 1%. One can also increase the cutoff zmax

closer to unity if one wants to investigate the detailed behav-
ior near Tc. This will come at the cost that the fitting near
Tc becomes more challenging and requires more Gaussians
[see Fig. 3(b)].

Figure 3(b) shows the GMM fits to the bosonic distribution
nB(z, p): for z = 0.9 and z = 0.99, we can reduce the bosonic
error

LB = max
x�xmin

| f2(x) − fGMM(x)| (10)

to 10−8 with as few as 10 and 17 Gaussians, respectively.
If needed, then this precision can be further improved by
increasing M0—see the inset of Fig. 3(b). Once the GMM fit

at zmax is established,

nB(zmax, p) ≈
∑

n

an,zmax exp

(
− p2

2γ 2
n

)
, (11)

we immediately get the same quality GMM approximation for
any z � zmax:

nB(z, p) ≈
∑

n

an,zmax (z/zmax)1/γ 2
n exp

(
− p2

2γ 2
n

)
. (12)

Notably, as Fig. 3(b) illustrates, the fitting at a given zmax

can be extrapolated [using Eqs. (11) and (12)] to even get a
reasonably good approximation for z > zmax.

C. Dense fermions, zF > 1

We turn to discuss the fermionic distribution function
nF(z, p) in the regime z > 1, corresponding to dense fermions.
Following the preceding analyses, now it is suggestive to
change variables as z = exp(q2/2) and consider the function

f3(x) = [exp(x) + 1]−1, (13)

so that nF(z, p) = f3((p2 − q2)/2). Since, in principle, one
can have arbitrary large fermionic fugacities, it implies that
generically x ∈ (−∞,∞). In practice, however, the range of
the variable x is set by the maximal fermionic fugacity zmax

that we consider, i.e., x ∈ [xmin,∞) with xmin = − ln(zmax).
Physically, zmax is essentially set by the fermionic density and
local temperature.

To be consistent with the preceding subsections and to
allow for negative values of x, a GMM fit to the function
f3(x) translates as a sum of exponentials (rather than a sum
of Gaussians), which we write as

f3(x) ≈
∑

n

αn exp

(
− x

γ 2
n

)
. (14)

In contrast to what we have developed so far, here we now
allow for the coefficients αn and γn to be complex (and we
only require Re γ 2

n > 0), as we find that to fit the function
f3(x) with purely real parameters, assumed in Eq. (1), turns
out to be numerically demanding, especially for very large fu-
gacities z 
 1. This extended class of functions incorporates
exponentially decaying trigonometric functions, which can fit
the initial plateau of f3(x) substantially more accurately and
with fewer resources than real exponentials. Importantly, the
collision integrals in Eqs. (48)–(52) can still be expressed an-
alytically within this new representation. In what follows, we
will refer to the model in Eq. (14) as complex GMM (cGMM).
We finally remark that to get an approximation for nF(z, p) for
any 1 � z � zmax, one can use Eq. (5) and Eqs. (11) and (12),
with the only difference that the corresponding coefficients are
now complex.

Since the function f3(x) is real, we consider M0 complex
conjugate pairs so that we now have 4 × M0 fitting param-
eters. Figure 3(c) summarizes the results of cGMM fits: we
find that the absolute fermionic error LF, defined similarly
as above, of the fit at zmax = 105 can be reduced to ∼10−8

with only about M0 = 21 Gaussian pairs. As we show in the
inset of Fig. 3(c), this error LF decreases with increasing M0.
However, there are regions where LF plateaus at some values,
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meaning that the addition of new Gaussian pairs does not im-
prove the quality of the fit, which could possibly be improved
by using better initialization of the fitting parameters—we
leave this issue to future work. Furthermore, this expecta-
tion is supported by the fact that a simple post-processing,
where we remove as many redundant Gaussians as possible
with subsequent re-optimization, gives a notably better re-
sult. specifically, we obtain the target precision LF � 10−7 at
zmax = 105 with only M0 = 17 complex conjugate Gaussian
pairs.

D. Summary of the section

We have numerically shown that one can achieve a highly
accurate numerical representation of the equilibrium distribu-
tion functions using a mixture of Gaussians. Crucially, this
representation makes the evaluation of collision integrals in
Eqs. (48)–(52) numerically tractable, as we further discuss
below. The quality of such fits is controlled solely by the total
number of Gaussians (complex Gaussian pairs) M0 used in
the fitting model. In our numerics, we first get self-consistent
equilibrium distribution functions and then, for each real-
space point r, we obtain a GMM approximation following
the procedures outlined in the preceding three subsections; the
resulting absolute errors are ensured to be smaller than 10−7

in all regimes that we investigate in the remainder of the paper.
We have also shown that not only the GMM dramatically

outperforms the truncated Taylor series approximation, its
complex analog, cGMM, gives excellent fits in the regimes
where the Taylor series expansion is not even available. Since
only a few Gaussians are needed to get outstanding-quality
fits, it renders calculations of the collision integrals numeri-
cally efficient and accurate.

The approach developed here is the central technical result
of this paper, as it allows one to study a broad class of quan-
tum many-body systems describable within some Boltzmann
equation. In the following section, motivated by the most
recent cold-atom experiments, we apply this framework to
investigate monopole and quadrupole collective modes of a
trapped Bose-Fermi mixture.

We note in passing that a cautious reader might argue that
our framework applies specifically to systems with contact
s-wave interactions. Indeed, when interactions are explicitly
nonlocal, the resulting Hartree-Fock self-energies, which en-
ter into the equilibrium distribution functions through the
self-consistency Eq. (27), can become momentum-dependent.
In general, this makes the equilibrium forms in Eqs. (2) and
(8) no longer applicable. While the full equilibrium distribu-
tion functions are generically more complicated, we expect
that they still can be accurately approximated by the GMM or
cGMM, upon a straightforward extension of our optimization
routines.

III. KINETIC EQUATIONS FOR
THE BOSE-FERMI MIXTURE

This section is organized as follows: In Sec. III A, we first
introduce the coupled Boltzmann kinetic equations to describe
the dynamics of a trapped Bose-Fermi mixture for T > Tc.
The equilibrium distribution functions are then discussed in

Sec. III B. Finally, Sec. III C is devoted to the method of
moments for computing the linear response properties of the
mixture, including the spectrum of collective modes. Our
framework closely follows and substantially extends that in
Ref. [27] on two-dimensional fermionic dipolar gases. We end
this section by writing down expressions (48)–(52) for the
15-dimensional collision integrals which represent the main
challenge behind the method of moments in three spatial
dimensions. These integrals, in general, are not feasible for the
existing numerical tools such as direct Monte Carlo sampling
that was proven efficient in two dimensions [27]. One of our
main technical results is that we overcome this challenge and
make the method of moments numerically tractable—this will
be the subject of the following sections.

A. Kinetic equations for T > Tc

We describe a trapped Bose-Fermi mixture using the
following microscopic model (throughout the text, we set
h̄ = kB = 1):

Ĥ = ĤB + ĤF + Ĥint. (15)

Here, the first term represents the bosonic Hamiltonian:

ĤB =
∫

d3r ψ
†
B(r)

[
− ∂2

r

2mB
+ Utrap,B(r)

]
ψB(r)

+ gB

2

∫
d3r ψ

†
B(r)ψ†

B(r)ψB(r)ψB(r). (16)

The second term is the fermionic one:

ĤF =
∫

d3r ψ
†
F (r)

[
− ∂2

r

2mF
+ Utrap,F(r)

]
ψF(r). (17)

The two systems interact with each other through the third
term, Ĥint, given by

Ĥint = gBF

∫
d3r ψ

†
B(r)ψB(r)ψ†

F (r)ψF(r). (18)

Here ψB/F(r) and ψ
†
B/F(r) encode the bosonic/fermionic anni-

hilation and creation operators, respectively; they satisfy the
canonical commutation (anti-commutation) relations. We as-
sume that, as in cold-atom experiments, the contact coupling
strengths gB and gBF can be tuned over a broad range using the
physics of magnetic Feshbach resonances. For future refer-
ence, gB = 4πaB/mB and gBF = 2πaBF(mB + mF)/(mBmF),
where aB and aBF are the Bose-Bose and Bose-Fermi scat-
tering lengths, respectively. In what follows, we consider the
trapping potentials to have a cigar-like shape:

Utrap,B(r) = 1
2 mBω2

ρ (x2 + y2) + 1
2 mBω2

z z2. (19)

To relate to the experiment of Ref. [5], we will consider the
fermionic trapping potential to be Utrap,F = λUtrap,B(r), where
λ � 1 is an experimental parameter that encodes the fact that
the laser coupling to fermions is a bit different from that to
bosons. At this stage, we do not need to specify concrete
forms of trapping potentials and can let the formalism be
generic.

We briefly remark that a possible microscopic deriva-
tion of Boltzmann equations uses the Keldysh technique
of nonequilibrium Green’s functions [81]. This description
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is closely related to an appropriate conserving Kadanoff-
Baym framework [82]. Both of these approaches are usually
too complicated to work with, either analytically or nu-
merically, and require approximations. In systems such as
quantum Bose-Fermi mixtures considered here, a natural sim-
plification occurs because there is a separation of time and
length scales between fast microscopic degrees of freedom
and macroscopic ones set by the trapping potential. This
separation enables one to make a systematic gradient ex-
pansion, which dramatically simplifies the kinetic equations.
Further progress is possible if one is allowed to employ the
quasiparticle approximation, where the complex dynamics
of two-time Green’s functions is reduced to that of single-
particle distribution functions, thus, obtaining the Boltzmann
equation [83,84]. The quantum statistics of the constituent
particles manifests in both incoherent scatterings captured
via collision integrals and in self-energies that might encode
inherently quantum processes such as particle exchange. For
more details on the derivation of Boltzmann equations, we
refer the reader to Refs. [81–84]. The primary goal of this
paper is to develop a tool to solve Boltzmann equations rather
than to provide a microscopic derivation of the equations of
motion. To this end, below we consider a Bose-Fermi mix-
ture above the BEC transition temperature T > Tc, where the
kinetic equations are well-known.

Specifically, they read

(
∂t + p

mB
· ∂r − ∂rUeff,B · ∂p

)
nB = IBB + IBF, (20)(

∂t + p
mF

· ∂r − ∂rUeff,F · ∂p

)
nF = IFB, (21)

where nB(p, r, t ) and nF(p, r, t ) are the bosonic and fermionic
distribution functions, respectively. For the left-hand sides, we
employ the Hartree-Fock approximation [85]:

Ueff,B = Utrap,B + 2gBnB(r, t ) + gBFnF(r, t ), (22)

Ueff,F = Utrap,F + gBFnB(r, t ), (23)

where nB/F(r, t ) =
∫

d3 p
(2π )3

nB/F(p, r, t ) represents the

bosonic/fermionic real-space density. We note that the
Hartree-Fock self-energies do not depend on p, which in
turn implies that the effective masses are not affected by
the contact interactions. For the right-hand sides, we use
the Born-Markov approximation and write the Bose-Bose,
Bose-Fermi, and Fermi-Bose collision integrals as

IBB(p, r, t ) = 2g2
B

∫
d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
× (2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εB(p′) − εB(p1) − εB(p′
1))

× [(1 + nB(p))(1 + nB(p′))nB(p1)nB(p′
1) − nB(p)nB(p′)(1 + nB(p1))(1 + nB(p′

1))], (24)

IBF(p, r, t ) = g2
BF

∫
d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
× (2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εF(p′) − εB(p1) − εF(p′
1))

× [(1 + nB(p))(1 − nF(p′))nB(p1)nF(p′
1) − nB(p)nF(p′)(1 + nB(p1))(1 − nF(p′

1))], (25)

IFB(p, r, t ) = g2
BF

∫
d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
× (2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εF(p) + εB(p′) − εF(p1) − εB(p′
1))

× [(1 − nF(p))(1 + nB(p′))nF(p1)nB(p′
1) − nF(p)nB(p′)(1 − nF(p1))(1 + nB(p′

1))], (26)

where εB/F(p) = p2/(2mB/F). Below we turn to analyze the
linear-response properties of the Bose-Fermi mixture within
this Boltzmann kinetic theory. Prior to that, we first compute
the self-consistent equilibrium distribution functions needed
for our subsequent analysis.

