
PHYSICAL REVIEW RESEARCH 6, 033007 (2024)

Hawking-Page transition on a spin chain
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The accessibility of the Hawking-Page transition in AdS5 through a one-dimensional (1D) Heisenberg spin
chain is demonstrated. We use the random matrix formulation of the Loschmidt echo for a set of spin chains, and
randomize the ferromagnetic spin interaction. It is shown that the thermal Loschmidt echo, when averaged,
detects the predicted increase in entropy across the Hawking-Page transition. This suggests that a 1D spin
chain exhibits characteristics of black hole physics in 4 + 1 dimensions. We show that this approach is equally
applicable to free fermion systems with a general dispersion relation.
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I. INTRODUCTION

A fundamental discovery in the search for a quantum the-
ory of gravity was the realization that quantum information
is the foundation, while spacetime and the particles within
it are emergent. This “it from qubit” approach, originally
proposed by Wheeler [1], has resulted in significant progress
in comprehending the quantum properties of black holes. The
utilization of quantum information techniques in exploring
the emergence of spacetime resulted in various developments,
including the ER = EPR conjecture [2], holographic quantum
error-correcting codes [3–5], and proposals aimed at resolving
the information paradox [6,7], among others.

Alongside this new method for studying quantum gravity
is the advancement of quantum simulations. In brief, quantum
simulators are devices designed to replicate physical phenom-
ena impossible to study through experimentation.

An essential query that arises from the amalgamation of
these two areas is the degree to which gravity’s manifestations
can emerge from a set of qubits. An example in this direction
was the quantum simulation of a traversable wormhole [8].

In this paper, we examine another important aspect of grav-
ity: the formation of a black hole (BH). Unlike wormholes,
which harbor innate quantum properties, BHs are prominently
thermal entities. Hence, they can be analyzed through conven-
tional means such as finite-temperature lattices. A BH forms
in anti-de Sitter (AdS) spacetime with the Hawking-Page tran-
sition [9]. Our main point asserts that this phenomenon can be
simulated on a simple spin chain, the Heisenberg XX chain.
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To elaborate, we will begin with thermal AdS5. As the
temperature T rises, a BH solution emerges, which becomes
dominant above a threshold THP [9]. It can be inferred that,
at T > THP, the entropy would be significantly larger than
thermal AdS, due to the presence of the BH horizon. This
follows from the Bekenstein-Hawking formula [10,11]

SBH = Ahor

4GN
, (1)

with Ahor the area of the BH horizon and GN the Newton
constant in AdS5 (in units c = h̄ = 1).

The celebrated AdS/CFT correspondence [12–14] posits
that gravitational asymptotically AdS solutions are encoded
into a conformal field theory (CFT) on the boundary. The
most widely studied example, and the one we will focus on,
is the duality between AdS5 and 4D N = 4 super-Yang-Mills
theory (SYM) [12].

We will show that the entropy SBH can be computed from
a coupling average of thermal, or imaginary time, Loschmidt
echoes in the XX chain. Preparing the spins in the initial state

|ψ0〉 = | ↓↓ . . . ↓︸ ︷︷ ︸
N

↑↑ . . . ↑〉, (2)

we claim, schematically,

SBH ∼ ln

(∫ ∞

0
dJ e− J2

4a 〈ψ0|e−JHXX |ψ0〉
)

, (3)

with average over the coupling J of the XX chain [the accurate
statement is (26)]. The parameter a, controlling how J is
sampled, is a monotonic function of the BH temperature T , cf.
(7). In particular, we show that the averaged Loschmidt echo
detects the jump in entropy predicted by the Hawking-Page
transition. Our result implies that a one-dimensional (1D) spin
chain captures features of BH physics in 4 + 1 dimensions.

In the AdS5/CFT4 dictionary, the entry

GN ∼ 1/N2 (4)
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FIG. 1. ln〈
√
L̂N 〉2a as a function of N at T < THP (�) and T >

THP (•).

relates the Newton constant and the rank of SYM. The regime
GN → 0, in which gravity becomes tractable, corresponds via
(4) to the large N limit of SU (N ) N = 4 SYM [12]. Combin-
ing the Bekenstein-Hawking formula (1) with the AdS/CFT
relation (4), a Hawking-Page transition is characterized by

S ∼
{

slow T < THP

N2shigh T > THP
, (5)

where S is the entropy and slow, shigh are O(1) constants. Enor-
mous effort has been put to test and sharpen this prediction
[15–80].

We demonstrate how the distinctive behavior (5) can
be replicated on the spin chain (Fig. 1), primarily focus-
ing on weak gauge coupling. Remarkably, finite coupling
corrections—a key factor in achieving more credible results—
incur no further complexity in the setup of the spin chain (see
Appendix B 4), although it requires repeating the measure-
ment multiple times.

II. HAWKING-PAGE TRANSITION

In this paper we focus on the BH formation in maximally
supersymmetric AdS5, whose holographic dual is N = 4
SYM. On the one hand, maximal supersymmetry plus con-
formal symmetry tightly constrain the theory, making it the
perfect playground to explore 4D physics. On the other hand,
it bears universal properties akin to pure Yang-Mills and QCD
[81–83], befitting phenomenological applications.

The AdS/CFT correspondence dictates that the Hawking-
Page transition [9] in AdS5 is dual to a first-order transition
in N = 4 SYM on Euclidean S3 × S1 [84] (details in Ap-
pendix A), with thermal S1 of radius 1/T . An effective
description for this theory, in the weak coupling limit, was
devised in Refs. [15,16,18]. The result, written in terms of the
AdS5 entropy S, is

S = ln

⎡
⎣∮ dU exp

⎛
⎝∑

n�1

an

n
Tr(U n)Tr(U −n)

⎞
⎠
⎤
⎦. (6)

U is the holonomy of the gauge field around S1, dU is the
normalized Haar measure and an are effective couplings pro-
duced integrating out the massive modes. They depend on T ,

for instance,

a ≡ a1 = 2(3e1/(2T ) − 1)

(e1/(2T ) − 1)3
. (7)

At large N , (6) is approximated by the simpler matrix
model [18]

Ŝ = ln

[∮
dU exp[aTr(U )Tr(U −1)]

]
(8)

with higher couplings an>1 being irrelevant perturbations,
negligible in the analysis of the phase transition (refinements
by higher couplings are dealt with in Sec. IV). The notation Ŝ
stresses the difference with the exact quantity S.

The large N limit of (8) was solved in Ref. [19]. One
rewrites

eŜ =
∫ ∞

0
σdσ exp

[
−N2

(
σ 2

4a
− F (σ )

)]
, (9)

with F (σ ) = 1
N2 logZGWW

N (Nσ ) the free energy of the Gross-
Witten-Wadia (GWW) matrix model [85–87]

ZGWW
N (Nσ ) =

∮
dU exp

{
Nσ

2
Tr(U + U −1)

}
. (10)

Then (9) is solved in two steps: (i) apply the planar limit to the
GWW model, and (ii) minimize the resulting effective action
by a standard saddle point analysis. The upshot is [19]:

(1) If a < 1, the saddle is σ = 0, thus Ŝ(a < 1) ∼ O(1);
(2) If a > 1, there is a nontrivial saddle, and Ŝ(a > 1) =

N2shigh.
Therefore (9) undergoes a first-order transition at

a(THP) = 1 
⇒ THP ≈ 0.38 (11)

separating the two phases (5).

III. MAPPING TO THE SPIN CHAIN

Our novel claim is that the Hawking-Page transition in
supersymmetric AdS5 can be encoded in a 1D quantum spin
chain. The simulation of such thermodynamic process re-
quires a chain at finite temperature. The quantity detecting
the sudden change in entropy is the Loschmidt echo [88],
an observable tailored to quantify how chaotic a system is.
It has already found broad application in BH physics (e.g.,
Refs. [89–92]). Our insight is to interpret (9) as a coupling
average of the Loschmidt echo in the XX chain.

Consider a spin- 1
2 chain of L sites, and prepare the initial

state |ψ0〉 in (2). We are interested in the regime 1 
 N 
 L
and assume periodic boundary conditions, but the results hold
more generally [93]. The system is at temperature T̃ > 0 and
evolves with the XX Hamiltonian [94]

HXX = − J̃

2

L−1∑
j=0

(σ−
j σ+

j+1 + σ+
j σ−

j+1), (12)

where J̃ > 0 is the ferromagnetic coupling and σ±
j = (σ x

j ±
iσ y

j )/2 are the spin-flip operators on the site j, satisfying

σ+| ↓〉 = | ↑〉, σ−| ↑〉 = | ↓〉, σ+| ↑〉 = 0 = σ−| ↓〉
(13)

[σ+
j , σ−

k ] = σ z
j δ jk,

[
σ z

j , σ
±
k

] = ±2σ±
j δ jk . (14)
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We consider the thermal Loschmidt amplitude

GN (J ) = 〈ψ0|e−HXX/T̃ |ψ0〉 (15)

and the corresponding echo:

LN (J ) = |GN (J )|2. (16)

Note that T̃ is the temperature of the chain, unrelated to the
BH temperature T . Furthermore, (16) only depends on J ≡
J̃/T̃ . In (15) we used the standard replacement it �→ 1/T̃ . In
this way, LN is not a probability, because it is not canonically
normalized. It is thus convenient to work with the ratios

L̂N (J ) = LN (J )/L1(J ). (17)

One advantage of this prescription, is that L̂N remains finite
when L → ∞.

