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Remote response modes on the paced excitable C. elegans network
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In paced excitable systems, a traditional viewpoint on signal transmission is that an excitable pacing signal
should propagate from the source to its excited neighbors in a sequential rule, which is known as the normal
sequential response mode (SRM). However, in our present paper, by extensively exploring the response modes
emerged on the paced excitable C. elegans network, we found that, besides the normal SRM, a response
mode that breaks the sequence rule and contains isolated excited clusters or even isolated excited nodes on
the propagation path of the response structure can be detected. Such remote response nodes and clusters are
excited discontinuously from the source node, forming the phenomenon of the remote response mode (RRM). An
effective-driving analysis approach (EDAA) is proposed to theoretically study the mechanism of the RRM, based
on which key role played by the excited nodes possessing nonexcited upstream driving neighbors is confirmed
in the formation of the RRM. We further verity the applicability and the universality of the EDAA in identifying
the RRM on general paced excitable networks. These contributions are expected to shed light on the study of
complex response modes in paced excitable systems and to have great impact in related topics.
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I. INTRODUCTION

Since the seminal “small-world” and “scale-free” network
models were successively proposed by Watts and Strogatz and
Barabasi and Albert (see [1,2], respectively), great progresses
have been achieved in the field of complex network science.
Subsequently, collective behaviors emerged on different types
of complex network systems have become the central hot
topics under investigation in the fields of nonlinear science
and network science. Several typical types of spatiotemporal
dynamical behaviors, such as synchronous phenomena [3-6],
self-sustained oscillations [7—11], and chimera and chimera-
like states [12—-16], have been discovered. For example, Zhang
et al. revealed the explosive synchronization in adaptive and
multilayer networks [4]. Fretter et al. discussed the topo-
logical determinants of self-sustained activities in a simple
model of excitable dynamics on graphs [11]. Hagerstrom
et al. experimentally observed the chimeras in coupled-map
lattices [12]. In addition, response dynamics is also an im-
portant topic in this field and lots of interesting results have
been reported [17-25]. For example, Tolkacheva ef al. in-
vestigated the condition for alternans and stability of the
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1:1 response pattern in a “memory” model of paced cardiac
dynamics [18]. Chen er al. studied the resonant response of
forced complex networks and revealed the key role of topolog-
ical disorder [20]. Grabert and Thorwart exposed the quantum
mechanical response to a driven Caldeira-Leggett bath [22].
Wang et al. discovered the frequency-dependent response in
the cortical network with periodic electrical stimulations [24].

Recently, the issue of remote dynamics emerged in com-
plex network systems is an amazing and intriguing topic and
receives great attention, among which the remote synchro-
nization has attracted the most attention [26—33]. Remote
synchronization is a nonlocal coordination state that describes
the synchrony phenomenon among two subpopulations that
are indirectly coupled to each other. As the remote syn-
chronization was termed by Bergner et al. [27], lots of
contributions were achieved in this field. For example,
Punetha et al. discovered the delay-induced remote synchro-
nization in bipartite networks of phase oscillators [29]. Kumar
and Rosenblum exposed the two mechanisms of remote syn-
chronization in a chain of Stuart-Landau oscillators [31].
Yang et al. unveiled the phase frustration induced remote
synchronization [33].

Besides the remote synchronization, other topics relating
to the manifestations of remote dynamics are investigated
and reported, which are significant in revealing the mecha-
nisms of a variety of behaviors occurring in miscellaneous
systems. Ruzzene et al. studied the remote pacemaker control
of chimera states in multilayer networks of neurons [34].
Liu and coworkers reported the remote signal propagation in
the specific biological network models consisting of bistable
oscillators and Hindmarsh-Rose neurons [35,36]. However,
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very little attention has been paid to the remote dynamics on
the paced excitable complex systems. It is well known that
the paced excitable complex network is a paradigmatically
theoretical platform to study the response dynamics of brain
systems with external stimulations and reveal the mechanisms
of the corresponding brain functions. A traditional viewpoint
is that the excitable pacing signal should propagate from the
source to its excited neighbors in a sequential rule, which is
known as the normal sequential response mode (SRM). It is
significant to study the availability and mechanism of remote
response dynamics emerged on paced excitable systems.

To explore this issue, in the present paper, the C. elegans
network, which has been widely applied to study the collective
behaviors in neural systems, is adopted as the substrate to
construct a specific excitable complex system. By extensively
exploring the response modes emerged on the paced excitable
C. elegans network (PECN), we found that, besides the nor-
mal SRM, a response mode that breaks the sequence rule
and contains isolated excited clusters or even isolated excited
nodes on the propagation path of the response structure can
be detected. Such remote response nodes and clusters are
excited discontinuously from the source node, forming the
phenomenon of the remote response mode (RRM).

