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Autonomous dynamics of two-dimensional insulating domain with superclimbing edges
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Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid
one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show
how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase
and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating
domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent
along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk
currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of
the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive
to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The
motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular
magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a
spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction.
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I. INTRODUCTION

Recent progress in developing the theory of transverse
quantum fluids (TQF)—quasi-one-dimensional edge superflu-
ids featuring (at low enough temperature) stable persistent
currents and off-diagonal long-range order thanks to their
infinite effective compressibility enabled by the coupling to
a particle reservoir in the transverse to the superflow di-
rection [1–5]—was originally motivated by supertransport
through a structurally imperfect crystal of 4He phenom-
ena [6–14]. Lately, quantum fluctuations of the edge shape
were systematically addressed and demonstrated to be as in-
teresting and informative as superfluid properties [5]. For a
review of all these activities, see Ref. [3].

The long-wave shape dynamics of the (microscopically)
quantum rough superfluid edge stems from the superclimb
effect—the edge motion in the direction transverse to its ori-
entation supported by the supertransport of matter to/from
the corresponding edge element [15]. (The word “climb” is
used here in the full analogy to the text book terminology
(see, e.g., Ref. [16]) indicating the nonconservative motion of
dislocations). Quantitatively, the superclimbing dynamics is
described by Hamiltonian formalism in which the field of the
transverse (say, vertical) displacements of the edge is canon-
ically conjugate to the field of the superfluid phase [15]. In
other words, the role of the density as a conjugate variable to
the phase (as explained in textbooks on superfluidity; see, e.g.,
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Ref. [17]) is played by the vertical displacement of the edge.
At the quantum level, the ground-state and low-temperature
fluctuations of the two fields are statistically coupled. This
allows one to access superfluid properties of the edge by
studying fluctuations of its shape [5]. In this work, we observe
that there exists yet another—purely classical field—way of
revealing the key aspects of the superclimbing dynamics, in-
cluding the ones involving persistent-current states, through
dynamics of the insulating domain with superclimbing edges.
Such a domain in the system of hard-core bosons with the
nearest-neighbor hopping and interaction terms on the square
lattice is shown in Fig. 1 (numerous alternative setups are
mentioned in Sec. VI). To be more specific, the self-bound
domain state is described by the Hamiltonian

Hhc = −t
∑
〈i, j〉

b†
jbi + V

∑
〈i, j〉

n jni − μ
∑

i

ni, (1)

where V < −2t , bi is the bosonic annihilation operator and
occupation numbers obey ni � 1, and μ stands for the chem-
ical potential. It can be rewritten identically as the easy-axis
spin-1/2 ferromagnetic model with Jx = Jy = 2t and Jz =
−V , and μ playing the role of the magnetic field. The width
of the domain edge and its superfluid stiffness are controlled
by the nearest-neighbor attraction and diverge at V → −2t .
As demonstrated in Ref. [5], when the edge width exceeds
several lattice periods, the edge enters the TQF regime when
the Peierls barrier can be neglected on exponentially large
scales—much larger than the domain perimeter. Under these
conditions, the discrete translation symmetry and the square
lattice discrete rotation symmetry become irrelevant as well
and the equilibrium domain shape is expected to be a perfect
circle (see Fig. 1).
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FIG. 1. Insulating domain with 1260 particles in model (1) at
V = −2.2t (symbol sizes are proportional to the average occupation
number). Simulations were performed at temperature T = t/128.
The red line is a circle used for better visualization of the domain
shape. By symmetry, a void in the insulator occupying the outer space
has the same properties.

The emergent (upon coarse-graining) translational invari-
ance guarantees that the droplet can perform ballistic motion
with velocity-dependent shape in the absence of bulk currents.
The droplet confined by an isotropic external potential has
to demonstrate a doubly degenerate sloshing mode. In the
presence of persistent current around the droplet edge, the
degeneracy of the sloshing mode is lifted, and the sloshing
motion is accompanied by Foucault-like precession. In a lin-
ear external potential (uniform force field), the state with a
supercurrent demonstrates a spectacular gyroscopic effect—
uniform motion in the perpendicular to the force direction.