Next, we map (15) to the GWW model (10) [95,96]. We
introduce | ⇑〉 ≡ | ↑,↑, . . . ,↑〉 and

g j,k (J ) = 〈⇑ |σ+
j e−HXX/T̃ σ−

k | ⇑〉. (18)

Observe that, as L → ∞ [95]

〈⇑ |
⎛
⎝N−1⊗

j=0

σ+
j

⎞
⎠e−HXX/T̃

(
N−1⊗
k=0

σ−
k

)
| ⇑〉 = det

0� j,k�N−1
[g j,k].

(19)

Besides, |ψ0〉 = ⊗N−1
k=0 σ−

k | ⇑〉. Using (14) to pass HXX across
σ+

j , and HXX| ⇑〉 = 0, g j,k satisfies

dg j,k

dJ
= 1

2
〈⇑ |(σ+

j−1 + σ+
j+1)e−HXX/T̃ σ−

k | ⇑〉. (20)

Therefore g j,k solves

dg j,k

dJ
= 1

2
(g j−1,k + g j+1,k ) (21)

with initial condition g j,k (0) ∝ δ j,k . This is the recurrence
relation of the Bessel function I j−k (J ), thus

GN (J )

G1(J )
= 1

I0(J )
det

0� j,k�N−1
[I j−k (J )]. (22)

Using the Heine-Szegő identity

det
0� j,k�N−1

[I j−k (J )] = ZGWW
N (Nσ = J ) (23)

we conclude that

L̂N (J ) = 1

I0(J̃/T̃ )2

∣∣ZGWW
N (Nσ = J̃/T̃ )

∣∣2. (24)

The denominator is independent of N . The relation (24) has
been previously exploited to analyze the echo of the XX
chain [93,96–106]. We revert the argument and consider the
Loschmidt echo as the building block for the realization of
the Hawking-Page transition (5) on a quantum apparatus.

Comparing the exact identity (24) with (9), identifying
Nσ = J , the integral over σ in Ŝ is translated into a Gaussian
average over J . This is enforced by randomizing the coupling
J̃ at fixed T̃ .

FIG. 2. ln〈
√
L̂N 〉2a as a function of a(T ) for various N at L = 18.

We thus propose the following setup. L̂N (J ) is measured in
the regime 1 
 N 
 L, with J as above. The experiment is
run several times, sampling J from a suitably chosen random
distribution. The average echo is computed:

〈
√
L̂N 〉2a =

∫ ∞

0

JdJ

2a
e− J2

4a

√
L̂N (J ). (25)

The dependence on T̃ is reabsorbed in the integration variable,
thus the only free parameter is a > 0. We refer to 2a as the
standard deviation. The measurement can be performed at
arbitrary nonzero temperature T̃ .

Altogether we arrive at the relation between the BH en-
tropy and the averaged Loschmidt echo:

eŜ ∼ 〈
√
L̂N 〉2a. (26)

The symbol ∼ means equality up to details negligible when
N � 1. The temperature T̃ is unimportant and distinct from
the BH temperature T , which enters the left-hand side of
(26) via a. Moreover, (26) is expressed using

√
L̂N , rather

than ĜN , because only the former is a measurable quantity.
We conclude that, varying a (sampling J with different law),
the averaged Loschmidt echo (25) with N � 1 experiences a
sharp change in behavior, signaling the Hawking-Page transi-
tion (Fig. 2).

Intriguingly, to produce a jump in the echo that simulates
the BH entropy, an average is introduced in the spin chain:

(1) 0 < a 
 1: the average over J is sharply peaked, in-
troducing a small amount of disorder;

(2) a � 1: the average introduces more entropy in the
system because no value of J is preferred, resulting in more
disorder.

A. Interpretation of the result

The AdS5/CFT4 correspondence led us to an equality re-
lating the large N BH entropy and the coupling averaged
Loschmidt echo. On the BH side of (26), the only parameter is
the temperature T , which appears through a. The dependence
(7) is monotonic, thus it can be inverted and the BH tempera-
ture can be thought of as a function of a.

On the spin chain side of (26), the free parameter a deter-
mines how the coupling is sampled. It can be varied freely,
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and does not require tuning. The experiment is repeated many
times, varying J as sampled randomly according to (25),
and computing the average of the measured Loschmidt echo.
The right-hand side of (26) is a controlled setup that should
experience a sharp change in behavior, when the procedure
is performed sampling the coupling at a < 1 versus a > 1
(Fig. 1). In conclusion, our formula indicates how to con-
cretely test and validate the Hawking-Page prediction, in the
spirit of quantum simulation.

B. Fermionic systems

If the chain is fermionized using the Jordan-Wigner trans-
formation [107], (24) remains valid [101], resulting in a
completely equivalent outcome. A matrix model description
for the Loschmidt echo of fermionic systems corresponding to
more complex spin chains is shown to hold in Appendix B 3.
The fermionic approach introduces a new set of models with
implications for improving the estimation of the BH entropy,
as well as for potential experimental applications.

IV. REFINED PROBES

We explain four ways to refine (26) for more accurate tests
of the Hawking-Page transition. We discuss:

(1) The analysis of the order parameters for the transition;
(2) The inclusion of corrections by higher operators;
(3) The inclusion of corrections in the ’t Hooft coupling;
(4) The case of complex fugacities for the black hole

charges.
The technical details are relegated to Appendix B.

A. Order parameters

A fine probe of the transition, from the CFT side of the
holographic duality, is the Polyakov loop. This is defined as a
Wilson loop winding around the Euclidean time direction. On
general grounds, its expectation value P vanishes if T < THP

and is nonvanishing in a BH phase T > THP. Therefore, the
study of P tests the properties of the transition beyond the
jump in entropy. We compute P in the matrix model and find
that indeed it is an order parameter for the phase transition
(see Appendix B 1 for the derivation).

In the spin chain, the Polyakov loop is realized as an
impurity in the preparation of the initial state. That is, the ket
in (15) is replaced with the state

|ψ×〉 = | ↓↓ . . . ↓︸ ︷︷ ︸
N−1

↑,↓,↑ . . . ↑〉. (27)

Following Ref. [93], we obtain that the resulting coupling-
averaged probability, divided by the coupling-averaged
Loschmidt echo, equals P . We elaborate further on this aspect
in Appendix B 1. In summary, the expectation value of a
Polyakov loop can be analyzed on the spin chain by testing
how the results vary when a simple impurity is introduced into
the initial state.

Even without any reference to the gauge theory, we predict
the ratio of the Loschmidt echoes with and without impurities
to be an order parameter discerning between a phase with
low disorder, 0 < a 
 1, and a phase of large disorder, thus
large entropy, a � 1. This is a novel claim for the coupling

averaged Heisenberg XX chain and may be of independent
interest. To quantitatively test this prediction with the current
state of the art technologies seems an interesting avenue to
pursue.

B. Improved estimates of the entropy

The relation (26) prevents a direct evaluation of the BH
entropy from the averaged Loschmidt echo, because Ŝ is
only approximately equal to the entropy S. Nonetheless,
more accurate results are achieved extending the argument
to Hamiltonians with interactions beyond nearest neighbor
(Appendix B 2).

The spin chain can reproduce the perturbative corrections
in the ’t Hooft coupling to the BH entropy (Appendix B 4).
Surprisingly, this major conceptual step requires no further
sophistication of the experimental setup. These corrections
are incorporated without complicating the Hamiltonian nor
the initial state. The implementation simply requires that the
random coupling is sampled with random standard deviation,
see Appendix B 4 for details. The BH entropy is computed by
nested averages of the Loschmidt echo.

The matrix model (6) corresponds to a convenient choice
of fugacities for the BH charges. More general fugacities
lead to complex couplings an ∈ C. The model (9) at a ∈ C
presents more realistic features of a Hawking-Page transition
compared to its counterpart with a ∈ R [45]. In Appendix B 5
we explain how this richer behavior is encoded in the spin
chain.

V. DISCUSSION

Assuming the AdS5/CFT4 correspondence, we showed
that the Hawking-Page transition with maximal supersymme-
try is reproducible on an elementary 1D spin chain. The result
is based on the mathematical identity (26), relating the entropy
to the Loschmidt echo of the XX chain with an average over
the randomized coupling. We also studied order operators for
this transition. Additionally, we enriched the chain in various
ways to simulate more realistic features of the BH entropy.

Unlike the planar integrability of N = 4 SYM (reviewed
in Appendix C), the XX chain used here is an auxiliary device
manifesting the phase transition, rather than being a subsector
of SYM. We map one specific observable to the averaged ther-
mal Loschmidt echo in the spin chain. The outcome highlights
a universality property: introducing entropy in the 1D chain
through the average, it emulates the behavior of (superficially
unrelated) BH systems in (4 + 1) dimensions.

It is natural to inquire about the extent to which the spin
chain captures structural properties of BH physics, besides
the jump in entropy at the Hawking-Page transition. In Ap-
pendix D, we elaborate on two concrete avenues for future
research, aimed at characterizing the von Neumann algebra
and the microstates of the BH via spin chain techniques.

