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Statistical modeling of equilibrium phase transition in confined fluids
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The phase transition of confined fluids in mesoporous materials deviates from that of bulk fluids due to
the interactions with the surrounding heterogeneous structure. For example, adsorbed fluids in metal-organic-
frameworks (MOFs) have atypical phase characteristics such as capillary condensation and higher-order phase
transitions due to a strong heterogeneous field. Considering a many-body problem in the presence of a
nonuniform external field, we model the host-guest and guest-guest interactions in MOFs. To solve the three-
dimensional Ising model, we use the mean-field theory to approximate the guest-guest interactions and Mayer’s
f -functions to describe the host-guest interactions in a unit cell. Later, using Hill’s theory of nanothermodynam-
ics, we define differential thermodynamic functions to understand the distribution of intensive properties and
integral thermodynamic functions to explain the phase transition in confined fluids. The investigation reveals
a distinct behavior where fluids confined in larger pores undergo a discontinuous (first-order) phase transition,
whereas those confined in smaller pores experience a continuous (higher-order) phase transition. Furthermore,
it is observed that the free-energy barrier for low-density adsorbed fluid (LDAF) to high-density adsorbed fluid
(HDAF) phase transitions is lower in confined fluids than in bulk fluids resulting in a lower condensation pressure
relative to the bulk saturation pressure. Finally, the integral thermodynamic functions are succinctly presented
in the form of a phase diagram, marking an initial step toward a more practical approach for understanding the
phase behavior of confined fluids.
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I. INTRODUCTION

The impetus for this investigation arises from our prior
work, Shamim and Auti et al. [1], where we proposed a
hybrid-compression adsorption heat pump cycle and concep-
tualized a three-dimensional phase diagram for adsorbed fluid.
Understanding the thermodynamic properties of all species
at each stage is crucial for designing such thermodynamic
processes. While the phase diagram of the refrigerant pro-
vides comprehensive thermodynamic information for vapor
compression heat pump cycles, similar data for confined
fluids is lacking. Confined fluids can be adsorbed gas in
porous structures [2–4], gas trapped in nanobubbles [5], nat-
ural gas trapped in shale and tight rock formations [6], or
biomolecules trapped in cells [7]. They have distinct physical
and thermodynamic characteristics that differ from those of
bulk fluids. These unique characteristics include phenomena
such as an atypical phase transition and packing polymor-
phism [8–11], a shift in the freezing and melting points [12],
an anomalously low dielectric constant [13], and ultralow
friction leading to exceptionally high water flow rates through
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carbon nanochannels [14]. Although these phenomena have
been widely observed and reported, how heterogeneity and
their multiscale nature affect the fluid characteristics still lacks
a comprehensive thermodynamic understanding. Therefore
the goal of the current work is to obtain relevant thermody-
namic data and construct a phase diagram of fluid trapped in
nanospaces.

The atypical thermodynamic properties are due to the
heterogeneous interactions and steric hindrance of confined
fluids. Generally, these interactions take the form of van der
Waals forces and the inverse radial dependence of these co-
hesive interactions translates into a layered distribution of
density near the surface, which creates anisotropy [15–19].
Gibbs laid the foundation for modeling how heterogeneous
interactions affect fluid properties by formulating surface ther-
modynamics, where he introduced the concept of the Gibbs
surface excess [20]. Later, Hill put forth a thermodynamic
approach to model small systems [21]. Since then, numerous
models describing how heterogeneity affects the fluid proper-
ties have been proposed. For example, various self-consistent
field models have been presented based on the analogous
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy describ-
ing a system containing a large number of interacting particles
[22–30]. These models can be solved for special cases, but
become much more complex for a different set of conditions.

To make the model more realizable under general con-
ditions, Sircar and Myers [2,31] proposed a semiempirical
formulation for low-concentration adsorption. They coined
the term “ideal adsorbed phase” to indicate a behavior of low
density adsorbed fluid (LDAF) that differs from that of bulk
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gas. Myers later proposed a theory of adsorption based on
established theories in solution thermodynamics and phase
equilibria [32]. Nicholson [33,34] later presented an elabo-
rate molecular theory focusing on the adsorption of lattice
gas. This model shows qualitatively how the thermodynamic
properties vary but does not focus on the phase transition of
the adsorbed fluid. Martinez et al. [35] predicted adsorption
isotherms using a two-dimensional statistical associating fluid
theory for a square well potential on a flat surface.