II. THE MODEL

Quantitative analysis is conveniently performed with the
Lagrangian formalism in terms of the edge position, r(ξ, t ) =
(x(ξ, t ), y(ξ, t )), and the superfluid phase along the edge,
φ(ξ, t ), as functions of time t , with parameter ξ labeling the
edge points. The structure of the Lagrangian readily follows
from the continuity equation, the form of the latter expressing
the law of conservation of matter under specific conditions
of (i) supertransport along the edge and (ii) insulating incom-
pressible bulk.

A. Parametrization freedom

Formally, it is convenient to view the three functions
x(ξ, t ), y(ξ, t ), φ(ξ, t ) as dynamical fields despite that there
should be only two conjugate variables. The redundancy in
this approach is associated with the parametrization freedom.
If r(ξ, t ), φ(ξ, t ) is a solution to our dynamic problem, then,

treating parameter ξ as an arbitrary function of a new pa-
rameter, ξ ′, and time, that is, substituting ξ ≡ ξ (ξ ′, t ) into
the solution, we get an equivalent solution, r′(ξ ′, t ), φ′(ξ ′, t ),
where

r′(ξ ′, t ) = r( ξ (ξ ′, t ), t ), φ′(ξ ′, t ) = φ( ξ (ξ ′, t ), t ). (2)

Thus, for the three variables, there should be only two
physical equations of motion, with a freedom of choosing this
or that condition fixing the “gauge,” which is by selecting a
specific parametrization.

In most cases, one would ultimately prefer to work with
two rather than three unknown functions using parametriza-
tion of the following type:

x(ξ, t ) = X (η(ξ, t ), ξ , t ), y(ξ, t ) = Y (η(ξ, t ), ξ , t ). (3)

Here, X (η, ξ, t ) and Y (η, ξ, t ) are certain fixed functions of
three variables and η(ξ, t ) is the unknown field conjugate
(but not necessarily canonically) to the field φ(ξ, t ). A very
important practical example of parametrization (3) is the polar
coordinate system with a moving origin:

x(θ, t ) = x0(t ) + r(θ, t ) cos θ, (4)

y(θ, t ) = y0(t ) + r(θ, t ) sin θ, (5)

where the radius r(θ, t ) plays the role of the function η(ξ, t )
with ξ ≡ θ .

Fixing the gauge by Eq. (3) can be implemented at three
different stages. Option 1 is to introduce the Lagrangian or
Hamiltonian description directly in terms of two rather than
three fields. Such an approach was used in Ref. [15], where the
role of parameter ξ was played by the coordinate x, in which
case the field y(x) was argued to be canonically conjugate
to the field φ(x). Along similar lines, in polar coordinates,
identifying parameter ξ with the polar angle θ , one can see
that the variable canonically conjugate to φ(θ ) is one half of
the square of the polar radius, r2(θ )/2. This observation then
immediately leads to the Hamiltonian of the system.

More flexible is Option 2, where one formulates a generic
Lagrangian in terms of the three fields, x(ξ ), y(ξ ), φ(ξ ), and
then substitutes Eq. (3) into the Lagrangian to get a gauge-
specific Lagrangian in terms of φ(ξ ) and η(ξ ). Even more
flexible is Option 3, where the substitution (3) is implemented
at the level of the generic equations of motion, obtained from
the generic Lagrangian, or otherwise not used at all, so that the
gauge is fixed by a different protocol explained in Sec. II B.

B. Covariant representation

Gauge redundancy associated with the parametrization
freedom implies that the system of three equations of motion
following from the generic Lagrangian should be degenerate:
One should be able to reduce it to two independent—and
incomplete in view of the gauge freedom—equations and a
trivial identity. From superfluid hydrodynamics, it is clear that
the system of two independent equations can be cast into the
form when one of them is the continuity equation expressing
the law of conservation of matter and the other one is the
generalized Beliaev–Josephson–Anderson (BJA) equation de-
scribing the time evolution of the field φ. In what follows, we
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will see that this is indeed the case. Meanwhile, it is important
to discuss the optimal representation of these equations.

