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High harmonic generation from an atom in a squeezed-vacuum environment
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We investigate high harmonic generation (HHG) of an atom in the presence of squeezed vacuum of a single
harmonic mode. Based on a fully quantum time-dependent Schrödinger equation, we derive an analytical formula
for the harmonic amplitude. Our simulations of the HHG spectrum with this formula show that the harmonic
amplitude of the corresponding squeezed mode can undergo significant changes with different parameters of the
squeezed vacuum. Using the time-frequency analysis method, the physics underlying the effects of the vacuum
quantum fluctuation (VQF) on the harmonic generation is revealed, which is found to be consistent with the
explanation of Fermi’s golden rule. Our work establishes a profound connection between harmonic generation
and VQF, and may provide an unconventional approach to manipulating harmonic emission.

DOI: 10.1103/PhysRevResearch.6.033010

I. INTRODUCTION

High harmonic generation (HHG) is an intriguing nonlin-
ear optical phenomenon that occurs during intense laser-atom
interactions [1,2]. Over the past three decades, HHG has
attracted considerable attention for its wide range of appli-
cations, including table-top coherent XUV generation [3,4],
molecular orbital imaging [5,6], and attosecond science [7,8].
Usually, the study of HHG has focused primarily on the laser-
induced dipole moment of the atom from the perspective of
classical electrodynamics [9–11]. Recently, there has been a
growing interest in a quantized description of HHG and the
driving lights based on the theory of quantum electrodynamics
(QED) [12–21], which opens the way for generation of high-
intensity quantum light states.

It is worth noting that in QED theory, photon emission
from electronic transitions in an atom is also affected by
vacuum quantum fluctuation (VQF) of the corresponding
emission mode [22]. This aspect of QED has been instru-
mental in explaining a variety of fundamental phenomena,
such as spontaneous emission [22]. Furthermore, based on
this effect, VQF has been shown to effectively control quan-
tum processes [23]. For example, by manipulating VQF with
photonic crystals, the spontaneous emission rate of an atom
inside the photonic crystals can be controlled [24]. Similarly,
for the HHG process, the emission of harmonic photons also
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originates from the electron transition during the electron re-
combination with the atomic core [25,26]. However, whether
the harmonic emission is influenced by VQF of the corre-
sponding harmonic mode remains unknown.

In QED theory, the vacuum state of the harmonic mode
is usually described with a coherent state characterized by a
constant fluctuation [27]. To study the effect of VQF of the
harmonic mode on HHG, it is necessary to use a vacuum
state with controllable fluctuations in the time domain, i.e., a
squeezed vacuum state [28,29]. Currently, various experimen-
tal techniques have been developed to generate these squeezed
vacuum states, including the optical parametric amplifica-
tion process involving the interaction of a frequency-doubled
continuous pump light with a second-order nonlinear crystal
[30,31], as well as the four-wave mixing process employing
the third-order nonlinear effect of an atomic ensemble [32,33].
A recent experiment with the optical parametric amplification
method has successfully achieved a squeezed vacuum state
with a squeezing parameter of r = 1.74 [34]. In addition,
the generated squeezed vacuum state with these techniques
is usually in the near-infrared (NIR) or mid-infrared (mid-IR)
region. Recently, a quantum frequency up-conversion method
has been developed and experimentally demonstrated to gen-
erate the squeezed vacuum in the visible region [35,36]. These
advances in squeezed vacuum generation provide opportuni-
ties to study the influence of VQF of the harmonic mode on
the corresponding harmonic emission.