Despite significant advancements in molecular simula-
tions, including extensive Monte Carlo simulations by Evans
to elucidate phase transitions in mesoporous slits [3,36], and
the introduction of a hard-sphere model by Schmidt and
Löwen to investigate the freezing transition between parallel
plates using Monte Carlo simulations [37], a comprehensive
understanding of the thermodynamics of confined fluids re-
mains elusive. Numerous studies, such as those by Kimura
and Maruyama on boiling phase transitions using molecular
dynamics [38] and Radhakrishnan et al. on thermodynamic
properties using grand canonical Monte Carlo (GCMC) sim-
ulations, have utilized brute force molecular simulations to
produce phase diagrams [39]. Similarly, Takaiwa et al. pre-
sented a phase diagram of water in carbon nanotubes [40]
using extensive GCMC simulations, and Zhou et al. employed
ab initio simulations to illustrate a surface phase diagram us-
ing density functional theory and grand canonical algorithms
[41]. More recently, molecular simulation techniques have
been enhanced by incorporating various machine-learning al-
gorithms [42–45] reducing the computational demands of the
molecular simulations.

This raises the question of why statistical modeling is nec-
essary. While modern simulation methods can extract specific
properties and reduce computational costs, even advanced
deep-learning models remain opaque [46,47]. This opacity
often leads to significant thermodynamic information being
overlooked, limiting our understanding of adsorption and con-
finement physics. Additionally, deep-learning algorithms rely
on statistical mechanics methods [48]. Thus, to fully grasp the
thermodynamics of confined fluids, it is essential to use sta-
tistical methods and analytical models. Similar models have
been successfully used to understand various multiscale pro-
cesses in recent years. For example, Košmrlj and Nelson [49]
gave a model for the thin shells and argued that large spher-
ical shells are unstable due to thermally generated pressure
using statistical mechanics. Goodrich et al. [50] formulated a
statistical model for nanocluster formation in the crystalliza-
tion process, and Molina et al. [51] experimentally described
the many-body interactions that occur in confined space for
self-organizing of droplets. In a similar way, to understand
the multiscale process of phase transition in confined fluids,
we have developed a generalized semi-analytical statistical
model.

To facilitate the calculation of thermodynamic properties,
we have considered a test case of argon molecules adsorbed
in a cubic metal-organic framework (MOF) throughout this
manuscript. Argon is chosen as the test fluid due to its spher-
ical molecular shape, which limits it to only translational
degrees of freedom, thereby simplifying the analysis. This
system allows for straightforward benchmarking of the model
by comparing the adsorption isotherms and density distribu-
tion obtained from independent GCMC simulations.

We have formulated a three-dimensional (3D) Ising model
for argon confined in a MOF [see Fig. 1(a)]. This approach
considers the nonuniformity of the external field by de-
coupling homogeneous and heterogeneous interactions. The
homogeneous interactions are considered through mean-field
theory and the heterogeneous interactions are approximated
using Mayer’s f -functions. The nonuniform interactions
lead to a nonuniform density distribution in the pores, as
depicted in Figs. 1(b)–1(e). To account for the thermody-
namic properties of such a distribution, differential (local) and
integral (global) intensive thermodynamic functions can be
defined. For example, Figs. 1(b) and 1(c) show the expected
relative density distribution (a differential property) of argon
at relative pressures, p/p0 = 0.04 and p/p0 = 0.20, respec-
tively, for a small pore (a = 12 Å). Even for extremely low
relative pressure, the pores are close to saturation. Conversely,
Figs. 1(d) and 1(e) show the expected relative density distri-
bution of argon at relative pressures p/p0 = 0.10 and 0.70,
respectively, for a large pore (a = 24 Å). Here, the layered
adsorption occurs near the heterogeneity at lower relative
pressure and a uniform density distribution develops at higher
relative pressure. Later in this paper, we derive the integral
thermodynamic functions using Hill’s thermodynamics for
small systems. Based on these integral properties, we discuss
the phase transition of confined fluids and compare it with that
of bulk fluids.