This work opens the possibility for the experimental re-
alizations of Hawking-Page transitions with simple quantum
systems. A remaining challenge is to see whether the required
system sizes (N � 4, L � 11) and associated error estimates
are feasible with the current technologies.
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APPENDIX A: HAWKING-PAGE, DECONFINEMENT,
AND THE SUPERCONFORMAL INDEX

Our study of the AdS5 entropy across the Hawking-Page
transition is done in two steps: first assume the validity of
the AdS/CFT correspondence, which maps the supergravity
problem to a four-dimensional gauge theory problem, and
then take the large N limit in the gauge theory. We now present
the pertinent quantities directly in N = 4 SYM.

1. Superconformal index

Among the observables that the combination of supersym-
metry and conformal symmetry allows us to evaluate, a basic
one is the enumeration of supersymmetric operators in the
theory. The theory being conformal, the state-operator map
dictates that one can equivalently count states.

The superconformal index (SCI) [108–110] (for a review
see Ref. [111]) is a twisted trace over the Hilbert space of
states in radial quantization. Thus, it precisely counts states
in N = 4 SYM, with sign (+ for bosons, – for fermions). It
is explicitly constructed as follows (our conventions are as in
Ref. [32]). Put N = 4 SYM on S3, with isometry su(2)+ ⊕
su(2)− whose Cartan generators we denote J±. Let r1, r2, r3

be the generators of the Cartan u(1)1 ⊕ u(1)2 ⊕ u(1)3 of the
so(6)R R symmetry of N = 4 SYM, and define r = (r1 + r2 +
r3)/3. Besides, let Q denote the supercharge preserved by the
operators of interest. The SCI is defined as

IN=4 = Tr (−1)F e−β{Q,Q†} pJ++J−+ r
2 qJ+−J−+ r

2 , (A1)

where F is the fermion number, β the inverse temperature and
p, q are fugacities. The trace is taken over the Hilbert space
on S3 in radial quantization. Finally, the term {Q, Q†} is the
generator of translations along the Euclidean time direction,

as usual. We have worked in the preferred slice p = q in the
main text, so that

IN=4 = Tr (−1)F e−β{Q,Q†} q2J++r. (A2)

The SCI is protected by supersymmetry and the sign (−1)F

effectively restricts the count to BPS states.

2. Thermal partition function

We are interested in a different observable than the SCI,
namely the thermal partition function on S3 × S1, which we
denote ZS3×S1 . It is defined as the path integral on the curved
manifold S3 × S1, but it is equivalently described as a trace
over the Hilbert space in radial quantization on S3,

ZN=4
S3×S1 = Tr e−β{Q,Q†}, (A3)

or refinements thereof by the fugacities p, q. It is similar to
the SCI, but it does not involve the weight (−1)F. In practice,
the boundary conditions for the fermions along S1 break su-
persymmetry; see, e.g., Ref. [84] for more details on placing
the theory on compact Euclidean spacetime.

The SCI has the advantage of being independent of the ’t
Hooft coupling λ = g2

YMN [112], therefore it can be computed
in the free limit and the result is exactly equal to the strong
coupling limit. By contrast, the thermal partition function does
depend on λ, preventing an exact extrapolation from weak to
strong coupling. However, the thermal partition function has
the advantage that, due to the lack of cancellations between
bosons and fermions, it is more sensitive to the deconfine-
ment transition and hence, by AdS/CFT, to the Hawking-Page
transition [84].

The entropy in AdS5 is predicted to be dual to the thermal
partition function, and we have computed

S ∼ lnZN=4
S3×S1 , (A4)

up to normalization terms that are not relevant for our anal-
ysis. This identification follows from noting that (A3) is
counting states, whence its logarithm is directly interpreted
holographically in terms of microstate counting, by using the
thermodynamic relation

S = log(# microstates). (A5)

An alternative take on the relation (A4) uses that, in the BH
phase T > THP, the near-horizon geometry is well known to
be that of an AdS2, which implies the dual theory to reduce
to an effective quantum mechanics along a thermal circle.
This effective field theory approach lies at the heart of the
derivation of (6), as we now review.

3. Effective matrix model

The insight of Ref. [15], further extended and generalized
in Ref. [18], was to consider the limit of extremely weak ’t
Hooft coupling λ = g2

YMN of ZS3×S1 . That is, only gauge
invariance is required in Ref. [15], and the computations are
performed without accounting for O(λ) corrections. Protected
by the extended supersymmetry, one is then able to interpolate
to the opposite corner of the conformal manifold, in which
the theory is strongly coupled and dual to a BH. No phase
transition takes place in this interpolation and the process is
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FIG. 3. Coupling a(T ) in (7) as a function of the temperature T .
The dotted line is a = 1, which defines TH .

smooth. We comment further on the inclusion of perturbative
corrections in λ in Appendix A 4.

Then, one considers SYM on S3 × S1, for which all the
fields are massive. Integrating them out, the effective descrip-
tion obtained is only in terms of the holonomy U of the
gauge field around the thermal circle S1. A careful account of
the integration procedure leads to the effective matrix model
description (6) for the partition function ZS3×S1 [15,18]. Note
that maximal supersymmetry requires that all the fields are in
the adjoint representation of the gauge group. Therefore only
effective multitrace interactions of the form Tr(U n)Tr(U −n)
appear in the effective action, which express the trace taken in
the adjoint in terms of the standard trace Tr in the fundamental
representation.

The effective couplings an in the matrix model (6) depend
on the masses of the heavy modes integrated out, all of which
depend on the radius 1/T of the thermal S1 as well as on
the radius of the spatial S3. The lowest coefficient a ≡ a1

was given in (7), and it is shown in Fig. 3 as a function
of T .

4. Weak coupling corrections and deconfinement

The basic ingredients on which our analysis is built are
the matrix model (6) and the AdS/CFT correspondence. The
holographic principle is used to identify the Hawking-Page
transition in the bulk with a deconfinement transition on the
dual N = 4 SYM [84]. We have already explained how the
matrix model is derived at zeroth order in the ’t Hooft cou-
pling λ, whereas the identification between deconfinement
and Hawking-Page transition is a strong coupling effect. How-
ever, the phase transition we have studied still captures the
transition from a thermal AdS to a BH phase. We refer to
Ref. [18] for a more exhaustive discussion on this matter.

Notice that, from the point of view of SYM, the jump (5)
has the neat interpretation of the thermal partition function
being dominated by gauge-singlet bound states at low tem-
perature, where the theory confines, and being dominated by
a gas of free gluons at high temperature, after deconfinement
(Fig. 4).

Let us briefly elaborate on the physical picture, following
Refs. [18,21]. At finite λ, starting from very low temperature

FIG. 4. Hawking-Page and deconfinement transitions.

and increasing it, there is a phase transition on the gravity side
at a critical temperature THP at which the BH solution becomes
dominant compared to the thermal AdS solution. This is the
Hawking-Page transition, holographically dual to the decon-
finement point in N = 4 SYM [84]. Then, at some higher
temperature T > THP, there will be a second transition in
which the thermal AdS solution becomes unstable, perturba-
tion theory around that solution becomes ill defined, and only
the large BH phase remains. It was shown in Refs. [18,21]
that the effect of taking the limit λ → 0 while retaining gauge
invariance, is that the two transitions coalesce. It follows that,
for the sake of observing the signatures of the Hawking-
Page transition, the picture considered in the main text
suffices.

Including finite λ effects, the backbone of the derivation
of the effective matrix model still holds [18], but one has to
improve (6) and include additional terms. In particular, as we
are interested in the phase transition, we can still focus on
the reduced matrix model (8) and include the corrections in λ

[18,21]:

eŜλ =
∮

dU exp

[
aTr(U )Tr(U −1)

+
∑
n�1

bn

N2n
[Tr(U )Tr(U −1)]n+1

]
, (A6)

where the notation Ŝλ indicates that it includes the corrections
in the ’t Hooft coupling on the gauge theory side of the duality.
The coefficients bn = bn(T, λ) depend on T as well as on the
’t Hooft coupling λ and vanish at λ → 0. In other words, as
argued in Refs. [18,21], the terms [Tr(U )Tr(U −1)]n dominate
against the corrections Tr(U n)Tr(U −n) near the phase transi-
tion. Furthermore, to establish a finite-λ phase diagram, it is
sufficient to include the lowest-order correction, i.e., b1 > 0
and bn>1 = 0 [21].

In summary, the simplified partition function (8) captures
all the distinctive properties of the Hawking-Page transition,
and a more realistic approximation, which includes a coex-
istence region for thermal AdS and BH, is described by the
improved formula (A6).
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APPENDIX B: REFINED PROBES OF THE
HAWKING-PAGE TRANSITION

1. Polyakov loop

From the point of view of the gauge theory, the Hawking-
Page transition is holographically dual to a deconfinement
transition at T = THP [84]. Famously, a probe of deconfine-
ment [113] is provided by the so-called Polyakov loop [114],
placed along the circle S1 of radius 1/T in this context. Let
us denote P the Polyakov loop expectation value, and let A be
the SU (N ) or U (N ) gauge field. Then,

P =
〈
Tr

[
exp

(
i
∮
S1

A

)]〉
N=4

, (B1)

where 〈·〉N=4 stands for the correlation function in the full-
fledged N = 4 CFT. Wilson loops in general, and P in
particular, are charged under the center symmetry of N = 4
SYM theory. This is directly seen by the fact that (B1) is
rotated by a phase when the gauge field A is shifted by a
flat one-form in the center of the gauge group. This makes P
an order parameter for the deconfinement transition in N = 4
SYM: it must vanish in the low-temperature phase, in which
the center symmetry is preserved, and acquires a vacuum
expectation value in the high-temperature phase, in which
deconfinement spontaneously breaks the center symmetry.