The remainder of the paper is organized as follows. Sec-
tion II introduces the working model of the PECN. The
SRM and the RRM that can self-organize to emerge on the
PECN are investigated in Sec. III, respectively. In Sec. 1V,
an effective-driving analysis approach (EDAA) is proposed to
discuss the mechanism for the emergence of the RRM. The
applicability and the universality of the EDAA are explored
in Sec. V. Finally, we give the conclusion in the last section.

II. THE PACED EXCITABLE C. ELEGANS NETWORK
MODEL

As our working substrate, the typical topology of the C.
elegans network is displayed in Fig. 1(a), which consists of
277 nodes (shown by red dots) and 2105 directional links
(black lines) [37]. It is revealed clearly in Fig. 1(a) that
both the spatial and degree distribution of the cells on C.
elegans network are heterogeneous. Figure 1(b) presents the
corresponding adjacent matrix A of the C. elegans network,
where each yellow dot corresponding to the matrix element
A; j represents a directional link from node j to node i. Since
A;;j #A;,; for many i and j, the adjacent matrix is asymmet-
ric, implying the heterogeneity of the real C. elegans network.

Based on the substrate adopted by the C. elegans network,
the classical Bar-Eiswirth model [38] is utilized as the repre-
sentative local dynamics to construct the excitable C. elegans
network. Furthermore, a periodic pacing is applied on a spe-
cific source node to probe the response modes emerged on the
system. The PECN model considered in the present paper is
governed by the following equations:

N
du; 1 v,+b
8”( u)(u )+ ?:1 i — up)

dt a
+ 8isAsin(2m ft), (D
dvi _ N
E _ f(uz) v;. (2)
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l

FIG. 1. (a) The structure of the C. elegans network, which con-
sists of 277 nodes (red dots) and 2105 directional links (black lines).
(b) The corresponding adjacent matrix A of the C. elegans network,
where the yellow dot located at matrix element A; ; indicates that
there exists a directional link from the elements j to i.

In the above two equations, the subscripts i, j (i, j =
1,2,...,N) label the nodes on the network, where the size
of the C. elegans system is N = 277. Here u and v are respec-
tively the activation and the recovery variables of the local
excitable cell, which can present the membrane potential and
the recovery current in the case of imitating neural dynamics.
Constants a, b, and ¢ are the three dimensionless characteristic
parameters that can effectively regulate the local excitable
dynamics, among which parameters a and b determine the
excitation threshold and ¢ modulates the time scale of the two
variables. The function f(u) is piecewise and obeys the form
fu)y=0foru <1, f(u)=1-6.75u(u—1)* for 1 <u<
I,and f(u) =1foru > 1.

The interplays among the nodes on the network are realized
by the diffusive coupling term DZIJYZIA,; j(u; —u;), where
D is the coupling strength determining the interaction inten-
sity between linking elements. A; ; represents the adjacency
matrix element, which is defined as A; ; =1 if there is a
directional link from the nodes j to i, and A; ; = O otherwise.
A periodic pacing A sin(2x f1) is adopted and is applied on the
source node S via introducing the Kronecker function §; s, i.e.,
8;is = 1fori =S and$; s =0 fori # S. The control parame-
ters A and f are respectively the amplitude and the frequency
of the external periodic pacing. In the following, Eqgs. (1)
and (2) are integrated by the forward Euler integration algo-
rithm with the time step At = 0.02. The system parameters
are fixed as a = 0.84, b = 0.07, ¢ = 0.04, and D = 1.0. The
homogeneous rest state, i.e., [u;(t = 0), v;(t = 0)] = (0, 0)
(i=1,2,...,N),is adopted as the initial condition in numer-
ical simulations.
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FIG. 2. The response patterns on the PECN obtained at t =
401.4 (a), 401.8 (b), 402.8 (c), and 403.8 (d). The periodic pacing
Asin(2w ft) with (A, f) = (1.8, 0.1) is adopted and applied on the
source node S = 84. The elements are sequenced from the central
source node to the outside according to the directional connections.
The states of each node are divided into three categories, i.e., the rest
state (¢ < 0.2), the exciting state (0.2 < u < 0.5), and the excited
state (u > 0.5), which are colored in gray, blue, and red, respectively.
Here u. = 0.5 is utilized as the excitation threshold to judge whether
the node in the network is excited or not.