B. Equilibrium state

The equilibrium distribution functions are related to the
effective potentials Ueff,B/F(r) through (β = 1/T ):

nB/F,eq(p, r) =
[

1

zB/F(r)
exp

(
βp2

2mB/F

)
∓ 1

]−1

, (27)

where zB/F(r) ≡ exp(β(μB/F − Ueff,B/F(r))) is the bosonic
(fermionic) local fugacity and μB/F is the corresponding
chemical potential. Since the effective potentials Ueff,B/F(r)
depend on nB/F,eq, Eq. (27) should be solved self-consistently.

This latter task is relatively simple because the momentum
integrals are evaluated analytically:

∫
d3 p

(2π )3
nB,eq =

(
mB

2πβ

) 3
2

ξ 3
2
(zB(r)), (28)

∫
d3 p

(2π )3
nF,eq = −

(
mF

2πβ

) 3
2

ξ 3
2
(−zF(r)), (29)

where ξ 3
2
(x) is the polylogarithm function. The chemical po-

tentials can be fixed via∫
d� nB/F,eq =

∫
d3r

∫
d3 p

(2π )3
nB/F,eq = NB/F, (30)

with NB/F being the total number of Bose/Fermi particles.
For convenience, throughout the rest of the paper we use

the following dimensionless variables. As for the units of mo-
mentum and length, we choose pρ = √

mBωρ and aρ = 1/pρ ,
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respectively; we fix the unit of energy to be ωρ ; the unit of
mass is then naturally set by mB. In the dimensionless units,
the trapping potentials read

Ūtrap,B(ρ̄, z̄) = 1

2
ρ̄2 + κ

2
z̄2, (31)

Ūtrap,F(ρ̄, z̄) = λ

2
ρ̄2 + λκ

2
z̄2, (32)

where κ = ω2
z /ω

2
ρ is the anisotropy parameter, and bars on

top of the symbols indicate that the corresponding variable
has been appropriately rescaled. For instance, the dimension-
less interactions strengths read: ḡB = gB/(a3

ρωρ ) and ḡBF =
gBF/(a3

ρωρ ). We finally note that because the two trap-
ping potentials depend only on the combination ρ̄2 + κ z̄2,
the equilibrium self-consistency equations can be written
as

zB(r̃) = exp

(
β̄μ̄B − r̃2

2
− β̄

(2πβ̄ )3/2

[
2ḡBξ 3

2
(zB)

− ḡBF

(
mF

mB

) 3
2

ξ 3
2
(−zF)

])
, (33)

zF(r̃) = exp

(
β̄μ̄F − λr̃2

2
− ḡBFβ̄

(2πβ̄ )3/2
ξ 3

2
(zB)

)
, (34)

where r̃2 = β̄(ρ̄2 + κ z̄2). We remark that these equations,
which are solved numerically in practice, imply that the two
fugacities depend only on the one-dimensional variable r̃
rather than on two independent variables ρ̄ and z̄. This obser-
vation is not crucial (and in principle, the trapping potential
for fermions could be very different from the bosonic one) but
facilitates our numerical calculations below.

C. Linear response within the method of moments

Our primary goal now is to investigate linear response
functions, related to collective modes, which represent small
amplitude fluctuations on top of the equilibrium state. To this
end, we write

nB(r, p, t ) = nB,eq(r, p) + �B(r, p)�B(r, p, t ), (35)

nF(r, p, t ) = nF,eq(r, p) + �F(r, p)�F(r, p, t ), (36)

where �B/F(r, p) = nB/F,eq(r, p)[1 ± nB/F,eq(r, p)]. In what
follows, we assume that �B(r, p, t ) and �F(r, p, t ) are small
and, as such, linearize the equations of motion. In the remain-
der of the text, we consider only dimensionless variables that
have been properly rescaled and omit writing bars on top of
the corresponding symbols.

The method of moments is based on the idea of expanding
small fluctuations �B/F(r, p, t ) using a suitable basis set of
functions {φα (r, p)}N

α=1:

�B/F(r, p, t ) ≈
N∑

α=1

�B/F,α (t )φα (r, p). (37)

Here N is the total number of basis functions that we take into
account, and, as such, this parameter controls the accuracy
of our approximations. Motivated by the experiments, below
we investigate linear response to perturbations of the bosonic

and/or fermionic trapping potentials, which we also write
as

δUB/F(r, p, ω) =
N∑

α=1

δUB/F,α (ω)φα (r, p), (38)

where the frequency amplitudes δUB/F,α (ω) are set by the
actual experimental driving protocol. Plugging these expan-
sions into the kinetic equations and subsequently projecting
the linearized equations onto the basis functions {φα (r, p)},
we arrive at

[−iωM̂ + Ĥ − Ŝ − Î]� = −βĤδU, (39)

where we defined � = (�B,1, . . . , �B,N,�F,1, . . . , �F,N)T

and δU = (δUB,1, . . . , δUB,N, δUF,1, . . . , δUF,N)T to be 2N-
dimensional vectors. The matrices M̂ and Ĥ are diagonal in
the Bose-Fermi space:

M̂ =
[

MB 0
0 MF

]
, Ĥ =

[
HB 0
0 HF

]
, (40)

with the matrix elements given by

(MB/F)αβ =
∫

d� �B/Fφα (r, p)φβ (r, p)

≡ 〈〈φαφβ〉〉B/F, (41)

(HB/F)αβ = 〈〈φα{φβ,HB/F}〉〉B/F, (42)

where HB = p2/2 + Ueff,B, HF = p2mB/2mF + Ueff,F,

and { f , g} = ∂r f · ∂pg − ∂p f · ∂rg is the Poisson bracket.
Throughout the derivations, we used the identity
{nB/F,eq, f } = −β�B/F{HB/F, f }. The matrix Ŝ encodes
the changes in self-energies arising from the changes in the
bosonic and fermionic distribution functions:

Ŝ =
[

SB SBF

SFB 0

]
, (43)

where

(SB)αβ = 〈〈β�B[�Bφβ]{φα,HB}〉〉B, (44)

(SBF)αβ = 〈〈β�BF[�Fφβ]{φα,HB}〉〉B, (45)

(SFB)αβ = 〈〈β�BF[�Bφβ]{φα,HF}〉〉F. (46)

Here we defined �B[ f ](r, t ) = 2gB

∫
d3 p

(2π )3
f (r, p, t ) and

�BF[ f ](r, t ) = gBF

∫
d3 p

(2π )3
f (r, p, t ). Finally, the collision

integral matrix Î is given by

Î =
[

IB + JBB JBF

JFB JFF

]
, (47)
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where the corresponding matrix elements read

(IB)αβ = −g2
B

2

∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εB(p′) − εB(p1) − εB(p′
1))

×(1 + nB,eq(p))(1 + nB,eq(p′))nB,eq(p1)nB,eq(p′
1) × S[φα]S[φβ], (48)

(JBB)αβ = −g2
BF

2

∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εF(p′) − εB(p1) − εF(p′
1))

×(1 + nB,eq(p))(1 − nF,eq(p′))nB,eq(p1)nF,eq(p′
1) × (φα (p) − φα (p1))(φβ (p) − φβ (p1)), (49)

(JBF)αβ = −g2
BF

2

∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εF(p′) − εB(p1) − εF(p′
1))

×(1 + nB,eq(p))(1 − nF,eq(p′))nB,eq(p1)nF,eq(p′
1) × (φα (p) − φα (p1))(φβ (p′) − φβ (p′

1)), (50)

(JFB)αβ = (JBF)βα, (51)

(JFF)αβ = −g2
BF

2

∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εF(p′) − εB(p1) − εF(p′
1))

×(1 + nB,eq(p))(1 − nF,eq(p′))nB,eq(p1)nF,eq(p′
1) × (φα (p′) − φα (p′

1))(φβ (p′) − φβ (p′
1)), (52)

where S[ f ] = f + f ′ − f1 − f ′
1, εB(p) = p2/2, and

εF(p) = p2mB/(2mF). The matrix IB describes changes in the
bosonic distribution function due to boson-boson scatterings.
The matrix J describes the interaction between bosons and
fermions. For example, the JBB and JFF elements respectively
capture how the bosonic and fermionic distribution functions
will be affected by boson and fermion fluctuations through
the boson-fermion interaction.

What we have achieved so far is that the initial infinite-
dimensional (linear) problem is now reduced to a finite-
dimensional one. To complete the discussion of dynamics,
we also need to review an algorithm for evaluating time-
dependent expectation values of operators, which can be
measured in experiments. As a concrete example, we consider
an arbitrary bosonic observable:

〈OB〉(t ) ≡
∫

d� nB(r, p, t )OB(r, p) = OT
B MB�B(t ),

where we assumed that 〈OB〉eq = 0, used Eq. (35), and
expanded OB(r, p) = ∑

α OB,αφα (r, p). More generally, we
write

〈O〉(ω) = OT M̂�(ω + i0+). (53)

To evaluate �(ω + i0+), we diagonalize M̂−1(Ĥ − Ŝ − Î) =
iV̂�̂V̂−1, with �̂ being diagonal ⇒

�(ω) = −iβV̂(ω − �̂)−1V̂−1M̂−1ĤδU (ω). (54)

From this, we finally get

O(ω) =
∑

a

ra(ω)

ω − �a + i0+ , (55)

where

ra(ω) = −iβ(V̂T M̂O)a(V̂−1M̂−1ĤδU (ω))a. (56)

Equation (55) is among the most useful results, as it defines
the linear response within the method-of-moments. Physi-
cally, the “residue” ra(ω) encodes the relative importance of

the corresponding pole �a. We remark that the eigenvalues of
�̂ are not necessarily real (but for stability of the equilibrium
state, their imaginary parts must be negative), which implies
that the matrix V̂ is generally not unitary.

IV. COLLECTIVE MODES OF A TRAPPED
BOSE-FERMI MIXTURE

The formalism developed in the preceding two sections en-
ables us to efficiently evaluate all of the method-of-moment
matrices in Eq. (39) for three-dimensional systems. With the
GMM and cGMM representations of the equilibrium distri-
bution functions, the multidimensional collision integrals no
longer constitute computational obstacles. In practice, how-
ever, actual calculations turn out to be quite cumbersome, and,
for this reason, detailed derivations, as well as our hybrid
numerical-analytical scheme for the collision integrals, are
relegated to Appendices A and B. In Appendix C, we present a
series of benchmarks and applications of the collision integral
calculations, for various physical systems of interest.