In this work, we study HHG from intense laser-atom inter-
action in a squeezed vacuum of the harmonic mode. Taking
into account the practical experimental conditions, we con-
sider only a single-mode squeezed vacuum. Based on a fully
quantum time-dependent Schrödinger equation (TDSE), an
analytical formula of the harmonic amplitude in the pres-
ence of the single-mode squeezed vacuum is derived. Our
simulations of the HHG spectra with this formula show that
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FIG. 1. Schematic view of HHG from intense laser-atom inter-
action in a squeezed vacuum of a harmonic mode. The motion of
an electron in a strong driving laser field (red curve) is depicted
by the green curve [25,26], and the emission of harmonics resulting
from the electron’s transition back to the atomic core is represented
by the blue curve. Due to the influence of the quantum fluctuation
of the squeezed vacuum (gray shadow) on the electron transition
probability, the harmonic amplitude of the corresponding squeezed
mode emitted at time tr is weak but becomes strong at t ′

r .

the harmonic amplitude of the corresponding squeezed mode
is changed with the quantum fluctuation of the squeezed
vacuum. Using the time-frequency analysis method, we re-
veal that the effect of VQF is due to the influence of the
squeezed vacuum on the probability of the electron transi-
tion. Thus, the corresponding harmonic amplitude is affected
accordingly (as shown in Fig. 1). Our result is in good agree-
ment with the explanation of Fermi’s golden rule [22]. The
close relationship between HHG and VQF, as revealed in
our work, may provide an approach to control the harmonic
generation.

This article is organized as follows. In Sec. II, we briefly
introduce the theoretical method for HHG from intense laser-
atom interaction in a squeezed vacuum of a single harmonic
mode. In Sec. III, we present the simulated HHG spectra under
different squeezed vacuum states. Subsequently, we reveal
the underlying physics for the influence of the squeezed vac-
uum on HHG. Finally, our conclusions are given in Sec. IV.
Throughout this article, atomic units (a.u.) are used unless
explicitly stated otherwise.

II. THEORETICAL METHOD

We start from the fully quantum TDSE based on the QED
theory for a strong laser-atom interaction [27]

i
∂

∂t
|�(t )〉 = [Ĥ0 − r · Ê + Ĥf ]|�(t )〉, (1)

where Ĥ0 = p2/2 + U (r) is the Hamiltonian of the atomic
system with the kinetic term p2/2 and the Coulomb po-
tential U (r). Ĥf = ∑

k ωkâ†
kâk describes the Hamiltonian of

the electromagnetic field, which contains all the frequency
modes ωk with the creation operator â†

k and the annihilation
operator âk, and −r · Ê is the interaction term in the dipole
approximation with the quantized electromagnetic field Ê =
i
∑

k

√
ωk
2V (âk − â†

k ) and the normalization volume V . The
initial state of the atom and the electromagnetic fields is ex-
pressed as |�(−∞)〉 = |φi〉 ⊗ |αk0 , ξk0〉 ⊗ ∏

k |0k, ξk〉. Here,
|φi〉 represents the ground state of the atom, |αk0 , ξk0〉 denotes
the driving light, and

∏
k |0k, ξk〉 represents the vacuum state

of the harmonic modes. The parameter ξk (= rkeiθk ) describes

the squeezing of the vacuum with the squeezing parameter
rk and the squeezing angle θk [27,29]. For the single-mode
squeezed vacuum state, if ξks = ξ for a given mode ks (includ-
ing k0), then ξk = 0 (i.e., rk = 0) for all other modes k �= ks.

Next, we derive the harmonic amplitude from Eq. (1).
First, the Hamiltonian in Eq. (1) is transformed into the
Heisenberg picture with respect to the electromagnetic
field Hamiltonian Ĥf with e−iĤ f t . This transformation leads
to the time dependence of the quantized electromagnetic
field. Second, we perform a unitary transformation to
transform the harmonic modes from the squeezed vacuum
state into the coherent vacuum states: |0k, ξk〉 = Ŝ(ξk )|0k〉,
where Ŝ(ξk ) = e(ξ∗

k â2
k−ξk â†2

k )/2 is the squeezed operator of
the light fields [27,29]. Consequently, the electric field
becomes

∏
k Ŝ(ξk )†Ê(t )

