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Global synchronization in generalized multilayer higher-order networks
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Networks incorporating higher-order interactions are increasingly recognized for their ability to introduce
novel dynamics into various processes, including synchronization. Previous studies on synchronization within
multilayer networks have often been limited to specific models, such as the Kuramoto model, or have focused
solely on higher-order interactions within individual layers. Here, we present a comprehensive framework for
investigating synchronization, particularly global synchronization, in multilayer networks with higher-order in-
teractions. Our framework considers interactions beyond pairwise connections, both within and across layers. We
demonstrate the existence of a stable global synchronous state, with a condition resembling the master stability
function, contingent on the choice of coupling functions. Our theoretical findings are supported by simulations
using Hindmarsh-Rose neuronal and Rössler oscillators. These simulations illustrate how synchronization is
facilitated by higher-order interactions, both within and across layers, highlighting the advantages over scenarios
involving interactions within single layers.
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I. INTRODUCTION

In recent decades, the study of complex networks has
gained considerable traction, emerging as a prominent area
of research. This surge in interest can be attributed to
their remarkable capacity to model interconnected dynamical
systems across various fields, including physics, biology, ecol-
ogy, social sciences, and engineering [1–3]. These networks
are composed of nodes, representing entities or elements,
and links, representing connections or pairwise interactions
between them. Furthermore, researchers have introduced the
concept of multilayer networks to extend the traditional net-
work framework. Many real-world systems can effectively
be conceptualized as multilayer networks [4,5]. Examples
include transportation networks [6], neuronal networks in the
brain [7,8], and various types of social networks [9]. A mul-
tilayer network consists of individual networks, each with
its set of nodes and links (referred to as intralayer links),
interconnected through interlayer links. The representation of
multilayer networks hinges on a fundamental assumption: the
complex connections among individuals within and across
layers are comprehensively elucidated through pairwise
links.
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While pairwise interactions, such as interlayer and in-
tralayer links, are foundational and have yielded valuable
insights, real-world systems often involve more intricate rela-
tionships. Indeed, systems in the real world, spanning human
communications in social networks to neuronal interactions
in the brain, can be accurately depicted through multi-
layer networks where interactions frequently occur among
groups of three or more individuals simultaneously [10–13].
For example, in neuronal networks, neurons are intercon-
nected through electrical and chemical synapses, giving rise
to a multilayer structure [8,14]. Moreover, recent findings
emphasize the existence of group interactions among indi-
vidual neurons [15–19]. Similarly, the process of epidemic
spreading among people involves groups of three or more
interacting through virtual and physical layers [20,21]. Tra-
ditional pairwise interactions fall short in capturing these
group dynamics, necessitating the consideration of higher-
order interactions [13,22]. These complexities are represented
through simplicial complexes (hypergraphs), consisting of
simplices (hyperedges) of varying dimensions [23,24], where
a simplex (hyperedge) of order d denotes a set of (d + 1)
nodes. Recently, higher-order interactions have garnered sig-
nificant attention from researchers due to their influence on
collective phenomena [25–30] across various fields, including
epidemiology [31,32], ecological systems [33], consensus dy-
namics [34], and pattern formation [35].

One captivating collective phenomenon that has garnered
significant attention in the realm of multilayer networks is
synchronization. Synchronization refers to the remarkable
ability of coupled individuals to self-organize and exhibit
collective harmony in their behavior [36,37]. Various types of
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synchronization phenomena have been identified within mul-
tilayer networks, including cluster synchronization [38,39],
antiphase synchronization [40], mixed synchronization [41],
explosive synchronization [42], intralayer synchronization
[14,43], interlayer synchronization [44], and relay interlayer
synchronization [45,46]. Each type of synchronization repre-
sents unique and intriguing behaviors exhibited by multilayer
networks, making them an exciting and fertile area of ex-
ploration in network research. However, most prior works
on synchronization in multilayer frameworks have considered
interactions between individuals within and across layers to
be pairwise, represented by links. Only a few have explored
the impact of higher-order interactions on synchronization in
multilayer networks [14,43,47–49]. However, these studies
have assumed that group interactions are confined to indi-
viduals within the layers of a multilayer network, or that
the underlying node dynamics are governed by Kuramoto
oscillators. Recently, authors in [47] investigated a multilayer
framework where interactions both within and across layers
are considered beyond pairwise. However, in this study, the
authors assumed all-to-all connection mechanisms among in-
dividuals and focused solely on the case of the Kuramoto
oscillator. Thus, there remains ample opportunity to explore
synchronization phenomena in generalized higher-order mul-
tilayered systems beyond the conventional Kuramoto model
and all-to-all framework.

In this study, we aim to address this gap by exploring the
phenomenon of synchronization, particularly global synchro-
nization, within a more generalized multilayer higher-order
network. This network encompasses interactions beyond pair-
wise connections, both within and across layers. Our proposed
mathematical framework surpasses the constraints of all-to-all
coupling configurations and specific oscillator models. In-
stead, we employ a collection of identical dynamical systems
distributed across different layers, engaging in interactions
within and across layers in groups of two or three (up to
order three for simplicity). In this broad context, we demon-
strate the emergence of global synchronization within the
multilayer network, contingent upon the cancellation of cou-
pling functions. We examine these coupling functions as
either linear or nonlinear diffusive couplings. Subsequently,
we establish the necessary condition for the stability of the
synchronization solution, resulting in a system of coupled
linear equations known as the master stability equation. No-
tably, our stability condition bears a resemblance to the
well-established master stability function (MSF) form un-
der specific circumstances, enabling the derivation of fully
decoupled master stability equations. Finally, we validate
our findings using random higher-order multilayer networks
comprising paradigmatic coupled chaotic systems, such as
the Hindmarsh-Rose neuronal models and chaotic Rössler
oscillators.

The paper is structured as follows: Section II introduces
our mathematical model for describing the generalized higher-
order multilayer network. The linear stability analysis of
the global synchronization state is presented in Sec. III.
Section IV presents the numerical results corresponding to
the two coupled systems, viz, Hindmarsh-Rose neurons and
Rössler oscillators. Finally, Sec. V provides a summary and
conclusion.

FIG. 1. Schematic diagram of the multilayer higher-order net-
work. There are two layers, Layer 1 and Layer 2, colored in red, each
composed of 10 nodes. The black solid circles denote the nodes. The
solid black lines represent the intralayer pairwise interactions, and
the dashed black lines represent the interlayer pairwise interactions.
Triangles filled in blue represent the intralayer three-body interac-
tions. The triangles filled in grey and orange represent interlayer
three-body interactions. In the grey triangle, one node from Layer
2 is connected with two nodes from Layer 1. Whereas the orange
triangle indicates the three-body interactions in which one node from
Layer 1 participates with two nodes from Layer 2.