III. THE SEQUENTIAL RESPONSE MODE
AND THE REMOTE RESPONSE MODE

In this part, we mainly focus on the response mode that can
self-organize to emerge on the PECN. The periodic pacing
Asin(2r ft) with (A, f) = (1.8,0.1) is first tested and ap-
plied on the source node § = 84. The corresponding response
patterns obtained at four different instants are displayed in
Figs. 2(a)-2(d), respectively. Here we should mention that
the elements in these pictures are sequenced from the cen-
tral source node to the outside according to the directional
connections. Furthermore, the states of each node are divided
into three categories, i.e., the rest state (# < 0.2), the exciting
state (0.2 < u < 0.5), and the excited state (u > 0.5), which
are colored in gray, blue, and red, respectively, and u, = 0.5
is utilized as the excitation threshold to judge whether a node
in the network is excited or not.

Figure 2 gives a typical example that the pacing signal
propagates sequentially from the source node located in the
innermost layer to the nodes seated in the outside layers. We
call this response mode as the normal SRM. To determine
the propagations of an arbitrary SRM, a reduction scheme
can be proposed to obtain the reduced response structure by
discarding the nonexcited nodes, i.e., by deleting the nodes
i (i=1,2,...,N) with Max{u;(t)} < u.. Here Max{u;(t)}
indicates the maximum value of the time series u;(¢). This
means that only the excited nodes will be reserved in the

(b)

(d)

FIG. 3. The response structures of Fig. 2 by discarding the
nonexcited nodes, by which the normal SRM is identified.

response structure. By using this scheme, the corresponding
response structures of Figs. 2(a)-2(d) are obtained and re-
vealed in Figs. 3(a)-3(d), respectively. It is shown clearly that
the excitable waves presented in Fig. 2 do propagate with
a sequence from the inner paced source node S = 84 to its
outside neighbors and then to the neighbors’ outsiders and so
on. Importantly, each node in the response structure at least
has an excited upstream driving neighbor, which can kick it
from the rest state to exceed the excitation threshold and make
it become an excited node. Therefore the response structures
exposed in Fig. 3 imply a normal SRM on the PECN.

However, besides the normal SRM, it is important to ex-
plore other kinds of response modes that can self-organize
to emerge on the PECN. To this end, different source nodes
are tested. An example obtained at the pacing parameters
(A, f) = (1.8, 0.1) and the source node S = 126 is obtained,
which is presented in Fig. 4. It can be found from the four
response patterns at different moments in Figs. 4(a)—4(d) that
the pacing signal can still propagate sequentially from the
inner source node to the outside nodes, which is similar to the
response mode revealed in Fig. 2. It seems that the response
mode revealed in Fig. 4 is also a normal SRM.

To further testify whether the above judgment is true,
similar reduced response topologies to Fig. 4 are obtained
by discarding the nonexcited nodes, which are shown in
Figs. 5(a)-5(d), respectively. Surprisingly, beyond our expec-
tations, besides the above normal sequential response cluster
located at the lower right corner, i.e., the excited cluster (126,
140, 141, 161, 162, 163), which is triggered sequentially from
the inner paced source node to the outsiders, some isolated
excited clusters such as the cluster (100, 29, 266) and the
isolated excited nodes (252), (253), (254), (255), (256), (257),
and (269) have also been observed in the response structures.
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FIG. 4. The similar response patterns with another pacing pa-
rameter combination (A, f) = (1.8, 0.1) and source node S = 126.
The states are obtained at t = 401.6 (a), 402.4 (b), 403.4 (¢), and
405.6 (d).

Let us further analyze the above two types of special cases.
It is shown in Fig. 5 that, for the isolated excited cluster
(100, 29, 266), the node 100 is the upstream node and can
be considered as the “source node,” whose firings may agitate
the two downstream nodes 29 and 266. However, no excited
upstream driving nodes are found to offer stimulations to
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FIG. 5. The similar response structures of Fig. 4, by which the
RRM is confirmed.

impulse this fake “source node.” Similar phenomena also
happen to those isolated excited nodes, which are triggered
without other excited upstream driving neighbors. This sur-
prising phenomenon is distinctly contrary to the normal point
of view on a sequential propagation that the excitable pacing
signal should propagate from the source to its excited neigh-
bors and then to the neighbors’ excited neighbors and so on.
This means that each node located in the propagation path
should have an excited upstream driving neighbor. Otherwise,
the excitable wave will damp and the propagation will termi-
nate if there exists a nonexcited node in the propagation path.
Therefore the response mode exposed in Fig. 5 is distinctly
different from the normal SRM. As for the existence of the
nodes without any excited upstream driving neighbors, such
as the above isolated nodes and fake “source node” in the
response structures, which are excited discontinuously from
the source node, we call these two types of special excited
elements as the remote response nodes, and consequently this
response mode is named as the RRM.