While the definition (B1) is valid at every point of the con-
formal manifold of N = 4 SYM, here we only consider the
simplifying weak coupling limit, and consider the insertion of
a Polyakov loop in the matrix model (6). The computation of
P dramatically simplifies into

P = 〈TrU 〉, (B2)

where now the symbol 〈·〉 means the one-point function com-
puted in the matrix model. If we are interested in signatures
of the phase transition, the study of P simplifies further by
taking the expectation value (B2) in the reduced matrix model
(8), exactly as we did in passing from the entropy S to Ŝ.

A convenient way to evaluate P at large N is to introduce
a source term

exp (NεTrU ) (B3)

in the matrix model (9), and compute P by differentiating the
modified entropy with respect to ε. Thanks to the charge con-
jugation symmetry of N = 4 SYM, manifest in the U ↔ U −1

symmetry of (6), and thus in particular of (9), introducing the
source term is equivalent to shift

σ

2
Tr(U + U −1) �→ 1

2
(σ + ε)Tr(U + U −1), (B4)

and, denoting Ŝ(ε) the entropy modified in this way,

P = 1

N

∂ Ŝ(ε)

∂ε

∣∣∣∣∣
ε=0

. (B5)

At this stage, it is straightforward to evaluate P at large N ,
borrowing the solution of the matrix model in Ref. [19] and
using it to evaluate (B5) at leading order, and indeed we find
P = 0 if T < THP and P �= 0 if T > THP, in agreement with
the prediction of the duality between Hawking-Page transition
and deconfinement.

A technical caveat on the latter statement is in order. Phys-
ically, the Polyakov loop describes the insertion of a heavy
quark. When considering a theory without fields in the fun-
damental representation, placed on a compact space without
boundaries such as S3, the impossibility to give the loop a
nonvanishing expectation value follows from the Gauss law
applied to the quark flux, thus our claim may look counterintu-
itive. As explained in Ref. [18], this problem is circumvented
by adding an infinitesimal perturbation that breaks the center
symmetry explicitly, and setting it to zero at the end. This pro-
cedure is pretty much analogous to the study of spontaneous
magnetization, in which one turns on a small external field of
modulus ε > 0 and sends ε → 0 at the end.

In practice, the shift (B4), which for us is a convenient
strategy at the level of matrix models, matches with the regu-
larization prescribed in Ref. [18]. Eventually one finds P �= 0
if T > THP [18].

On the spin chain side, it was shown in Ref. [93] that matrix
model averages such as (B2) correspond to impurities in the
preparation of the initial state |ψ0〉. Then, P corresponds
to the ratio of amplitudes with and without impurity. More
precisely, let |ψ×〉 be as in (27), and denote G×

N (J ) [Ĝ×
N (J )]

the analog of GN (J ) [ĜN (J )] constructed using |ψ×〉 as initial
state, instead of |ψ0〉. Explicitly,

G×
N (J ) = 〈ψ0|e−HXX/T̃ |ψ×〉, (B6)

and Ĝ×
N = G×

N /G1. Then, the spin chain definition of the ob-
servable (B2) is

P = 〈Ĝ×
N (J )〉2a

〈ĜN (J )〉2a
. (B7)

The computation of 〈TrU 〉 at fixed J was done in Ref. [93].1

Taking that result and performing the Gaussian average over
J , we get the expected result for P .

Notice that the subtlety mentioned in the Polyakov loop,
and the necessity to introduce a symmetry-breaking deforma-
tion and the ε → 0 limit at the end, have a natural solution in
the spin chain. Recall that the amplitudes ĜN are not mea-
surable quantities, but the echoes L̂N are. Therefore, in a
hypothetical experimental setup, Ĝ×

N and ĜN in (B7) should be
replaced by the square root of the averaged Loschmidt echoes,

P =
〈
√
L̂×

N (J )〉2a

〈
√
L̂N (J )〉2a

(B8)

exactly as in (26). The center symmetry of N = 4 SYM does
act on the spin chain with the defect, rotating the ampli-
tude Ĝ×

N by a phase. However, any physical implementation
would automatically select a real saddle point for P , since
the hypothetical experiment would only be measuring the real
probability (left invariant by the action of the center symme-
try) and not the amplitude. Stated differently, any concrete
implementation of (B7) would have built in the analog of the
regulating procedure described in Ref. [18] to obtain P �= 0.

1In turn, the details of the computation in Ref. [93] mimic the
Wilson loop analysis of Refs. [115,116].
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It is also noteworthy that the definition of P can be
modified in both N = 4 SYM and the spin chain. On the
field theory side, it is possible to examine loops in higher-
dimensional representations of the gauge group, such as the
rank-p antisymmetric representation. On the spin chain side,
a feasible approach is to design an initial state |ψ×〉 where
the final spin ↓ is shifted p � 1 locations away from the other
N − 1 spins ↓. Notwithstanding this alteration, Identity (B7)
remains valid.

An open problem would be to study the spin chain avatars
of other types of defects, analogous to the one considered in
Ref. [73]. The initial state in that case would be a (compli-
cated) superposition of states with impurities.

2. Improving the estimate of the BH entropy

Our main result (26) hinges upon the mapping of eŜ to a
coupling average of the GWW matrix model. However, as
explained in Ref. [18] (also Refs. [19,45]) and reviewed in
the main text, this is far from being the end of the story for the
BH entropy. Ŝ is the dominating contribution near the critical
point, which therefore contains enough information to estab-
lish the phase transition, but does not accurately reproduce
the entropy S without accounting for the operators that have
been discarded in passing from (6) to (8). Nevertheless, as
long as we restrict to the regime in which the matrix model
description holds, we can obtain more accurate results via
mapping to more complicated spin chain Hamiltonians, with
more interactions.

On the one hand, by repeating the Gaussian integral trick
that led to (9), we can approximate the full BH entropy in
(6) up to some cutoff order K with K Gaussian integrals over
auxiliary variables σn, with standard deviation 2an:

eS ∼
K∏

n=1

∫ ∞

0
σndσn e−N2 σ2

n
4an

×
∮

dU exp

{
K∑

n=1

Nσn

2n
Tr(U n + U −n)

}
, (B9)

omitting uninteresting normalization factors. In fact, a (differ-
ent) average point of view on (6) has been already advocated
in Ref. [57].

On the other hand, the mapping to the spin chain for
these more general Hamiltonians has been formalized in
Refs. [99,103]. The procedure, which generalizes Ref. [95],
is similar to the one reviewed in the main text and we skip the
details, for which we refer to Ref. [99]. The streamlined idea
is to generalize the Hamiltonian HXX beyond nearest-neighbor
interactions:

Hgen = −1

2

L−1∑
j=0

K∑
n=1

J̃n

n
(σ−

j σ+
j+n + σ+

j σ−
j+n), (B10)

for a collection of couplings J̃n and assuming periodic bound-
ary conditions. For ease of exposition, we rename J̃n = J̃1γn

and denote J ≡ J̃1/T̃ as in the main text. Then, running an
argument analogous to Ref. [95] and Sec. III, ones finds that
the Loschmidt amplitude

Ggen
N (J ) = 〈ψ0|e−Hgen/T̃ |ψ0〉 (B11)

is computed by a Toeplitz determinant

Ggen
N (J ) = det

1� j,k�N−1

[
ggen

j,k (J )
]
, (B12)

where the generalization of (18) is

ggen
j,k (J ) = 〈⇑ |σ+

j e−Hgen/T̃ σ−
k | ⇑〉. (B13)

Reasoning as in Sec. III, we differentiate ggen
j,k and, using the

commutation relations (14), we find

dggen
j,k

dJ
= 1

2

K∑
n=1

γn

n
(g j−n,k + g j+n,k ). (B14)

This is the recurrence relation of the generalized Bessel func-
tion. Alternatively, it can be directly checked that the integral∮

du

2π iu
u j−k exp

{
J

2

K∑
n=1

γn

n
(un + u−n)

}
(B15)

is a solution. Plugging the result into (B12) and applying the
Heine-Szegő identity, we have that the Loschmidt amplitude
for this more general spin chain equals the matrix model

Zgen
N =

∮
dU exp

{
K∑

n=1

J̃n

2nT̃
Tr(U n + U −n)

}
(B16)

in the limit L � N . Again, the temperature T̃ of the laboratory
does not matter as long as it is nonzero, because the control
parameters of the system are the ratios

Jn = J̃n/T̃ . (B17)

Thus, with the normalization as in the main text, we find the
generalized thermal Loschmidt echo

L̂gen
N (J1, . . . , JK ) = ∣∣Zgen

N /Zgen
1

∣∣2. (B18)

Comparing (B9) with the generalized spin chain matrix
model (B16), we observe that the entropy S, with irrelevant
interactions2 cut off at some order K , and the generalized
spin chain with up to K-neighbor interactions, satisfy the
analogous relation as for the simplified entropy Ŝ and the XX
chain. Once again, the spin chain coupling constants J̃n are
related to the Hubbard-Stratonovich fields σn through Nσn =
J̃n/T̃ ≡ Jn, and in the generalized setting one is instructed to
take a Gaussian average over all the spin-spin couplings Jn.