II. MATHEMATICAL MODEL OF THE GENERALIZED
MULTILAYER HIGHER-ORDER NETWORK

We start by considering an M-layered higher-order multi-
layer network, which is schematized for two layers (M = 2)
in Fig. 1. Each layer comprises N number of nodes, and the ith
node in one layer is identical with the i-node in all the other
layers. Here, for simplicity’s sake, we consider an identical
number of nodes in each layer. The state of the ith node in the
lth layer at time t is given by the d-dimensional state vector
Xli(t ), where l = 1, 2, · · · , M, and i = 1, 2, · · · , N . Now, we
consider that the nodes in each layer are connected to one
another through pairwise links (1-simplices) and groups of
three (2-simplices) within and across the layers. The follow-
ing coupled differential equations give the equation of motion
governing the dynamics of the multilayer network:

Ẋli = f (Xli ) +
M∑

l1=1

ε
ll1
1

N∑
j=1

All1
i j h(1)(Xl1 j, Xli )

+
M∑

l1=1

M∑
l2=1

ε
ll1l2
2

N∑
j=1

N∑
k=1

Bll1l2
i jk h(2)(Xl1 j, Xl2k, Xli ),

l = 1, 2, . . . , M, and i = 1, 2, . . . , N. (1)

Here, each node’s dynamics are identical and illustrated as f :
Rd → Rd . ε

ll1
1 is the pairwise coupling strength between the

nodes of layers l and l1 connected through pairwise links. εll1l2
2
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denotes the three-body coupling strength among the nodes of
layers l, l1, and l2 interconnected via 2-simplices. Certainly,
when l = l1, the pairwise interactions occur among the nodes
of the same layer (i.e., intralayer connections); conversely,
for l �= l1, they take place across two different layers (i.e.,
interlayer connections). Similarly, in the context of three-body
interactions, when l = l1 = l2, the triadic interactions hap-
pen among the nodes of a specific layer l (i.e., intralayer
three-body interactions). For l = l1 �= l2, two of the nodes
in a group of three are from one layer, and the third one is
from another layer. Whereas in the case of l �= l1 �= l2, all the
three nodes participating in a three-body interaction are from
three different layers. The last two instances correspond to
interlayer three-body interactions. For the sake of simplicity,
we consider the pairwise coupling strengths as ε

ll1
1 = ε1 if the

pairwise interaction occurs within a specific layer, and ε
ll1
1 =

αε1 for interlayer connections. The same convention has been
taken for the three-body coupling strengths, i.e., ε

ll1l2
2 = ε2 if

the three-body interactions take place within a specific layer
and ε

ll1l2
2 = αε2 when the three-body interactions are inter-

layer. Here, α is an arbitrary constant satisfying 0 < α < 1,
indicating that for both pairwise and three-body interactions,
the intralayer coupling strengths are more effective than the
interlayer ones. Thus, the parameter α quantifies the strength
of interlayer interactions in our study. Indeed, the described
convention mirrors real-world scenarios where individuals
within the same group tend to form stronger bonds among
themselves compared to their interactions with individuals
from different groups. All1 is a N × N matrix that describes
how the nodes of the layers l and l1 are connected to one
another through pairwise links. The elements Al1l2

i j = 1 if the
nodes i, j in the layers l1, l2, respectively are connected, and
otherwise Al1l2

i j = 0. Thus, when l = l1, it corresponds to the
intralayer adjacency matrix, and for l �= l1 corresponds to the
interlayer adjacency matrix. Similarly, Bll1l2 is the adjacency
tensor that provides information about which nodes partic-
ipate in three-body interactions. The elements Bl1l2l3

i jk = 1 if
there is a 2-simplex interaction between the nodes i, j, k in the
layers l1, l2, and l3, respectively, while Bl1l2l3

i jk = 0 if there are

no such three-body interactions. h(1) : Rd × Rd → Rd , and
h(2) : Rd × Rd × Rd → Rd are the pairwise and three-body
coupling functions such that h(1)(x, x) = 0 and h(2)(x, x, x) =
0, i.e., the coupling functions cancel out when the state of
all connected individuals are equal. Thus, here we consider
the pairwise and three-body coupling functions to be gener-
alized diffusive, i.e., h(1)(Xl1i, Xl2 j ) = H (Xl1i ) − H (Xl2 j ) and
h(2)(Xl1k, Xl2 j, Xl3i ) = G(Xl1k, Xl2 j ) − G(Xl3i, Xl3i ) [50,51].

III. STABILITY ANALYSIS OF THE GLOBAL
SYNCHRONIZATION STATE

Here, we investigate the stability of the global synchro-
nization state, wherein the nodes of the multilayer structure
oscillate in unison. In mathematical terms, Xli = Xl ′ j for
all l, l ′ = 1, 2, . . . , M and i, j = 1, 2, . . . , N . The selection
of diffusive pairwise and triadic coupling functions indeed
ensures the existence and invariance of the global synchro-
nization state in our multilayer system.

Now, before proceeding to the stability analysis, it is bene-
ficial to simplify the model. To do so, we set Xli = Xi+(l−1)N

where (l = 1, 2, . . . , M ), and (i = 1, 2, . . . , N ), effectively
transforming the M layered multilayer network with N nodes
in each layer into a network with MN nodes. Thus, the model
Eq. (1) eventually becomes

Ẋi = f (Xi ) + ε1

MN∑
j=1

A (1)
i j [H (X j ) − H (Xi )]

+ ε2

MN∑
k=1

MN∑
j=1

A (2)
i jk [G(X j, Xk ) − G(Xi, Xi )],

i = 1, 2, . . . , MN, (2)

where A (1) ∈ RMN×MN is the block matrix given by
⎡
⎢⎣

A11 . . . A1M

...
. . .

...

AM1 . . . AMM

⎤
⎥⎦,

Al1l2 ∈ RN×N such that the elements for l1, l2 = 1, 2, . . . , M
and i, j = 1, 2, . . . , N are defined as

Al1l2
i j =

⎧⎨
⎩

1, if i ↔1 j,
α, if i ↔2 j,
0, if i �1 j and i �2 j.

Here i ↔1 j means an intralayer link (i.e., l1 = l2) exists
between the nodes i and j, and i �1 j means no such link
exists. i ↔2 j means there exists an interlayer link (i.e., l1 �=
l2) between the nodes i and j, and if there is no such link, then
i �2 j. Similarly, the tensor A (2) ∈ RMN×MN×MN is given by

A (2)
i jk =

⎧⎨
⎩

1 if i, j, k ∈ �1,

α if i, j, k ∈ �2,

0 if i, j, k /∈ �1,�2.

The symbols �1 and �2 indicate an intralayer triangle (l1 =
l2) and an interlayer triangle (l1 �= l2), respectively. If there
are such triangles between the nodes i, j, k, then i, j, k ∈ �1

or, i, j, k ∈ �2, and if there are no such triangles, then i, j, k /∈
�1 and i, j, k /∈ �2.

