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Illuminating the Bragg intersections as roots of Dirac nodal lines
and high-order van Hove singularities
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We theoretically reexamine nearly uniform electron models with weak crystalline potentials. In particular, we
theorize the modulation of the plane-wave branches at linear regions where multiple Bragg planes intersect. Any
such linear intersections involve three or more plane-wave branches diffracted by the periodic potential. Small
interbranch interactions can yield various crossing and anticrossing singularities with promised breakdown of
the quadratic approximation, extending alongside the intersection lines. Most of the intersections run in low-
symmetric paths in the Brillouin zone and therefore we cannot completely characterize their electronic states
with standard band-structure plotting methods. The present theory reveals a general mechanism in nearly uniform
systems to induce the Dirac nodal lines and van Hove singularities with broken quadratic band approximation in
three dimensions, which may host a variety of anomalous low-energy electronic properties. We apply the theory
to a recently discovered high-temperature superconductor H3S to interpret the enigmatic density-of-state (DOS)
peaking therein. The results show how and why there the continuous saddle points–the source of the peaked
DOS–emerge, as well as reveal the companion Dirac nodal lines hidden in the conduction bands.
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I. INTRODUCTION

The crystal structure is the source of various low-energy
electronic phenomena, including high-temperature supercon-
ductivity. One key effect of that is the formation of the
one-particle band structure and resulting nontrivial distribu-
tion of the eigenstates in crystal wave number and energy
space; enhanced density of states, nesting, band flattening, as
well as topological structure in eigenfunctions. But relation-
ship between the crystal and band structures is quite nontrivial
and, for theory-driven materials design, heuristic approaches
are usually utmost effective: Namely, build artificial crys-
tals and execute first principles calculations for those. Useful
theories on any such relationships, that may enable design
strategies beyond heuristic, have long been desired.

In this study, we seek such a theory by focusing on a
geometric aspect of electron as a plane wave under diffrac-
tion by periodic potentials. Understanding of the electronic
band structure from the diffracted plane waves has been
already well established in the Bloch theory [1], but, in or-
der to find clues toward any missing theories, let us here
briefly review the diffraction of the plane waves with ele-
mentary concepts. Due to the diffraction potential, the plane
waves with (real) wave vector k + G and k + G′ are hy-
bridized to form eigenstates, where G and G′ denote the
reciprocal vector conforming to the system’s translational
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symmetry. When the diffraction is weak, such hybridization
occurs only between energetically degenerate states. This
mechanism is efficiently visualized by the repeated Brillouin-
zone scheme [2] [Fig. 1(a)]. In this view, the wave numbers
at which two diffracted branches meet span Bragg planes.
The Bragg planes between the origin and adjacent reciprocal
points defines the first Brillouin zone. At the Brillouin-zone
boundary, there always emerge linearly crossing or anticross-
ing band pairs. In the latter case, the band gradients have zero
components normal to the zone boundary due to symmetry
and continuity requirements of the bands. Such anomalies
also occur near (not exactly at) the Bragg planes for farther
reciprocal points, which may be located in the interior of the
Brillouin zone.

The above description on how the diffracted plane waves
interact has been well established, using the nearly free (or
uniform, with any mean fields from interactions considered)
electron model [3]. At the early stage of the band theory, this
model was useful for developing basic concepts and properties
such as Fermi surfaces, as well as served a reference point
that demystifies the calculated results of more sophisticated
methods like the orthogonalized plane-wave method [4–7].
Now the model is mainly referred to in textbooks as illus-
trative examples for the band theory more than a research
object [2,8]. We nevertheless point out that how two or more
Bragg planes interact has been least understood in the model.
The interaction of the multiple plane waves at the Brillouin-
zone edges has been thoroughly studied already. Extended
considerations of the interaction, which can occur in more
general regions in the zone, are indeed found to be of revived
interest in the modern context, as revealed through the paper.