In principle, one is able to approximate the entropy S (and
hence the black hole entropy SBH in the phase T > THP) to
arbitrarily high-order K of irrelevant couplings, by measuring
the Loschmidt echo in the generalized chain and then taking a
Gaussian average over all the couplings.

We underline that the average perspective on the entropy
of a BH in the holographic dual to N = 4 SYM was already
undertaken in Ref. [57], but here we are pointing out a very
concrete and explicit way to implement the average in a sim-
ple 1D auxiliary device.

2In this paper, the word “irrelevant” is always used in its precise
RG flow sense.
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FIG. 5. The initial state (2) is equivalent, via a Jordan-Wigner
transformation, to place N adjacent fermions on a lattice of L sites.
◦ indicates an empty site, • indicates a site occupied by a fermion.

3. Fermionic point of view

The XX model, also known as isotropic XY model, is
well known to be equivalent to a system of free fermions,
via the Jordan-Wigner (JW) map [107]. We can identify the
spin at site j of the chain with a fermionic occupation number,
according to

| ↑〉 �→ |0〉, | ↓〉 �→ |1〉, (B19)

where |n j〉 indicates n j ∈ {0, 1} fermions on the site j. The
initial state (2) thus corresponds to place N adjacent fermions
on a periodic lattice of L sites (Fig. 5),

|ψ0〉 = | 1, 1 . . . , 1︸ ︷︷ ︸
N

, 0, 0 . . . , 0〉. (B20)

This fermionic model leads to the same Loschmidt echo used
in the main text [101].

It is possible to extend this result and to show that for a 1D
fermionic model

Hferm = 1

L

∑
k

εk c̃†
k c̃k (B21)

with a general dispersion relation εk , the transition amplitude
is still a unitary matrix model (for fermions with periodic
boundary conditions) with the dispersion relation as a con-
fining potential.

The Hamiltonian (B21), is expressed in momentum space,
with k running over the dual lattice,

k = 2π

L
q, q = 0, . . . , L − 1, (B22)

and c̃†
k , c̃k the fermionic creation and annihilation operators in

momentum space, which satisfy the canonical anticommuta-
tion relations

{c̃†
k , c̃k′ } = 2πδq,q′ . (B23)

They are related to the creation and annihilation operators
c†

j , c j for fermions on the lattice site j via the discrete Fourier
transform

c̃k =
L−1∑
j=0

ei jkc j =
L−1∑
j=0

e−i2πq j/Lc j . (B24)

Fermionic models of the form (B21) have been analyzed
in Ref. [117], to which we refer for a careful treatment of
the periodic boundary conditions. As a side remark, we note
that the fermionic setup allows nonisotropic XY interactions
[117], but for concreteness we do not consider such scenario.

The result equating the Loschmidt echo of the fermionic
model to the Loschmidt echo of the spin chain holds true even
for cases where εk is not equal to cos(k), which corresponds
to the image of the XX model by the JW transformation
and results in the GWW matrix model for the Loschmidt
amplitude.

To derive the matrix model description, we extend the
result of Ref. [101]. With the initial state |ψ0〉 as in (B20),
we consider the amplitude

Gferm
N = 〈ψ0|e−Hferm/T̃ |ψ0〉. (B25)

Inserting N times the resolution of the identity on the left and
on the right and approximating for L → ∞ (for the finite-L
expression, simply replace the integrals by Riemann sums),
we get

Gferm
N =

∫ 2π

0

dk1

2π
e−εk1 /T̃ · · ·

∫ 2π

0

dkN

2π
e−εkN /T̃

× |〈k1, . . . , kN |ψ0〉|2. (B26)

This expression heavily relies on the fact that (B21) describes
noninteracting fermions. The amplitude |〈k1, . . . , kN |ψ0〉| is
computed by a Slater determinant. We also make a change
of variables k j = θ j + π , which is not necessary in principle
but is required for consistency with our conventions in the
spin chain, as we have (implicitly) worked with variables
θ j ∈ [−π, π ] throughout. Then, one finally arrives at

Gferm
N =

∮
dU exp

{
1

T̃
Tr Vε (U )

}
, (B27)

where U is a unitary matrix with eigenvalues eiθ1 , . . . , eiθN ,
and Vε is the matrix model potential defined by the dispersion
relation,

Tr Vε (U ) =
N∑

j=1

εk j=θ j+π . (B28)

This equals (B16) upon identification of the dispersion
relation

εk =
K∑

n=1

(−1)n J̃n

2n
(eik + e−ik ). (B29)

Therefore, with this choice, Gferm
N = Ggen

N .
We emphasize that, despite the equality of this specific ob-

servable, the free fermion system with generalized dispersion
relation and the spin chain with interaction beyond nearest
neighbor are not equivalent. It is a known fact that the JW
transformation cannot map these two models for any K > 1.

We have obtained that the spin chains in Appendix B 2 and
the fermionic models (B21) have equal return amplitude in
the suitably chosen initial state (2). We now proceed to show
this fact explicitly, thus yielding a consistency check of the
previous derivation and demonstrating as a proof of concept
that two models that are not equivalent can nevertheless have
equal Loschmidt echo.

It is well known that, for an open chain, the inverse JW map
[in the conventions (B19)] transforms the fermionic bilinear
terms according to [107,117]

(−1)n

4
c†

j c j+n �→ −σ−
j

(
n−1∏
ν=1

σ z
j+ν

)
σ+

j+n, (B30)

where the sign on the left-hand side comes from the (−1)n

in (B29), and the overall minus sign on the right-hand side
agrees with the spin chain conventions in (B10). The spin
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chain Hamiltonian resulting from the inverse JW transforma-
tion differs from the Hamiltonian (B10) by the presence of
the intermediate σ z

j+ν , enforcing fermionic statistic. We refer
to Refs. [117,118] for more details as well as for the subtleties
arising from the periodic boundary conditions. Since (B21)
only contains fermion bilinears, the fermion parity is a con-
served quantity. For the observable of interest, where Hferm

acts only on (B20), this equals (−1)N .
Consider first a Hamiltonian with only nth-nearest-

neighbor interaction, and map it to spin variables via (B30).
To compute the return amplitude for this term, we expand the
exponential and compute, for every m � 0,

〈ψ0|
⎛
⎝L−1∑

j=0

σ−
j

(
n−1∏
ν=1

σ z
j+ν

)
σ+

j+n + c.c.

⎞
⎠m

|ψ0〉. (B31)

Letting the operator act on the ket gives a superposition of
states with definite fermion occupation configuration. How-
ever, only even powers of m give states with nontrivial overlap
with 〈ψ0|. Therefore, since even powers of σ z are trivial, the
Loschmidt amplitude is the same as in the spin chain with
nth-nearest-neighbor interaction.

When including all the interaction terms 1 � n � K , the
outcome is unchanged. This is guaranteed by the fact that
the potential mixing of contributions [for instance, (c†

j+1c j )nm

with (c†
j+nc j )m], cannot produce cancellations, because they

come with different coefficients. The claim can also be
checked by direct computation, e.g., in the K = 2 case.

We highlight that the equality of the Loschmidt amplitudes
for the two inequivalent models stems from two properties:

(1) The initial and final states are identical;
(2) The initial state is an eigenstate of the fermion parity

operator.

4. Perturbative corrections to the BH entropy

In Appendix A 4 we have enriched the BH entropy allow-
ing for a small but finite ’t Hooft coupling 0 < λ 
 1. The
matrix model (A6) was studied in Ref. [21], where it was
shown that bn>1 = 0 already retains all the desired qualitative
features. The authors of Ref. [21] rewrite [b ≡ b1(T, λ)]

eŜλ = N3

4
√

πb

∫ ∞

−∞

dμ

μ
e− N2

4b (μ−a)2
∫ ∞

0
σdσ

×
∮

dU exp

[
−N2

(
σ 2

4μ
− F (σ )

)]
, (B32)

which makes it clear that the map to the spin chain goes
through. In this case, though, a nested average over the cou-
pling J is required. First, observe that

Ŝλ ∼ ln

[∫ ∞

−∞

dμ

μ
e− N2

4b (μ−a)2
eŜ|a �→μ

]
, (B33)

where eŜ|a �→μ stands for (9) with a replaced by μ on the right-
hand side, and the symbol ∼ again means that we drop terms
that do not affect our discussion. Then, we run the argument
of the main text and use (26) to obtain

Ŝλ ∼ ln

[∫ ∞

−∞

dμ

μ
e− N2

4b (μ−a)2 〈
√
L̂N 〉2μ

]
. (B34)

The outcome of Ref. [21] is that (B34) has a phase structure
that agrees with (9) near b → 0 (which corresponds to λ → 0
in SYM), but in addition shows the properties predicted in
Appendix A 4.

Our result is to argue that this outcome can be tested on the
Heisenberg XX chain, by measuring the thermal Loschmidt
echo and then take a nested average of the coupling. Namely,
first take a Gaussian average over the spin-spin coupling J
centered at J = 0 with standard deviation 2μ. The parameter
μ is itself sampled from a Gaussian distribution, centered
around μ = a with standard deviation 2b/N2. Interestingly,
the progress in passing from Ŝ to Ŝλ, which is a nontrivial step
from the SYM side, reduces to averaging the averaged echo on
the spin chain. That is, in practice it boils down to repeat the
measurement several times, sampling both J and the standard
deviation with which J is sampled.