Now, suppose Xs is the global synchronization state of
the multilayer network. To analyze the stability of the given
state, we consider small deviations around the synchronized
state, denoted as Xi = Xs + δXi. Subsequently, we linearize
Eq. (2) with respect to these perturbations, which yields the
variational equations as

δẊi = J f (Xs)δXi + ε1

MN∑
j=1

A (1)
i j JH (Xs)(δX j − δXi )

+ ε2

MN∑
j=1

MN∑
k=1

A (2)
i jk [J1G(Xs, Xs)(δX j − δXi )

+ J2G(Xs, Xs)(δXk − δXi )],

i = 1, 2, · · · , MN, (3)

where J f (Xs) and JH (Xs) are the Jacobian matrices of the
functions f and H evaluated at the synchronous solution.
J1G(Xs, Xs) and J2G(Xs, Xs) are the Jacobians with respect
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to the first and second variables of the coupling function G
at the synchronization state. To proceed further, we use the
zero-row sum Laplacian matrices corresponding to the pair-
wise and higher-order interactions [50]. If L 1 and L 2 are
the Laplacians corresponding to the pairwise and three-body
interactions, then we have

L (1)
i j =

⎧⎨
⎩

−A (1)
i j if i �= j,

∑MN
j=1 A (1)

i j if i = j,

and

L (2)
i j =

⎧⎨
⎩

−∑MN
k=1 A (2)

i jk if i �= j,
∑MN

j=1

∑MN
k=1 A (2)

i jk if i = j.

Incorporating the definitions of these Laplacian matrices, the
variational equation (3) can be rewritten as follows:

δẊi = J f (Xs)δXi −
MN∑
j=1

[
ε1JH (Xs)L (1)

i j

+ ε2(J1G(Xs, Xs) + J2G(Xs, Xs))L (2)
i j

]
δX j,

i = 1, 2, · · · , MN. (4)

Now considering the state variable δX =
(δXT

1 δXT
2 . . . δXT

MN )T and using matrix Kronecker product
⊗, the variational equation (4) can be written in vectorial
form as

δẊ = IMN ⊗ J f (Xs)δX − [ε1L
(1) ⊗ JH (Xs)

+ ε2L
(2) ⊗ (J1G(Xs, Xs) + J2G(Xs, Xs))]δX, (5)

where ()T represents vector transpose and I is the identity
matrix.

The coupled linearized variational equation (5) compro-
mises two components: one governing motion along the
synchronization manifold, referred to as parallel modes, and
the other handling motion across the manifold, known as
transverse modes. The stability of the synchronization state
is contingent upon the convergence of all transverse modes
to zero over time. To perform linear stability analysis, we
thus need to decompose the variational equation into parallel
and transverse modes and derive the condition for the latter’s
extinction.

Now both the Laplacian matrices L (1) and L (2) are real
symmetric matrices with zero row-sum. As a result, these
matrices are diagonalizable by their basis of eigenvectors, pos-
sessing nonnegative real eigenvalues. Their common smallest
eigenvalue is denoted as λ1 = 0, and the corresponding eigen-
vectors form an orthonormal basis.

Therefore, to distinguish transverse and parallel modes
in Eq. (5), we project the perturbed variable δX onto
the basis of eigenvectors V(1) = [v1 v2 . . . vMN ], associ-
ated with the pairwise Laplacian L (1), where v1 =
(1/

√
MN, 1/

√
MN, . . . , 1/

√
MN )T is the eigenvector corre-

sponding to the smallest eigenvalue λ1 = 0. This projection
is accomplished by introducing a new variable η = (V−1

(1) ⊗
Id )δX where η = (ηT

1 ηT
2 . . . ηT

MN )T . The choice of the eigen-
vector basis is arbitrary. An alternative basis can be selected,
and other sets of eigenvectors can be transformed into the

chosen basis through a unitary matrix transformation. Thus,
expressed in the introduced variables, the variational Eq. (5)
undergoes the following transformation:

η̇ = IMN ⊗ J f (Xs)η − [
ε1� ⊗ JH (Xs)

+ ε2L̃
(2) ⊗ (J1G(Xs, Xs) + J2G(Xs, Xs))

]
η, (6)

where V−1
(1)L

(1)V(1) = � = diag{0 = λ1, λ2, . . . , λMN } and

L̃ (2) = V−1
(1)L

(2)V(1). Now, since the Laplacian L (2) is a

zero-row sum matrix, L̃ (2) must have null first row and
column. The transformed variational Eq. (6) then can be par-
titioned into two components as follows:

η̇1 = J f (Xs)η1, (7)

and

η̇i = [
J f (Xs) − ε1λiJH (Xs)

]
ηi

− ε2

∑
j

L̃ (2)
i j (J1G(Xs, Xs) + J2G(Xs, Xs))η j,

i = 2, 3, . . . , MN. (8)

Here, η1 represents the parallel mode, while the transverse
modes are denoted by η j for i = 2, 3, ..., MN . Consequently,
the stability analysis for the synchronized state is simplified
to solving the coupled linear differential equation (8) asso-
ciated with the transverse modes to determine the maximum
Lyapunov exponent (MLE). This equation is referred to as
the master stability equation. The stability criterion for the
synchronization state mandates that the MLE transverse to
the synchronous solution must be negative for stability to be
established.

The coupled master stability equation (8) cannot be further
simplified due to the following reasons: (i) the Laplacian
matrices L (1) and L (2) generally do not commute, preventing
simultaneous diagonalization with respect to a single eigenba-
sis, (ii) the Jacobians JH (Xs) and J1G(Xs, Xs) + J2G(Xs, Xs)
are unrelated, making it impossible to combine the Laplacian
matrices to construct an effective Laplacian matrix with or-
thonormal eigenbasis that could simplify the equation.

To simplify the stability analysis further, we proceed
with the second scenario where the Jacobians JH (Xs) and
J1G(Xs, Xs) + J2G(Xs, Xs) are related with each other. This
condition can be achieved by selecting pairwise and three-
body diffusive coupling functions in such a way that they
satisfy an additional requirement, namely, G(X, X) = H (X),
which is commonly referred to as the natural coupling condi-
tion in the literature [35,50,51]. Now, if the coupling functions
satisfy the natural coupling conditions, then we have

J1G(Xs, Xs) + J2G(Xs, Xs) = JH (Xs) = Js (say). (9)

Thus, in this scenario, we can start our analysis from the
variational equation (5). Substituting the above condition (9)
in Eq. (5) yields

δẊi = J f (Xs)δXi −
MN∑
j=1

(
ε1L

(1)
i j + ε2L

(2)
i j

)
JsδX j,

i = 1, 2, · · · , MN. (10)
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This allows us to introduce an effective matrix L = (ε1L (1) +
ε2L (2) ), which is again a real symmetric zero-row sum ma-
trix, possessing the smallest eigenvalue γ1 = 0. Furthermore,
L is diagonalizable with respect to its orthonormal eigenbasis.
Imposing the eigenbasis for L allows us to take an additional
step, projecting the coupled linear system onto fully decou-
pled linear systems with dimensions equal to the dimension
of individual node dynamics. Each of these linear systems
depends on a single eigenvalue, γi, of L, more precisely:

η̇i = (J f (Xs) − γiJs)ηi, i = 1, 2, . . . , MN, (11)

where ηi = ∑
j δX jv

(i)
j is the projection of δX j on the eigen-

vector v(i) of the effective Laplacian matrix L. This obtained
master stability equation (11) is fully decoupled and thus
exhibits a resemblance to the classical MSF approach [52],
except for the fact that here the eigenvalues of the Laplacian
depend on the coupling strengths. Solving Eq. (11) for max-
imum transverse Lyapunov exponent (which corresponds to
ηi, i = 2, 3, . . . , MN) provides the necessary condition for the
global synchronous solution to be stable. The negative values
of the maximum transverse Lyapunov exponent indicate the
emergence of the stable synchronous solution.