By definition, at intersections of the Bragg planes three
or more diffracted branches are degenerate and, with weak
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FIG. 1. (a) Repeated Brillouin-zone scheme and interacting replica plane-wave branches in one dimension. (b) Triangle formed by a
selected reciprocal points �(G1, G3, G3) and their circumcenter R(G1, G3, G3) in three dimensions. (c) Bragg planes p(Gi, G j ) (i, j = 1, 2, 3)
and their intersection l (G1, G3, G3).

periodic perturbations, crossing and anticrossing band recon-
structions occur there. The interactions between more than
two diffracted waves should be far more diverse than on the
Bragg planes due to the increased degrees of freedom of
relative geometry of the branches and interbranch matrix ele-
ments. Thus the intersections of the Bragg planes are expected
to induce various kinds of linearly extended crossing or anti-
crossing band critical points in the Brillouin zone. Notably,
general properties that are only determined by the crystal ge-
ometry should be found in the limit of weak diffractions. The
coalescence of plane-wave branches at the hexagonal K edges
has been considered [9,10] in relation to anomalous quantum
oscillations observed experimentally [11]. The present theory
constitutes a basis for generalization of this work.

Motivated by the above expectations, in this paper we
explore the electronic theory at the intersections of the Bragg
planes, that applies to any periodic crystals. As an illustrative
example, we derive the positions of the intersection lines for
the cubic systems, many of which are found to run along
low-symmetry paths away from standard k-point paths for the
band-structure calculations. We show that the Bragg intersec-
tions can host the Dirac nodal lines [12–14], as well as linearly
extended band extrema in their vicinities. In particular, we
indeed find an example where the Bragg intersections may
be the origin of linearly extended saddle critical points and
enhanced van Hove singularity in the density of states [15]:
cubic H3S [16], known as 200 K superconductor. The present
theoretical considerations encourage studies on electronic
states under weak periodic potentials with a renewed interest,
as well as an overhaul of band-structure analysis meth-
ods, both of which will be useful for theoretical materials
design.

II. THEORY

Hereafter we consider the diffraction of the plane waves
with the repeated zone scheme mentioned above. There, the
branches of the diffracted waves are conveniently represented
as the band replicas shifted by reciprocal vectors G; or as a

shorthand notation each G represents a diffracted plane-wave
branch. Usually the Bragg planes are defined as the bisection
of the line between the origin and a reciprocal point G. For
convenience we adopt a duplicate definition of the Bragg
plane as a bisector of the line connecting two reciprocal points
G1 and G2 by

k ∈ p(G1, G2) ⇔ |k − G1| = |k − G2|. (1)

Let us substantiate the concept of intersection of Bragg
planes. Since the Bragg planes are bisections between two
reciprocal points, their linear intersection is equidistant from
three or more reciprocal points. Conversely, every triad of
reciprocal points {G1, G2, G3} that forms a triangle specifies
its corresponding intersection. Take three reciprocal vectors
G1, G2, and G3 and define the triangle formed by them as
�(G1, G2, G3). The Bragg planes p(G1, G2), p(G2, G3) and
p(G3, G1) cross at a single common line. The intersection
line, termed l (G1, G2, G3), is normal to �(G1, G2, G3) and
passes through its circumcenter R(G1, G2, G3). Since the en-
ergy of branches are determined by the radius measured from
the corresponding reciprocal points, three or more diffracted
replica branches exactly cross on the intersection lines. The
geometric relations of the objects defined here are illustrated
in Figs. 1(b) and 1(c).

Let us next examine the two-dimensional band structure
on �(G1, G2, G3) near the intersection l (G1, G2, G3) with
introduction of weak diffraction potential. The band structure
is modeled by the three-state Hamiltonian1

H (k) =
⎛
⎝

E0(k − G1) V12 V ∗
31

V ∗
12 E0(k − G2) V23

V31 V ∗
23 E0(k − G3)

⎞
⎠, (2)

1We do not address the case of two plane-wave interaction at the
Bragg planes p(G1, G2) because it is trivial: There form linearly
crossing bands at the whole planes if the corresponding Fourier
component with wave number G1 − G2 of the potential is zero, and
form anticrossing otherwise [2].
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FIG. 2. Typical behavior of three energy surfaces emerg-
ing at the intersection. Model parameters were set to G1 =
(2, 0), G2 = (2 cos 105◦, 2 sin 105◦), G3 = (2 cos 255◦, 2 sin 255◦)
and V12 = V31 = 0.1, V23 = 0.15, respectively. (b) Close up view of
the lower two bands near the Dirac point. (c)–(e) two-dimensional
heat map of the bands, where crosses indicate the critical and Dirac
points, respectively.

with E0(k) = k2/2. The energy eigenvalue of H (k) is referred
to as E (k) later. Throughout this section we assume the time-
reversal and periodic translational symmetries but no other
spatial symmetries unless declared. This model can generate
various structures; here we show some typical ones.