Equipped with the method of moments, we turn to inves-
tigate the collective modes of a quantum Bose-Fermi mixture
trapped in a cigar-shaped optical potential. In Sec. IV A, we
first briefly discuss the choice of basis functions and model
parameters. Our main findings are then split into three parts:
In Sec. IV B, we study a single-component interacting bosonic
fluid, with the primary result being the crossover from the col-
lisionless regime to collision-dominated hydrodynamics. The
physics of the quantum mixture, when both fluids are present
and interact with each other, is rich so that we consider two
limiting situations: the case of dilute fermions NF � NB, fur-
ther referred to as the impurity regime, is studied in Sec. IV C,
and the case with NF � NB, the mixture regime, is discussed
in Sec. IV D. There we explore coherent mixing between the
bosonic and fermionic monopole modes, their dampening due
to incoherent scatterings, and the emergent hydrodynamics
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FIG. 4. Collisionless-to-hydrodynamics crossover in a single-
component bosonic fluid, the case of monopole mode schematically
shown in panel (a). (b) The bosonic spectral response Aρ2 as a
function of frequency ω and for different interaction strengths, as
encoded in aB. When the Bose-Bose interactions are weak, one gets
a sharp response at ω � 2ωρ ; as aB is increased, the system starts
to exhibit a many-body hydrodynamic response, as evidenced by
the fact that first, the spectral function completely broadens but then
reforms again into a sharp peak at a frequency notably different from
2ωρ [see also a few cuts shown in panels (c, d, e)]. This is further
illustrated in panel (f) as the behavior of the position �mon and width
�mon of the peak in panel (b), obtained from a single Lorentzian fit.
In the hydrodynamic regime, transverse and longitudinal monopole
modes mix, resulting in the emergence of an additional weak peak at
the longitudinal frequency ω � 2ωz (e). Parameters used: ωz = 2π ×
12.2 Hz, ωρ = 2π × 97 Hz, T = 500 nK, NB = 106, and M = 2.

characterized by synchronization of the bosonic and fermionic
responses.

A. Basis functions and model parameters

So far we have not made any assumptions about the
trapping potentials or the basis functions φα (r, p). Below
we consider cigar-shaped traps with cylindrical symmetry.
In this case, the external trap modulations and the gen-
erated by this perturbation responses will have the same
z-axis symmetry. This allows us to classify the collective
modes and efficiently choose the corresponding basis func-
tions φα (r, p)—see Ref. [27] for a related discussion in
two-dimensional pancake-like geometry. In what follows, we
investigate two types of collective excitations corresponding
to the radial breathing monopole mode [Fig. 4(a)] and to the
quadrupole mode [Fig. 5(a)].

The monopole mode represents an excitation with zero z-
axis angular momentum, allowing one to restrict the analysis

FIG. 5. The same analysis as in Fig. 4 but for the quadrupole
mode. (b) The quadrupole spectral function Ax2−y2 (ω), similarly to
Aρ2 (ω), exhibits a crossover from the collisionless regime, aB �
103a0, to a hydrodynamic one, aB � 5 × 103a0. Just as it was for the
monopole case, for weak interactions, the function Ax2−y2 (ω) peaks
in frequency at ω � 2ωρ . As the interactions are increased, this peak
first significantly broadens (this broadening is much stronger com-
pared to the one seen in the crossover regime for the monopole mode
in Fig. 4) and then reforms at around ω � √

2ωρ—this frequency is
notably different from the corresponding monopole resonance in the
hydrodynamic regime.

to the following basis functions:

φα (r, p) = ρ2mα p2nα

ρ (ρ · pρ )kα × z2pα p2qα

z (zpz )rα . (57)

Here mα + nα + kα + pα + qα + rα � M, rα = {0, 1}, and M
sets the truncation order. At first order, we have seven
functions {1, ρ2, p2

ρ, ρ · pρ, z2, p2
z , zpz}, and this simplified

choice of basis functions was shown to perfectly capture the
monopole mode of a classical gas [78]. Specifically, since
this gas follows the Boltzmann-Maxwell distribution, one
can evaluate all of the method-of-moments matrices analyt-
ically, and the result of such an analysis agrees well with
more precise molecular-dynamics simulations [78]. Besides,
the results of Ref. [78] helped us test our collision integral
computations—see Appendix C. The situation we consider
here, of a quantum system with more complicated distribution
functions, is much more challenging and likely not feasi-
ble analytically because of the complexity of the collision
integral matrix elements. We provide expressions for all of
the monopole matrices, for arbitrary M � 1, in Appendix A.
Below we investigate the monopole spectral function, which
for bosons is defined as

AB
ρ2 (ω) = − 1

NB
Im

{
χB

ρ2 (ω)
}
, (58)
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where χB
ρ2 (t ) ≡ (〈ρ2〉t − 〈ρ2〉t=0) is the response of the trans-

verse bosonic cloud size to a trap modulation of the form:
δUB(t ) ∝ ρ2δ(t ). Analogous spectral function can be intro-
duced for fermions as well, but we return to this below.

The quadrupole mode is generated by a perturbation of
the type δUB/F ∼ (x2 − y2), and the corresponding basis func-
tions are given by ξi=1,2,3(r, p) × φα (r, p), where

ξ1 = x2 − y2, ξ2 = xpx − ypy, ξ3 = p2
x − p2

y. (59)

We note that 2(ρ · pρ ) × ξ2 = p2
ρξ1 + ρ2ξ3, implying that a

function proportional to (ρ · pρ ) × ξ2 should be removed from
this basis set since it can be represented as a linear super-
position of the rest of the basis functions [27]. For instance,
this means that for M = 1 we have only 20 functions. In
Appendix B, we analytically evaluate all of the corresponding
matrices entering the linearized kinetic equations, and the
resulting expressions are then used in our numerical simula-
tions. The quadrupole spectral function for bosons is defined
as

AB
x2−y2 (ω) = − 1

NB
Im

{
χB

x2−y2 (ω)
}
, (60)

where χB
x2−y2 (t ) ≡ (〈x2〉t − 〈y2〉t ) encodes the quadrupole re-

sponse of the bosonic cloud to a trap modulation of the form:
δUB(t ) ∝ (x2 − y2)δ(t ).

Let us now briefly comment on the validity of the Boltz-
mann equation to describe the Bose-Fermi mixture. We need
to check two conditions: (1) characteristic range of the inter-
particle interactions is smaller than the typical travel distance
between collisions; (2) it is sufficient to use scattering length
to describe the low-energy part of the scattering amplitude,
f (k) = −a, and neglect the full momentum dependence of
f (k). The lower bound on the travel distance is given by the
distance between the atoms. Hence, the former condition is
guaranteed provided that the distance between bosons (which
we always take to be denser than fermions) is larger than
both scattering lengths. To discuss the second condition we
recall that in three spatial dimensions the s-wave scattering
amplitude can be written as [86,87]:

f (k) = − 1

a−1 + ik − 1
2 r0k2

, (61)

where k is the relative wave vector of the scattering particles,
a is the scattering length, and r0 is the effective range of
interactions. The use of the Born-Markov approximation for
the collision integrals is fully justified if one can neglect the
momentum dependence of f (k), i.e., one requires ka � 1. If
one uses k = n1/3 as the typical momentum set by the inter-
particle separation at low temperatures, then we find that both
conditions for the validity of the Boltzmann approach are sat-
isfied provided that aB � 2 × 104a0, with a0 being the Bohr
radius. For this estimate, we used the bosonic density at the
center of the trap, NB = 106, and parameters of the experiment
in Ref. [5] on a 40K − 23Na mixture: ωz = 2π × 12.2 Hz,
ωρ = 2π × 97 Hz, and λ ≈ 2.4. If instead one considers the
thermal momentum k � √

mT , then aB � 4 × 105a0 for T �
500 nK (for comparison, the mean-field transition temper-
ature is Tc ≈ 220 nK). The thermal momentum constraint
becomes more essential at higher temperatures, away from the

quantum regime. In our numerical analyses below, we, there-
fore, restrict ourselves to |aB|, |aBF| � 104a0. In Appendix C,
we discuss that our approach can be directly applied to sys-
tems with ultra-strong interactions, where one is required to
keep the full k-dependence of the scattering amplitude.

B. One-component interacting fluid

We begin by investigating a single-component bosonic
fluid, i.e., for now, we assume that there are no fermions.
Figure 4 summarizes our results for the monopole mode in
this case. We find that when the coupling gB (or equivalently
aB) is weak, the fluid behaves as a noninteracting Bose gas,
and, as such, the monopole spectral function Aρ2 (ω) exhibits
a sharp peak in frequency at ω = 2ωρ . This regime is further
referred to as collisionless [Fig. 4(c)]. Upon increasing aB

(using, for instance, a magnetic Feshbach resonance), we first
observe that the resonance in Aρ2 (ω) becomes dramatically
broader [Fig. 4(d)]—the intuition behind this behavior is that
the fluid can no longer be considered as noninteracting, since
various soundlike excitations of the system mix and, as such,
can broaden the signal. Remarkably, however, upon further
increase of aB � 5 × 103a0, this peak reforms at a notably dif-
ferent frequency, and it becomes sharper with aB [Fig. 4(e)].
We interpret this result as the system entering the hydrody-
namic regime. Interactions are so strong in this regime that the
collective response of the fluid to a slow macroscopic pertur-
bation is described via dynamics where the system is locally
always in equilibrium. Let us also remark that the width of
the monopole mode in the hydrodynamic regime [Fig. 4(f)]
is related to the viscosity of the fluid. In other words, by
measuring collective modes in optical traps, one can extract
information about transport coefficients [62,65,74,88–97],
and the method we have developed here enables one to accu-
rately evaluate them and compare to such experiments. As a
concrete demonstration of this capability of our approach, we
analyze in Appendix C the shear viscosity of a two-component
strongly interacting Fermi fluid.

Noteworthy, we find that when the interactions are strong
[Figs. 4(d) and 4(e)], the spectral function Aρ2 (ω) exhibits
an additional weak resonance at ω � 2ωz. This resonance
comes from the longitudinal monopole mode, which is far
detuned from the transverse one for strongly anisotropic
cigar-shaped traps with κ � 1. The two modes mix with
each other for aB �= 0, explaining the appearance of the
longitudinal resonance even when the trap perturbation is
transverse.

Figure 5 summarizes our results for the quadrupole mode
in an interacting bosonic fluid. Here we also find a simi-
lar collisionless-to-hydrodynamics crossover in the parameter
range consistent with the above discussion. In the colli-
sionless regime, the quadrupole spectral function Ax2−y2 (ω),
similarly to Aρ2 (ω), also exhibits a resonance at ω � 2ωρ .
Interestingly, as the hydrodynamic regime is approached,
the quadrupole resonance red-shifts to a frequency notably
different from the corresponding monopole peak. Typi-
cally, in cold-atom experiments, trapping potentials may be
anisotropic, which gives rise to a weak mixing between the
monopole and quadrupole modes—this feature might facil-
itate experiments, as these modes can be seen in a single
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FIG. 6. Monopole modes in the impurity regime NF = 10−2NB � NB. Effectively, the Bose-Fermi mixture represents a system of coupled
harmonic oscillators, where the trap modulation launches both the bosonic and fermionic monopole modes, coupled to each other for aBF �= 0.
We consider two types of driving protocols in panels (a) and (b). The experimental situation would correspond to the scenario I in panel (a),
where the trap modulation perturbs both the bosonic and fermionic traps, in turn directly launching the two modes simultaneously. In the
scenario II of panel (b), the trap modulation couples directly only to the fermionic monopole mode, which then can excite the bosonic one. The
bosons remain largely unaffected by the dilute fermions, and, for this reason, we focus here on the fermionic spectral responses. The coherent
mixing between the two types of monopole modes competes with the broadening of the fermionic resonance, as the dilute fermions can easily
scatter off the bosons—this is illustrated in panels (l) and (k) (corresponding to the scenario II), where the sharp in frequency fermionic peak for
aBF = 0 (l) becomes much broader for aBF = −500a0 (k), yet the coupling to the bosonic resonance remains barely notable in panel (k). Upon
further increasing the interaction strength |aBF|, panels (l–h), the fermionic resonance has largely disappeared, while the bosonic contribution
from the back-action of the bosonic cloud becomes notable. In addition to the bosonic resonance, we observe weak sidebands, panels (h–j),
that originate from the longitudinal monopole modes and their mixing with the transverse ones (see text). In the scenario I (a), the optical
modulation directly launches the bosonic monopole mode, leading to an interplay between the aforementioned fermionic broadening and
coherent driving from the bosonic cloud. This is illustrated in panels (c–g), as the fermionic resonance becomes weaker and broader until it is
completely gone, while the mixing with the bosonic monopole mode quickly becomes strong and completely dominates the fermionic response
for large |aBF|. We note characteristic Fano interference profiles that come from the coherent mixing between the two types of monopole modes.
For concreteness, here we showed the results for aB = 0, meaning that bosons are collisionless, but we emphasize that similar conclusions
hold for other regimes.

measurement. Indeed, upon tuning the temperature or interac-
tion strength, one could observe how the two modes, that are
almost degenerate in the collisionless regime, split from each
other in the hydrodynamic one. Another interesting aspect
of the quadrupole mode is that it is much broader than the
monopole one [see Fig. 5(f)]. This has to do with the fact
that the phase space, associated with the scattering processes
that contribute to the quadrupole linewidth, is significantly
larger than the corresponding phase space associated with the
monopole mode.