IV. RESULTS

Here, we present a series of numerical results that serve
to validate our theoretical findings. We consider two differ-
ent chaotic dynamical systems, namely the Hindmarsh-Rose
(HR) model [53] and the Rössler model [54] as the individual
dynamics of the nodes, coupled through pairwise and three-
body interactions within and across the layers of a multilayer
network. The HR-neurons are coupled by a linearly diffusive
coupling scheme and the Rössler oscillators are coupled by
a nonlinear diffusive coupling scheme. For the sake of sim-
plicity, we proceed with only a two-layered (M = 2) system,
as depicted in Fig. 1. Global synchrony occurs when all the
unitary components (nodes) in the multilayer network dis-
play identical oscillations over time, i.e., Xi j (t ) = Xs(t ) (i =
1, 2; j = 1, 2, . . . , N ). To quantify the global synchronization
state, we introduce the instantaneous synchronization error
E (t ) = 1

(2N−1)

∑2
i=1

∑2
j=1

∑N
k,l=1 ‖Xik − X jl‖ which is zero

when the multilayer network exhibits a globally synchro-
nized state and nonzero finite for asynchronous dynamics.
In the following, we will typically consider the time average
of the synchronization error better to estimate the transi-
tion between the synchronous and asynchronous states. The
multilayer network, given by Eq. (1), is therefore evaluated
using the fourth-order Runge-Kutta method for a period of
3 × 105 time steps with integration step size δt = 0.01, and
the last 105 time units are taken for calculating the av-
erage synchronization error. We consider identical network
topologies within each layer to delve into the influence of
higher-order interactions, particularly three-way interactions
and the parameter α. The nodes within the layers are con-
nected pairwisely to each other randomly with a probability
P1 following the algorithm of Erdős Rényi random networks
[55]. Similarly, the pairwise connections spanning across the
layers are also established randomly, with a probability de-
noted as P2. Three-body connections (2-simplices) are formed

both within and across the layers by promoting all the trian-
gles formed during the pairwise network construction process.
Unless specified otherwise, the number of nodes in each layer
is set to N = 100, with connection probabilities within the
layers and across the layers being P1 = 0.1 and P2 = 0.05, re-
spectively. In the case of the neuronal multilayer network, the
pairwise and three-body coupling functions are considered as
H (X) = (m + n)	X , and G(Xi, X j ) = m	Xi + n	X j , where
	 is the inner coupling matrix, characterizing through which
variable the nodes interact with each other. Clearly, our cho-
sen coupling functions satisfy the natural coupling condition.
Without loss of generality, we consider m = n = 1

2 and the
inner coupling matrix is structured in such a way that all
elements except 	11 are zero, with 	11 being equal to 1. Thus,
the nodes within and across the layers interact with one an-
other through the first variable of the unitary node dynamics.
The chosen linear diffusive coupling function resembles the
electrical synaptic coupling for neuronal connections [56,57].
It is important to note that a linear higher-order interaction
can be combined as pairwise interactions, eventually provid-
ing weighted pairwise interactions. Thus, choosing a linear
higher-order interaction may not provide good insight into
the effect of higher-order interactions. Here, we choose a
linear higher-order coupling for neuronal networks mainly for
two reasons. First, the linear diffusive coupling mimics the
electrical synaptic coupling in neurons. Second, our devel-
oped analytical theory for dimension reduction of stability
problems is limited to the case of diffusive coupling (linear
or nonlinear). One can choose a nonlinear coupling such as
chemical synaptic or noninvasive couplings. However, provid-
ing analytical support in those cases needs further restrictions
such as regular topologies [14], which is beyond the scope
of the present study. However, to show that both the linear
and nonlinear couplings result in almost similar effects on the
global synchronization, we illustrate numerical results with
nonlinear noninvasive coupling for HR neuronal network in
Appendix A.

However, in the case of coupled Rössler oscillators, we
consider the pairwise and nonpairwise coupling functions
to be nonlinear diffusive, defined as h(1)(Xi, X j ) = (0, y3

j −
y3

i , 0)T , and h(2)(Xi, X j, Xk ) = (0, y2
j yk − y3

i , 0)T , respec-
tively. Note that this nonlinear coupling scheme also fulfills
the aforementioned natural coupling condition.

In the subsequent analysis, we explore the emergence of
global synchronization in the considered random multilayer
structure. Additionally, we delve into the impact of various
coupling parameters, including α, ε1, and ε2. Results pertain-
ing to an alternative connection topology within the layers,
specifically small-world connectivity [58], are discussed in
Appendix B. Apart from that, how the interlayer and in-
tralayer synchronization emerge due to the combined effect
of higher-order and multilayer structure has been discussed in
Appendix C.

A. Hindmarsh-Rose model with linear diffusive
coupling scheme

The HR neuron model is a mathematical model used to
describe the behavior of a simplified neuron. This model is
known for its ability to exhibit complex neuronal dynamics,
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including periodic spiking, bursting, chaos, and other
nonlinear behaviors. It is often used in computational neuro-
science and mathematical biology to study neural activity. The
three coupled differential equations that describe the evolution
of the three variables (x, y, z describe the membrane potential,
slow current for recovery variable, and adapting current, re-
spectively) of the model are given by

dx

dt
= y − ax3 + bx2 − z + I,

dy

dt
= c − dx2 − y,

dz

dt
= r[s(x − x0) − z]. (12)

The model has eight parameters: a, b, c, d, r, s, x0, and I .
Here, the parameter I represents an external current input to
the neuron. It can be used to simulate the effect of synaptic
inputs or other external influences on the neuron’s behav-
ior. Other control parameters used often in the literature are
a, b, c, d, r, the first four models of the working of the fast
ion channels, and the last one of the slow ion channels, re-
spectively. The control parameter x0 delays or advances the
activation of the slow current in the modeled neuron. These
eight parameter values are taken as a = 1.0, b = 3.0, c =
1.0, d = 5.0, r = 0.005, s = 4.0, x0 = −1.6, and I = 3.25 to
obtain chaotic behavior.