With weak nondiagonal components, three crossing bands
evolve into partially anticrossing bands. As long as all the
angles of �(G1, G2, G3) are smaller than 90◦, their in-
plane critical points, where the band gradient ∂E (k)/∂k is
zero in the direction of �(G1, G2, G3), are located near
R(G1, G2, G3). For certain but broad range of the nondi-
agonal values (we revisit this point later), a degeneracy of
Dirac type can also occur near l (G1, G2, G3). This Dirac
point can be either in upper or lower two bands of the three,
depending on the signs of the nondiagonal components. In
the vicinity of those anomalies, the quadratic expansion of
E (k) − E (R(G1, G2, G3)) is obviously broken down (Fig. 2).

The current analysis trivially applies to any planes normal
to l (G1, G2, G3). With a reasonable smooth k dependence
of the nondiagonal components, the anomalies, Dirac or
nonquadratic in-plane critical points, therefore extend contin-
uously along l (G1, G2, G3), which is the key concept of the
current theory.

The expected continuous in-plane critical points generally
have nonzero dispersions in the direction of l (G1, G2, G3).
If they exhibit extrema along that, nevertheless, they are
almost always anomalous critical points where the rank of
the inverse mass matrix is smaller than three. Such critical
points induce the van Hove singularities in the density of

states [15] with orders of singularities stronger than expected
in the spatial dimensions of k (Ref. [17]), termed higher-
order van Hove singularities. We always expect such critical
points near R(G1, G2, G3) since all the noninteracting replica
branches E0(k − Gi ) (i = 1, 2, 3) are trivially convex in the
l (G1, G2, G3) direction. If the dispersion happens to be small,
the singularity should be more prominent.

We also note about intersections of the intersection lines.
Any intersection lines cross anywhere with others related by
some symmetry [e.g., at the Brillouin zone (BZ) surface]. The
replica branches involved in each intersection lines all interact
at such crossing points, by which the continuous anomalies
of the respective intersections are connected, smoothly unless
additional degeneracies hold. As a result, looped anomalies
running across the intersection lines emerge.

To sum up, any three replica plane waves are degenerate
at the threefold Bragg intersections, at which they interact
with each other to form continuous band anomalies running
at its proximity. Remarkably, most of the intersections are
not located along the high-symmetry lines. The automated
band calculation procedure using the standardized k-path
definitions cannot reveal the whole shape of the continuous
anomalies related to the intersections since the calculations
run only along selected high-symmetry lines. To capture the
true figure of the anomalies, nonstandard band analysis meth-
ods are needed, as we demonstrate below.

Dirac nodal lines

Considering the recent intensive attention to the Dirac-type
degeneracies, we here discuss how the Bragg intersections
yield Dirac nodal lines. Asano and Hotta proved a condition
with which the Dirac degeneracy is “feasible,” or persis-
tent against continuous modification to the Hamiltonian [18].
Namely, the nd-dimensional m-fold Dirac-type band contact
in nu-dimensional parameter space is feasible if

nd = nu − m2 + 1 + nc � 0, (3)

with nc being the number of constraints among the com-
ponents of the Hamiltonian imposed by symmetries of the
system.

Let us take the three-state Hamiltonian of the form Eq. (2)
under time-reversal symmetry. The constraints among the
components are governed by the k group of the respective
k points [19]. When the system has inversion symmetry,
all the k points are invariant under successive spatial in-
version and time-reversal operations. One constraint is then
imposed (nc = 1) [18,20]. Therefore, in three dimensions the
twofold Dirac degeneracy lines (nu = 3, m = 2, nd = 1) are,
if present, feasible. This fact is also interpretable as the pro-
tection by the Berry phase being discrete [21].