∏
k Ŝ(ξk ) = Êq(t ), where Êq(t )

represents the quantum fluctuating part of the vacuum field:
Êq(t ) = −i

∑
k

√
ωk
2V [(cosh rk + sinh rke−i(2ωkt−θk ) )â†

keiωkt −
(cosh rk + sinh rkei(2ωkt−θk ) )âke−iωkt ]. Third, we also perform
a unitary transformation to transform the driving field into
the coherent vacuum state: |αk0 , ξk0〉 = D̂(αk0 )Ŝ(ξk0 )|0k0〉,
where D̂(αk0 ) = eαk0 â†

k0
−α∗

k0
âk0 represents Glauber’s shift

operator [27]. Accordingly, the driving light becomes the
superposition of the quantum fluctuation part Êqk0

(t ) =
−i

√
ωk0
2V [(cosh rk0 + sinh rk0 e−i(2ωk0 t−θk0 ) )â†

k0
eiωk0 t −

(cosh rk0 + sinh rk0 ei(2ωk0 t−θk0 ) )âk0 e−iωk0 t ] and the classical

field part Ec(t ) = i
√

ωk0
2V (αk0 e−iωk0 t − α∗

k0
eiωk0 t ). Therefore,

Eq. (1) can be rewritten as

i
∂

∂t
|ψ (t )〉 = [Ĥc − r · ÊQ(t )]|ψ (t )〉, (2)

where Ĥc = Ĥ0 − r · Ec(t ), corresponding to the Hamiltonian
of an atom in the classical part Ec(t ) of the driving laser field,
and ÊQ denotes quantum fluctuations of all the frequency
modes.

After that, we use the interaction picture with respect to
Ĥc to solve the TDSE in Eq. (2). For the squeezed vacuum
with small squeezing parameter, the quantum fluctuation part
is typically weak, and thus we can approximately solve the
TDSE by expanding the time-ordered exponential to the first
order [13]. Accordingly, the TDSE solution can be expressed
as

|ψ (t )〉 .= |φi(t )〉|0〉+
∑

j

∑
k

√
ωk

2V

[∫ t

−∞
μk(τ )d ji(τ )eiωkτ dτ

]∣∣φ j (t )
〉|1k〉,

(3)

where |φ j (t )〉 is the time-dependent electron wavefunction,
evolving from an eigenstate φ j of the atom under the Hamil-
tonian of Ĥc, d ji(τ ) = 〈φ j (τ )|z|φi(τ )〉 is the dipole matrix
elements for the linearly polarized laser field, and |1k〉 =
â†

k|0〉 denotes the generation of one harmonic photon from
the vacuum state with a mode of k. The time-dependent term
μk(t ) comes from the quantum fluctuation part with â†

k:

μk(t ) ≡ cosh rk + sinh rke−i(2ωkt−θk ), (4)

which is closely related to the magnitude of VQF of a mode
k. It is worth noting that, when j = i in Eq. (3), dii(τ ) is the
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conventional laser-induced dipole matrix element and the
Fourier transform of the dipole moment dii(τ ) corresponds
to the harmonic amplitude in the traditional HHG theory,
whereas d ji(τ ) with j �= i is the correction term. It has been
shown [13] that the contribution of the conventional element
dii(τ ) is typically dominant for HHG in the current exper-
imental measurement. Therefore, for simplicity, we mainly
focus on the contribution of the term dii(τ ) in our work.

Furthermore, we calculate the total energy of the emitting
harmonics using Eq. (3) to obtain the expression for the emis-
sion per unit frequency [13]. The corresponding harmonic
spectrum of the emitting field is given by

P(ωk ) = ω4
k

6π2c3

∣∣∣∣
∫ ∞

−∞
μk(τ )dii(τ )eiωkτ dτ

∣∣∣∣
2

. (5)

In this work, we simulate the HHG spectra according to
Eq. (5). For simplicity, a one-dimensional model atom with
the soft Coulomb potential U (x) = −1/

√
x2 + sc is used in

our simulation. When the soft-core parameter sc = 1.41, the
ionization potential of the atom is approximately 15.8 eV,
which matches the ground state of the Ar (argon) atom.