We consider that the dynamics of each of the nodes in
the multilayer network (1) is governed by the HR neuronal
model where neurons are coupled through the membrane
potential by gap junctions, allowing for rapid and direct com-
munication between neurons by facilitating the exchange of
ions and small molecules. To study the emergence of global
synchronization phenomena in the multilayer framework (1),
we start by evaluating the synchronization error E by vary-
ing the strength of synaptic coupling of the pairwise ε1

between the neurons for different synaptic coupling strength
of higher-order ε2 and a fixed value of α = 0.3. The corre-
sponding results are depicted in Fig. 2(a). When there are
no interactions involving three neurons (i.e., ε2 = 0.0), global
synchronization is achieved at a critical value of pairwise
synaptic coupling strength, ε1 = 0.373 [magenta curve in
Fig. 2(a)]. We then introduce the three-neuronal interactions
and observe the effect of higher-order synaptic interactions
on achieving global synchronization by increasing the three-
body coupling strength, ε2. As ε2 increases (e.g., ε2 = 0.05),
the synchronization state is achieved at a relatively smaller
coupling strength ε1 = 0.31 (shown in a black curve). As ε2 is
tuned up further, the system achieves synchronization much
earlier, eventually leading to a significant enhancement in
synchrony. For ε2 = 0.1 and 0.15, the global synchronization
state emerges at ε1 = 0.26 and 0.233, depicted by red and blue
curves, respectively.

To confirm the validity of these findings, we assess the
stability of the synchronous solution using the master stabil-
ity function approach and analyze the maximum Lyapunov
exponent (�max) of the variational Eq. (11), transverse to
the synchronous manifold. In Fig. 2(b), we present a plot
of �max as a function of pairwise synaptic coupling strength
(ε1), with ε2 values as mentioned earlier. The curves of �max

FIG. 2. The global synchronization of the HR neurons in the
multilayer network for N = 100 and α = 0.3. (a) global synchro-
nization error (E) with respect to ε1 (b) maximum Lyapunov
exponent (�max) of the linearized Eq. (11) with respect to ε1. Four
curves correspond to four values of ε2, ε2 = 0.0 (magenta curve),
ε2 = 0.05 (black curve), ε2 = 0.1 (red curve), and ε2 = 0.15 (blue
curve).

attain negative values at the same critical ε1 values, where the
synchronization error (E ) becomes zero (indicated by dashed
vertical lines). Thus, the analysis using the master stability
function approach confirms our earlier observation that intro-
ducing three-neuronal interactions in the multilayer network
advances the emergence of global synchrony.

To study the combined effect of pairwise and higher-order
synaptic coupling on the emergence of the global synchro-
nization state in the multilayer network, we compute the
maximum Lyapunov exponent �max [obtained from Eq. (11)]
as a function of ε1 and ε2 for four different values of the
parameter α. The corresponding results are represented in
Fig. 3, where the variation of �max is delineated through the
color bars. Our findings reveal that within a certain range of
ε1, the higher-order coupling strength ε2 does not impact the
synchronization state for all values of α ∈ (0, 1). However, a
significant influence of ε2 becomes evident beyond this range.
Specifically, the neurons in the network do not synchronize for

FIG. 3. The regions of the global synchronous and asynchronous
states for N = 100 HR-neurons in each layer of the multilayer net-
work (1). The maximum Lyapunov exponent �max(ε1, ε2, α) of the
linearized Eq. (11) in the (ε1, ε2) parameter space for four different
values of α: (a) α = 0.2, (b) α = 0.4, (c) α = 0.5, and (d) α = 0.9.
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FIG. 4. The global synchrony (stable) and asynchrony (unsta-
ble) region in (α, ε1) plane for N = 100 HR-neurons in each layer
of the multilayer network (1). The maximum Lyapunov exponent
�max(ε1, ε2, α) of the linearized Eq. (11) in (α, ε1) parameter space
for four values of ε2: (a) ε2 = 0.0, (b) ε2 = 0.1, (c) ε2 = 0.2, and
(d) ε2 = 0.4.

any value of ε2 when the pairwise synaptic coupling strength
falls within a certain range, which depends on the specific
value of α. As this range is exceeded, the critical value of
ε2, or the necessary higher-order synaptic coupling strength
for synchrony, gradually decreases to zero as ε1 increases.
We also observed a similar impact of both synaptic coupling
strengths (ε1, ε2) on synchrony by varying the value of α. The
main difference observed for the four different values of α

lies in the emerged region of global synchrony (cyan-colored
region) or asynchrony (magenta-colored region). We consider
α = 0.2 in Fig. 3(a) and observe that after a certain range
(0 < ε1 < 0.25) of ε1 at the beginning, the required value of
ε2 to get the global synchrony is found to be decreasing as ε1

increases up to ε1 = 0.4. In Fig. 3(b), for α = 0.4, within the
range 0 < ε1 < 0.25, there is no effect of the group interaction
between the neurons on the emergence of synchrony. Beyond
ε1 = 0.25, with increasing ε2, the global synchrony emerges
at a relatively lower critical pairwise coupling. Furthermore,
it is observable that beyond ε1 = 0.3 the critical value of ε2 to
achieve the global synchrony is decreased to zero, i.e., beyond
ε1 = 0.3, the global synchronization can emerge even if there
are no three-body interactions. In Figs. 3(c) and 3(d), we take
α = 0.5, 0.9, respectively, and the critical values of ε1 up to
which the higher-order synaptic coupling strength, ε2 remain
inactive, are found to be at ε1 = 0.19, 0.18, respectively. Also,
the critical values on the ε1-axis, where the multilayer network
is in the global synchronization state without group inter-
action, are found at ε1 = 0.26, 0.22, respectively. Notably,
the synchrony region increases while the desynchrony region
decreases as α ranges from 0 to 1. Thus, as the strength
of interlayer coupling increases, the multilayer network can
achieve global synchronization more easily.

Next, we study the combined effect of α and ε1 on the
global synchronization for different values of ε2. The variation
of �max of the linearized Eq. (11) in the (α, ε1)-parameter
space are shown for four values of ε2 in Fig. 4. In Fig. 4(a),
we consider the case when the strength of the higher-order
synaptic coupling is zero (ε2 = 0), which means when there is
no effect of higher-order neuronal interaction in the multilayer

FIG. 5. The variation of the maximum Lyapunov exponent,
�max(ε1, ε2, α) of the linearized Eq. (11) in (α, ε2) parameter space
for a fixed ε1 = 0.2, with N = 100 HR-neurons in each layer of the
multilayer network (1).

model. It is observable that as the value of the parameter α

(or, ε1) increases, the critical value of the pairwise coupling
strength ε1(α) to achieve global synchronization decreases.
Also when three-neuron interactions are introduced, i.e., for
nonzero values of ε2 in the remaining subfigures of Fig. 4, one
can observe a similar kind of effect of the parameters α, ε1 on
the global synchronization state and notably an enhancement
of the stable region of global synchronization is noticeable
at higher values of ε2. In Fig. 4(b), we set ε2 = 0.1. Here,
for a fixed value of the parameter α (or, ε1), the critical value
of ε1 (or, α) decreases with increasing higher-order coupling
strength. In Fig. 4(c) and Fig. 4(d), we increase higher-order
coupling strength to ε2 = 0.2, and ε2 = 0.4, respectively, and
a qualitatively similar behavior is observed. This observation
strengthens our statement that introducing three-neuron inter-
actions amplifies the likelihood of synchronization among the
neurons within a multilayer neuronal network.