The presence of the Dirac nodal lines along any specific
intersection l (G1, G2, G3) crucially depends on the periodic
potential and choice of G1, G2, G3, but we can at least infer
below that the nodal lines may emerge with considerable
probability if the systems is inversion symmetric. For this, we
consider the Hamiltonian

H =
⎛
⎝

E0(k − G1) a a
a E0(k − G2) a
a a E0(k − G3)

⎞
⎠, (4)
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with a being an arbitrary real parameter. The Hamilto-
nian (2) has this constrained form when the system is
symmetric under threefold rotation around l (G1, G2, G3)
and the reciprocal points {G1, G2, G3} are permuted by
that rotation. On l (G1, G2, G3), E0(k − G1) = E0(k − G2) =
E0(k − G3) ≡ E and the Hamiltonian has twofold degener-
ate eigenstates with eigenvalue E − a and one nondegenerate
eigenstate with eigenvalue E + 2a. The former solution is
found to be the Dirac nodal line. Suppose next we modify the
crystal gradually. Even if the rotational symmetry is broken
then, the specific values of the Hamiltonian components will
vary only continuously. With this premise and the guaranteed
feasibility of the Dirac nodal line, we get to a conclusion:
Any three-state Hamiltonian specified by points G1, G2, G3

[Eq. (2)] and consistent with the spatial inversion symmetry
generates the Dirac nodal lines that originate from Eq. (4),

unless they experience interactions with other nodal lines like
merging through the continuous modification of the Hamilto-
nian. The actual values of the Hamiltonian components are of
course affected by the plane-wave states other than the three
via perturbations, but still similar arguments hold: The pertur-
bative corrections due to the other modes can in principle be
analyzed using the Brillouin-Wigner treatment [18].

Symmetries other than the inversion can serve to confine
the position of the nodal line to certain regions. For example,
suppose a system’s mirror symmetry leaves a point G1 invari-
ant and interchanges G2 and G3. The k group at all points
on p(G2, G3) then includes that mirror. The Dirac nodal line
that originates from the Hamiltonian Eq. (4) remains to be
on this plane. This is easily proved. The allowed form of
the Hamiltonian on this plane is expressed as follows with
additional real parameters x and y:

H =

⎛
⎜⎜⎜⎝

E0(k − G1) a a

a E0(k − G1) + x(k) a + y

a a + y E0(k − G1) + x(k)

⎞
⎟⎟⎟⎠, (5)

where we have noticed that E0(k − G2) = E0(k − G3) ≡ E0(k − G1) + x(k) by the symmetry. For given y, twofold degeneracy
occurs when x(k) = y(y + 2a)/(y + a), which can be realized by moving the k point in either direction from l (G1, G2, G3)
along p(G2, G3). Continuation of this degeneracy forms the Dirac nodal line. Unless the original nodal line experience the
merging, this nodal line is the one rooted from the former. The situation is also understood by the Asano-Hotta theorem Eq. (3)
with nu = 2 and nc = 2.

III. EXAMPLES

To reveal the actual behavior of the intersections in crystals, we analyze the nearly uniform electron model [2]. The model is
described by Hamiltonian with the plane-wave basis set as

H (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

E0(k − G1) V (G1 − G2) V (G1 − G3)

V ∗(G1 − G2) E0(k − G2) V (G2 − G3)

V ∗(G1 − G3) V ∗(G2 − G3) E0(k − G3)

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where {G} conforms to the corresponding translational sym-
metry.

The crystalline potential, having the translational symme-
try as well, is characterized by the Fourier components

V (r) =
∑

G

eiG·rV (G). (7)

In the uniform limit [V (r) → 0], the band structure corre-
sponds to that of the free electron folded into the Brillouin
zone (empty-lattice model).

Hereafter all the examples concerned are cubic but let us
remember that our general theory is obviously applicable to
any crystalline systems. The discussions other than the Dirac
nodal lines hold even without the inversion symmetry.

A. Cubic lattices

For example, we here derive the intersection lines in a sim-
ple cubic Bravais lattice. We performed an exhaustive search
of triads of reciprocal-lattice points that form triangles. The
triads are listed in Table I with their circumcenter positions
and directions of the intersection lines.

Seen by ascending order with respect to the squared radius,
the first four lines l (1)–l (4) are along the special high-
symmetry paths in the Brillouin zones (see reviews, e.g.,
Ref. [22] for path labeling), which can be found by the stan-
dard band calculations. The first nontrivial intersection is l (5),
whose position is depicted in Fig. 3(b). We also indicate in
Table if each intersection is on the standard k-point paths.