IV. THE MECHANISM DISCUSSION BASED ON THE
EFFECTIVE-DRIVING ANALYSIS APPROACH

It is inspiring to seek for the mechanism of the RRM
emerged on the PECN. The remote response node 257 shown
in the response structures of Fig. 5 is utilized as the exam-
ple to explore this issue, and the excitable wave propagation
paths from the source node to this isolated excited node are
revealed in Fig. 6(a). The pink, green, purple, and orange cir-
cles respectively represent the excited remote response node
257 (i.e., the target node in the current case), the nonexcited
upstream driving neighbors of the target node, the source node
S = 126, and the excited intermediate elements between the
source node and the two nonexcited nodes. The typical time
series of these four different types of nodes are also presented,
in which the black and gray dashed lines denote the rest state
and the excitation threshold u. = 0.5, respectively.

It is shown in Fig. 6(a) that, for the first two rounds of
excitations, the excitable waves can propagate sequentially
from the purple source node to the orange excited intermediate
elements. However, as the excitable waves propagate to the
two green nodes 149 and 150 (i.e., the two upstream driv-
ing neighbors of the remote response node 257), the normal
suprathreshold excitations terminate, instead of which these
two green nodes perform subthreshold vibrations. More sur-
prisingly, with the stimulations from these two subthreshold
vibration neighbors, the pink target node 257 can execute a
normal suprathreshold excitation again. This discontinuous
propagation process can explicitly make the pink target node
257 become the remote response node in the response struc-
tures, and the RRM can be definitely identified on the PECN.

A normal viewpoint is that more upstream drivings on an
excitable node implies an easier excitation. Nevertheless, a
contrary observation of the excitable wave propagation paths
in Fig. 6(a) shows that both nonexcited nodes 149 and 150
(green) have more incoming upstream drivings (four for node
149 and three for 150) than the pink excited remote response
node (it only has two). It is thus fundamental to explore the
reason why the remote response node receiving only two up-
stream drivings can execute normal suprathreshold excitation,
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FIG. 6. (a) The mechanism analysis of the RRM. The pink,
green, purple, and orange nodes are respectively the excited remote
response node (i.e., the target node in this case), the nonexcited
upstream driving neighbors of the target node, the source node, and
the excited intermediate elements between the source node and the
two nonexcited nodes. The typical time series of these four different
types of nodes are also presented, in which the black and gray dashed
lines denote the rest state and the excitation threshold u. = 0.5,
respectively. (b) The time series of the excited target node 257 and its
two nonexcited upstream driving neighbors 149 and 150. Here F>s;
implies the equivalent resultant drive of the target node, which comes
from the corresponding upstream driving neighbors. In the current
case, Fos7 = upyo + uys0. (c) The phase diagram on the (FM,¢H)
plane for an arbitrary target node with ™ = 2, which reveals two
distinct parameter domains, i.e., the white excited region and the gray
nonexcited region. The red cross represents the equivalent resultant
drive received by the excited remote response node 257 in the current
case, which locates in the white excited region. The inset shows the
corresponding local amplification.

while the two green upstream driving neighbors gaining more
cannot. This should be the mechanism in forming the RRM
on the PECN, which is the main task we aim to explore.

It is inspiring to propose an EDAA to answer the above
questions. A schematic diagram of the EDAA is illustrated in
Fig. 7(a), where an arbitrary target node i (red circle, i.e., the
node needed to judge whether it can be excited or not in the
RRM) has k" incoming upstream neighbors (blue circles) and

J

FMagin[ 22 (1 — JT,)]

F, =
0

In Eq. (5), T; is the period of the equivalent driving function F;,
which is determined by the frequency of the external periodic
pacing as Ty = J% FMax and 1 are respectively the maximum

JT, <t <3 +UT, (0 =1,2,3,..),

b) 10
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FIG. 7. (a) The schematic diagram of the EDAA. Here the red
node i represents an arbitrary target node needed to judge whether
it can be excited or not in the RRM. It has k[ incoming upstream
neighbors, which are denoted by blue nodes and labeled from 1 to
k™. F; indicates the equivalent resultant drive acting on the target
node i received from all of its k™ upstream driving neighbors. (b) An
example of the equivalent resultant drive F; with two characteristic
quantities FM* = 1.0 and "' = 2.2. Here FM* and " are respec-
tively the maximum value of F; and the duration when F; > %F Max
in a period, by which the equivalent drive function can be uniquely
determined.