III. RESULTS AND DISCUSSION

According to Eq. (5), we simulate the HHG spectra of an
atom in the presence of a squeezed vacuum of, e.g., the first-
order harmonic mode and the ninth-order harmonic mode,
respectively. Note that the current squeezed vacuum can only
be generated in the mid-IR, NIR, and visible regions [35,36].
Considering the realistic scenario, when studying the effect of
the first-order squeezed mode, we can use the driving light
with a wavelength of, e.g., 800 nm, whereas when study-
ing the effect of the ninth-order squeezed mode, the driving
light with a longer wavelength of, e.g., 3600 nm is used. In
Figs. 2(a) and 2(b), we show the simulated HHG spectra in the
first-order harmonic mode with θk = 0.9π and the ninth-order
harmonic mode with θk = 0.27π , respectively, as a function
of squeezing parameter rk. In practice, adjusting the squeezing
parameter and squeezing angle of the single-mode squeezed
vacuum can be realized by changing the pump power and
tuning the relative phase between seed wave and pump wave
[34,37]. Our simulation shows that with the increase of the
value of rk, the amplitude of the first-order harmonic in
Fig. 2(a) and the ninth-order harmonic in Fig. 2(b) is changed
significantly, whereas the amplitudes of other harmonics re-
main the same. Furthermore, in Figs. 2(c) and 2(d), we show
the amplitude of the first- and ninth-order harmonics in the
corresponding single-mode squeezed vacuum with different
rk as a function of θk. It is found that the harmonic amplitude
also changes with the squeezing angle and the maximum
amplitude of the harmonic increases with the increase of
rk, exceeding an order of magnitude at rk = 1.5. Therefore,
our result shows that the harmonic amplitude is affected by
the corresponding squeezed vacuum. Note that the squeezing
parameter of the squeezed vacuum state we used is small,
which is different from that used in previous works [17,18]. In
the following, we will understand the impact of the squeezed
vacuum on the harmonic emission.

FIG. 2. (a), (b) TDSE simulations of the HHG spectra of an atom
in a squeezed vacuum of the first-order harmonic mode with the
squeezing angle θk = 0.9π and the ninth-order harmonic mode with
θk = 0.27π , respectively, as a function of the squeezing parameter
rk. Considering a realistic scenario, the wavelengths of the driving
light are 800 nm and 3600 nm, respectively. For more details, see
the text. In (b), to better illustrate the change of the amplitude of the
ninth-order harmonic, only a part of the harmonic orders are shown.
(c) and (d) The amplitude of the first- and ninth-order harmonics in
the corresponding single-mode squeezed vacuum state with different
rk as a function of θk. In our simulation, the driving light has a peak
intensity of I = 1.15 × 1014 W/cm2 with a trapezoidal profile (up-
and down-ramped over two cycles, constant over six cycles).

First, we analyze the derived formula for the harmonic am-
plitude in Eq. (5). Different from the conventional strong-field
theory of HHG [38,39], there is an additional term μk(t ) in the
integral, which is related to the magnitude of VQF of the mode
k. Thus, the corresponding harmonic amplitude is influenced
not only by the dipole moment but also by VQF. Moreover,
since the term μk(t ) is the function of rk and θk according to
Eq. (4), the harmonic amplitude varies with different squeezed
vacuum states, as shown in Fig. 2. In contrast, for other modes
with rk = 0, the term μk(t ) = 1, and thus Eq. (5) can be
simplified to the formula used in conventional HHG theory.

To get a deep insight into the underlying physics for the
effect of VQF on HHG, we perform the time-frequency anal-
ysis of the resulting HHG using wavelet transform [40]. The
corresponding expression for the transform is given by

A(ωk, t ) =
∫

μk(t ′)dii
(
t ′)√ωkW [ωk(t ′ − t )]dt ′, (6)