5. Complex temperature

It is worthwhile to stress that the matrix model (6) was
derived in Refs. [15,16,18] under certain simplifying assump-
tions. It was pointed out in Ref. [45] that, adopting most of
the same simplifications but allowing for complex couplings
an ∈ C in the matrix model (6) leads to physically more realis-
tic predictions about the BH behavior. This is because it would
allow for arbitrary fugacities in the SCI, which in turn give
arbitrary fugacities for the BH charges, thus retaining more
information in the computation.

Conceptually, it is straightforward to introduce complex
couplings in our model, even though any hypothetical ex-
perimental realization would become more challenging. We
focus again on the reduced model (9) to compute Ŝ. Writing
a = |a|eiϕ , we use (26) and (25), and find that the model of
Ref. [45] satisfies

eŜ ∼ 〈L̂N (e−iϕ/2J )〉2|a|. (B35)

Namely, we still compute the average of the Loschmidt echo,
with random coupling sampled with a Gaussian distribution,
except that now the system is at complex temperature eiϕ/2T̃ ,
i.e., finite temperature and time evolved. The complex temper-
ature Loschmidt amplitude reduces to the GWW matrix model
with complex coupling, in which the integration contour is
deformed along a suitable thimble [119,120].

In a laboratory setup, one first fixes the temperature of the
system at a value T̃R and then lets the system evolve until time
t , which depends on the phase ϕ of a in such a way that

arg
(
it + T̃ −1

R

) = −ϕ/2. (B36)

The procedure of averaging over J remains unchanged in this
scenario.

6. Determinant identities from spin chains

Throughout this Appendix we have studied various ways
of enriching the XX spin chain, with the aim of refining the
correspondence with the Hawking-Page transition. We now
comment on a byproduct of our construction, which has inter-
esting implications for the spin chain itself, regardless of the
applications to BH physics.
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Consider a spin chain with interaction at next-to-nearest
neighbor, but without any nearest-neighbor term. That is, we
are in the setup of Appendix B 2 with K = 2 and

J̃1 = 0, J̃2 > 0. (B37)

In this case, the spin chain decouples into two noninteracting
XX spin chains, both with J̃ = J̃2. One copy of the XX chain
involves only the spins at even lattice sites, and the other
copy involves only the spins at odd lattice sites. Therefore,
as a corollary of our analysis in Appendix B 2 we derive the
identity

G2nn
2N (J ) = [GN (J )]2, (B38)

where, on the left-hand side, G2nn
2N is the Loschmidt amplitude

for the spin chain with only next-to-nearest-neighbor ferro-
magnetic interaction. This holds already at finite L, but in the
following we consider L → ∞ to simplify the expressions.

Utilizing (B12), the equality of the amplitudes translates
into a mathematical identity:

det
1� j,k�2N

[
I (1,2)

j−k (0, J )
] = ( det

1� j,k�N
[I j−k (J )])2. (B39)

On the right-hand side, Iν (J ) is the modified Bessel function
of first kind, while on the left-hand side I (1,2)

ν (J1, J2) is the
generalized modified Bessel function, with integral represen-
tation for ν ∈ Z

I (1,2)
ν (J1, J2) =

∮
du

2π iu
uν e

∑2
n=1

Jn
2n Tr(un+u−n ). (B40)

Therefore, as an immediate byproduct of Ref. [99] together
with Appendix B 2 we derive (B39) [and its generalization
(B46)]. We stress the following aspects:

(1) The argument is this Appendix entails a change in
philosophy, where we use an elementary spin chain argument
and the map of Ref. [99] to write an identity for Toeplitz
determinants, which is seemingly less obvious from the point
of view of random matrix theory.

(2) This identity involves the ubiquitous GWW model.
To strengthen our argument, we now rederive (B39) [and

its generalization (B46)] in an independent way, thus pro-
viding a solid consistency check of the construction in
Appendix B 2.

To begin with, we note that, in the large N limit, (B39) is a
direct consequence of Szegő’s strong limit theorem [121]. To
study the determinants at finite N , we use that the generalized
Bessel functions satisfy [122]

I (1,2)
ν (0, J ) =

{
0, ∀ν ∈ 1 + 2Z,

Iν/2(J ), ∀ν ∈ 2Z.
(B41)

The case N = 1 of (B39) reads

I (1,2)
0 (0, J )2 − I (1,2)

−1 (0, J )I (1,2)
1 (0, J ) = I0(J )2, (B42)

and it is proved as an immediate consequence of (B41). It is
also easy to check explicitly that (B39) holds for low value of
N , thanks to the relations (B41).

To prove (B39) in full generality—without resorting to the
spin chain—one expands the determinant on the left-hand

side,

det
1� j,k�2N

[
I (1,2)

j−k (0, J )
] =

∑
�∈S2N

(−1)�
2N∏
j=1

I (1,2)
j−� ( j)(0, J ) (B43)

and separates the product over j into two products, over
j ∈ 2Z ∩ [1, N] and j ∈ (1 + 2Z) ∩ [1, N]. From (B41),
I (1,2)

j−� ( j)(0, J ) �= 0 only if both j and � ( j) are even or both are
odd. Therefore the nonvanishing contributions to the Toeplitz
determinant are those from permutations that factorize into
� = �e ◦ �o, where �e (�o) permutes only the even (odd)
indices. This yields

∑
�∈S2N

(−1)�
2N∏
j=1

I (1,2)
j−� ( j)(0, J )

=

⎡
⎢⎢⎣ ∑

�e∈SN

(−1)�e

2N∏
j=1

j even

I (1,2)
j−�e ( j)(0, J )

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣ ∑

�o∈SN

(−1)�o

2N∏
j=1
j odd

I (1,2)
j−�o( j)(0, J )

⎤
⎥⎥⎦, (B44)

where we remark that this factorization is a consequence of
the nontrivial identity (B41). Recognizing the two terms on
the right-hand side as Toeplitz determinants, we arrive at
(B39).

The above argument is easily generalized to chain
with K th-nearest-neighbor interaction, and no other inter-
action. Namely, one considers a spin chain with hopping
Hamiltonian3

HKnn = −J

2

L−1∑
j=0

(σ−
j σ+

j+K + σ+
j σ−

j+K ). (B45)

The same argument as for K = 2 implies the factorization into
K noninteracting XX chains, hence

GKnn
KN (J ) = [GN (J )]K . (B46)

This translates again into an identity of Toeplitz deter-
minants, involving higher generalized Bessel functions. The
generalization of property (B41) is [122]

I (1,K )
ν (0, J ) =

{
0, ∀ν /∈ KZ,

Iν/K (J ), ∀ν ∈ KZ.
(B47)

Using this property, it is easy to rederive (B46) independently
of the spin chain, exactly as in the K = 2 case.

APPENDIX C: COMMENTS ON PLANAR INTEGRABILITY

There exists a connection between spin chains and N = 4
SYM, known since the work of Minahan-Zarembo [123],
which goes under the name of planar integrability. This prop-
erty is the statement that, in the planar limit, correlation

3To reduce clutter, we slightly change the notation with respect to
Appendix B 2, (J̃K/K, T̃ ) �→ (J, 1).

033007-11



PÉREZ-GARCÍA, SANTILLI, AND TIERZ PHYSICAL REVIEW RESEARCH 6, 033007 (2024)

functions of certain local operators in N = 4 SYM in flat
spacetime equal those of (different) operators in a spin chain
[123,124]. This relation appears in the planar limit of large N
with fixed ’t Hooft coupling λ.

While the setup is vaguely similar to what we consider
here, we ought to emphasize the built-in differences.

(1) Planar integrability, as the name suggests, is a feature
that emerges only in the planar limit. On the contrary, given
any truncation of the tower of irrelevant operators appearing
in (6) (see Appendix B 2 for details), we can define a spin
chain Hamiltonian such that the averaged Loschmidt echo
reproduces the thermal partition function of N = 4 SYM.
This holds before taking any large N limit. Moreover, the
relation (26) is exact, even though the large N limit serves
to render Ŝ a good approximation of the SCI.

(2) In turn, the bridge between N = 4 SYM and the XX
spin chain we find is limited to a map between specific observ-
ables, namely the partition function on thermal S3 × S1 on the
SYM side and the averaged Loschmidt echo on the chain side.
We do not claim a full identification of the two systems, in any
regime. This correspondence can be extended to include se-
lected nonlocal operators in N = 4 SYM, mapped to defects
in the XX chain (see Appendix B 1), but falls short of yielding
a complete dictionary between operators on both sides of the
correspondence.

(3) Furthermore, for the correspondence to work, we have
to introduce disorder in the spin chain by randomizing the
coupling and taking the Gaussian average. This situation is
radically different from the planar integrability.

APPENDIX D: OUTLOOK: BEYOND
THE HAWKING-PAGE TRANSITION

We conclude this Appendix on a more speculative note. So
far, our discussion has focused on a 1D quantum simulation
to reproduce the entropy of a holographic BH in AdS5. We
now suggest and lay down two open problems, which aim
at looking for deeper signatures of BH physics on the spin
chain.

1. Operator algebras from the spin chain

The upshot of our analysis is that the Heisenberg XX spin
chain can be used to simulate the Hawking-Page transition.
This correspondence has been refined and extended in several
directions in Appendix B.