To sum up, we conclude that the overall behavior of the
monopole and quadrupole modes is qualitatively similar to
each other, except the lifetime of the quadrupole mode can

be significantly shorter. For this reason, when considering the
Bose-Fermi mixture below, we focus on the monopole mode.

C. Impurity regime NF � NB

Our analysis of the Bose-Fermi mixture starts from the
limit of dilute fermions NF � NB. In this case, the bosonic
response is barely affected by the presence of fermions, al-
lowing us to focus on the fermionic spectral function.

For aBF = 0, i.e., when the two fluids are not coupled to
each other and the fermionic gas is noninteracting, fermions
behave similar to bosons in the collisionless regime studied in
the preceding subsection, except now the fermionic response
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picks up a resonance at �F
mon = 2ωF

ρ [Figs. 6(g) and 6(l)]. This
fermionic monopole frequency is generically different from
the bosonic one because of the difference in masses mF/mB ≈
40/23 and also because we choose λ ≈ 2.4, encoding the fact
that in the experiment of Ref. [5], the trapping potentials for
bosons and fermions are different. As such, the Bose-Fermi
mixture effectively represents a three-level system shown in
Figs. 6(a) and 6(b). In this sense, trap perturbations act as if
they excite the two monopole modes, which are coupled to
each other for aBF �= 0.

We consider two trap modulations shown in Figs. 6(a) and
6(b). The scenario I in Fig. 6(a) corresponds to an experiment
where the trap perturbation simultaneously affects the bosonic
and fermionic traps clouds and, as such, directly launches
the two monopole modes. The respective fermionic response
AF

ρ2 (ω) exhibits two key features. First, as the interaction
strength |aBF| is increased, the fermionic resonance at 2ωF

quickly becomes broad and weak, until it is no longer ob-
servable at large |aBF|. At the same time, AF

ρ2 (ω) acquires
an additional contribution from the bosonic resonance, which
eventually dominates the fermionic response. Second, for in-
termediate interactions, which are strong enough so that the
bosonic spectral weight is appreciable but not too strong
so that the fermionic peak is still sharp, we find coherent
mixing between the bosonic and fermionic monopole modes.
The spectral lines, even for large |aBF|, acquire characteristic
Fano interference profiles typical of a system of coherently
coupled harmonic oscillators [98]. A prerequisite for observ-
ing such profiles is that one of the excited states should
be relatively long-lived. This suggests that the bosonic fluid
should be either collisionless or hydrodynamic—this aspect
will become clearer when we discuss the mixture regime
below.

The fermionic behavior at large |aBF| is understood as
the interplay between coherent driving from the bosons and
incoherent broadening of the fermionic resonance. Indeed, as
|aBF| is increased, the dilute fermions can easily scatter off
the relatively dense bosons, explaining the eventual disappear-
ance of the fermionic resonance. Simultaneously, the bosonic
monopole mode, which has been directly excited by the trap
perturbation, acts as a coherent drive to the fermions and, as
such, dominates the fermionic response.

This physical picture is further supported by the scenario
II in Fig. 6(b), where the trap modulation directly launches
only the fermionic monopole mode, which then can excite
the bosonic one. The corresponding spectral function ÃF

ρ2 (ω)
shows that by increasing |aBF| from zero to 500a0 [Figs. 6(l)
and 6(k)], the fermionic resonance becomes dramatically
broader, whereas the mixing with the bosonic resonance is
barely observable. This is because the collision integral, which
determines the linewidth of the fermionic resonance, scales
as a2

BF, whereas the (mean-field) coherent coupling to bosons
is only linear. Remarkably, upon further increasing |aBF|, the
fermionic response becomes so broad in frequency that it has
negligible spectral overlap with the initial sharp fermionic res-
onance. One could even be tempted to argue that as evidenced
by this density-density-like response function, the fermion is
essentially gone. Such a statement, however, is not entirely
correct because the fermion still remains a well-defined quasi-

particle, describable within the Landau Fermi-liquid theory
that we employ here.

In principle, the fermionic response can become sharp
again for larger values of |aBF|, i.e., upon entering the hydro-
dynamic regime. For dilute fermions, the values required for
this are so large that we do not even consider this possibility.
Such a situation can occur for reasonable parameters if the
fermionic density is appreciable, as we discuss in the follow-
ing subsection.

Besides this dramatic broadening of the fermionic reso-
nance at large |aBF|, the spectral function ÃF

ρ2 (ω) also acquires
a notable contribution from the bosonic resonance. To under-
stand the physical picture, we note that the optical modulation
launches the fermionic monopole mode, that is essentially fea-
tureless in frequency. Subsequently, this broadband fermionic
mode drives the bosonic one, and the back-action from this
long-lived excitation in turn gives rise to the relatively sharp
bosonic feature in ÃF

ρ2 (ω). Notably, we find that ÃF
ρ2 (ω) also

displays weak Stokes and anti-Stokes sidebands near the
bosonic resonance [see Figs. 6(h)–6(j)]. The higher energy
sideband has frequency close to �B

mon + 2ωF
z , which is due

to a process where one quantum of the transverse bosonic
mode and one quantum of the longitudinal fermionic mode
are both being excited. The lower sideband has frequency
close to �B

mon − 2ωF
z and corresponds to a process where

one quantum of the transverse bosonic mode is being ex-
cited and one quantum of the longitudinal fermionic mode is
being depopulated. Both types of processes are possible for
the thermal equilibrium state, the longitudinal and transverse
monopole modes can mix for aBF �= 0, as it was in Fig. 4,
and, as such, the system seems to exhibit two additional well-
defined collective modes, which manifest in the fermionic
response through the same back-action mechanism as for the
bosonic monopole mode. These sidebands, together with the
Fano interference profiles discussed above, indicate that the
Bose-Fermi mixture is expected to give rise to prominent and
tunable nonlinearities—this exciting research direction is left
for future work.

D. Mixture regime NF � NB

We finally turn to investigate the mixture regime where
the fermionic density is comparable to the bosonic one
(NF � NB).

Figure 7 summarizes our results for the case with the
bosons being nominally collisionless aB = 50a0. We find
that a small interaction strength |aBF| � 103a0 gives rise to
both incoherent broadenings of otherwise sharp bosonic and
fermionic resonances and coherent mixing between them.
For larger interaction strengths, 103a0 � |aBF| � 2 × 103a0,
the incoherent part starts to dominate, and the spectral func-
tions appear as rather featureless distinct Lorentzians. At even
stronger interactions and in contrast to the impurity regime
discussed above, the system becomes hydrodynamic. Both
Lorentzians become narrower and they merge into a single,
rather than two distinct, resonance—an effect we refer to as
mode locking. This synchronization effect represents a hall-
mark of the hydrodynamic regime of the Bose-Fermi mixture
as a whole.
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FIG. 7. Monopole modes in the mixture regime NF = NB, with
bosons being nominally collisionless aB = 50a0. When the Bose-
Fermi coupling is not too strong, |aBF| � 103a0, we find that the
bosonic and fermionic monopole modes exhibit both coherent mix-
ing with each other and incoherent broadening of the respective
resonances. For stronger interactions, 103a0 � |aBF| � 2 × 103a0,
each of the spectral functions displays a single Lorentzian behav-
ior, meaning that the coherent mixing between the two monopole
modes is no longer observable—this regime can be associated with
the crossover region. Notably, as |aBF| is further increased, the sys-
tem turns into the hydrodynamic regime, where not only the two
Lorentzians become sharper, as it was in Fig. 4, they also merge to
have the same frequency—an effect referred to as mode locking.

Similar results hold for the case where bosons are nomi-
nally hydrodynamic aB = 5 × 103a0, as summarized in Fig. 8.
Remarkably, when the interaction |aBF| � 600a0 is not too
strong, we now observe that the coherent mixing is between
the collisionless fermionic monopole mode and truly many-
body hydrodynamic bosonic mode. We also find that the
incoherent scatterings play a role and become dominant in the
crossover region, where the two response function appear as
two broad Lorentzians. Even the bosonic hydrodynamic mode
becomes broader with increasing |aBF| in this region. Finally,
as |aBF| is further increased, the Bose-Fermi mixture enters
the hydrodynamic regime as a whole, characterized by the
aforementioned mode locking and sharpening of the response
functions.

V. CONCLUSION AND OUTLOOK

Our work elucidates the collective near-equilibrium dy-
namics of quantum Bose-Fermi mixtures in trapped cold
atom systems. We analyze linear responses of the system
to changes in the confining potential and find that they dif-
fer dramatically depending on the parameter regimes. We

FIG. 8. The same analysis for the mixture regime NF = NB as in
Fig. 7 but now bosons are nominally hydrodynamic aB = 5000a0.
Quite remarkably, for |aBF| � 600a0, we find that the collisionless
fermions display coherent mixing with the hydrodynamic bosonic
mode. A bit unusual is that this latter mode also exhibits initial broad-
ening as the interaction strength |aBF| is increased. The rest of the
results qualitatively follow those in Fig. 7, including eventual mode
locking characteristic of the hydrodynamic regime of the mixture as
a whole.

observe several nontrivial phenomena, including coupling and
interference between bosonic and fermionic collective modes,
strong damping of these modes, and the emergence of hydro-
dynamics in the strongly interacting regime. For intermediate
and strong interactions, we observe appreciable mode mixing,
manifesting, for instance, as the appearance of a longitudinal
monopole resonance even when the optical perturbation is
transverse. In the dilute fermion limit, the bare fermionic
resonances quickly become featureless in frequency upon
increasing the boson-fermion coupling strengths, which is
reminiscent of the physics of Bose polarons. When bosonic
and fermionic densities are comparable and interactions are
strong enough to make the mixture hydrodynamic, we find
mode locking between the bosonic and fermionic responses.
Remarkably, we also observe coherent mode mixing even
when bosons are hydrodynamic and fermions are collision-
less. The coherent mode mixing effects we uncover between
longitudinal and transverse monopole modes, manifesting as
Fano interference profiles and the emergence of the Stokes
and anti-Stokes sidebands, indicate that Bose-Fermi mix-
tures should exhibit strong and tunable nonlinearities. While
nonlinear effects are beyond the linearized Boltzmann frame-
work analyzed here, they are a promising direction for future
inquiry. Such nonlinearities can potentially be used to explore
analogues of nonlinear optical phenomena using collective
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excitations rather than �-like atomic gases [98,99]. Potential
applications include generating single and two mode squeez-
ing [100], entangling different collective modes [101], and
achieving reflections with phase conjugation [102].