The combined effects of the parameters α and ε2 for a fixed
value of the pairwise synaptic coupling strength (ε1 = 0.2)
are shown in Fig. 5. One can observe that global synchro-
nization is forbidden for 0 < α < 0.06, and beyond α = 0.06,
the required strength of the higher-order synaptic coupling for
global synchronization decreases with the increase in α. When
α is tuned up further and crosses α = 0.6, the multilayer
network achieves global synchrony even without higher-order
interactions (i.e., ε2 = 0).

B. Rössler model with nonlinear diffusive coupling scheme

This section aims to show that the previously presented
results hold true beyond the example of the dynamical sys-
tem shown above, i.e., the HR neuronal model. For the
sake of definiteness, we thus used the paradigmatic chaotic
Rössler system as the underlying dynamics governing indi-
vidual nodes within the multilayer network. The dynamics of
the Rössler model are governed by the following equations:

dx

dt
= −y − z,

dy

dt
= x + ay,

dz

dt
= b + z(x − c), (13)
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FIG. 6. The global synchronization of the multilayer network for
N = 100 Rössler oscillators and α = 0.3. (a) global synchronization
error (E) with respect to ε1 (b) maximum Lyapunov exponent (�max)
of the linearized Eq. (11) with respect to ε1. Four curves correspond
to four values of ε2, ε2 = 0.0 (red curve), ε2 = 0.05 (blue curve),
ε2 = 0.1 (magenta curve), and ε2 = 0.15 (black curve).

where for a = 0.2, b = 0.2, and c = 5.7, the system ex-
hibits chaotic behavior. In our previous analysis using the HR
model, we assumed the underlying pairwise and higher-order
interactions to be linear diffusion as it mimics the synap-
tic interactions among the neurons. However, in the context
of the Rössler system, we explore nonlinear pairwise and
higher-order coupling schemes to delve into the impact of
nonlinear interactions on the emergence of global synchrony
within multilayer networks. Specifically, the coupling func-
tions h(1)(Xi, Xj ) and h(2)(Xi, Xj, Xk ) are assumed to be of
the functional forms (0, y3

j − y3
i , 0)T and (0, y2

j yk − y3
i , 0)T ,

respectively so that it satisfies the natural coupling condition.
In a manner akin to the previous exploration of the HR

multilayer network, the investigation initiates by assessing
global synchronization error (E ) while varying the coupling
strength of pairwise interactions (ε1) for various levels of
coupling strength of higher-order interactions (ε2), with a
constant α value of 0.3. The obtained results are illustrated
in Fig. 6(a). When higher-order interactions are absent (i.e.,
ε2 = 0.0), global synchronization is attained at a critical value
of pairwise coupling strength, ε1 = 0.00046 [red curve in
Fig. 6(a)]. Subsequently, the introduction of higher-order in-
teractions reveals the impact of higher-order interactions on
achieving global synchronization by increasing the higher-
order coupling strength (ε2). As ε2 tuned up from zero, the
synchronization state is achieved at relatively lower values of
ε1. For ε2 = 0.0001, synchronization emerges at ε1 = 0.0004,
which is depicted by the blue curve. The magenta curve cor-
responds to ε2 = 0.0005 where global synchronization occurs
at ε1 = 0.00032, and the black curve represents ε2 = 0.001
with the critical ε1 value found to be ε1 = 0.0002. To validate
these findings, the stability of the synchronous solution is
assessed using the master stability function approach, and
the maximum Lyapunov exponent (�max) of the variational
Eq. (11) transverse to the synchronous manifold is analyzed.
Figure 6(b) presents �max plotted against pairwise coupling
strength (ε1), with varying ε2 values as aforementioned. The
curves of �max exhibit negative values at the same critical
ε1 values, coinciding with zero synchronization error (E )
(marked by dotted vertical lines). The validation of the master

FIG. 7. The stable and unstable region of the global synchroniza-
tion state in (ε1, ε2) parameter space for N = 100 Rössler oscillators
in both the layers of the network (1) with the random intralayer and
interlayer network topologies. The maximum Lyapunov exponent
�max of the linearized Eq. (11) in the (ε1, ε2)-parameter space are
for four values of α: (a) α = 0.1, (b) α = 0.2, (c) α = 0.3, and
(d) α = 0.6.

stability function approach confirms the earlier observation
that introducing higher-order interactions in the multilayer
network advances the emergence of global synchrony, un-
derscoring the significant impact of changing higher-order
coupling strengths on the global synchronization of the multi-
layer network.

Then, in the parameter space (ε1, ε2), we investigate the
influence of both pairwise and higher-order coupling strengths
on the global synchronization state for four different values
of α. Using color bars in Fig. 7, we depict variations in
the maximum Lyapunov exponents �max, which is obtained
from the linearized Eq. (11). Our findings reveal that within a
certain range of ε1, the higher-order coupling strength ε2 does
not affect the synchronization state for all α values within
the interval (0,1) as in the previous case of HR multilayer
network. However, a noticeable influence of ε2 emerges be-
yond this range. Specifically, nodes (or Rössler oscillators)
in the network fail to synchronize for any ε2 value when
ε1 falls within a specific range, dependent on the precise α

value. As this range is surpassed, the critical ε2 value, or
the requisite higher-order coupling strength for synchrony,
gradually diminishes to zero as ε1 increases. We also ob-
serve a similar impact of both coupling strengths (ε1, ε2) on
synchrony by varying α. It is observable that the region of
synchronization expands while the desynchrony region con-
tracts as α ranges from 0 to 1, revealing that stronger interlayer
connections play an important role in the emergence of global
synchronization.