the accumulative drivings received from all of its k[ upstream
neighbors in real cases are considered as an equivalent resul-
tant drive, which is denoted by a time-dependent function F;.
The dynamical equations of this target node can be written as

du; 1 v+ b I
I u —upw— 2 £ D(F — kM
o= g u,)<u, - >+ (F—K"w), (3
dv;
= fl) = v @)

The key point of the EDAA can be understood as follows.
Suppose an arbitrary target node receives an equivalent resul-
tant drive from all of its incoming upstream neighbors, which
may drastically change its dynamical behavior. Only when
the equivalent resultant drive surpasses a critical value, this
target node can be excited. This indicates that a critical thresh-
old of the equivalent resultant drive is the crucial point to
judge whether a target node can be excited or not. Based on
the above reduced model, one can conveniently unfold this is-
sue by effectively working out the necessary condition for the
excitation of an arbitrary target node in the RRM according to
the equivalent resultant drive. The most important merit of the
present EDAA is that this approach is irrelevant of network
topology and applicable to various types of cases.

Enlightened by the features of the equivalent resultant
drives received by the target nodes in the PECN, we empir-
ically construct the following time-dependent function F; to
mimic the equivalent resultant drive on the ith target node as

&)

else.

(

value of F; and the duration when F; > %F Max i one pe-
riod. These two key control parameters uniquely determine
the form of function F;, based on which diverse equivalent
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resultant drives received by an arbitrary target node i in real
cases can be effectively mimicked. Figure 7(b) presents the
time series of an equivalent resultant drive F; for F' Max — 1 0,
=22 and f = 0.1. In the following we will focus on how
the two vital control parameters (i.e., FM® and ™) impact the
excitation of the given target node and expose the correspond-
ing excitable parameter combinations.

Let us first apply the EDAA to analyze why the pink remote
response node 257 with only two incoming upstream drivings
shown in Fig. 6(a) can be excited. Figure 6(b) presents the
time series of the node 257 with the pink curve and its two
nonexcited upstream driving neighbors 149 and 150 with the
two green curves. It is shown explicitly that, with the stim-
ulations from these two subthreshold vibration neighbors, the
target node 257 can definitely execute a normal suprathreshold
excitation. To explain this counterintuitive phenomenon, the
equivalent resultant drive of the target node in the current case
is obtained easily as Fas57 = w49 + 150, which is revealed by
the red curve. Moveover, the two corresponding characteristic
parameters FM# and tH are also labeled.

To explain why the target node 257 with only two incom-
ing upstream drivings can be excited under the equivalent
resultant drive possessing the above two characteristic pa-
rameters, the phase diagram on the (FM**, ") plane for an
arbitrary target node with k™® = 2 is computed according to
the EDAA, as explicitly exposed in Fig. 6(c). The local am-
plification shown in the inset reveals clearly that there exist
two distinct parameter domains. The white regions denote the
parameter regime where the target node can be excited, and
the gray region corresponds to the regime where the target
node fails to be excited. It can be clearly seen that the param-
eter combination (FM# ¢H) for the target node 257 labeled
as the red cross is located in the white excited region. This
strongly confirms that the target node can execute a normal
suprathreshold excitation although its two upstream neighbors
perform subthreshold vibrations, which forms the RRM on the
PECN.

It is also necessary to answer the question why the two
upstream neighbors of the remote response node cannot carry
out normal suprathreshold excitations (i.e., the key point in
forming the RRM) even if they have more incoming upstream
drivings. We choose the nonexcited upstream driving neigh-
bor 150 as the target node to explore this issue. Figure 8(a)
displays the local network structure of the target node 150,
which has two incoming excited upstream neighbors (orange
circles) and 24 incoming nonexcited upstream neighbors (gray
ones). To apply the EDAA, the time series of the target node
150 and its equivalent resultant drive Fi50 = Zfiz"lz% u; (i €
upstream neighbors) are plotted in Fig. 8(b), where the two
corresponding characteristic parameters FM# and tH are also
denoted.

To verify whether a target node under the equivalent resul-
tant drive can be excited, the phase diagram on the (FM*, ¢H)
plane for an arbitrary target node with k'™ = 26 is plotted in
Fig. 8(c), where similar white excited region and gray nonex-
cited region to Fig. 6(c) are obtained. The red cross located in
the gray nonexcited region represents the equivalent resultant
drive received by the above nonexcited target node 150. This
further confirms the nonexcited state of the target node, which
plays a key role in forming the RRM.