We plot the free dispersion E0(k) = k2/2 folded in
the Brillouin zone [empty lattice model, Fig. 3(a)]. The

033012-4



ILLUMINATING THE BRAGG INTERSECTIONS AS ROOTS … PHYSICAL REVIEW RESEARCH 6, 033012 (2024)

TABLE I. List of intersection lines in cubic lattices, determined by three reciprocal vectors G1, G2, G3. Lines are sorted in ascending
order up to 15th by the (squared) circumradius, which is proportional to the energy minimum along the intersection. Unit in the reciprocal
space is taken to be 2π/a, with a being the cubic lattice parameter. Positions are in Cartesian coordinate. The list does not include those with
�(G1, G2, G3) being obtuse triangle, for which the critical point should not occur near l (G1, G2, G3). Symmetry C1v is equivalent to Cs in the
standard notation.

Label (Radius)2 G2 − G1 G3 − G1 Center Direction Conventional path Symmetry BCC FCC

l (1) 1/2 (1, 1, 0) (1, 0, 0) (1/2, 1/2, 1) (0, 0, 1) � C4v

l (2) 2/3 (1, 1, 0) (1, 0, 1) (−1/3, 1/3, 1/3) (−1,1,1) � C3v �
l (3) 3/4 (1, 1, 1) (1, 1, 0) (1/2, 1/2, 1/2) (1, −1,0) � C2v

l (4) 1 (1, 1, 0) (1, −1, 0) (0,0,0) (0,0,1) � C4v �
l (5) 9/8 (1, 1, 1) (1, 1, −1) (−1/4, −1/4, 0) (1, −1, 0) C1v �
l (6) 5/4 (1, 1, 1) (1, 0, 2) (1/2, 0, 0) (−2, 1, 1) C1v

l (7) 25/18 (1, 1, 0) (1, 0, 2) (−5/18, 5/18,−2/18) (−2, 2, 1) C1v

l (7′) 25/18 (1, 0, 2) (−1, 0, 1) (1/6, 0, 1/6) (0, 1, 0) C1v

l (8) 3/2 (1, 1, 2) (1, 1, 0) (1/2, 1/2, 0) (1, −1, 0) � C2v �
l (8′) 3/2 (1, 1, 2) (1, 0, 2) (1/2, 1/2, 0) (−2, 0, 1) � C1v �
l (9) 25/16 (1, 0, 2) (−1, 0, 2) (0, 0, 1/4) (0, 1, 0) C1v

l (10) 45/28 (1, 1, 1) (0, −1, 2) (5/14, −1/14, 3/14) (−3, 2, 1) C1

l (11) 18/11 (1, 1, 2) (0, −1, 1) (5/11, 2/11, 2/11) (−3,1,1) C1v �
l (12) 25/14 (1, 1, 2) (0, −1, 2) (5/14,1/14, −4/14) (−4, 2, 1) C1

l (13) 9/5 (1, 1, 2) (1, −1, 2) (−2/5, 0, 1/5) (−2, 0, 1) C1v �
l (14) 2 (1, 1, 2) (1, 0, 1) (0, 0, 0) (−1, −1, 1) � C3v �
l (15) 9/4 (1, 1, 2) (1, 1, 1) (0, 0, 1/2) (−1, 1, 0) � C2v

intersection appears there as threefold degenerate bands.
Some intersections are on the standard k-point paths: we mark
representatives of such lines l (1)–l (4) in the plot. On the other
hand, other intersections are not running along the standard
paths and we can see only their cuts as points, which we also
mark for representative lines l (5) and l (10). Calculations on
nonstandard paths are necessary for revealing the whole struc-
ture of the threefold degenerate bands, as shown in Figs. 3(b)
and 3(c).

The degeneracy of the threefold bands along the intersec-
tion is generally lifted by infinitesimal crystalline potential in
diverse ways. We are not doing thorough examinations of that
but instead seeing two representative cases, l (5) and l (10).

The intersection l (5) is joined by three branches origi-
nating from G1 = (1, 1, 0), G2 = (0, 0, 1), G3 = (0, 0,−1),
which form isosceles triangle. An example set of interactions
(see caption in Fig. 4) modifies the crossing branches to form
several in-plane critical points. The branches are shown in
upper panel of Fig. 4(a). Because of the spatial inversion
and mirror symmetry by p(G2, G3), a Dirac point is then en-
sured somewhere near the intersection on p(G2, G3). For other
planes parallel to �(G1, G2, G3), the in-plane Hamiltonian is
essentially the same with slight changes to the diagonal com-
ponents E (k − Gi ). The existence of the Dirac and in-plane
critical points near those on �(G1, G2, G3) is ensured. There-
fore, there forms a dispersive Dirac nodal line in the vicinity of
l (5) as well as continuous lines with zero in-plane gradients.