Thereafter, we investigate the combined impact of α and
ε1 on global synchronization for various values of ε2. The
variation of �max in the (α, ε1)-parameter space is depicted
for four distinct ε2 values in Fig. 8. In Fig. 8(a), we examine
the scenario where the strength of higher-order coupling is
zero (ε2 = 0), indicating no influence of higher-order inter-
action in the multilayer model. As α (or ε1) increases, we
observe a decrease in the critical value of pairwise coupling
strength ε1 (or α) required for global synchronization. When
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FIG. 8. The regions of the global synchronous and asynchronous
states for N = 100 Rössler oscillators in each layer of the multilayer
network (1). The maximum Lyapunov exponent �max(ε1, ε2, α) of
the linearized Eq. (11) in the (α, ε1) parameter space for four differ-
ent values of ε2: (a) ε2 = 0.0, (b) ε2 = 0.0001, (c) ε2 = 0.0005, and
(d) ε2 = 0.001.

higher-order interaction is introduced, i.e., for nonzero values
of higher-order coupling strength in the remaining subfigures
of Fig. 8, a similar trend is observed for the parameters α and
ε1 regarding the global synchronization state. Notably, we find
an expansion of the stable region of global synchronization at
higher values of ε2. This observation once again reinforces our
assertion that introducing higher-order interactions enhances
the likelihood of synchronization among nodes within multi-
layer networks.

To understand the effect of pairwise and higher-order inter-
actions better, in Fig. 9, we plot the synchronization threshold
values in (α, ε1) parameter plane by considering three dif-
ferent choices of higher-order coupling strength ε2, namely,
ε2 < ε1, ε2 = ε1, and ε2 > ε1. The threshold couplings are the
values of (α, ε1) for which the maximum Lyapunov exponent
(�max) becomes zero while crossing from positive to negative
regime. Thus, the region to the left (right) of the threshold
curve indicates the region of desynchrony (synchrony). When
ε2 < ε1, we consider the relation ε1 = 3.0ε2, and plotted the

0 0.04 0.08 0.12 0.16 0.2
0.0003

0.0006

0.0009

FIG. 9. The threshold coupling values in the (α, ε1)-parameter
space for three cases: ε1 < ε2, ε1 = ε2, and ε1 > ε2. The magenta
circular points represent the case when ε1 > ε2 (ε1 = 3.0ε2), red
square-shaped points are for the case ε1 = ε2, and the blue triangular-
shaped points are depicting the case when ε1 < ε2 (ε1 = 0.5ε2).

0 0.0005 0.001
0

0.00025

0.0005

FIG. 10. The threshold coupling values in the (ε1, ε2)-parameter
space for four distinct random interlayer topologies of the multilayer
network. Each layer of the multilayer network consists of N = 100
Rössler oscillators, with a random topology for both intralayer and
interlayer connections. The probability for the random intralayer
connections is fixed at P1 = 0.1. The points on the red (triangle)
curve represent the threshold points when the probability for the
random interlayer connections is P2 = 0.03, the points on the blue
(diamond) curve are for P2 = 0.05, the magenta (square) one is
for P2 = 0.08, and the threshold points on the black (star) curve
are for P2 = 0.2. The interlayer coupling strength is set fixed at
α = 0.2.

threshold points in (α, ε1) plane by magenta circular points.
The red square-shaped points are the threshold points when
ε1 = ε2, and the blue diamond shaped points are the thresh-
old points when ε1 < ε2 satisfying ε1 = 0.5ε2. It is observed
that the synchronous region in the (α, ε1) plane is maximum
when ε2 > ε1, i.e., when the higher-order interactions are
more effective than the pairwise ones. However, when the
pairwise interactions are more effective, the obtained global
synchronization region is the smallest compared to the other
two cases.

So far, we have discussed the results associated with a
fixed interlayer connection probability, P2, meaning that the
number of links and triangles joining the two layers remains
constant. However, P2 is a crucial parameter as it controls
the number of links and triangles between the layers. When
P2 = 0, the layers are disconnected from one another, while
for P2 = 1, each node in a layer is connected to all the nodes
in the other layer. Therefore, with increasing P2, the number
of pairwise and higher-order interactions increases between
the layers. Thus, to examine the effect of P2 on the emergence
of global synchronization, we calculate the critical value of
coupling strengths (ε1, ε2) for different values of P2, specif-
ically, P2 = 0.03, 0.05, 0.08, and 0.2. Here, the probability
for the random intralayer connection is fixed at P1 = 0.1, i.e.,
the intralayer topology remains invariant. The corresponding
critical curves are portrayed in Fig. 10 for fixed interlayer cou-
pling strength α = 0.2. The regions to the left of these critical
curves represent the domain of desynchronization, while the
regions to the right correspond to the domain of global syn-
chronization. It is evident that with increasing P2, the region
of global synchrony becomes wider. This implies that a higher
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number of pairwise and higher-order connections between
the layers makes it easier to achieve global synchronization.
Thus, the global synchronous region can be expanded by in-
troducing more links and triangles in the interlayer connection
topology. Furthermore, one can observe an interesting result
for P2 = 0.2 > P1, i.e., when the number of pairwise and
higher-order interactions between the layers is higher than
within the layers. In this scenario, the global synchronization
emerges even if ε1 = 0.0 (black curve). This implies that the
presence of sufficient triangles in the multilayer network alone
can promote global synchronization, even when there are no
pairwise interactions.

V. DISCUSSION

In summary, we introduce a generalized mathematical
model aimed at capturing intricate higher-order interactions
within and across layers of a multilayer framework. Our
investigation focuses on global synchronization. Within the
constraints of the invariance condition for the synchronous
solution, we derive the necessary criteria for achieving a stable
synchronization state, thereby extending the well-established
master stability function approach to multilayer structures
with higher-order interactions. The complexity introduced by
multiple layers and higher-order interactions in our exam-
ined system is exemplified by the manifestation of the master
stability formalism as a set of coupled linear differential equa-
tions rather than a singular parametric variational equation.
Despite this intricacy, we demonstrate that, in a specific sce-
nario, our formalism simplifies to yield a set of uncoupled
parametric variational equations, each possessing dimensions
equivalent to those of a single dynamical unit. In addition
to the theoretical foundations, we incorporate a collection of
numerical results that affirm the validity and applicability of
our methodology. Our findings demonstrate that introducing
higher-order interactions within and across layers of a mul-
tilayer network expands the parameter space wherein global
synchronization can be achieved.

Therefore, our in-depth analytical exploration has provided
valuable insights into the impact of higher-order interac-
tions on the emergence of global synchronization within a
generalized multilayer structure. However, it is important
to acknowledge the possibility of numerous unexplored av-
enues for further investigation. Within this context, a natural
extension of our framework involves examining synchroniza-
tion phenomena in generic multilayer structures featuring
distinct intralayer and interlayer coupling schemes. Addition-
ally, delving into the influence of higher-order interactions in
generalized multilayer networks on the emergence of other
synchronization phenomena, such as intralayer and interlayer
synchronization in detail, presents itself as a potentially in-
triguing research direction.
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FIG. 11. Variation of global synchronization error as a function
of α for Hindmarsh-Rose neuronal model. Each layer of the mul-
tilayer network consists of N = 100 HR-neurons, with a random
topology for both intralayer and interlayer connections and non-
linear coupling functions. The pairwise coupling strength is kept
fixed at ε1 = 0.1. The four curves colored in magenta (circle), red
(square), blue (inverted triangle), and green (diamond) represent
global synchronization error for four distinct values of the non-
pairwise coupling strengths given by ε2 = 0.1, 0.25, 0.5, and 0.8,
respectively.
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APPENDIX A: HINDMARSH-ROSE MODEL
WITH NONLINEAR COUPLING SCHEME