It is interesting to ask whether other characteristic proper-
ties of the Hawking-Page transition are automatically encoded
in the spin chain, if we look beyond the Loschmidt echo. For
instance, phase transitions as the one studied presently are
accompanied by a drastic change in the large-N algebra of
operators [125]. Due to its relevance for questions concerning
the BH horizon and its interior [126,127], it would be ex-
tremely interesting to enlarge our correspondence to include
this aspect.

To address questions of this kind, the fermionic picture
comes in handy. Indeed, it has been recently pointed out that
these algebra transitions are detected by fermionic lattices

[128]. If this result could be extended to the fermionic sys-
tems obtained in Appendix B 3, one would end up with a
very concrete quantum mechanical gadget that realizes the
criterion of Ref. [125] for the behavior of the algebra of
operators.

A related problem is to understand the relation between
the averaging procedure on the Loschmidt echo and chaos.
The presence of a BH should be accompanied by maximal
chaos, and it would be interesting to see how this effect ap-
pears in the spin chain. Leveraging the connection between
quantum chaos and algebras of operators [129], establishing
that the averaged Loschmidt echo possesses maximal chaos
would shed light on how spacetime emerges from the spin
chain through the Gaussian average over couplings of the
measurements.

2. Identifying states

So far, our conclusions have been about the large-N be-
havior of the models, be it the gravitational system, its
holographic dual N = 4 SYM, or the spin chain. Neverthe-
less, the mapping of the effective partition function onto the
spin chain is exact and thus holds for finite N . One problem,
however, is that the contributions discarded in going from (6)
to (8) give finite contributions at finite N , so their corrections
should be taken into account. This can be done by constructing
a more involved spin chain, with interactions beyond nearest
neighbors as explained in Appendix B 2, which approximates
the effect of accounting for higher operators in (6). The sit-
uation will remain tractable for N finite but large, but will
become untamed for small N .

In principle, it is possible to encode the exact SCI of N = 4
on a spin chain, because it admits a presentation as a unitary
matrix model. Therefore, the argument in Appendix B 2 shows
that with sufficiently complicated interactions one should be
able to simulate the SCI and extract the microstate count at
large N from the spin chain device. The SCI is protected
by supersymmetry, so this procedure does not require weak
’t Hooft coupling and theoretically allows nonperturbative
counting. Unfortunately, the required Hamiltonian seems too
complicated to be effectively implemented in practice. More-
over, the microstate counting in this proposal would suffer
from the finite-size effects of the lattice, so the empirical
result will inevitably differ from the setup it is supposed to
simulate.

The work [66] investigated the finite N spectrum of pro-
tected operators in N = 4 SYM, building upon [26]. One
significant discovery was the identification of potential black
hole microstates even at N = 2. It is possible to verify the
findings of Ref. [66] using a quantum simulator. At present,
it is unclear how to refine our setup to achieve this, as it
would likely require considering more complex interactions
among qubits to reproduce the significant 1/N corrections.
Additionally, it would involve probing a more precise quantity
than the Loschmidt echo. This paper lays the groundwork
for exploring important quantum simulation questions in the
future. The exploration will shed light on the nature of black
holes.

033007-12



HAWKING-PAGE TRANSITION ON A SPIN CHAIN PHYSICAL REVIEW RESEARCH 6, 033007 (2024)

[1] J. A. Wheeler, Information, physics, quantum: The search for
links, in Proceedings of the 3rd International Symposium on
Foundations of Quantum Mechanics in Light (JPS Conf. Proc.,
Tokyo, Princeton, NJ, 1989), pp. 354–358.

[2] J. Maldacena and L. Susskind, Cool horizons for entangled
black holes, Fortschr. Phys. 61, 781 (2013).

[3] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black
holes: Complementarity or firewalls? J. High Energy Phys. 02
(2013) 062.

[4] E. Verlinde and H. Verlinde, Black hole entanglement and
quantum error correction, J. High Energy Phys. 10 (2013) 107.

[5] A. Almheiri, X. Dong, and D. Harlow, Bulk locality and
quantum error correction in AdS/CFT, J. High Energy Phys.
04 (2015) 163.

[6] G. Penington, Entanglement wedge reconstruction and the
information paradox, J. High Energy Phys. 09 (2020)
002.

[7] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The
entropy of bulk quantum fields and the entanglement wedge
of an evaporating black hole, J. High Energy Phys. 12 (2019)
063.

[8] D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer, S. I.
Davis, N. Lauk, H. Neven, and M. Spiropulu, Traversable
wormhole dynamics on a quantum processor, Nature (London)
612, 51 (2022).

[9] S. W. Hawking and D. N. Page, Thermodynamics of black
holes in anti-de Sitter space, Commun. Math. Phys. 87, 577
(1983).

[10] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[11] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975) [Erratum: Commun. Math. Phys.
46, 206 (1976)].

[12] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 38, 1113
(1998).

[13] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

[14] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[15] B. Sundborg, The Hagedorn transition, deconfinement and N
= 4 SYM theory, Nucl. Phys. B 573, 349 (2000).

[16] A. M. Polyakov, Gauge fields and space-time, Int. J. Mod.
Phys. A 17, 119 (2002).

[17] V. Balasubramanian, M.-X. Huang, T. S. Levi, and A. Naqvi,
Open strings from N = 4 super Yang-Mills, J. High Energy
Phys. 08 (2002) 037.

[18] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and
M. Van Raamsdonk, The Hagedorn - deconfinement phase
transition in weakly coupled large N Gauge theories, Adv.
Theor. Math. Phys. 8, 603 (2004).

[19] H. Liu, Fine structure of Hagedorn transitions, arXiv:hep-
th/0408001.

[20] D. Berenstein, A toy model for the AdS/CFT correspondence,
J. High Energy Phys. 07 (2004) 018.

[21] L. Alvarez-Gaume, C. Gomez, H. Liu, and S. R. Wadia, Fi-
nite temperature effective action, AdS5 black holes, and 1/N
expansion, Phys. Rev. D 71, 124023 (2005).

[22] G. Festuccia and H. Liu, Excursions beyond the horizon: Black
hole singularities in Yang-Mills theories. I. J. High Energy
Phys. 04 (2006) 044.

[23] P. Basu and S. R. Wadia, R-charged AdS5 black holes and large
N unitary matrix models, Phys. Rev. D 73, 045022 (2006).

[24] L. Alvarez-Gaume, P. Basu, M. Marino, and S. R. Wadia,
Blackhole/String transition for the small Schwarzschild black-
hole of AdS5 × S5 and critical unitary matrix models, Eur.
Phys. J. C 48, 647 (2006).

[25] I. Biswas, D. Gaiotto, S. Lahiri, and S. Minwalla, Super-
symmetric states of N = 4 Yang-Mills from giant gravitons,
J. High Energy Phys. 12 (2007) 006.

[26] C.-M. Chang and X. Yin, 1/16 BPS states in N = 4 super-
Yang-Mills theory, Phys. Rev. D 88, 106005 (2013).

[27] S. M. Hosseini, K. Hristov, and A. Zaffaroni, An extremization
principle for the entropy of rotating BPS black holes in AdS5,
J. High Energy Phys. 07 (2017) 106.

[28] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy,
Microscopic origin of the Bekenstein-Hawking entropy of
supersymmetric AdS5 black holes, J. High Energy Phys. 10
(2019) 062.

[29] S. Choi, J. Kim, S. Kim, and J. Nahmgoong, Large AdS black
holes from QFT, arXiv:1810.12067.

[30] S. Choi, J. Kim, S. Kim, and J. Nahmgoong, Comments on
deconfinement in AdS/CFT, arXiv:1811.08646.

[31] F. Benini and P. Milan, A Bethe Ansatz type formula for
the superconformal index, Commun. Math. Phys. 376, 1413
(2020).

[32] F. Benini and P. Milan, Black Holes in 4D N = 4 Super-Yang-
Mills field theory, Phys. Rev. X 10, 021037 (2020).

[33] M. Honda, Quantum black hole entropy from 4d supersym-
metric Cardy formula, Phys. Rev. D 100, 026008 (2019).

[34] A. Arabi Ardehali, Cardy-like asymptotics of the 4d N = 4
index and AdS5 blackholes, J. High Energy Phys. 06 (2019)
134.

[35] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, The
asymptotic growth of states of the 4d N = 1 superconformal
index, J. High Energy Phys. 08 (2019) 120.

[36] A. González Lezcano and L. A. Pando Zayas, Microstate
counting via Bethe Ansätze in the 4d N = 1 superconformal
index, J. High Energy Phys. 03 (2020) 088.

[37] F. Larsen, J. Nian, and Y. Zeng, AdS5 black hole entropy near
the BPS limit, J. High Energy Phys. 06 (2020) 001.

[38] A. Cabo-Bizet and S. Murthy, Supersymmetric phases of 4d
N = 4 SYM at large N , J. High Energy Phys. 09 (2020)
184.

[39] A. A. Ardehali, J. Hong, and J. T. Liu, Asymptotic growth
of the 4d N = 4 index and partially deconfined phases,
J. High Energy Phys. 07 (2020) 073.

[40] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni, and Z.
Zhang, Superconformal indices at large N and the entropy of
AdS5 × SE5 black holes, Class. Quantum Grav. 37, 215021
(2020).

[41] M. David, J. Nian, and L. A. Pando Zayas, Gravitational Cardy
limit and AdS black hole entropy, J. High Energy Phys. 11
(2020) 041.

[42] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, The
large-N limit of the 4d N = 1 superconformal index, J. High
Energy Phys. 11 (2020) 150.