Analysis of the dynamics of the cold atomic Bose-Fermi
mixture was made possible by the GMM-MoM developed
here. This method allows one to efficiently compute the
linear-response properties, including the collective modes and
transport coefficients, of a large range of quantum many-body
systems that are describable within the framework of the
Boltzmann equation. While this work focuses on a spatially
inhomogeneous 3D system, our approach will also accelerate
investigations of salient 2D systems. Examples of phenomena
in such systems that require further elucidation include elec-
tron hydrodynamics in vdW semiconductors, spin transport
in bernal graphene, and the collisionless-to-hydrodynamic
crossover in pancake-like dipolar gases [27,103–106]. The
tables of GMM fits to equilibrium distribution functions we
provide are generic and can be directly applied to a broad class
of interesting many-body systems [14].

While the trapped cold-atom mixture we analyzed in this
work has particle-conserving scattering processes, particle
nonconserving collisions are also ubiquitous in solid-state
and cold-atom platforms. Such processes are natural for sys-
tems containing phonons, magnons, and photons. Particle
nonconserving collision integrals, however, are usually much
simpler compared to the particle-conserving ones considered
in this work and therefore are expected to be straightfor-
wardly tractable using the same GMM-MoM approach. In
this context, it would be particularly valuable to also consider
particles with linear, as opposed to parabolic, dispersion. An
additional step would be required to treat systems that have
explicitly nonlocal (but spherically symmetric) interactions
such as those generated by screened Coulomb or dipolar
forces. Systems with pure Coulomb interactions may need
to be modeled with Boltzmann-Vlasov equations; we expect
that our approach facilitates analysis of such models as well.
The GMM representaion of the distribution functions may not
reduce the collision integrals to fully analytical expressions in
these cases, unlike the contact s-wave interaction in the cold
atom mixture considered here. This representation would still,
however, dramatically simplify the collision integral, reducing
it to a low-dimensional one that can easily be computed nu-
merically using limited computational resources.

There are two generalizations of the GMM-MoM approach
that may increase its efficiency. For systems that are spatially
inhomogeneous, such as optically trapped cold atomic gases
similar to those considered in this work, one may extend the
GMM to an ansatz that encodes the full dependence of the
equilibrium distribution functions on both real-space and mo-
mentum coordinates. This will further facilitate calculations
of the collision integrals. Additionally, one may try mix-
ture models composed of functions other than Gaussians that
still allow simplification of the collision integral via Wick’s
theorem. Possible options include poly-Gaussian functions,
composed of a sum of polynomials multiplied by a Gaussian,
and error functions. Both of these ansatzes still enable semian-
alytical computation of the collision integrals and may prove
advantageous, for example, in the analysis of dense fermionic
systems.

Aside from these simple generalizations, there are three
nontrivial promising extensions of our GMM-MoM frame-
work. Firstly, one can try to use a GMM with time-dependent
Gaussians to investigate the far-from-equilibrium dynamics
of quantum many-body systems. This approach would ap-
ply to systems which can be modeled using a Boltzmann
equation with time-dependent distribution functions. If such
a time-dependent GMM-MoM proves accurate, then it would
enable significant progress in several open topics in modern
physics. Examples include the behavior of nonequilibrium
many-body steady-states, with applications to spintronics
devices and field-effect transistors essential for classical com-
puter hardware, fundamental questions about turbulence and
hydrodynamics, and the phenomenology of light-induced
phases of matter such as light-induced superconductivity
and magnetism. Secondly, the Fano interference profiles and
Stokes and anti-Stokes sidebands we find in the Bose-Fermi
mixture studied here motivates the extension of the GMM-
MoM framework to include nonlinear effects. Such an exten-
sion would facilitate analysis of the nonlinear electrodynamics
of correlated materials, allowing, for example, study of the
temperature dependence of photocurrents in photovoltaic
semiconductors or analysis of second or third harmonic gen-
eration in systems such as striped cuprate semiconductors
which exhibit intertwined order parameters [107–112]. Fi-
nally, we can try to extend the GMM-MoM framework to
strongly correlated systems beyond Landau Fermi liquids
which are describable using a Boltzmann equation. Such an
extension would necessitate a Gaussian mixture ansatz on the
level of Green’s functions rather than on the single-particle
distribution functions at the heart of the Boltzmann model.
Generalizing the GMM-MoM in this way would enable the
analysis of non-Fermi liquids, which are believed to be the
key to understanding strongly correlated phases of matter.

Our work opens the door to rigorous theoretical investi-
gation of many fundamental and technologically important
quantum many-body systems describable by Boltzmann equa-
tions which have previously evaded analysis. Furthermore, ex-
tensions of the method may provide an additional tool to ana-
lyze quantum many-body systems that are out-of-equilibrium,
manifest nonlinear behavior, or are strongly correlated.
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APPENDIX A: EVALUATION OF THE MATRIX ELEMENTS ASSOCIATED WITH THE MONOPOLE MODE

When working with the monopole basis functions, for future convenience, we redefine them as

φα (r, p) = βNα κ pα+rα/2 × ρ2mα p2nα

ρ (ρ · pρ )kα × z2pα p2qα

z (zpz )rα , Nα ≡ mα + nα + kα + pα + qα + rα. (A1)

The GMM fits in the dimensionless variables read:

nB,eq(r, p) = 1

1

zB(r)
exp

(
βp2

2

)
− 1

≈
∑

s

aB,s exp

(
− βp2

2γ 2
B,s

)
, (A2)

nF,eq(r, p) = 1

1

zF(r)
exp

(
βp2mB

2mF

)
+ 1

≈
∑

s

aF,s exp

(
− βp2

2γ 2
F,s

)
. (A3)

We note that the coefficients aB,s and γB,s (aF,s and γF,s) depend on the real-space coordinate r only through the local fugacity
zB(r) (zF(r)). A simplification that makes our numerical calculations faster and that we will use below is that the fugacities, in
turn, depend only on the one-dimensional combination r̃2 = β(ρ2 + κz2). This useful but not crucial feature comes from the fact
that the trapping potentials for bosons and fermions are similar and harmonic. If the potentials are anharmonic or have different
from each other forms, then one can easily extend the formalism below to account for such a situation. Besides, while the GMM
fits are necessary for the collision matrices only, they also facilitate numerical evaluations of the rest of the matrices entering the
linearized kinetic equations. This Appendix provides the expressions for all of the matrix elements associated with the monopole
mode.

1. Matrix elements of M̂

By rescaling ρ
√

β → ρ, z
√

βκ → z, and p
√

β → p, the matrix elements of M̂ in Eq. (41) can be written as

(MB/F)αβ = 1

β3
√

κ

∫
d3r

d3 p
(2π )3

ρ2mα+2mβ p2nα+2nβ

ρ (ρ · pρ )kα+kβ × z2pα+2pβ p2qα+2qβ

z (zpz )rα+rβ n(1 ± n). (A4)

In these new variables, the equilibrium distribution functions n = nB/F,eq depend on r and p only, which allows us to perform
the angular integration first, leading to

Mαβ = 1

2πβ3
√

κ
h(kα + kβ )g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ

2

)
g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ

2

)

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2

∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+2 × n(1 ± n), (A5)

where we defined

h(n) ≡
∫ 2π

0
[cos(ψ )]n dψ

2π
= E (n)n!

2n[(n/2)!]2
, (A6)

g(m, n) ≡
∫ 1

−1
x2m(1 − x2)ndx = �(m + 1/2)�(n + 1)

�(m + n + 3/2)
, provided m, n ∈ 0, 1, 2, . . . (A7)

E (n) = 1 if n is even and zero otherwise. We compute the momentum integral analytically using the GMM fits and f (n, γ ) ≡∫ ∞
0 d p pn exp ( − p2

2γ 2 ) = 2(n−1)/2γ n+1�( n+1
2 ). The remaining one-dimensional integration over r is then done numerically.

2. Matrix elements of Ĥ

We first note that the relevant Poisson brackets in Eq. (42) can be written as

{φβ,HB} = φβ

[
2mβ

ρ · pρ

ρ2
+ kβ

p2
ρ

ρ · pρ

+ (2pβ + rβ )
pz

z
− γB

(
2nβ

ρ · pρ

p2
ρ

+ kβ

ρ2

ρ · pρ

+ κ (2qβ + rβ )
z

pz

)]
, (A8)

{φβ,HF} = φβ

[(
2mβ

ρ · pρ

ρ2
+ kβ

p2
ρ

ρ · pρ

+ (2pβ + rβ )
pz

z

)
mB

mF
− γF

(
2nβ

ρ · pρ

p2
ρ

+ kβ

ρ2

ρ · pρ

+ κ (2qβ + rβ )
z

pz

)]
, (A9)
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where we defined γB ≡ 1 + β

r̃ ∂r̃�HF,B(r̃) and γF ≡ λ + β

r̃ ∂r̃�HF,F(r̃) so that ∂ρHB/F = γB/Fρ and ∂zHB/F = γB/Fκz. Plugging
this into Eq. (42) and following the preceding subsection, for the fermionic sector, we arrive at

(HF)αβ = 1

2πβ3
√

κ

{
mB

mF

[
(2mβh(kα + kβ + 1) + kβh(kα + kβ − 1))g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ − 1

2

)

× g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ + 1

2

)
+ √

κ (2pβ + rβ )h(kα + kβ )

× g

(
pα + pβ + rα + rβ − 1

2
, mα + mβ + kα + kβ

2

)
g

(
qα + qβ + rα + rβ + 1

2
, nα + nβ + kα + kβ

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+1

∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+3 nF,eq(1 − nF,eq )

−
[

(2nβh(kα + kβ + 1) + kβh(kα + kβ − 1))g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + 1

2

)

× g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ − 1

2

)
+ √

κ (2qβ + rβ )h(kα + kβ )

× g

(
pα + pβ + rα + rβ + 1

2
, mα + mβ + kα + kβ

2

)
g

(
qα + qβ + rα + rβ − 1

2
, nα + nβ + kα + kβ

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+3γF(r)

∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+1 nF,eq(1 − nF,eq )

}
. (A10)

The expression for the bosonic sector is obtained from this one by substituting nF,eq(1 − nF,eq ) → nB,eq(1 + nB,eq ), putting the
mass ratio to one mB

mF
→ 1, and by replacing γF → γB. As in the preceding subsection, we evaluate all the momentum integrals

analytically and all the real-space integrals numerically.

3. Matrix elements of Ŝ

The self-energies entering the matrix �̂, cf. Eq. (43), take the following form:

�B[�Bφβ](ρ, z) = 2gB

∫
d3 p

(2π )3
nB,eq(1 + nB,eq )φβ → 2gB

β3/2
ρ2mβ+kβ z2pβ+rβ vB,β (r), (A11)

where we rescaled the variables in the usual way, i.e., ρ
√

β → ρ, z
√

βκ → z, and p
√

β → p, and introduced

vB/F,β (r) ≡ 1

(2π )2
h(kβ )g

(
qβ + rβ

2
, nβ + kβ

2

)∫ ∞

0
d p p2nβ+kβ+2qβ+rβ+2n(r, p)(1 ± n(r, p)). (A12)

Plugging this into Eq. (44), we obtain

(SB)αβ = 2gB

2πβ7/2
√

κ

×
{[

(2mαh(kα + 1) + kαh(kα − 1))g

(
qα + rα

2
, nα + kα + 1

2

)
g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ − 1

2

)

+ √
κ (2pα + rα )h(kα )g

(
qα + rα + 1

2
, nα + kα

2

)
g

(
pα + pβ + rα + rβ − 1

2
, mα + mβ + kα + kβ

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+1vB,β

∫ ∞

0
d p p2nα+kα+2qα+rα+3 nB,eq(1 + nB,eq )

−
[

(2nαh(kα + 1) + kαh(kα − 1))g

(
qα + rα

2
, nα + kα − 1

2

)
g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + 1

2

)

+ √
κ (2qα + rα )h(kα )g

(
qα + rα − 1

2
, nα + kα

2

)
g

(
pα + pβ + rα + rβ + 1

2
, mα + mβ + kα + kβ

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+3vB,βγB

∫ ∞

0
d p p2nα+kα+2qα+rα+1 nB,eq(1 + nB,eq )

}
. (A13)

Similar expressions hold for (SBF)αβ and (SFB)αβ .
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4. Matrix elements Iαβ

In this subsection, we show how to evaluate the collision matrix Iαβ in Eq. (48) associated with incoherent boson-boson
scatterings. The main idea of the construction below is that the GMM fits allow one to represent the complicated matrix elements
as sums of Gaussian integrals that can be evaluated analytically over the 12-dimensional momentum space (the integration over
the remaining 3-dimensional real space is then done numerically). Some difficulties still exist, such as taking into account the
momentum and energy conservation laws—we discuss this below.