where W (x) = 1√
τ

eixe−x2/2τ 2
represents the mother wavelet

[41]. This wavelet time-frequency profile of HHG provides
insight into the emission of harmonics resulting from the
transition of the returned electron in the time domain [40].
In Figs. 3(a) and 3(b), we present the wavelet time-frequency
profile of the first-order harmonic under the squeezed vac-
uum of the mode k0 with the squeezing parameter rk0 = 0
(solid black curve) and rk0 = 0.5 (dashed red curve) for the
squeezing angles θk0 = 0.9π and θk0 = 1.9π , respectively.
The different curves oscillate with a period of T/2 [42], where
T represents an optical cycle of the driving laser field. A closer
inspection reveals that for θk0 = 0.9π in Fig. 3(a), the curve
with rk0 = 0.5 shows a noticeable time shift compared to that
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FIG. 3. The wavelet time-frequency profile of the harmonic of
the corresponding squeezed mode with rk = 0 (solid black curve)
and rk = 0.5 (dashed red curve). The gray dashed curves with re-
spect to the right axis denote the |μk(t )| of the squeezed mode.
(a) and (b) present the squeezed vacuum of the first-order harmonic
mode with θk = 0.9π and 1.9π , respectively. (c) and (d) present
the squeezed vacuum of the ninth-order harmonic mode with θk =
0.27π and 1.27π , respectively.

of rk0 = 0. Conversely, for θk0 = 1.9π in Fig. 3(b), the two
curves are nearly in phase, and furthermore, the maximum
amplitude increases significantly with rk0 , which is consistent
with the TDSE simulation in Fig. 2(c).

The dependence of the wavelet time-frequency profiles on
the single-mode squeezed vacuum can be understood qualita-
tively after making a transformation of Eq. (6). The mother
wavelet W (x) in Eq. (6) has a narrow distribution around time
t, and the term μk0 (t ) changes relatively slowly with respect
to time for the mode k0 [see the gray curve in Fig. 3(a)].
Thus, Eq. (6) can be written approximately as A(ωk0 , t ) ∼∫

dii(t ′)√ωk0W [ωk0 (t ′ − t )]dt ′ × μk0 (t ). Therefore,

∣∣A(ωk0 , t )
∣∣2 ∼

∣∣∣∣
∫

dii(t
′)
√

ωk0W
[
ωk0 (t ′ − t )

]
dt ′

∣∣∣∣
2

× ∣∣μk0 (t )
∣∣2

, (7)

where the term in the first bracket represents the dipole mo-
mentum emission of the mode k0 at time t and the term
|μk0 (t )|2 denotes the magnitude of VQF of mode k0. Fig. 3(a)
shows that at θk0 = 0.9π, there is a noticeable time shift
between the curve of the dipole moment emission (solid black
curve) and the curve of |μk0 (t )| (gray dashed curve). Thus,
the multiplication of the two terms leads to the time shift
of the curve of |A(ω, t )|2 at different rk0 . In contrast, when
θk0 = 1.9π in Fig. 3(b), the curves of the two terms are in
phase. The multiplication of the two terms preserves the phase
of the wavelet time-frequency profile and also significantly
increases its maximum amplitude.

Notably, physically, the dipole momentum emission in
Eq. (7) corresponds to the transition matrix element of the
electron between two atomic states with an energy difference
of ωk0 , and the obtained harmonic amplitude denotes the
probability of the electron transition. Therefore, our results
indicate that the electron transition probability during the
electron recombination with the atomic core is influenced by
both the transition matrix element of the electron and VQF
of the corresponding harmonic mode. This is consistent with

the explanation provided by Fermi’s golden rule [22] that the
probability of electron transition P f i ∝ |〈 f |Ĥ |i〉|2ρ, where
〈 f |Ĥ |i〉 represents the matrix element between the various
energy eigenstates of a quantum system, and ρ is the density
of photonic states and quantifies the magnitude of VQF for
photon emission [43].

Similarly, we also present the wavelet time-frequency pro-
file of the ninth-order harmonic under the squeezed vacuum
of the corresponding harmonic mode with θk = 0.27π and
θk = 1.27π in Figs. 3(c) and 3(d), respectively. Different
from the first-order harmonic, the wavelet time-frequency
profile at rk = 0.5 is always larger than that at rk = 0 for
different squeezing angles. This result can also be under-
stood after making a transformation of Eq. (6). For the
ninth-order harmonic, the curve related to VQF oscillates
much faster than that of the dipole moment emission [see
the gray dashed curves in Figs. 3(c) and 3(d)]. By em-
ploying the average value method within the high-frequency
approximation, Eq. (6) can be approximated as A(ωk, t ) ∼∫