The intersection l (10) is joined by branches G1 = (0, 0, 1),
G2 = (−1,−1, 0), G3 = (0, 1,−1) forming a scalene trian-
gle. This line runs straight across X and R points on different
Brillouin-zone replicas in a fractional direction [Fig. 3(c)]. We
plot the band structure on �(G1, G2, G3) in Fig. 4(b). Al-
though there is no obvious symmetry among the interbranch
interactions, we found a Dirac point near l (G1, G2, G3) as
indicated. Considering the inversion symmetry of the system,

this probably originates from the one in the limit V12 = V23 =
V31 as discussed in the previous section. Because of the low
symmetry of �(G1, G2, G3), the in-plane critical points ap-
pear in complicated ways. We do not explore any general
remarks on how they form but just do show a representative
band with several in-plane extrema and saddles and a Dirac
point in Fig. 4(c), which must extend along l (10). Note that
the departure from the quadratic shape is clearly observed as
expected.

The significance of these anomalies depends also on the
band dispersion along the intersections, which should also be
a common property determined by only the spatial symmetry.
In the above case l (5) show smaller dispersions compared
with l (10) (see Fig. 3). In the next section, we see an example
material where continuous saddles emerging from an inter-
section with small dispersion yield a higher-order van Hove
singularity appearing as a sharp peak in the density of states.

B. Cubic H3S at high pressure

By applying extreme pressure on solid hydrogen sulfide,
there forms a body-centered cubic (bcc) phase in space
group Im3̄m (No. 229) with unconventional composition H3S
[Fig. 5(a)]. Superconductivity at 200 K has been discovered
under pressures around 200 GPa [16,24,25]. First-principles
calculation has revealed that an anomalously narrow peak of
the density of states (DOS) is located at the Fermi level, which
is thought to be responsible for the strong superconducting
pairing interaction [23,24,26–34]. The origin of the peak has
been, however, enigmatic. Obvious flat bands like those in the
nearest-neighbor tight-binding model [35–37] have not been
found in the first-principles band structures. Effective tight-
binding models have been proposed [23,27,38,39] using the
Slater-Koster [40] and first-principles Wannierization meth-
ods [41–43], with which some features in the band structure
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FIG. 3. (a) The band structure of empty-lattice model on the sim-
ple cubic lattice. Representative intersection lines l (1)–l (4) and cross
sections of l (5) and l (10) are marked. The cubic lattice parameter
a = 1.0 Bohr. (b), (c) Positions of l (5) and l (10) in the Brillouin
zone, band structure along those without lattice potential. Dashed
boxes indicate the threefold degeneracy and planar regions on which
the interacting band structures are displayed in Fig. 4.

are successfully reproduced. But why the peak emerges from
the models was not thoroughly investigated. The author has
attempted this in a preceding paper [39]. There he located sad-
dle points extended in a loop form, termed “saddle loop,” and
clarified that it is responsible for the density of states (DOS)
peak. However, to explain why the saddle loops emerge from
the effective Wannier model, an intricate scenario based on
farther neighbor hopping was necessary. In this section, we
reexamine this issue with the knowledge of the intersections
of Bragg planes.

FIG. 4. Band structures on a surface normal to the intersection
lines (a) l (5) and (b) l (10). The Dirac point is indicated by cir-
cle. The interactions are set for (a) V12 = V31 = V (|G| = √

3) =
1.0, V23 = V (|G| = 2) = 0.5, and (b) V (|G| = √

3) = 0.4, V (|G| =√
5) = 0.2, V (|G| = √

6) = 0.1, respectively. (c) Close-up view of
the second band in panel (b), with its eigenvalues as a heatmap.

We start from observing a remarkable resemblance of
the first-principles band structure of H3S and empty lattice
model one, shown in Figs. 5(b) and 5(c). The first-principles
band structure was calculated using QUANTUM ESPRESSO code
package [44], with the detailed condition being the same
as that in Ref. [39]. In addition to their apparent similarity,
we find that the (near)-degenerate bands are assigned to the
empty-lattice counterparts with perfect correspondence in the
degrees of degeneracy [numbers in Fig. 5(b)]. This implies
that the H3S band structure could be well understood as the
empty-lattice model with weak perturbations. In particular,
the states contributing to the DOS peak in Fig. 5(c) seems to
have emerged from the intersection line l (13), which remains
both in the SC and bcc lattices (Table I), and whose cross
sections in the empty lattice limit are highlighted as square
boxes in Fig. 5(b).