As a first step, we change variables to the center-of-mass frame: p = 1
2 P + q, p′ = 1

2 P − q, p1 = 1
2 P′ + q′, and p′

1 = 1
2 P′ − q′.

The momentum conservation leads to P′ = P, while the energy conservation enforces q′ = q:∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εB(p′) − εB(p1) − εB(p′
1))

→
∫

d3r
d3P

(2π )3

d3q
(2π )3

d3q′

(2π )3
(2π )δ(q2 − q′2).

It will be convenient to write S[φα] = βNα κ pα+rα/2ρ2mα+kα z2pα+rα Sα[P, q, q′], where Sα[P, q, q′] is a known polynomial of its
arguments. Here, it is implicit that we consider all the in-plane momenta relative to ρ—this is allowed to do since, for the
monopole mode, the integrals do not depend on the angle φ between ρ and the x axis. Rescaling the variables in the usual
manner, i.e., ρ

√
β → ρ, z

√
βκ → z, and p

√
β → p, we arrive at

(IB)αβ = − g2
B

2β5
√

κ

∫
d3r ρ2mα+2mβ+kα+kβ z2pα+2pβ+rα+rβ

∫
d3P

(2π )3

d3q
(2π )3

d3q′

(2π )3
(2π )δ(q2 − q′2)

× (1 + nB,eq(r, p))(1 + nB,eq(r, p′))nB,eq(r, p1)nB,eq(r, p′
1) × Poly[P, q, q′]. (A14)

We note that the real-space angular integration can be readily done:∫
d3r ρ2mα+2mβ+kα+kβ z2pα+2pβ+rα+rβ → 2πg

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ

2

) ∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2.

Here Poly[P, q, q′] = Sα[P, q, q′] × Sβ[P, q, q′] is a polynomial of its arguments. It is worth pointing out that polynomials are
particularly suitable for our construction of the GMM fits because, as we mentioned, after all manipulations, we will end up
having a Gaussian integral. As such, when the integrand contains a polynomial, one can simply apply Wick’s theorem to get
analytical results.

To proceed, we expand the product over the distribution functions in Eq. (A14) as (1 + n)(1 + n′)n1n′
1 = n1n′

1 + n1n′
1n +

n1n′
1n′ + n1n′

1nn′ so that the matrix IB is a sum of four terms. Substituting the GMM fits, we get for the first (classical) term
[113] the following:

n1n′
1 =

∑
s1s2

as1 as2 exp

{
− p2

1

2γ 2
s1

− p′2
1

2γ 2
s2

}
=

∑
s1s2

as1 as2 exp

{
−

(
1

2γ 2
s1

+ 1

2γ 2
s2

)(
P2

4
+ q2

)
−

(
1

2γ 2
s1

− 1

2γ 2
s2

)
P · q′

}
.

Similar expressions hold for the other three (quantum) terms. We note that the prefactor in front of the exponent depends only
on the real-space coordinate r, while the exponent itself contains the full information about the momentum variables. Since
the real-space integration will be evaluated numerically, from now on, we focus on the exponent and analytically evaluate the
momentum integrals. To capture each of the four terms contributing to IB, we write the exponent as

exp

{
− P2

2γ 2
P

− 1

2γ 2
q

(q2 + q′2) + 1

γP
(Aq + Bq′) · P

}
. (A15)

The coefficients γP, γq, A, and B can be simply written in terms of the parameters γsi entering the GMM fits. Explicitly, for the
first classical term we have

1

γ 2
P

= 1

4γ 2
s1

+ 1

4γ 2
s2

,
1

γ 2
q

= 1

2γ 2
s1

+ 1

2γ 2
s2

, A = 0, B = γP

(
1

2γ 2
s2

− 1

2γ 2
s1

)
.

Similar expressions can be easily obtained for the remaining three terms (in general, we have nonzero values for A and B).
With the form in Eq. (A15), the three-dimensional Gaussian integral over P can be readily evaluated:∫

d3P
(2π )3

exp

{
− P2

2γ 2
P

− q2

γ 2
q

+ 1

γP
(Aq + Bq′) · P

}
Poly[P, q, q′] = exp

{
− q2

γ 2
q

+ 1

2
(Aq + Bq′)2

}
Poly[q, q′]

= exp{−C1q2 + C2q · q′}Poly[q, q′]. (A16)

In obtaining this result, we used the energy conservation constraint q2 = q′2. In the first equality, the new polynomial Poly[q, q′]
no longer depends on P but it does depend on r through the coefficients γP, A, and B (we will not explicitly indicate the
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dependence on r). In practice, to get this polynomial, we write a simple Mathematica subroutine that computes the Gaussian
integral over P. Here we defined C1 = 1

γ 2
q

− 1
2 A2 − 1

2 B2 and C2 = AB.

We are left with a Gaussian integral over q and q′. However, what makes this integral hard is the energy constraint δ(q2 − q′2)
and the appearance of the terms ∼q · q′ in the exponent Eq. (A16). We now note that the expression in the exponent can be
written as a square of a vector (assuming q = q′)

C1q2 − C2q · q′ q=q′
���� (Ãq + B̃q′)2. (A17)

Indeed, simple algebra gives

Ã =
√

1

2

(
C1 +

√
C2

1 − C2
2

)
, B̃ = −sign(C2)

√
1

2

(
C1 −

√
C2

1 − C2
2

)
. (A18)

This allows one to change variables to k = Ãq + B̃q′ and k′ = Ãq′ + B̃q; under such a linear transformation, we get (Ã �= B̃)

δ(q2 − q′2) = (Ã2 − B̃2)δ(k2 − k′2),
∫

d3q
(2π )3

d3q′

(2π )3
→ 1

(Ã2 − B̃2)3

∫
d3k

(2π )3

d3k′

(2π )3
.

We, therefore, obtain ∫
d3q

(2π )3

d3q′

(2π )3
(2π )δ(q2 − q′2) exp{−C1q2 + C2q · q′}Poly[q, q′]

= 1

(Ã2 − B̃2)2

∫
d3k

(2π )3

d3k′

(2π )3
(2π )δ(k2 − k′2)e−k2

Poly[k, k′]. (A19)

Here, the new polynomial Poly[k, k′] is obtained from Poly[q, q′] by simply substituting q = (Ãk − B̃k′)/(Ã2 − B̃2) and
q′ = (Ãk′ − B̃k)/(Ã2 − B̃2), i.e., through the inverse linear transformation. The integral in Eq. (A19) is already feasible for
further analytical/numerical evaluations. Indeed, in the spherical coordinates, it becomes

Qαβ (r) = π

(2π )6(Ã2 − B̃2)2

∫ ∞

0
dk k3e−k2

∫ 2π

0
dϕ

∫ 2π

0
dϕ′

∫ 1

−1
d (cos θ )

∫ 1

−1
d (cos θ ′) Sαβ [k, φ, φ′, θ, θ ′], (A20)

where Sαβ [k, φ, φ′, θ, θ ′] is obtained from Poly[k, k′] by substituting the spherical coordinates and k = k′. Importantly, each
function Sαβ is some known polynomial of cos θ , sin θ , cos θ ′, sin θ ′, cos φ, sin φ, cos φ′, and sin φ′—as such, the angular
integration can be done analytically. In our numerics, we write a simple Mathematica code that symbolically evaluates this
four-dimensional angular integration. The remaining Gaussian integral over k is then also evaluated analytically (we write a
separate Mathematica subroutine for this step as well).

This completes our protocol for evaluating the momentum integrals. At this stage, we are left with the integral over r, which is
reduced to a one-dimensional integral over r and then evaluated numerically. Explicitly, the first classical contribution to (IB)αβ

reads

(IB)αβ,1 = − g2
Bπ

β5
√

κ

∑
s1,s2

g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ

2

)

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2as1 (r)as2 (r)Qαβ,1(r), (A21)

and similar expressions hold for the remaining three contributions.

5. Matrix elements of Ĵ

We turn to discuss the matrix Ĵ associated with collisions between bosons and fermions, Eqs. (49)–(52). Now, the corre-
sponding matrix elements are evaluated in exactly the same manner as in the preceding subsection. The only new feature we
need to address in this subsection is that the bosonic and fermionic masses might differ. In this case, the transformation to the
center-of-mass frame now reads

p = mB

mB + mF
P + q, p′ = mF

mB + mF
P − q, p1 = mB

mB + mF
P′ + q′, p′

1 = mF

mB + mF
P′ − q′. (A22)
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As above, the momentum conservation enforces P = P′, while the energy conservation gives q = q′:∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
(2π )3δ(p + p′ − p1 − p′

1) × (2π )δ(εB(p) + εF(p′) − εB(p1) − εF(p′
1))

→ 2mBmF

mB + mF

∫
d3r

d3P
(2π )3

d3q
(2π )3

d3q′

(2π )3
(2π )δ(q2 − q′2).

The rest of the computation follows the preceding subsection step-by-step.

APPENDIX B: EVALUATION OF THE MATRIX ELEMENTS ASSOCIATED WITH THE QUADRUPOLE MODE

When working with the quadrupole basis functions, we also use the definitions in Eqs. (A1)–(A3). We rescale the functions
ξi(r, p) by an overall factor of β and rewrite them as ξi(r, p) = βρμi pνi

ρ cos(2φ + νiφp), where φ is the angle between ρ and the
x axis and φp is the angle between ρ and pρ ; (μ1, ν1) = (2, 0), (μ2, ν2) = (1, 1), and (μ3, ν3) = (0, 2). Below we provide all
the matrix elements associated with the quadrupole mode.

1. Matrix elements of M̂

Similar algebra as in the preceding Appendix gives

Mi j
αβ = 1

4πβ3
√

κ
h̃(|νi − ν j |, kα + kβ )g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μ j

2

)

× g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ + νi + ν j

2

) ∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μ j+2

×
∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+ν j+2 n(1 ± n), (B1)

where we defined

h̃(n, k) ≡
∫ 2π

0
cos(nψ )[cos ψ]k dψ

2π
= k!

2k

θ (k − |n|)E (k + n)

[( k−n
2 )!][( k+n

2 )!]
. (B2)

In the derivations here, we used the same rescaling as above, namely: ρ
√

β → ρ, z
√

βκ → z, and p
√

β → p.