50 Fiso

500

0 5 10 15 20
FMaX

FIG. 8. The mechanism analysis of the nonexcited node in the
RRM. Here node 150, i.e., the nonexcited upstream driving neighbor
of the excited remote response node 257, is utilized as the target node
to explore this issue. (a) The local network structure of the target
node 150, which has two incoming excited upstream neighbors (or-
ange circles) and 24 incoming nonexcited upstream neighbors (gray
ones). (b) The time series of the target node 150 and its equivalent
resultant drive Fy5 (here Fi5o = Zf‘:"f% u;, i € upstream neighbors).
(c) The phase diagram on the (FM*, tf1) plane for an arbitrary target
node with k™ = 26. The red cross represents the equivalent resultant
drive received by the nonexcited target node 150 in the current case,
which locates in the gray nonexcited region.

Furthermore, by comparing the phase diagrams respec-
tively shown in Figs. 6(c) and 8(c) one can find that the
number of incoming upstream neighbors of the target node
k™ is a key factor in determining the excitability of the
given node. It is revealed explicitly that the larger the k' is,
the smaller the white excited region is. This means that the
more incoming upstream neighbors an excitable node has,
the harder it can be excited. Therefore, based on the
EDAA, the mechanism of the RRM emerged on the PECN
can be well explained.

V. THE APPLICABILITY AND THE UNIVERSALITY
OF THE EFFECTIVE-DRIVING ANALYSIS APPROACH

The above discussions indicate that remote response nodes
can self-organize to emerge on paced networks. This is the
key point for the formation of the RRM. The emergence of
remote response nodes should meet the following necessary
conditions.

(1) All upstream driving neighbors of remote response
nodes are nonexcited.

(i) With the stimulations from these nonexcited upstream
neighbors, remote response nodes must be excited.
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FIG. 9. Identifying the RRM on the PECN via the EDAA. (a,
¢, e) The patterns (red nodes) after the first operation process (i.e.,
by selecting the nodes only possessing nonexcited upstream driving
neighbors). (b, d, f) The remote response nodes (red nodes) after
the second operation process (i.e., by exploiting the EDAA on the
patterns shown in the first row). The central purple node in each
panel denotes the source node on which the external periodic pacing
is applied. The pacing parameters and source node are selected
as (A, f)=(1.8,0.1) and S = 126 for (a) and (b) (left column),
(A, f)=(2.7,0.2)and S = 126 for (c) and (d) (middle column), and
(A, f) =(1.0,0.1) and S = 142 for (e) and (f) (right column).

It is thus valuable to design an algorithm to search and
identify the RRM on the PECN by utilizing the EDAA. Ac-
cording to the above two essential requirements, the following
operation procedure is proposed to identify the RRM.

(1) Select the nodes with only nonexcited upstream driving
neighbors.

(i) Apply the EDAA to the nodes selected in the first step
to choose the excited ones.

By implementing the above two operational steps, the re-
mote response nodes can be picked out precisely without
knowing the state information of these nodes, and the RRM
can be identified on the PECN.

One adopts the RRM presented in Figs. 4 and 5 [i.e., the
pacing parameters and source node are (A, f) = (1.8,0.1)
and S = 126 ] as the example to test our method. Figure 9(a)
unveils the pattern after the first operation step. It is clearly
shown that, by selecting the nodes only possessing nonexcited
upstream driving neighbors, lots of elements satisfying this
necessary condition are picked out (red nodes), which are
considered as the candidates for step 2. Now we can perform
step 2 by exploiting the EDAA on the pattern displayed in
Fig. 9(a), and the corresponding result is revealed in Fig. 9(b),
where the left red cells are the remote response nodes filtered
according to our method. By comparing with the response
structures exposed in Fig. 5, only the isolated excited nodes
and the excited fake “source node” are all identified exactly,
based on which the emergence of RRM can be confirmed on
the PECN.

Let us further verify the universality of the EDAA. We first
test this for other pacing parameters. Figures 9(c) and 9(d)
(middle column in Fig. 9) reveal the results obtained for a
pacing (A, f) = (2.7,0.2). The source node is also fixed as
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FIG. 10. (a—c) A RRM emerged on a directional Erdos-Rényi
random network consisting of excitable Bir-Eiswirth elements. The
pacing combination (A, f) = (3.44, 0.1) and source node S = 44 are
utilized here. (a) The response pattern obtained at instant ¢ = 413.9.
(b) The corresponding response structure of the RRM. (c) The time
series of the remote response node u;g and its upstream driving
neighbors. (d—f) The similar RRM emerged on the paced C. elegans
network containing paradigmatic excitable FHN cells. The pacing
combination (A, f) = (1.5, 0.05) and source node § = 5 are adopted
here. (d) The response pattern obtained at instant r = 408.4. (e) The
similar response structure. (f) The time series of the remote response
node uy3s and its upstream driving neighbors.