We further examine the detailed band structure of H3S. We
show in Fig. 6(a) the Kohn-Sham eigenvalues of the fifth (in
the ascending order) valence band that is responsible for the
DOS peak. The eigenvalues are represented as a heat map on
the plane kz = 0, from which it is clear that the extremum
indicated in Fig. 5(c) continuously extends inward the first
Brillouin zone, with small band dispersion. Since this band
has been found to be convex in the kz direction [39], this
feature is classified as saddle loop. This saddle loop has been
recently reproduced independently [45]. Note that the major
portion of this looped structure has been first pointed out
in a different look based on the conventional simple-cubic
Brillouin zone [39]. The edges of the loops match the inter-
section lines l (13), which further support the hypothesis that
the extended saddle originates from the intersection lines.

To the basic considerations in the previous section, elec-
tronic band dispersions around the extended singularities
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FIG. 5. (a) Crystal structure of bcc H3S. (a) Band structure
in empty-lattice model in bcc lattice (a = 5.6367 bohr). Cuts of
l (13) and l (11) (see text) are indicated by squares and diamonds,
respectively. Numbers are degrees of degeneracy of the bands.
(b) First-principles band structure in bcc-H3S, with the interested
extremum indicated by arrow. Ovals highlight the cuts of the Dirac
nodal lines. (c) That with the nearly uniform model with selected
interaction parameters. Dotted line is a guide to the eye for corre-
spondence of the extremum and DOS peak.

FIG. 6. (a) Structure of the band responsible for the DOS peak
in cubic H3S in three dimensions, where its KS energy eigenvalues
shown as heatmap on plane (001). Arrows in the right panel indicate
the positions of the critical points that corresponds to the shoulders
of the DOS peak [23]. (b) Same plot for the nearly uniform model.

originating from the intersections should significantly depart
from the quadratic forms. To confirm this we also show
the band structures in two planar regions crossing l (13)
[Fig. 7(b)]. The contour plots clearly show high-order angu-
lar structures beyond quadratic. The characterization of the
singularities based on the effective masses [23] is hence in-
complete for this system.

A remarkable consequence of the general theory is that the
Bragg intersections may host the Dirac nodal lines, which has
not been reported in the cubic H3S to our knowledge. Exe-
cuting a thorough search of the degeneracies, we confirmed
this by finding undiscovered Dirac nodal lines formed among
unoccupied bands that originate from the intersections l (11)
and l (13), which are depicted in Fig. 8. Intersection l (13), the
origin of the saddle loops, also induces the nodal loops that
run on the plane kz = 0 almost in parallel [Figs. 8(a) and 8(c)].
Those nodal loops appear in the standard band-structure plot
as points [dashed oval in Fig. 5(c)]. Intersection l (11), run-
ning on the Brillouin zone faces [Fig. 8(b)], induces fourfold
degeneracy appearing as point in the P–H path marked by dia-
monds in Fig. 5(b). A set of nodal lines in H3S stemming from
this [Fig. 8(d)] appears as a point in the middle of the P–H path
[dotted oval in Fig. 5(c)] and is located on the Brillouin-zone
faces. These, say, l (11) nodal lines cross with each other and
the l (13) nodal lines in the middle of H–N [8(c)] at the point
marked by dashed oval in Fig. 5(c). The l (11) nodal lines also
cross with nodal lines running exactly on the Brillouin-zone
edges, which are not shown here because they are supposed
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FIG. 7. (a) Positions of the planes for the band calculations
that cut the intersection l (13). Square and triangle indicate the
plane-wave branches that forms intersection l (13) and those that
significantly hybridize with the former, respectively. (b), (c) The
heatmap plot of the band eigenvalues on planes 1 and 2.

to originate from relatively trivial intersections on the edges.
The mirror symmetries of the system confine the plotted nodal
lines onto the kz = 0, Brillouin-zone faces and their sym-
metrical equivalents, all of which are invariant against their
respective mirrors. The predicted existence of the Dirac nodal
lines confirms the relevance of the Bragg intersection concept
in H3S.