033007-13

https://doi.org/10.1002/prop.201300020
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/JHEP10(2013)107
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/10.1007/BF01208266
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0550-3213(00)00044-4
https://doi.org/10.1142/S0217751X02013071
https://doi.org/10.1088/1126-6708/2002/08/037
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://arxiv.org/abs/hep-th/0408001
https://doi.org/10.1088/1126-6708/2004/07/018
https://doi.org/10.1103/PhysRevD.71.124023
https://doi.org/10.1088/1126-6708/2006/04/044
https://doi.org/10.1103/PhysRevD.73.045022
https://doi.org/10.1140/epjc/s10052-006-0049-x
https://doi.org/10.1088/1126-6708/2007/12/006
https://doi.org/10.1103/PhysRevD.88.106005
https://doi.org/10.1007/JHEP07(2017)106
https://doi.org/10.1007/JHEP10(2019)062
https://arxiv.org/abs/1810.12067
https://arxiv.org/abs/1811.08646
https://doi.org/10.1007/s00220-019-03679-y
https://doi.org/10.1103/PhysRevX.10.021037
https://doi.org/10.1103/PhysRevD.100.026008
https://doi.org/10.1007/JHEP06(2019)134
https://doi.org/10.1007/JHEP08(2019)120
https://doi.org/10.1007/JHEP03(2020)088
https://doi.org/10.1007/JHEP06(2020)001
https://doi.org/10.1007/JHEP09(2020)184
https://doi.org/10.1007/JHEP07(2020)073
https://doi.org/10.1088/1361-6382/abb39b
https://doi.org/10.1007/JHEP11(2020)041
https://doi.org/10.1007/JHEP11(2020)150


PÉREZ-GARCÍA, SANTILLI, AND TIERZ PHYSICAL REVIEW RESEARCH 6, 033007 (2024)

[43] P. Agarwal, S. Choi, J. Kim, S. Kim, and J. Nahmgoong, AdS
black holes and finite N indices, Phys. Rev. D 103, 126006
(2021).

[44] A. G. Lezcano, J. Hong, J. T. Liu, and L. A. Pando Zayas,
Sub-leading structures in superconformal indices: Subdomi-
nant saddles and logarithmic contributions, J. High Energy
Phys. 01 (2021) 001.

[45] C. Copetti, A. Grassi, Z. Komargodski, and L. Tizzano,
Delayed deconfinement and the Hawking-Page transition,
J. High Energy Phys. 04 (2022) 132.

[46] K. Goldstein, V. Jejjala, Y. Lei, S. van Leuven, and W. Li,
Residues, modularity, and the Cardy limit of the 4d N = 4
superconformal index, J. High Energy Phys. 04 (2021) 216.

[47] A. Amariti, M. Fazzi, and A. Segati, The SCI of N = 4
USp(2Nc) and SO(Nc ) SYM as a matrix integral, J. High
Energy Phys. 06 (2021) 132.

[48] A. Amariti, M. Fazzi, and A. Segati, Expanding on the Cardy-
like limit of the SCI of 4d N = 1 ABCD SCFTs, J. High
Energy Phys. 07 (2021) 141.

[49] D. Cassani and Z. Komargodski, EFT and the SUSY index on
the 2nd sheet, SciPost Phys. 11, 004 (2021).

[50] O. Aharony, F. Benini, O. Mamroud, and P. Milan, A gravity
interpretation for the Bethe Ansatz expansion of the N = 4
SYM index, Phys. Rev. D 104, 086026 (2021).

[51] C. F. Uhlemann, Islands and page curves in 4d from type IIB,
J. High Energy Phys. 08 (2021) 104.

[52] J. Hong, The topologically twisted index of N = 4 SU(N)
Super-Yang-Mills theory and a black hole Farey tail, J. High
Energy Phys. 10 (2021) 145.

[53] N. Ezroura, F. Larsen, Z. Liu, and Y. Zeng, The phase diagram
of BPS black holes in AdS5, J. High Energy Phys. 09 (2022)
033.

[54] Y. Imamura, Finite-N superconformal index via the AdS/CFT
correspondence, PTEP 2021, 123B05 (2021).

[55] D. Gaiotto and J. H. Lee, The giant graviton expansion,
arXiv:2109.02545 [hep-th].

[56] A. Cabo-Bizet, Quantum phases of 4d SU(N) N = 4 SYM,
J. High Energy Phys. 10 (2022) 052.

[57] S. Murthy, Unitary matrix models, free fermions, and the giant
graviton expansion, Pure Appl. Math. Quart. 19, 299 (2023).

[58] J. Boruch, M. T. Heydeman, L. V. Iliesiu, and G. J. Turiaci,
BPS and near-BPS black holes in AdS5 and their spectrum in
N = 4 SYM, arXiv:2203.01331.

[59] M. Honda and T. Yoda, String theory, N = 4 SYM and Rie-
mann hypothesis, arXiv:2203.17091.

[60] J. H. Lee, Exact stringy microstates from gauge theories,
J. High Energy Phys. 11 (2022) 137.

[61] M.-X. Huang, Modular anomaly equation for Schur index of
N = 4 super-Yang-Mills, J. High Energy Phys. 08 (2022) 049.

[62] Y. Imamura, Analytic continuation for giant gravitons, PTEP
2022, 103B02 (2022).

[63] A. Holguin and S. Wang, Giant gravitons, Harish-Chandra
integrals, and BPS states in symplectic and orthogonal N = 4
SYM, J. High Energy Phys. 10 (2022) 078.

[64] G. Eleftheriou, Root of unity asymptotics for Schur indices of
4d Lagrangian theories, J. High Energy Phys. 01 (2023) 081.

[65] S. Choi, S. Kim, E. Lee, and J. Lee, From giant gravitons to
black holes, J. High Energy Phys. 11 (2023) 086.

[66] C.-M. Chang and Y.-H. Lin, Words to describe a black hole,
J. High Energy Phys. 02 (2023) 109.

[67] Q. Chen, Y. Liu, Y. Tian, X. Wu, and H. Zhang, Quench dy-
namics in holographic first-order phase transition, Phys. Rev.
D 108, 106017 (2023).

[68] J. T. Liu and N. J. Rajappa, Finite N indices and the giant
graviton expansion, J. High Energy Phys. 04 (2023) 078.

[69] H. Lin, Coherent state operators, giant gravitons, and gauge-
gravity correspondence, Ann. Phys. 451, 169248 (2023).

[70] D. S. Eniceicu, Comments on the giant-graviton expansion of
the superconformal index, arXiv:2302.04887 [hep-th].

[71] M. Beccaria and A. Cabo-Bizet, On the brane expansion of the
Schur index, J. High Energy Phys. 08 (2023) 073.

[72] C.-M. Chang, L. Feng, Y.-H. Lin, and Y.-X. Tao, Decoding
stringy near-supersymmetric black holes, SciPost Phys. 16,
109 (2024).

[73] Y. Chen, M. Heydeman, Y. Wang, and M. Zhang, Probing su-
persymmetric black holes with surface defects, J. High Energy
Phys. 10 (2023) 136.

[74] S. Ekhammar, J. A. Minahan, and C. Thull, The asymptotic
form of the Hagedorn temperature in planar super Yang-Mills,
J. Phys. A 56, 435401 (2023).

[75] F. Bigazzi, T. Canneti, and A. L. Cotrone, Higher order
corrections to the Hagedorn temperature at strong coupling,
J. High Energy Phys. 10 (2023) 056.

[76] M. Beccaria and A. Cabo-Bizet, Large black hole entropy from
the giant brane expansion, J. High Energy Phys. 04 (2024)
146.

[77] A. A. Ardehali, M. Martone, and M. Rosselló, High-
temperature expansion of the Schur index and modularity,
arXiv:2308.09738 [hep-th].

[78] C.-M. Chang, Y.-H. Lin, and J. Wu, On 1
8 -BPS black holes and

the chiral algebra of N = 4 SYM, arXiv:2310.20086 [hep-th].
[79] J. H. Lee, Trace relations and open string vacua, J. High

Energy Phys. 02 (2024) 224.
[80] G. Eleftheriou, S. Murthy, and M. Rosselló, The giant graviton

expansion in AdS5 × S5, arXiv:2312.14921 [hep-th].
[81] J. Polchinski and M. J. Strassler, Hard scattering and

gauge/string duality, Phys. Rev. Lett. 88, 031601 (2002).
[82] Z. Bern, L. J. Dixon, and D. A. Kosower, N = 4 super-Yang-

Mills theory, QCD and collider physics, C. R. Phys. 5, 955
(2004).

[83] S. Caron-Huot and G. D. Moore, Heavy quark diffusion in
QCD and N = 4 SYM at next-to-leading order, J. High Energy
Phys. 02 (2008) 081.

[84] E. Witten, Anti-de Sitter space, thermal phase transition, and
confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505
(1998).

[85] D. J. Gross and E. Witten, Possible third order phase transition
in the large N lattice gauge theory, Phys. Rev. D 21, 446
(1980).

[86] S. R. Wadia, N = ∞ phase transition in a class of exactly
soluble model lattice gauge theories, Phys. Lett. B 93, 403
(1980).

[87] S. R. Wadia, A study of U(N) lattice gauge theory in 2-
dimensions, arXiv:1212.2906 [hep-th].

[88] T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Dynam-
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