This paper discusses the statistical modeling of the con-
fined fluid while highlighting the phase transition during
capillary condensation [low-density adsorbed fluid (LDAF)
to high density adsorbed fluid (HDAF)] and why it differs
from the bulk vapor-liquid phase transition. We also show-
case the phase diagram of the adsorbed fluid and discuss the
similarities and key differences vis-á-vis the bulk fluid. The
remainder of the paper is organized as follows. Section II B
details a mathematical derivation of the Ising model in a grand
canonical ensemble for a confined fluid. Section II C derives
the relevant thermodynamic properties of the adsorbed flu-
ids. Section III A explains the benchmarking of the proposed
model with GCMC simulations. Section III B discusses the
phase transition as a function of pore size based on a double-
well potential. Section III C introduces the phase diagram for
the adsorbed fluid. Finally, Sec. IV presents the conclusions
of this paper.

II. MODEL

A. General assumptions

We focus on the classical regime, where quantum effects
may be disregarded. Consequently, the van der Waals poten-
tials generated by different sources are treated as additive,
following the established principles of intermolecular forces
[52]. Furthermore, the analysis assumes equilibrium condi-
tions throughout. This assumption is based on the premise
that external conditions, such as temperature and pressure,
are time-independent. Given such conditions, macroscopic
quantities can be expressed in terms of microscopic average
values, distribution functions, or probabilities.

Furthermore, mean-field theory is used to solve the many-
body problem of adsorbents in a potential well of nonuniform
depth. This assumption is valid under conditions of low
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FIG. 1. Statistical model for adsorbed fluid. (a) Schematic rep-
resentation of the system under consideration. The argon molecules
(red) in bulk with chemical potential μbulk are in equilibrium with
the system of adsorbed molecules with chemical potential μads in
a metal-organic framework (MOF) with chemical potential μframe.
The relative density distribution obtained from the proposed model
for an MOF with a 12 Å unit cell is shown at (b) low relative
pressure (p/p0 = 0.04) and (c) after saturation (p/p0 = 0.20). Sim-
ilar distribution functions are plotted for a 24 Å unit cell MOF
at (d) low relative pressure (p/p0 = 0.10) and (e) after saturation
(p/p0 = 0.70). The deep blue shade represents the heterogeneity
(metal or ligand) and all distributions are plotted for a cross section of
the unit cell at z = a/2.

adsorbent concentration because interactions between ad-
sorbed molecules are negligible at such concentrations.
Moreover, the mean-field theory remains valid at and above
the saturation point for capillary condensation because the
distribution of fluid molecules within pores becomes uniform,
leading to a mean-field effect. However, the mean-field theory
may not be accurate in a high-density gas-like regime. In
such cases where the adsorbents are relatively concentrated,
a density distribution around the heterogeneity creates an
anisotropy. However, this effect is not considered in the cur-
rent model.

Given these assumptions, the current work provides a
framework for analyzing and understanding the behavior of
fluids in confined spaces, particularly in the context of adsorp-
tion in MOFs. These assumptions allow for simplified models
and calculations, enabling insights into the thermodynamic
properties and phase transitions of the adsorbed fluids.

To clarify the formulation of the model, we briefly revisit
the fundamental concepts of Hill’s nanothermodynamics [53]
in the context of the current problem (a detailed derivation
and discussion are available in Ref. [54]). In our case, fluid
confined in the pore of a modeled MOF is in equilibrium
with the surrounding bulk fluid. The argon molecules confined
within the MOF are the “system” in this investigation. To
understand the thermodynamic characteristics of this system,
we subdivide it into an ensemble of η small, equivalent,
distinguishable, independent systems, as shown in Fig. 1(a).
Therefore, assuming the total volume is constant, the system
described here at equilibrium gives

dEt = T dSt + μdNt + ξdη, (1)

where Et is the total energy of the system, T is the tempera-
ture, St is the total entropy of the system, μ is the chemical
potential, Nt are the total number of molecules in the sys-
tem, ξ is the subdivision potential, and η is the number of
subdivisions.