We want the two dynamic equations to be maximally insen-
sitive (covariant) with respect to the choice of parametrization.
To this end, we employ the tools of differential geometry.
Let l be the (algebraically understood) arc length, with its
infinitesimal element being

dl = lξ dξ, lξ =
√

x2
ξ + y2

ξ (6)

(xξ ≡ ∂ξ x, yξ ≡ ∂ξ y, ∂ξ ≡ ∂/∂ξ ). The unit vectors

n̂ = l−1
ξ (yξ ,−xξ ), t̂ = l−1

ξ (xξ , yξ ), (7)

are normal and tangent to the line, respectively. We will also
need the signed line curvature (xξξ ≡ ∂2

ξ x, yξξ ≡ ∂2
ξ y):

κ = l−3
ξ (xξ yξξ − yξ xξξ ). (8)

Finally, an important role will be played by the arc length
derivative:

∂l = l−1
ξ ∂ξ . (9)

The vectors n̂ and t̂, the scalar κ , and the operator ∂l have
purely geometric meaning rendering them covariant. Express-
ing the two dynamic equations in terms of these objects leaves
potentially noncovariant only the terms with time derivatives:
ṙ and φ̇.

Considering time derivatives, our first observation is that
the scalar n̂·ṙ is also gauge invariant. This can be shown
purely mathematically but is also immediately clear from the
physical meaning of this quantity—the velocity of the dis-
placement of the edge in the vertical direction. Our second
observation is that the scalar t̂ ·ṙ definitely depends of the
gauge and by no means can be unambiguously defined unless
some extra (gauge-fixing) condition is applied. Indeed, the
meaning of this quantity is the velocity of the motion of the
label ξ along the edge. There are absolutely no physical con-
sequences associated with this “motion” leaving the shape of
the edge intact. But there is a mathematical consequence—a
“conspiracy” between t̂ ·ṙ, φ̇, and ∂lφ that can be cast in the
form of the invariance with respect to the gauge transforma-
tion,

t̂ ·ṙ → t̂ ·ṙ + g(ξ, t ), (10)

φ̇ → φ̇ + g(ξ, t ) ∂lφ, (11)

where g(ξ, t ) is an arbitrary function; in terms of the
reparametrization (2), it is expressed as g = lξ ξ̇ (ξ ′, t ). The
meaning of the transformation (10)–(11) is purely geometrical
(and, in particular, has nothing to do with the physical mean-
ing of φ). The transformation expresses the rather obvious fact
that the motion of the label along the line creates an apparent
contribution to time derivatives of the fields proportional to
the velocity t̂ ·ṙ and the arc gradient of the field.

Hence, if all time derivatives in the (otherwise covariant)
equations of motion are expressed in terms of n̂·ṙ, t̂ ·ṙ, and φ̇,
then φ̇ and t̂ ·ṙ have to enter the equations of motion in the
form of

φ̇ − (t̂ ·ṙ) ∂lφ (covariant time derivative). (12)

Furthermore, since the time derivative of φ̇ is not the part of
continuity equation, the term (12) should enter only the BJA
equation.

Gauge-invariance relations (10)–(11) suggest the following
on-the-fly gauge-fixing protocol, which appears to be quite
appropriate for numeric simulations. In this protocol, one
assigns any desired value, including zero, to the longitudinal
velocity t̂ ·ṙ at the time t and parameter ξ . The covariant time
derivative (12) in the BJA equation then automatically assigns
the matching value to φ̇.

C. Continuity equation

The superfluid current along the edge is given by

j = ns∂lφ, (13)

where ns is the superfluid stiffness. As long as we are inter-
ested in the regime of an appropriately wide edge and not so
large values of j, we can safely treat ns as a constant. (Other-
wise, we would need to take into account the dependence of
ns on j, as well as on the line orientation and curvature.)

The divergence of the superfluid current, ∂l j, yields the
local (and algebraically understood) accumulation of matter.
Since the bulk is incompressible, the edge shifts accordingly
in the transverse direction and the matter balance is expressed
by the continuity equation:

n̂ · ṙ + ∂l j = 0 ⇔ n̂ · ṙ = −ns∂
2
l φ. (14)

Here and in what follows the unit of length is defined by the
condition that the two-dimensional particle number density in
the bulk equals unity.