2. Matrix elements of Ĥ

We note that {ξ jφβ,HB/F} = ξ j{φβ,HB/F} + φβ{ξ j,HB/F}. The first term was evaluated above, in Eqs. (A8) and (A9), while
the second term can be written as {ξ j,HB/F} = ∑

k X B/F
jk ξk , where

X B
jk =

⎡
⎣ 0 2 0

−γB 0 1
0 −2γB 0

⎤
⎦, X F

jk =
⎡
⎣ 0 2mB/mF 0

−γF 0 mB/mF

0 −2γF 0

⎤
⎦. (B3)

Following the above form for the Poisson brackets, we write (HF)i j
αβ = (HF)i j

αβ,1 + (HF)i j
αβ,2, and a straightforward algebra in the

spirit of preceding calculations gives

(HF)i j
αβ,1 =

∫
d3r

d3 p
(2π )3

ξiξ jφα{φβ,HF}

× neq, F(1 − neq, F) = 1

4πβ3
√

κ

{
mB

mF

[
(2mβ h̃(|νi − ν j |, kα + kβ + 1) + kβ h̃(|νi − ν j |, kα + kβ − 1))

× g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μ j − 1

2

)

× g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ + νi + ν j + 1

2

)
+ √

κ (2pβ + rβ )h̃(|νi − ν j |, kα + kβ )

× g

(
pα + pβ + rα + rβ − 1

2
, mα + mβ + kα + kβ + μi + μ j

2

)

× g

(
qα + qβ + rα + rβ + 1

2
, nα + nβ + kα + kβ + νi + ν j

2

)]
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×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μ j+1

∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+ν j+3 nF,eq(1 − nF,eq )

−
[

(2nβ h̃(|νi − ν j |, kα + kβ + 1) + kβ h̃(|νi − ν j |, kα + kβ − 1))

× g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μ j + 1

2

)

× g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ + νi + ν j − 1

2

)

+ √
κ (2qβ + rβ )h̃(|νi − ν j |, kα + kβ )

× g

(
pα + pβ + rα + rβ + 1

2
, mα + mβ + kα + kβ + μi + μ j

2

)

× g

(
qα + qβ + rα + rβ − 1

2
, nα + nβ + kα + kβ + νi + ν j

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μ j+3γF(r)

∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+ν j+1 nF,eq(1−nF,eq )

}
.

(B4)

We also get

(HF)i j
αβ,2 =

∫
d3r

d3 p
(2π )3

ξiφαφβ{ξ j,HF} × neq, F(1 − neq, F) = 1

4πβ3
√

κ

∑
k

h̃(|νi − νk|, kα + kβ )

× g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μk

2

)
g

(
qα + qβ + rα + rβ

2
, nα + nβ + kα + kβ + νi + νk

2

)

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μk+2X F

jk (r)
∫ ∞

0
d p p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+νk+2 nF,eq(1 − nF,eq ).

(B5)

Similar expressions can be obtained for the bosonic sector (or use the same expressions but substitute: nF,eq(1 − nF,eq ) →
nB,eq(1 + nB,eq ), mB

mF
→ 1, γF → γB, and X F

jk → X B
jk).

3. Matrix elements of Ŝ

We note that the self-energies entering the matrix Ŝ in Eq. (43) now depend not only on ρ but also on the angle φ between ρ

and the x axis:

�B[�Bξ jφβ](ρ, z, φ) = 2gB

∫
d3 p

(2π )3
nB,eq(1 + nB,eq )ξ jφβ → 2gB

β3/2
cos (2φ)ρ2mβ+kβ+μ j z2pβ+rβ vB,β j (r), (B6)

where we rescaled the variables as ρ
√

β → ρ, z
√

βκ → z, and p
√

β → p and introduced

vB/F,β j (r) ≡ 1

(2π )2
h̃(ν j, kβ )g

(
qβ + rβ

2
, nβ + kβ + ν j

2

) ∫ ∞

0
d p p2nβ+kβ+2qβ+rβ+ν j+2 n(r, p)(1 ± n(r, p)). (B7)

Following the Poisson bracket expansion (see the preceding subsection), we write (SB)i j
αβ = (SB)i j

αβ,1 + (SB)i j
αβ,2, where

(SB)i j
αβ,1 = 2gB

4πβ7/2
√

κ

{[
(2mα h̃(νi, kα + 1) + kα h̃(νi, kα − 1))

× g

(
qα + rα

2
, nα + kα + νi + 1

2

)
g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μ j − 1

2

)

+ √
κ (2pα + rα )h̃(νi, kα )g

(
qα + rα + 1

2
, nα + kα + νi

2

)

× g

(
pα + pβ + rα + rβ − 1

2
, mα + mβ + kα + kβ + μi + μ j

2

)]
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×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μ j+1vB,β

∫ ∞

0
d p p2nα+kα+2qα+rα+νi+3 nB,eq(1 + nB,eq )

−
[

(2nα h̃(νi, kα + 1) + kα h̃(νi, kα − 1))

× g

(
qα + rα

2
, nα + kα + νi − 1

2

)
g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μi + μ j + 1

2

)

+ √
κ (2qα + rα )h̃(νi, kα )g

(
qα + rα − 1

2
, nα + kα + νi

2

)

× g

(
pα + pβ + rα + rβ + 1

2
, mα + mβ + kα + kβ + μi + μ j

2

)]

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μi+μ j+3vB,βγB

∫ ∞

0
d p p2nα+kα+2qα+rα+νi+1 nB,eq(1 + nB,eq )

}
(B8)

and

(SB)i j
αβ,2 = 2gB

4πβ7/2
√

κ

∑
k

h̃(νk, kα )g

(
pα + pβ + rα + rβ

2
, mα + mβ + kα + kβ + μk + μ j

2

)
g

(
qα + rα

2
, nα + kα + νk

2

)

×
∫ ∞

0
dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+μk+μ j+2X B

ik vB,β j

∫ ∞

0
d p p2nα+kα+2qα+rα+νk+2 nB,eq(1 + nB,eq ). (B9)

Similar expressions can be obtained for (SBF)αβ and (SFB)αβ .

4. Matrix elements of Î

We compute the matrix Î in the same manner as in the preceding Appendix. The only new element we encounter here is that
the polynomial integrands entering collision matrices now depend on the angle φ between ρ and the x axis. To overcome this
issue, we write (in the rescaled variables) expressions of the type: S[φαξi] → Sα,i[P, q, q′, φ]ρ2mα+kα+μi z2pα+rα , where we also
switched to the center-of-mass frame introduced in Appendix A 4. These new functions Sα,i[P, q, q′, φ] are polynomials of cos φ

and sin φ allowing for efficient analytical/numerical computations of

Si j
αβ[P, q, q′] ≡

∫
dφ

2π
Sα,i[P, q, q′, φ]Sβ, j[P, q, q′, φ]. (B10)

In our numerics, we write a Mathematica subroutine that evaluates the functions Si j
αβ[P, q, q′], which are now polynomials of P,

q, and q′. Plugging these polynomials back into, for instance, the matrix IB, we arrive at [compare to Eq. (A14)]:

(IB)i j
αβ = − g2

B

2β5
√

κ

∫
d3r ρ2mα+2mβ+kα+kβ+μi+μ j z2pα+2pβ+rα+rβ

∫
d3P

(2π )3

d3q
(2π )3

d3q′

(2π )3
(2π )δ(q2 − q′2)

× (1 + nB,eq(r, p))(1 + nB,eq(r, p′))nB,eq(r, p1)nB,eq(r, p′
1) × Si j

αβ [P, q, q′]. (B11)

The rest of the computation, including the computation of the matrix Ĵ which accounts for collisions between bosons and
fermions, follows the procedure in Appendix A step-by-step.

APPENDIX C: BENCHMARKING AND APPLICATIONS
OF COLLISION INTEGRAL CALCULATIONS

1. Monopole mode of a classical gas

A simple and straightforward way to benchmark the
method developed in this work is to consider a classical
gas trapped in a harmonic potential. Such a gas at equilib-
rium follows the Boltzmann-Maxwell distribution function,

which is Gaussian. The Hartree-Fock self-energy of the gas
can also be neglected. Correspondingly, in the GMM ansatz
in Eq. (1), we only need to keep track of a single har-
monic (M0 = 1). In case of a dilute gas, we can further
approximate 1 + neq ≈ 1, which simplifies the calculations
below.

We focus on the monopole mode and consider the trunca-
tion order to be M = 1, so that in total we have 7 basis func-
tions for the method of moments. All of the matrices entering
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the kinetic equation (39) can be computed analytically:

Mαβ

Ntot
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
β

2
β

0 1
κβ

1
β

0

2
β

8
β2

4
β2 0 2

κβ2
2
β2 0

2
β

4
β2

8
β2 0 2

κβ2
2
β2 0

0 0 0 2
β2 0 0 0

1
κβ

2
κβ2

2
κβ2 0 3

κ2β2
1

κβ2 0

1
β

2
β2

2
β2 0 1

κβ2
3
β2 0

0 0 0 0 0 0 1
κβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
Hαβ

Ntot
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 − 4
β2 0 0 0

0 0 0 4
β2 0 0 0

0 4
β2 − 4

β2 0 0 0 0

0 0 0 0 0 0 − 2
κβ2

0 0 0 0 0 0 2
β2

0 0 0 0 2
κβ2 − 2

β2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C1)

where Ntot = eμβ/(β3√κ ) is the total number of particles and μ is the chemical potential. Note that following the main text
notations, we set m = 1 in this subsection. The collision integral matrix Iαβ has only four nonzero matrix elements, namely:
I33 = I66 = NtotI and I36 = I63 = −NtotI , where

I ≈ − g2
B

2Ntot

∫
d3r

d3 p
(2π )3

d3 p′

(2π )3

d3 p1

(2π )3

d3 p′
1

(2π )3
× (2π )3δ(p + p′ − p1 − p′

1)

× (2π )δ(εp + εp′ − εp1 − εp′
1
) × neq(r, p1)neq(r, p′

1) × S
[
p2

z

]
S
[
p2

z

]
. (C2)

By switching to the center-of-mass frame following Appendix A 4, we get

I ≈− g2
B

2Ntot

∫
d3r

d3P
(2π )3

d3q
(2π )3

d3q′

(2π )3
× π

q
δ(q − q′)neq(r, p1)neq(r, p′

1) × S
[
p2

z

]
S
[
p2

z

]
. (C3)

Integration over the real-space gives

∫
d3r neq(r, p1)neq(r, p′

1) = π
3
2 e2μβ

β
3
2 κ

1
2

exp

{
−βq2 − 1

4
βP2

}
.

(C4)

We note that S[p2
z ] = 2(q2

z − q′2
z ), i.e., it does not depend on

P, which can now be easily integrated out:

∫
d3P

(2π )3
exp

{
−1

4
βP2

}
=

(
1

πβ

) 3
2

. (C5)

The remaining integration is straightforward:

I ≈ − 4

15π3

g2
Beμβ

β4
= − 8

15β2
σn0vT = − 16

15β2
γcoll, (C6)

where vT = √
8/(πβ ) is the thermal velocity, n0 is the density

at the center of the trap, and γcoll = σn0vT /2.
Our numerical subroutines reproduce the above analytical

matrices and reproduce the known results from Ref. [78], as
shown in Fig. 9. Specifically, Ref. [78] demonstrated that the
method of moments with M = 1 applied to a classical thermal
gas agrees remarkably well with more precise molecular dy-
namics simulations. From this result, one can also conclude
that M = 1 is expected to be an excellent approximation. If
one wants to study a quantum gas where the equilibrium
distribution function is no longer Gaussian (as done in the
main text), then one may need to consider M � 1. In the main
text, we fixed M = 2 and checked that further increasing M
does not result in an appreciable difference in the resulting
spectral functions.