Equation (1) resembles Gibb’s equilibrium equation for
a two-component system with Nt being the number of
molecules. Since η is the number of subdivisions then the total
volume Vt = ηV , where V is the volume of each subdivision.
Therefore we consider the work associated with varying η

at pressure p by adding the work of expansion, −pηdV , in
Eq. (1) to obtain

dEt = T dSt − pηdV + μdNt + ξdη, (2)

where −pη ≡ ∂Et/∂V . We now use Hill’s definition of sub-
division potential, ξ ≡ −p̂V , where p̂ is the integral pressure
[54]. Integrating Eq. (2) gives the equilibrium equation for the
total system:

Et = T St + μNt − p̂V η. (3)

From here, it is straightforward to show for a grand canonical
ensemble that

p̂V = kBT ln �, (4)

where kB is the Boltzmann constant and � is the grand parti-
tion function for the small chosen system of volume V .
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Hereinafter, we use Hill’s notation [54] where the hat (̂)
denotes the integral intensive thermodynamic function and for
any extensive thermodynamic function α, and

ᾱ ≡ 1

V

∫
V

αdV (5)

denotes the integral extensive thermodynamic function. In
contrast, symbols without hat or bar represent differential
thermodynamic functions.

B. Ising framework

To understand the phase transition, the Ising model plays
a crucial role. The inherent complexity in the 3D Ising model
coupled with the external nonuniform field presents signifi-
cant challenges. However, we have made certain assumptions,
mentioned in the prior section to obtain an approximate solu-
tion. The formulation for the confined fluids is as follows:

Let p = (p1, p2, . . . , pN ), q = (q1, q2, . . . , qN ) be the mo-
mentum and position coordinates, respectively, in phase space
for a system of N molecules confined in a framework creating
a potential Uma(q). The Hamiltonian H is then

H(p, q) = K(p, q) + U (p, q) (6a)

=
N∑
i

p2
i

2m
+

N−1∑
i

N∑
j>i

�(ri − r j ) +
N∑
i

Uma(qi ),

(6b)

where K and U are kinetic and potential energy contributions
to the Hamiltonian, respectively. m is mass of the particle,
�(ri − r j ) is the potential between molecules i and j as a
function of the spatial coordinate r. This intermolecular po-
tential can be approximated as a field defined in terms of the
phase-space coordinate Uaa(q):

N∑
i

Uaa(qi ) ≡
N−1∑

i

N∑
j>i

�(ri − r j ). (7)

1. Canonical ensemble

Equation (6b) shows that the kinetic-energy term is inde-
pendent of the position coordinate q and the potential-energy
term is independent of the momentum coordinate p. Assum-
ing that the confining framework is stationary and only fluid
particles contribute to the kinetic energy, we separate the
variables and define the canonical partition function Z as the
product of the kinetic contribution Zk−aa and the configura-
tional contribution Zq [refer Eq. (8)]. Additionally, the kinetic
energy in turn depends only on the temperature of the reser-
voir. Therefore we focus on the solution of the configurational
partition.

Z = Zk−aaZq, (8)

where the configurational contribution is

Zq = 1

V N

∫
V

e−U (q1,q2,...,qN )/τ dq1 . . . dqN , (9)

with τ = kBT . The potential energy is a combination of po-
tentials created by adsorbate-adsorbate interaction and the

MOF-adsorbate interaction as described in Eq. (10)

U (q) = Uaa(q) + Uma(q). (10)

Uma is the potential energy due to the framework at any given
position, which implies

Uma(q) = Uma(q1) + Uma(q2) + · · · + Uma(qN ). (11)

The configurational partition function [Eq. (9)] is

Zq = 1

V N

∫
V

exp{−[Uma(q1) + · · · + Uma(qN )

+ Uaa(q1) + · · · + Uaa(qN )]/τ }dq1 · · · dqN . (12)

For the extreme case in the absence of any external field,
where Uma(q1, . . . , qN ) = 0, Eq. (12) resembles the configu-
rational partition function for a bulk fluid.

The complexity due to the inclusion of an external field
may be treated in several ways. For example, Travalloni et al.
[55] used the extension of the generalized van der Waals
theory to model the confined fluids. Simon et al. [56,57] took
as a lattice model the adsorbed gas and the different orienta-
tions of the flexible framework and defined a transfer matrix
for a rather complex problem. Poluektov [29] analyzed the
self-consistent field model for classical systems using a one-
dimensional perturbation theory. Singh et al. [58] proposed
decoupling the two types of interactions and approximating
the solution. Recently, Dong et al. [59] used Gibbs-surface
thermodynamics to define the problem in appropriate inde-
pendent variables and obtained an analytical solution for the
special case of confinement between parallel sheets.