Integrating Eq. (14) over the total arc length yields the law
of conservation of the area of the droplet, A:

A = 1

2

∮
dl n̂ · r, (15)

dA
dt

=
∮

dl n̂ · ṙ ∝
∮

dl ∂l j ≡ 0 . (16)

D. Lagrangian

The total energy of the system,

Etot[φ, r] = ESF[φ, r] + Ecnf [r], (17)

splits into two distinct parts: the kinetic energy of superfluid
currents,

ESF[φ, r] = ns

2

∮
dl (∂lφ)2, (18)

and the configurational energy, which, in a general case of
external potential, includes two terms:

Ecnf [r] = χ

∮
dl + Epot[r]. (19)

The first term is proportional to the total arc length. As it was
done previously with ns, we ignore the effects of curvature,
anisotropy, etc., and treat χ as a constant. The second term
is the potential energy of the droplet in an external potential,
U (r′):

Epot =
∫
A

U (r′) d2r′ (20)
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(the integration is over the position r′ inside the droplet area).
To produce the Lagrangian, we need to combine the energy

with the term conjugating superfluid phase field to the edge
shape degrees of freedom. The structure of this term can be
guessed based on the special case of an almost straight edge
with the parametrization φ ≡ φ(x), y ≡ y(x) considered in
Ref. [15]. In this case, the conjugating term has the form∫

dxφẏ suggesting a straightforward generalization to∮
dl φ n̂·ṙ =

∫
φ(yξ ẋ − xξ ẏ) dξ, (21)

thus leading to the Lagrangian

L =
∮

dl φ n̂·ṙ − Etot[φ, r]. (22)

The validation of the correctness of the form of the first term
of Lagrangian (22) comes from the fact that variation over φ

correctly reproduces continuity equation (14).

E. Central potential

Of particular interest is the case of central potential U (r) =
U (r), where polar parametrization (4)–(5) with x0(t ) =
y0(t ) = 0 is the most natural. In this case, Lagrangian (22)
takes the form

L = −
∮

dθ

⎡
⎢⎣ φ̇r2

2
+ nsφ

2
θ

2
√

r2
θ + r2

+ χ

√
r2
θ + r2 + 	(r)

⎤
⎥⎦,

(23)

	(r) =
∫ r

0
U (r′)r′dr′. (24)

Note that (as already mentioned) the variable r2/2 is canoni-
cally conjugate to φ.

F. Generalized BJA equation

Observing that the variation of the term Epot[r] with respect
to the edge position can be written as

δEpot[r] =
∮

(yξ δx − xξ δy)U (x(ξ ), y(ξ )) dξ, (25)

we then find that variations of (22) with respect to x and y
yield, respectively, two equations:

−φ̇yξ + ẏφξ − ∂ξ

[(
nsφ

2
ξ

2l3
ξ

− χ

lξ

)
xξ

]
− yξU = 0, (26)

φ̇xξ − ẋφξ − ∂ξ

[(
nsφ

2
ξ

2l3
ξ

− χ

lξ

)
yξ

]
+ xξU = 0. (27)

Multiplying (26) by xξ and (27) by yξ and then adding the
results produces the anticipated identity, if the continuity
equation (14) is taken into account. Multiplying (26) by yξ

and (27) by xξ and then subtracting the results, we obtain the
the BJA relation as

φ̇ − (t̂ ·ṙ) ∂lφ = κ (r)
[ns

2
(∂lφ)2 − χ

]
− U (r). (28)

Note the covariant form of this equation.

III. NON-GALILEAN BALLISTICS

Here we are interested in the motion of the droplet as a
whole, that is, without changing its shape in time. In what
follows, we will consider the case ṙ = 0 in the parametriza-
tion (4)–(5) and use the reference frame of the stationary
lattice unless otherwise specified. With the equations of mo-
tion (14) and (28), we can readily prove (by contradiction) the
absence of Galilean ballistics of the droplet. As a by-product,
we will establish that the droplet will perform a uniform
motion while having a circular shape only in the presence of
the fine-tuned external potential in the transverse to the motion
direction.

Suppose we have a circular droplet of radius r = R =const
moving along the x-axis with the velocity v0. In Eq. (5), we
then have y0 = 0, x0 = v0t , that is, n̂·ṙ = v0 cos θ and ∂l =
R−1∂θ , so that Eq. (14) implies

φ(θ, t ) = v0R2

ns
cos θ + Mθ − μt, (29)

where M is the phase winding number and μ is a certain
constant. If the lattice frame of reference—the one we work
in—is inertial, then M is an integer. If the lattice rotates with
angular velocity �, then in its reference frame integer values
of M have to be shifted by �M = ϕ0/(2π ) = m0�R2, where
m0 is the particle mass and ϕ0 ∈ [−π, π ] is the rotation-
induced phase shift; here and in what follows, we set h̄ = 1.
The dependence on ϕ0 adds a gyrometric aspect to the prob-
lem. Linearity of the time-dependent additive term in (29) is
required by consistency with the time-independent r.h.s. of
Eq. (28).