μ̄kdii(t ′)
√

ωkW [ωk(t ′ − t )]dt ′, where μ̄k is the average
value of the high-frequency oscillatory term μk(t ) over one
oscillation period. In this case, the amplitude of the harmonic
emission can be approximately written as

|A(ωk, t )|2 ∼
∣∣∣∣
∫

dii
(
t ′)√ωkW [ωk(t ′ − t )]dt ′

∣∣∣∣
2

× |μ̄k|2.
(8)

Different from first-order harmonic in Eq. (7), the term |μ̄k|2
is time independent, and it can be easily seen from Eq. (4)
that the value of |μ̄k|2 exceeds unity for rk > 0. There-
fore, the amplitude of the ninth harmonic increases in the
squeezed vacuum, which is consistent with the observation
from Figs. 3(c) and 3(d). Our explanation based on Eq. (8) is
also in agreement with the explanation of Fermi’s golden rule.

It is worth noting that in Fig. 2(d), the ninth-order harmonic
amplitude in the HHG spectrum shows a significant change
with the squeezing angle θk, which is different from the result
shown in Figs. 3(c) and 3(d). This is ascribed to Fig. 2(d)
being calculated from Eq. (5), whereas Figs. 3(c) and 3(d)
are calculated from Eq. (6). In Eq. (6), there is an additional
term e−x2/τ 2

with a narrow temporal distribution, which makes
the integration only over small region of the time. In contrast,
the integration in Eq. (5) is over all times, which physically
indicates that the harmonics from different times interfere
with each other constructively or destructively. Furthermore,
the value of μk(t ) in Eq. (5) is complex and is a function of
the squeezing angle according to Eq. (4), leading to the final
harmonic amplitude changing with the squeezing angle. By
using this particular relationship between the harmonic ampli-
tude and the squeezing angle, one can improve the conversion
efficiency of HHG, and additionally, it is possible to fit the
time-dependent dipole moment according to Eq. (5), which is
closely related to the electron wavefunction and thus encodes
rich information about electron dynamics.

Finally, we propose an experimental scheme to show
the influence of the quantum fluctuation of a single-mode
squeezed vacuum on harmonic emission. Currently, the
squeezed vacuum can be generated in the mid-IR, IR, and
visible regions [35,36]. Thus, in principle, we can con-
trol the squeezed vacuum environment around the atom in
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experiments to affect the corresponding harmonic amplitude
during the HHG process. For the first-order harmonic, the
intensity of the driving laser field usually greatly exceeds that
of the emitted harmonic field, making it difficult to observe
the effect of VQF on the first-order harmonic amplitude. To
mitigate the influence of the intense driving laser field on the
emitted harmonic photons and to facilitate a clearer observa-
tion of the vacuum squeezing effect on harmonic emission, we
can use two crossing driving beams to generate noncollinear
HHG, as demonstrated previously [44,45]. In this case, the
driving light and the harmonic propagate in different direc-
tions and thus do not overlap each other in space.

IV. CONCLUSIONS AND OUTLOOK

We have studied HHG from intense laser-atom interaction
in a squeezed vacuum of a single harmonic mode. An analyt-
ical formula of the harmonic amplitude in the presence of the
squeezed vacuum is derived by employing a fully quantum
TDSE. The simulated HHG spectra with the formula show
that the harmonic amplitude of the corresponding squeezed
mode is influenced by the squeezed vacuum. By using
time-frequency analysis, we have elucidated that the quantum

fluctuation of the squeezed vacuum affects the probability of
the electron transition associated with the harmonic photon
emission in squeezed mode, during the rescattered electron
recombination with the atomic core. Thus, the amplitude of
the harmonic photon is changed accordingly. This finding
is consistent with the explanation of Fermi’s golden rule.
Therefore, our work establishes a direct and fundamental
connection between HHG and vacuum fluctuations, offering
an unconventional approach to control harmonic generation.
Considering the universality of VQF effect on the electron
transition, we expect that the effect of VQF can be applied to
other atomic emission processes, such as strong-field terahertz
radiation.
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