We follow the approach of Singh et al. [58] of decoupling
the interactions and approximating the effect of the external
potential using Mayer’s f -functions [60,61]. Let fi be defined
as follows:

fi ≡ e−Uma (qi )/τ − 1. (13)

Equation (12) can then be written as

Zq = 1

V N

∫
V

e−Uaa (q)/τ
N∏

i=1

(1 + fi )dq1 · · · dqN , (14)

where
N∏

i=1

(1 + fi ) = 1 +
N∑

i=1

fi +
N−1∑
i=1

N∑
j>i

fi f j + O
(

f 3
i

)
. (15)

Including the individual molecular terms and ignoring the
higher-order terms in Eq. (15) yields

Zq = 1

V N

∫
V

e−Uaa (q)/τ

(
1 +

N∑
i=1

fi

)
dq1 · · · dqN . (16)

This expansion is analogous to the first-order fluid-fluid inter-
actions described by Mayer [61]. In this formulation, Mayer’s
f -functions are applied to simplify the heterogeneous interac-
tions and not the fluid-fluid interactions.

Assuming that, despite the density distribution resulting
from the external potential, fluid particles collectively estab-
lish a mean field to render the analytical solution tractable, we
can write

Uaa(q) = Nuaa, (17)
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where uaa is the mean field independent of the positional
coordinate in phase space. Thus uaa can be moved outside the
integral and Eq. (16) takes the form

Zq = 1

V N

∫
V

e−Nuaa (q)/τ dq1 · · · dqN

+ e−Nuaa (q)/τ

V

(∫
V

f1dq1 + · · · +
∫

V
fN dqN

)
. (18)

The first term in Eq. (18) describes the configurational
partition function of the bulk phase in the absence of any
external field; let it be Zq−aa. In addition, we can define

φ ≡ 1

V

∫
V

fidqi

= 1

V

∫
V

(e−Uma (qi )/τ − 1)dqi. (19)

Using this definition,

Zq ≈ Zq−aa(1 + Nφ), (20)

where Zq−aa is the configurational partition function of the
mean-field bulk fluid. Putting this back into Eq. (8) gives

Z = Zk−aaZq−aa(1 + Nφ)

= Zbulk(1 + Nφ). (21)

Given that Uma is a spatially varying potential inside the meso-
pores, we consider an infinitesimal volume dV = dxdydz
at coordinate qi = (x, y, z). We assume a uniform potential
Uma(x, y, z) in the infinitesimal volume, which implies that the
canonical partition function for an infinitesimal volume is

Z = Zbulk[1 + Nφ(x, y, z)]. (22)

2. Grand canonical ensemble

The equilibrium assumption implies that the chemical
potential μbulk of the bulk phase equals the chemical poten-
tial μtotal of the argon inside the nanospace. The chemical
potential μtotal of argon inside the nanospace consists of con-
tributions from other argon inside nanospace (μads) and from
the framework atoms (μframe) that form the heterogeneity.
Both contributions are made through intermolecular forces,
not intramolecular forces:

μbulk(pext, T ) = μtotal (23a)

= μads + μframe. (23b)

Similar to the excess chemical potential defined by Widom
[62], the chemical potential of the adsorbed phase combines
the intramolecular chemical potential μads from the adsorbed
phase and the excess chemical potential μframe due to the
framework. We use the mean value of the interaction energies
in the unit cell to calculate the excess chemical potential
μframe:

μframe = −τ ln

〈
exp

(−Uma(q)

τ

)〉
. (24)

In addition, the unit-cell volume V is fixed and the temper-
ature T is controlled externally. Therefore the modeling is
done in a grand canonical ensemble (μads,V, T ). Moreover,
if a partition function of a system of particles can be obtained,

the relevant quantities of interest, such as density, pressure,
entropy, and free energy can be derived. To this end, we start
the model by defining the grand partition function �ads for the
adsorbed fluid [54]:

�ads =
∞∑

N=0

∫
dN qdN p
h3N N!

e−[H(p,q)−μadsN]/τ (25a)

=
∞∑

N=0

ZeNμads/τ , (25b)

where h is Planck’s constant and Z is the canonical parti-
tion function for an ensemble of N molecules. Combining
Eqs. (22) and (25b) gives

�ads(μ
ads,V, T ) = �bulk(μads,V, T )

(
1 + φ〈N〉μads

bulk

)
. (26)

Under extreme conditions where there is no external po-
tential (i.e., no confinement), the partition function �ads

simplifies to the partition function �bulk of the bulk fluid.
This ensures the consistency and coherence of the equa-
tion, particularly in scenarios where confinement effects
are negligible.