Substitution of φ(θ, t ) of Eq. (29) into Eq. (28) shows that
there should be a fine-tuned external potential

U (y) = 3v2
0y2

2nsR
− 2Mv0y

R2
, (30)

and the constant has been dropped.
The M = 0 result reveals inconsistency between the uni-

form motion and circular droplet shape in the absence of the
external potential. To satisfy Eq. (28) at low velocity,

v0 

√

nsχ

R
, (31)

one has to assume small deformation of the droplet shape (and
thus its curvature), r(θ ) = R − ε f (θ ). Keeping only linear in
ε terms in (28), we obtain

ε = v2
0R3

4nsχ

 R, f = cos(2θ ), (32)

that is, in the absence of external potential, the distortion of
the circular shape (elongation in the y-direction) of the mov-
ing droplet (with M = 0) vanishes quadratically with v0 at
v0 → 0. The parabolic confining potential in (30) is required
to “compress” the droplet back to its circular shape. From
the flow kinetic energy, ESF = πR3v2

0/2ns, we also obtain the
droplet effective mass as

meff = πR3

ns
+ O(ε2). (33)
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The same result follows from the analysis of the sloshing
mode considered in Sec. V. When the condition (31) is vio-
lated, the superflow at the edge is no longer protected by small
parameters against either quantum phase slips or dynamic
spectrum instability [2]; in addition, at such values of v0, the
bilinear in ∂lφ form of ESF cannot be justified.

The M �= 0 case is fundamentally different. To begin with,
in the absence of external potential, it is impossible to satisfy
Eq. (28) by deforming the droplet shape: Mathematically, the
problem reduces to solving equation

f + fθθ = −3 cos(2θ ) + b sin θ,

which has no 2π -periodic solutions when b ∝ M is nonzero.
In other words, persistent current at the droplet edge elimi-
nates the possibility of the ballistic propagation in free space!
Uniform motion at the velocity v0 along x becomes possible,
if both the droplet deformation

r = R − ε cos(2θ ) (34)

occurs and the uniform force

F = 2Mv0

R2
, (35)

with U = −Fy along y is applied. [It is assumed that
M2ns/(2χR2) 
 1]. It is worth mentioning that such linear
potential can be induced by accelerating the whole lattice.

Of special interest is the case U = 0, M �= 0. As shown
previously, no uniform motion is possible in this case. The
solution to the system of Eqs. (14) and (28) exits when the
droplet performs a centripetal motion with some radius Rc at
some angular velocity ωc and simultaneously is deformed. We
consider the case of small deformation r = R − ε f (θ ). Then
we find n̂·r = Rcωc sin(θ − ωct ) and t̂ ·r = Rcωc cos(θ −
ωct ). The continuity equation gives φ = (RcωcR2/ns) sin(ω −
ωct ) + Mθ − μt . Substituting φ into Eq. (28) gives

r = R − (Rcωc)2R3 cos[2(θ − ωct )]

4nsχ
+ O(ε2) (36)

and

ωc = 2Mns

R3
. (37)

This situation resembles centripetal motion of a particle with
mass (33) carrying some charge q in the magnetic field B =
2πM/q.

IV. GROUND-STATE SOLUTION AND
AC JOSEPHSON EFFECT

As in any superfluid, the ground state of the droplet
features broken time-translation symmetry—the time-
crystallization effect—manifested by the linear growth of
the phase with time:

φ̇ = −μ, (38)

where μ = dE/dN is the chemical potential that depends on
the area and shape of the droplet, with E from Eqs. (23)–(24)
differentiated with respect to N = πr2 for the case rθ = 0.
The latter is sensitive to the presence of anisotropic trapping
potential, in which case the shape also becomes sensitive

to the presence of the supercurrent. The continuity equa-
tion states that the phase gradient along the edge is constant:

∂lφ = ζ . (39)

The two parameters, μ and ζ , control the shape of the droplet
via the stationary BJA equation:(

χ − nsζ
2

2

)
κ (r) + U (r) = μ. (40)

In the general case of an anisotropic potential U (r) and
nonzero supercurrent, the parameter ζ can be viewed at the
eigenvalue of the problem at a given value of μ. It has to
satisfy the phase winding quantization condition

ζ

∮
dl = 2πM. (41)

(Equivalently, μ can be viewed as an eigenvalue of the prob-
lem at a given value ζ .) For a given phase winding M, we thus
get a single-parametric family of solutions controlled by the
pair (μ, ζM (μ)) that implicitly defines the shape of the droplet
as a function of the total amount of matter and M.