the case shown in Figs. 9(a) and 9(b) (left column in Fig. 9).
By applying our approach, only one remote response node
is filtered, based on which the RRM can be expected on the
PECN with current pacing. More importantly, this prediction
is confirmed in our numerical simulations (not shown here).
Now we check the method for other source nodes, on which
the external periodic pacing is applied. The right column in
Fig. 9 [i.e., Figs. 9(e) and 9(f)] shows the remote response
nodes for (A, f) =(2.7,0.2) and S = 126 (both pacing pa-
rameter combination and response node are changed), which
coincide with the experimental data very well (also not shown
here). All the results presented in Fig. 9 can definitely con-
firm the applicability and the universality of our method in
identifying the RRM on the PECN, especially the EDAA we
propose in the present paper.

VI. THE ROBUSTNESS OF THE RRM EMERGED ON
PACED EXCITABLE COMPLEX NETWORK SYSTEMS

To verify the robustness of the RRM emerged on paced
excitable complex network systems, a directional classical
network model is first tested. Figures 10(a)-10(c) show a
RRM emerged on a directional excitable Erdos-Rényi random
network, which is constructed with system size N = 277 and
connection probability p = 0.02. The Bir-Eiswirth model is
adopted as the local dynamics, and the system parameters
are selected as the above figures. The pacing combination
(A, f)=(3.44,0.1) and source node S =44 are utilized.
Here we should mention that, based on the above network
structure parameters (i.e., N = 277 and p = 0.02), the total
number of the directional edges in the network is expected
to be pN(N — 1) =~ 1529, which is close to the number of
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directional links of the C. elegans network. This may make
the constructed directional excitable Erdos-Rényi random net-
works have similar structural properties to observe the RRMs.
Furthermore, we have also confirmed in numerical simula-
tions that the combination of the above structure parameters
and system parameters is more beneficial for the emergence of
the RRMs on paced directional excitable Erdos-Rényi random
networks.

Figure 10(a) displays the response pattern obtained at
instant + = 413.9. The corresponding response structure is
exposed in Fig. 10(b), by which the remote response node 169
is exposed. Figure 10(c) presents the time series of the remote
response node uj69 (shown by the pink curve) and its three
nonexcited upstream driving neighbors (denoted by the green
curves). Based on the results revealed in Figs. 10(a)-10(c) we
can conclude that the RRM can also self-organize to emerge
on other paced directional excitable complex networks.

Local dynamics also needs to be discussed to check the
robustness of the RRM emerged on paced excitable com-
plex network systems. Here the following paradigmatic ex-
citable FitzHugh-Nagumo (FHN) cell is adopted as the local
dynamics:

du; 1 u? +DXN:A ( )
=T\ U i jllj — Ui
dt ¢ 3 I

j=1

+ 3,’qu sin(ant), (6)
(iUi _ 7
E_s(u,-+,3—l/vi)- D

The system parameters are selected as ¢ =0.2, § =0.7,
y =0.5, and D = 0.5. The C. elegans network is used as
the substrate, and the pacing parameter combination (A, f) =
(1.5, 0.05) and source node S = 5 are utilized here. The corre-
sponding results are displayed in Figs. 10(d)-10(f), where the
response pattern obtained at instantt = 408.4 [Fig. 10(d)], the
similar response structure [Fig. 10(e)], and the time series of
the remote response node uy3s [the pink curve in Fig. 10(f)]
and its upstream driving neighbors [the two green curves in
Fig. 10(f)] are respectively presented. Here we should mention
that, based on the excitation features of the local FHN cell
[see the pink curve in Fig. 10(f)], the states of each element
are classified into three categories according to the following
standards, i.e., the rest state (¥ < 0, colored in gray), the
exciting state (0 < u < 1, blue), and the excited state (u > 1,
red). So u. = 1 is adopted as the excitation threshold to judge
whether each cell in the network is excited or not. It is shown
that the RRM can also self-organize to emerge on the paced
excitable C. elegans network with other local dynamics. All
these results revealed in Fig. 10 can definitely confirm that the
RRM emerged on paced excitable complex network systems
is robust.