Finally, we attempt to reproduce the band features found
above using the nearly uniform electron model [Eq. (6)]
on the bcc lattice. Through an only preliminary search, we
found a set of potential components {Ṽ (|G|=√

2), Ṽ (|G|=
2), Ṽ (|G|=√

6)} = (2π/a)2{−0.02,−0.05, 0.06} that repro-
duced the crossing and anticrossing features with surprising
accuracy as shown in Fig. 5(d). We were also successful
in reproducing the above-mentioned planar dependencies of
the first-principles extended saddles by the model [Figs. 6(b)
and 7(c)], as well as the peaked DOS [Fig. 5(d)]. To our
close analysis, the band features concerned are formed by six
plane-wave branches per intersection as depicted in Fig. 7(a).

FIG. 8. Positions of the Bragg intersections and Dirac nodal lines
in H3S. (a) [(b)] Intersection l (13) [l (11)], with the corresponding
�(G1, G2, G3) (black points) and R(G1, G2, G3) (red diamond).
Symmetrically equivalent lines are also shown for comparison.
(c) [(d)] Dirac nodal lines stemming from l (13) [l (11)] calculated
from first principles, colored in red (blue) for those in the front (back)
half. (e) [(f)] Dirac nodal lines stemming from l (13) [l (11)] with the
nearly uniform model.

The companion nodal loops are also reproduced as well
[Fig. 8(e)].

We also list the remaining disagreements: (i) Subtle misor-
dering of the degenerate bands was found at �. This ordering
is irrelevant to the DOS peaking. In Ref. [39] it was shown that
the peaked DOS is most contributed by the k-point regions
well away from �. This region corresponds to a portion of
the “ridge” of the extended saddle through � to the BZ face,
between the local minimum in the middle and local maximum
at the face [arrows in Fig. 6(a)]. This tiny region dominates
the DOS peak and therefore the �-point states have only a
minor role in this sense. Also, (ii) the model nodal loops
induced by l (11) were smaller than in H3S and their crossing
was not reproduced [Fig. 8(f)]. This is due to the disappear-
ance of the band crossing in P–H [see Figs. 5(c) and 5(d)].
Those disagreements could be remedied by further fine tun-
ing of the model, although we leave this out of the current
scope.
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Thus, we have seen that the major features of the band
contributing to the DOS peak is interpretable from the nearly
uniform electron model perspective. However, there is still
missing how to reconcile it with the molecular-orbital per-
spective [46–48] that usually applies to molecular crystals.
This point should be addressed in later studies. At this point,
we stop by recalling a discussion by Kohn, on a Wannieriza-
tion of nearly free-electron like systems [49]: Bloch-Wannier
transformation to the plane-wave states yield function of the
form ≈eik·r/r. The previously published Wannier functions
in H3S show remarkable sign changes and long tails [23,39],
which may indicate significant plane wave-like characters of
the relevant electronic states.

IV. SUMMARY

In this paper, we have theorized effects of the intersections
of the Bragg planes on the electronic single-particle band
structure. The translational symmetry determines the linearly
extended regions in the k space in whose vicinity three or
more plane-wave replica branches sensitively interact. Spa-
tially extended higher-order band anomalies are ensured to
emerge around those regions, although their detailed features
may depend on the Fourier components of the ionic poten-
tial. The present theory captures a mechanism of forming
Dirac nodal lines and extended band critical points in three-
dimensional systems, which had long been hidden behind the
difficulty of understanding the band structure, being a three-
dimensional hypersurface in four [kx-ky-kz-E (k)] dimensions.

The Dirac nodal lines in elemental systems have been
reported and discussed in relatively distinct literatures,
especially after the rise of the topological nodal line
trend [21,50,51]. Such studies wholly focused on the specific
properties of the discovered nodal lines like the topological
indices and surface states. The Bragg intersection concept
obviously serves a unified explanation of a considerable part
of such nodal lines as to why and how they emerge there in
the Brillouin zones, as well as possible companion van Hove
singularities.

The new theoretical view has helped an unprecedented
complete characterization of the first-principles electronic
band structure near the Fermi level in cubic H3S. The current
analysis encourages further studies of possible anomalous
low-energy phenomena from the nonquadratic band disper-
sion [17,52] and complementary understanding of this system
from nearly uniform electron perspective. Re-investigation on
the electron-phonon perturbation theories with precise treat-
ment of the revealed band features are also of interest [53–56].
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