In the case of isotropic potential, the situation is quite
simple. The droplet has a circular form, meaning that κ = 1/R
and ζ = M/R, where R is the radius of the droplet. Eq. (40)
then simply relates μ to R and M:

μ = U (r) + 1

R

(
χ − nsM2

2R2

)
. (42)

V. NORMAL MODES: EFFECT OF A SUPERCURRENT

To find normal modes of a circular droplet of radius R
trapped in a rotationally symmetric potential, we need to
linearize equations of motion in the vicinity of the equilibrium
solution with μ given by Eq. (42). This is done by substituting

φ(θ, t ) = −μt + Mθ + ϕ(θ, t ), (43)

r(θ, t ) = R + h(θ, t ), (44)

either into equations of motion (14) and (28) or directly into
the Lagrangian (23). In the latter case, implemented in the
following, the linear in ϕ and h terms automatically nullify
and the resulting bilinear Lagrangian generates the desired
pair of linear in ϕ and h dynamic equations describing the
normal modes, including the ballistic motion in the absence
of the trapping potential.

The bilinear Lagrangian reads

Lbl = −R
∮

dθ

[
ϕ̇h + Aϕ2

θ

2
− Bϕθh + Ch2

θ

2
+ Dh2

2

]
, (45)

A = ns

R2
, B = nsM

R3
, (46)

C = χ

R2
− nsM2

2R4
, D = U ′(R) − χ

R2
+ 3nsM2

2R4
. (47)

The solution to the equations of motion,

ḣ + Aϕθθ − Bhθ = 0, (48)

ϕ̇ − Bϕθ − Chθθ + Dh = 0, (49)
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is a linear combination of normal modes

hm = Re αmeimθ−iω±
m t , ϕm = Re βmeimθ−iω±

m t (50)

ω±
m = Bm ± m

√
A(m2C + D), m = 1, 2, 3, . . . . (51)

With Eqs. (46)–(47), we have

ω±
m = mnsM

R3
± m

√
nsU ′(R)

R2
+ n2

s M2

R6
+ (m2−1)nsχ̃

R4
, (52)

where

χ̃ = χ − nsM2

2R2
(53)

is a renormalized (due to the supercurrent) parameter χ . In
what follows, we assume that this renormalization is small
because the condition

|M| 

√

χ/ns R (54)

protects supercurrent states from quantum phase slips.

A. Fundamental modes

Of special interest are fundamental solutions correspond-
ing to m = 1. Their frequencies do not depend on χ but do
depend on M:

ω±
1 = nsM

R3
±

√
ns

R2

[
U ′(R) + nsM2

R4

]
. (55)

In the absence of supercurrents, both frequencies are equal (up
to the global sign) and the fundamental solution corresponds
to the doubly degenerate sloshing mode with frequency

ωsl =
√

ns U ′(R)

R
. (56)

In the limit of U ′(R) → 0, this mode corresponds to ballistic
motion with near-circular droplet shape; in other words, it is
identical to that of a point particle with effective mass (33) in
the potential πR2U (r).

Supercurrent qualitatively changes the picture of motion.
The two frequencies become different leading to two charac-
teristic regimes controlled by the value of the parameter

γ = |M|
R2

√
ns

U ′(R)
. (57)

At γ 
 1, the relative difference between the magnitudes of
the two frequencies is small:

|ω±
1 | = ωsl(

√
1 + γ 2 ± γ ). (58)

Here we are dealing with the previously discussed sloshing
mode that now demonstrates slow Foucault-type precession.

In the regime γ 
 1, we have |ω−
1 | 
 |ω+

1 |:

|ω±
1 | = ω∗

√
1 + γ −2 ± 1

2
, ω∗ = 2ns|M|

R3
. (59)

Here, the motion is similar to that of a two-dimensional
charged particle in perpendicular to the plane magnetic field
and weak harmonic trap. In particular, this means that there
is no ballistic motion at M �= 0. Indeed, in the absence of
the external potential, |ω+

1 | = ω∗ and ω−
1 = 0, implying that

the center of mass performs uniform circular motion with the
angular frequency ω∗.