Besides the 1:1 RRMs exposed in the above sections, the
RRMs with other drive-response frequency ratios can also be
observed. Figure 11 presents three examples of the RRMs
with drive-response frequency ratios 2:1 [first row, (A, f) =
(0.5,0.1) and S = 124], 3:1 [second row, (A, f) = (1.2,0.1)
and § = 228], and 4:1 [third row, (A, f) = (1.0,0.1) and
S = 132] emerged on the paced C. elegans network consisting
of paradigmatic excitable FHN cells. The left, middle, and
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FIG. 11. The RRMs with drive-response frequency ratios 2:1
[first row, (A, f)=(0.5,0.1) and S = 124], 3:1 [second row,
(A, f)=(1.2,0.1) and S =228], and 4:1 [third row, (A, f)=
(1.0,0.1) and S = 132] emerged on the paced C. elegans network
consisting of paradigmatic excitable FHN cells. (a, d, g) The re-
sponse patterns obtained at instants t = 415.1 (a), r = 466.5 (d), and
t =497.18 (g). (b, e, h) The corresponding response structures of the
RRMs. (c, f, 1) The time series of the remote response nodes u35 (¢),
uy3; (f), and u,35 (i) and their upstream driving neighbors.

right columns are respectively the response patterns obtained
at instants r = 415.1 [Fig. 11(a)], t = 466.5 [Fig. 11(d)], and
t = 497.18 [Fig. 11(g)]; the corresponding response struc-
tures of the RRMs [Figs. 11(b), 11(e), and 11(h)]; and the
time series of the remote response nodes uy3s [Fig. 11(c)],
up3y [Fig. 11(f)], and up3s [Fig. 11(1)] and their upstream
driving neighbors. These results further confirm the existence
of the complicated RRMs on paced excitable complex net-
work systems. This is one of the most important attributes of
the excitable response dynamics, which can give us clues in
understanding the complex response modes of brain systems
under external stimuli.

VII. CONCLUSION AND DISCUSSION

In conclusion, various response modes emerged on the
PECN are extensively explored. By applying the external
periodic pacing on the specific source node with certain pac-
ing parameter combinations, the normal sequential response
mode is usually observed, in which the excitable waves can
propagate sequentially from the inner paced source node to
its outside neighbors and then to the neighbors’ outsiders
and so on. However, by altering source nodes and pacing
parameters, a remote response mode is detected. Without any
excited upstream driving neighbors in the response structures,
these RRMs manifest as the existence of some isolated excited
clusters and even isolated excited nodes, besides the normal
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sequential response clusters. The existence of such remote
response nodes, which are excited discontinuously from the
source node, forms the phenomenon of RRM.

The mechanism of the RRMs emerged on the PECN is
analyzed in detail. An effective-driving analysis approach is
proposed. The effective topology is composed of an arbitrary
target node possessing k™™ incoming upstream driving neigh-
bors. The target node is acted on by an equivalent resultant
drive received from all of its upstream neighbors. By utiliz-
ing the EDAA for each target node in the network, one can
precisely predict whether it can be excited or not without
knowing any of its state information. The EDAA analysis
highlights the significance of the excited nodes possessing
nonexcited upstream driving neighbors, which is confirmed
as the key factor in forming the RRM on the PECN.

The applicability and the universality of the EDAA are
further verified. We have demonstrated that our method can
be applied to identify the RRMs on the PECN with diverse
source nodes and various pacing parameter combinations.
The RRM and the EDAA proposed in this paper should also
be applicable to general excitable systems. Furthermore, both
the robustness of the RRM phenomena with respect to net-
work structure and local dynamics are discussed in detail. It
is found that the RRM emerged on paced excitable complex
network systems is robust. Moreover, the RRMs with other
drive-response frequency ratios can also be observed. This
further confirms the existence of the complicated RRMs on
paced excitable complex network systems.

The issue of response dynamics that can self-organize
to emerge on paced excitable systems is one of the most

important topics in the fields of nonlinear science and net-
work science. A response mode, i.e., the RRM, that breaks
the sequence rule and contains isolated excited clusters or
even isolated excited nodes on the propagation path of the
response structure is revealed. Furthermore, besides the nor-
mal 1:1 RRMs, RRMs with other drive-response frequency
ratios (such as the 2:1, 3:1, and 4:1 RRMs) are also exposed.
This is the most typical attribute of the excitable response
dynamics, which may not be observed for other local dy-
namics. Importantly, a universal theoretical analysis method
is proposed to identify the RRMs on general paced excitable
complex network systems. These findings are not revealed in
previous works [35,36]. We think our contributions presented
in this paper can give us clues in understanding the complex
response modes of brain systems under external stimuli and
will have great impacts in related fields.
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