In our proposed multilayer HR-neuronal model given in
Sec. IV A, both pairwise and nonpairwise coupling functions
were initially considered linear due to our analytical reliance
on diffusive couplings and resemblance with the gap junction
(electrical synaptic) couplings. However, in this section, we
adopt a nonlinear, nondiffusive coupling scheme previously
used by Gambuzza et al. [50]. The coupling functions are
defined as h(1)(Xi, Xj ) = (tanh( x j−xi

0.5 ), 0, 0), h(2)(Xi, Xj, Xk ) =
(tanh( x j+xk−2xi

0.5 ), 0, 0). This coupling is noninvasive, so it
guarantees the emergence of global synchronization with-
out any further assumptions. We, therefore, investigate the
impact of nonpairwise coupling strength on the emergence
of global synchronization error in the multilayer network
with this coupling scheme. The result corresponding to this
scenario is presented in Fig. 11, where we plot global syn-
chronization error (E ) with respect to the parameter α by
varying the higher-order coupling strength ε2. Fixing the
pairwise coupling strength at ε1 = 0.1, we consider four dif-
ferent values of the nonpairwise coupling strengths, namely,
ε2 = 0.1, 0.25, 0.5, and 0.8. One can observe that the global
synchronous state emerges at relatively smaller values of the
interlayer strength α as the nonpairwise coupling strength
ε2 is increased. Thus, analogous to the linear higher-order
coupling, the nonlinear higher-order couplings within and
across the layers make achieving the global synchronization
state easier.
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FIG. 12. The stable and unstable region of the global synchro-
nization state in (ε1, ε2) parameter space for N = 100 HR neurons
in both the layers of the network (1) with the intralayer network
topology is taken as Watts-Strogatz (WS) model for small-world
networks. The maximum Lyapunov exponent �max of the linearized
Eq. (11) in the (ε1, ε2)-parameter space are for four values of α:
(a) α = 0.1, (b) α = 0.3, (c) α = 0.6, and (d) α = 0.9.

APPENDIX B: SMALL-WORLD CONNECTIVITY

Here, we broaden the scope of our investigation by examin-
ing results under an alternative connectivity topology among
nodes within the layers of the multilayer structure. Specifi-
cally, we depart from random connections among nodes and,
instead, adopt the Watts-Strogatz small-world algorithm [58]
to establish connections to the nodes within each layer of the
multilayer framework. Nevertheless, the connections across
the layers remain randomized, consistent with our previous
approach. The aim is to demonstrate that the findings we have
previously obtained are not confined solely to the random
network structures among nodes within the layer. Small-world
connectivity within each layer is formed so that each node
can interact with its 10 (k = 10) nearest neighbors. Addi-
tionally, a probability parameter, psw = 0.1, allows nodes to
connect with a few more distantly located within the layers.
We assume the HR model governs the dynamics of each node.
Additionally, we consider the same pairwise and higher-order
coupling schemes as earlier. Considering the small-world in-
tralayer topology in each layer and taking the HR model as the
dynamics of each neuron, the maximum Lyapunov exponent
of the Eq. (11) has been depicted in Fig. 12. We take α =
0.1, 0.3, 0.6, and 0.9 in Figs. 12(a)–12(d), respectively. Com-
bining these four figures, we can conclude that the qualitative
combined effect of the two synaptic coupling strengths ε1 and
ε2 is the same as the previous (Fig. 3), i.e., the region of syn-
chronization increases with increasing higher-order coupling.
However, a significant difference can be observed. Here, the
enhancement rate is fast compared to the previous, and in this
case, the impact of the higher-order synaptic coupling strength
is observable even in the absence of pairwise interactions,
i.e., the sole presence of higher-order interactions is enough
for the emergence of global synchronization. The effect of
the parameter α on the synchronous region in the (ε1, ε2)
plane is completely the same as in the previous case; a rise
in α value results in an enhancement of the synchronous
region.
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FIG. 13. The intralayer, interlayer, and global synchronization
errors as a function of α The multilayer is consisting of N = 100
Rössler oscillators in both layers of the network (1) with the random
intralayer and interlayer network topology. Pairwise and nonpairwise
coupling strengths are fixed at ε1 = 0.0003 and ε2 = 0.0001, respec-
tively. Three curves of colored blue (inverted triangle), red (circle),
and magenta (star) correspond to the intralayer, interlayer, and global
synchronization errors.

APPENDIX C: INTRALAYER AND INTERLAYER
SYNCHRONIZATION STATES

Throughout the main text, all the results discussed focus
on the emergence of global synchronization in the higher-
order multilayer framework. Here, we delve shortly into the
emergence of intralayer and interlayer synchronization in our
considered multilayer network given by Eq. (1). To do so, we
consider the previously taken multilayer network constituting
100 Rössler oscillators in each layer with nonlinear diffusive
couplings given in Sec. IV B. To characterize the intralayer
and interlayer synchronization states, we introduce two syn-
chronization errors as follows:

E1(t ) = 1

(N − 1)

N∑
k, j=1

‖X1k − X1 j‖,

E12(t ) = 1

N

N∑
k, j=1

‖X1k − X2 j‖. (C1)

Here, E1 denotes the synchronization error corresponding to
layer 1. Thus, when E1 becomes zero, the nodes within the
Layer 1 become synchronized. Now, it is well known that in
a multilayer network, each layer synchronizes simultaneously
[59]. Hence, whenever Layer 1 synchronizes, so does Layer
2. Eventually, the zero value of E1 indicates the emergence
of intralayer synchronization. However, E12 represents the
synchronization error between the layers, i.e., the interlayer
synchronization error. Therefore, zero value E12 indicates the
emergence of interlayer synchronization in the multilayer net-
work. Therefore, we investigate the variation of intralayer
and interlayer synchronization errors by varying the system
parameters to observe the occurrence of the synchronized
states. In Fig. 13, we plot the intralayer synchronization error
(E1), the interlayer synchronization error (E12) and global
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synchronization error (E ) with respect to the interlayer cou-
pling parameter α. We fix the pairwise and nonpairwise
coupling strength at ε1 = 0.0003 and ε2 = 0.0001. We choose
these two strengths very small enough so that both layers
are not in the synchronous state when α = 0.0, i.e., when
the layers are totally disconnected from one another. Now,
after gradually increasing the value of the parameter α, it is

observable that the interlayer and intralayer synchronization
states and simultaneously the global synchronization state
emerge at the same value of α (α ≈ 0.5). Therefore, for fixed
pairwise and higher-order coupling (drawn from the desyn-
chrony region), inter- and intralayer synchrony occur at the
same threshold value of the connecting/disconnecting param-
eter α between the layers.
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