B. Modes with m � 1

At m 
 1, we can neglect the middle term under the square
root in Eq. (52) because inequality (54) guarantees that it is
small and is getting progressively less relevant with increasing
m, and omit 1 compared to m2:

|ω±
m | → m

√
ns

R2

[
U ′(R) + m2χ̃

R2

]
± mnsM

R3
(m 
 1). (60)

For the same reasons, the second term is a small correction. If
the external potential U is appropriately weak or absent, we
can also omit the term U ′(R):

|ω±
m | → m2√nsχ̃

R2
± mnsM

R3

(
R2 U ′(R)

χ

 m2

)
, (61)

to recover the quadratic dispersion of elementary excitations
in the TQF state of a straight edge [1]. At U ′(R) 
 χ/R2,
there emerges a range of m values where the dispersion is
linear in m and independent of χ , reflecting the fact that the
potential of that strength converts the edge into a Luttinger
liquid.

VI. CONCLUSION AND OUTLOOK

A two-dimensional insulating domain (“droplet”) with a
superclimbing edge (see Fig. 1) can be formed in a system
of hard-core bosons with nearest-neighbor attraction tuned
to guarantee, on the one hand, a phase-separated ground
state, and, on the other hand, wide enough—and thus mi-
croscopically quantum rough—edge. The counterintuitive
autonomous dynamics of such a domain is controlled by and
is characteristic of the most unusual properties of TQF formed
at the droplet edge.

The supertransport along the edge enables coherent
(dissipation-free) displacement of the edge—the superclimb-
ing motion. For an isolated droplet, as opposed to an infinitely
long edge, or an edge with pinned ends, the superclimbing
motion features fundamental modes sensitive to the presence
of circulating supercurrent along the edge. In the translation
invariant case and in the absence of circulating current, the
droplet moves pseudo-ballistically while preserving its near
circular shape—apart from slight, proportional to the square
of the velocity, elongation in the transverse to the displace-
ment direction. “Pseudo” refers to the fact that the bulk
currents are zero: The insulating domain propagates in space
exclusively through the matter transfer by edge supercurrents.
An isotropic trapping potential converts the pseudo-ballistic
motion into the sloshing mode.

The circulating supercurrent along the edge dramatically
changes the droplet dynamics: The motion acquires features
resembling that of a gyroscope or a two-dimensional charged
particle in a perpendicular magnetic field. In a linear external
potential (uniform force field), a droplet with a circulating
supercurrent demonstrates a spectacular gyroscopic effect—
uniform motion in the perpendicular to the force direction.
This effect has a natural gyrometric aspect when the lattice
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rotates; the rotation-induced phase twist results in finite su-
percurrent circulation in the reference frame of the lattice.

As in any superfluid, the ground state of the droplet
features broken time-translation symmetry—the time-
crystallization effect—manifested in the linear growth of
the phase with time, φ̇ = −μt . The period, 2π/μ, of the
superfluid phase evolution in the ground state (dictating the
frequency of the AC Josephson effect) is sensitive to the size
(as well as other geometric details) of the droplet; see Eq. (42)
for the case of a circle.

On the technical side, dynamics of the droplet is described
by Lagrangian formalism in terms of the edge position,
r(ξ, t ) = (x(ξ, t ), y(ξ, t )), and the superfluid phase along the
edge, φ(ξ, t ), as functions of time t , with parameter ξ labeling
the edge points. The structure of the Lagrangian, Eq. (22),
readily follows from the continuity equation, the form of
the latter expressing the law of conservation of matter under
specific conditions of (i) supertransport along the edge and

(ii) insulating incompressible bulk. The two Euler-Lagrange
equations implied by the Lagrangian (22) are (i) the continuity
equation (14) and (ii) the generalized BJA equation (28).

Numerous other possible physical implementations of the
autonomous superclimbing droplet include multicomponent
bosons and higher-spin XY -magnets, fermionic rather than
bosonic systems of ultracold atoms, 4He and/or 3He domains
on substrates or complete layers of similar atoms, and super-
climbing edge dislocation loops in 4He and/or 3He. Finally,
similar phenomena may takes place in three dimensions with
an insulating ball having a superclimbing surface.
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