2. Bose polaron decay rate

In this subsection, we demonstrate that the GMM approach
can be applied to experimentally relevant quantum many-body
systems with strong interactions; in these systems, one cannot
disregard the momentum dependence of the scattering am-
plitude. We follow Ref. [74] and consider the impurity limit
where we have a single fermion (Bose polaron) immersed into
a homogeneous bosonic bath. The fermion decay rate � in this
case can be estimated as [74]

� = λ3
F

mr

∫
d3kB

(2π )3

∫
d3kF

(2π )3
e−βk2

F/(2mF )nB(kB)σ (k)k, (C7)

where vrel = k/mr = kF/mF − kB/mB, k is the relative mo-
mentum between the two scattering particles, and mr =
mFmB/(mF + mB) is the reduced mass. We neglect the Bose-
Bose interactions, aB = 0, corresponding to an ideal Bose
gas. We will also consider temperature T to be both be-
low and above Tc. Below Tc, the fermion decay rate comes
from scatterings off the thermal bosons. For T � Tc, the
bosonic chemical potential is zero μB = 0 (zB = 1). Since the
Bose-Fermi coupling can be strong, we take into account the
k-dependence of the scattering cross section:

σ (k) = 4πa2
BF

1 + k2a2
BF

, (C8)

where aBF is the Bose-Fermi scattering length. At this stage,
we employ the GMM expansion:

nB(p) ≈
M0∑
s=1

aB,s exp

(
− βp2

2mBγ 2
B,s

)
. (C9)
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FIG. 9. Monopole mode of a classical gas, trapped into a harmonic potential with κ = 10−2. Solid lines in panels (a) and (b) are the
monopole mode frequency �mon and its dampening �mon, respectively, computed using the approach developed here. Dashed lines were
extracted from Ref. [78]. Similarly to our results in the main text, cf. Fig. 4, the classical gas also exhibits a collisionless-to-hydrodynamic
crossover, as evidenced, for instance, by the nonmonotonic behavior of �mon.

In what follows, we will avoid writing the subscript B to
ease the notations, as it is clear that the GMM ansatz in this
subsection refers solely to bosons. The scattering rate � is
then written as

� ≈ λ3
F

mr

M0∑
s=1

as

∫
d3kB

(2π )3

∫
d3kF

(2π )3

4πa2
BFk

1 + k2a2
BF

× exp

[
− βk2

F

2mF
− βk2

B

2mBγ 2
s

]
. (C10)

To evaluate this integral, we introduce the following change
of variables from kF and kB to K and k:

kF = α

1 + α
K + 1 + α

1 + αγ 2
s

k,

kB = 1

1 + α
K − 1 + α

1 + αγ 2
s

γ 2
s k. (C11)

Here α = mF/mB. This linear transformation (i) has unity
Jacobian, (ii) respects that k is the relative momentum, and
(iii) allows us to directly integrate out K. After simple algebra,
we obtain

� = vrel

λ3
B

M0∑
s=1

asγ
3
s

√
1 + αγ 2

s

1 + α
σ̃

(
T

Ta

1 + αγ 2
s

1 + α

)
, (C12)

where vrel = √
8T/(πmr ), Ta = 1/(2mra2

BF), and

σ̃ (y) = 8πa2
∫ ∞

0
dx x3 [1 + yx2]−1 e−x2

. (C13)

If one were to use a Taylor series expansion instead, then one
should substitute:

as → zs, γs → 1√
s
, M0 → ∞ ⇒ �TS

= vrel

λ3
B

∞∑
s=1

zs

s3/2

√
1

s

s + α

1 + α
σ̃

(
T

Ta

1

s

s + α

1 + α

)
. (C14)

The result in Eq. (C14) exactly reproduces Eq. (32) of
Ref. [74].

The physics of the Bose polaron decay rate is quite fasci-
nating, and the interested reader is referred to the thorough
discussion in Ref. [74]. Here, we focus on the validity of our
GMM calculations. Figure 10 shows the comparison between
the GMM result in Eq. (C12) and the Taylor series expression
(C14) for both unitary (Ta = 0) and nonunitary interactions
(Ta = 5Tc). For the GMM ansatz, we set the maximal bosonic

FIG. 10. The fermion (Bose polaron) decay rate as a function of
temperature for unitary (Ta = 0) and nonunitary Bose-Fermi inter-
actions (Ta = 5Tc). Solid curves correspond to resuming the Taylor
series expansion, Eq. (C14) derived in Ref. [74]. Dashed curves
correspond to the GMM ansatz, Eq. (C12), where the maximal
bosonic fugacity is chosen to be zmax = 0.99 (black dashed vertical
line) so that we have M0 = 17 Gaussians in total, cf. Fig. 3(b). The
domain of applicability of the GMM approach is T � 1.1Tc, where
the two types of calculations essentially coincide. Notably, the GMM
predictions for T � 1.1Tc (shaded region) are also in remarkable
agreement with the more accurate Taylor series resummation.
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FIG. 11. Performance of the cGMM expansion on a strongly interacting Fermi fluid. (a) The chemical potential μ as a function of T :
The solid line encodes the exact dependence, while the dashed one corresponds to the cGMM. In our simulations, we chose zmax = 105,
which implies that the domain of applicability of the cGMM is T � 0.1TF (vertical dashed line), where the two calculation coincide. (b) The
shear viscosity η of the fluid as a function of T at kF |a| = 4.5 (η is normalized by ηcl (TF ) = 5

√
mTF /(32a2√π )). The solid curve is taken

from Ref. [89], while the dashed one is obtained using the cGMM, and the two results reasonably agree. The choice kF |a| = 4.5 implies that
Ta ≈ 0.1TF and allows one to see the ∼T 3/2 scaling (dotted line) at high temperatures, TF , Ta � T . The shaded regions in panels (a) and (b) are
where the chosen cGMM is no longer applicable.

fugacity to be z = 0.99 so that we have M0 = 17 Gaussians
in total, cf. Fig. 3(b). This choice of the maximal fugacity im-
plies that the domain of applicability of the GMM calculations
is T � 1.1Tc, where the two types of calculations coincide.
Even for T � 1.1Tc, the two approaches agree remarkably
well (see Fig. 10).

To get a sense of how the two calculations differ from
each other for T � 1.1Tc, we consider the unitary limit with
Ta = 0. In this case, both approaches predict linear in T
behavior for T � Tc (where the bosonic fugacity is z = 1),
meaning the maximal discrepancy between the two calcu-
lations can be estimated to be |�(Tc) − �TS(Tc)|/�TS(Tc) ≈
0.7%. This remarkable agreement, in the most challenging
regime at T = Tc and with unitary interactions, stems from

the fact that the bosonic GMM expansion can be accurately
extrapolated outside its domain of applicability, cf. Fig. 3(b),
as discussed in Sec. II of the main text.

3. Shear viscosity of a strongly interacting
two-component Fermi system

In this subsection, we demonstrate that the fermionic ver-
sion of the GMM, cGMM, readily enables computation of
interesting transport coefficients such as the shear viscosity.
To this end, we follow Ref. [89] and consider a homogeneous
two-component fermionic fluid in its normal state where,
within the method of moments, the shear viscosity is given
by [89]

η = 2

T m2

[ ∫ d3 p
(2π )3 p2

x p2
y np(1 − np)

]2

1
4

∫ d3 p
(2π )3

∫ d3 p′
(2π )3

∫
d�

dσ (q)
d�

|p−p′|
m npnp′ (1 − np1 )(1 − np′

1
) × (S[px py])2

. (C15)

In an above expression, np = [exp(β(εp − μ)) + 1]−1 is the Fermi-Dirac distribution function, S[ f ] = f + f ′ − f1 − f ′
1 ⇒

S[px py] = 2(qxqy − q′
xq′

y), and the differential cross section is given by (q = (p − p′)/2):

dσ (q)

d�
= a2

1 + q2a2
, (C16)

where � is the solid angle of the relative momentum q′ = (p1 − p′
1) with respect to the direction of q.

In the limit where the fermionic distribution function is approximately Gaussian (EF � T ), the shear viscosity can be
computed analytically:

η = 5

8

√
πmT

σ̄ (T/Ta)
, where σ̄ (y) = 4πa2

3

∫ ∞

0
dx x7 [1 + yx2]−1e−x2

, (C17)

where Ta = 1/(ma2). In the limit T � Ta, we have ηcl = 5
√

mT /(32a2√π ) ∼ √
T . In the opposite limit, Ta � T , we get

η = 15(mT )3/2/(32
√

π ) ∼ T 3/2 [dotted line in Fig. 11(b)].

033017-26



ACCELERATING ANALYSIS OF BOLTZMANN EQUATIONS … PHYSICAL REVIEW RESEARCH 6, 033017 (2024)

At lower temperatures, where the distribution function is no longer Gaussian, we can employ the cGMM expansion:

np ≈
∑

s

as exp

(
− βp2

2mγ 2
s

)
. (C18)

which is valid for any z = exp(βμ) � zmax. We choose zmax = 105, cf. Fig. 3(c). This choice limits the lowest temperature in
our analysis to be Tmin ≈ 0.1EF (for this estimate, we used μ = EF ). If one is interested in even lower temperatures, then one
should increase zmax and redo the cGMM fitting following Sec. II. As a first step, we solve for the temperature dependence of
the chemical potential μ(T ), which can be obtained by fixing the total fermionic density:

ntot = 2
∫

d3 p
(2π )3

np = −2

(
mT

2πβ

) 3
2

ξ 3
2
(−z). (C19)

Here, the factor of 2 encodes that we have a two-component Fermi fluid. The momentum integration in Eq. (C19) can also be
carried out using Eq. (C18), allowing us to determine the chemical potential within the cGMM approximation. We find that
within the applicability of the cGMM expansion (T � 0.1EF ), the two calculations for μ(T ) coincide [see Fig. 11(a)].

The primary challenge we encounter when analyzing Eq. (C15) is the evaluation of the denominator which, in the center-of-
mass frame, is proportional to

I =
∫

d3P
(2π )3

∫
d3q

(2π )3

∫
d�

4π

q q2
x q2

y a2

1 + q2a2
npnp′ (1 − np1 )(1 − np′

1
). (C20)

We normalize this integral using the corresponding classical expression, where one additionally neglects the momentum-
dependence of the scattering cross section:

Icl = e2βμ

∫
d3P

(2π )3

∫
d3q

(2π )3

∫
d�

4π
q q2

x q2
y a2 exp

{
−β(p2 + p′2)

2m

}
. (C21)

As in Appendix A 4, we write I as a sum of four terms I = I1 − I2 − I3 + I4 and plug in the cGMM expansion (C18). Under the
summations over the cGMM indices, we will get the following type of expressions, cf. Eq. (A15):

∫ d3q
(2π )3

∫
d�
4π

q q2
x q2

y

1+q2T/Ta

∫
d3P

(2π )3 exp

{
− P2

2γ 2
P

− q2

γ 2
q

+ 1
γP

(Aq + Bq′) · P
}

e2βμ
∫ d3q

(2π )3

∫
d�
4π

q q2
x q2

y

∫
d3P

(2π )3 exp

{
−P2

4 − q2

} . (C22)

Note that we rescale all the momenta as βp2/m → p2. Integration over P yields, cf. Eq. (A16):

∫
d3P

(2π )3 exp

{
- P2

2γ 2
P

− q2

γ 2
q

+ 1
γP

(Aq + Bq′) · P
}

∫
d3P

(2π )3 exp

{
− P2

4

} =
(

γP√
2

)3

exp{−C1q2 + C2q · q′}. (C23)

Integration over the solid angle � yields(
γP√

2

)3 ∫
d�

4π
exp{−C1q2 + C2q · q′} =

(
γP√

2

)3

e−C1q2 sinh(C2q2)

C2q2
. (C24)

Plugging these results in, we rewrite Eq. (C22) as

e−2βμ

3

(
γP√

2

)3 ∫ ∞

0
dq

q7

1 + q2T/Ta
e−C1q2 sinh(C2q2)

C2q2
. (C25)

This one-dimensional integral, together with the summation over the cGMM harmonics, is easy for numerical evaluations on a
single laptop. Figure 11 shows the computed temperature dependence of the shear viscosity η(T ): Our result reproduces that
of Ref. [89], demonstrating that the cGMM expansion allows for efficient and accurate computation of transport coefficients of
strongly interacting quantum many-body systems.
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