C. Thermodynamic properties

When examining intensive thermodynamic functions for a
bulk fluid, such as pressure or chemical potential, it is com-
mon to assume that the fluid is homogeneous, meaning that the
properties of the fluid are uniform throughout the entire vol-
ume under consideration. However, in the context of confined
fluids, the presence of heterogeneous interactions introduces
nonuniformities in the intensive thermodynamic functions. To
address this distribution of properties, Hill introduced both
differential and integral thermodynamic functions [54,63].
Differential thermodynamic functions are defined at a spe-
cific point in space, indicating their local nature. Conversely,
integral thermodynamic functions extend their definition
across the entire volume of the system, providing a global
characterization.

Given that the phase of any substance is defined for a group
of molecules [64,65], understanding the phase of the fluid
requires that the integral properties be considered. Therefore,
in the exploration of phase transitions, emphasis is placed on
global (i.e., integral) thermodynamic properties rather than
local (i.e., differential) thermodynamic properties.

Relevant thermodynamic properties such as the grand
potential 
̄ads, the expected number 〈Nads〉 of molecules ad-
sorbed, the pressure p̂ads of the adsorbed phase, entropy S̄ads,
enthalpy H̄ads, Helmholtz free energy F̄ads, and Gibbs free en-
ergy Ḡads can all be obtained from the grand partition function
�ads, as shown in the following section.

1. Grand potential �̄ads

The grand potential can be obtained from its definition


ads(x, y, z) = −τ ln[�ads(x, y, z)]

= −τ ln(�bulk) − τ ln[1 + φ(x, y, z)]

= 
bulk − τ ln[1 + φ(x, y, z)], (27)
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where 
bulk is the grand potential of the bulk fluid. Since we
are interested in the integral properties inside the MOF pore,
we spatially average the grand potential:


̄ads = 1

V

∫
V


ads(x, y, z)dxdydz. (28)

2. Disjoining pressure �d of adsorbed phase

For total system (system of η unit cells), we can write

Et − T St − μNt = −τ ln �t . (29)

such that, �t = �
η

ads; according to our assumptions, total
system comprises of η unit cells independent of each other.
Therefore by combining Eqs. (3), (4), and (29), we obtain
the integral pressure p̂ads of the adsorbed fluid in terms of the
grand partition function:

ξ ≡ −p̂adsV = −τ ln �ads = 
̄ads. (30)

Therefore

p̂ads = − (
̄ads)μ,T

V
. (31)

Figure S3(d) of the ESI [66] shows the calculated in-
tegral pressure. p̂ads is significantly greater than the bulk
pressure pbulk and jumps discontinuously upon crossing the
pore boundary. Therefore we define a disjoining pressure �d

[52,67] for adsorbed gas such that

�d ≡ p̂ads − pbulk. (32)

In a similar way, when considering a constant-pressure
ensemble (NPT ), we establish the integral chemical poten-
tial such that ξ ≡ μ̂adsN . Subsequently, a disjoining chemical
potential Md [68] is defined as

Md ≡ μ̂ads − μbulk. (33)

The proposed formulation extends to contexts where het-
erogeneous wall effects and nonuniform external fields are
significant, facilitating the calculation of disjoining quantities
beyond gas adsorption phenomena in porous structures. For
instance, surface nanobubble stability, surface heterogeneity
explains excessive pressure inside these bubbles as disjoining
pressure, elucidating their stability [69].

3. Expected number 〈Nads〉 of molecules adsorbed

The expected number 〈Nads〉 of molecules adsorbed can be
calculated as follows:

〈Nads(x, y, z)〉 =
∑

N NZadseμadsN/τ

�ads
(34a)

= 〈N〉μads

bulk + 〈N2〉μads

bulkφ(x, y, z)

1 + 〈N〉μads

bulkφ(x, y, z)
, (34b)

where 〈N〉μads

bulk is the average number of molecules that would
be present in the bulk if the chemical potential were μads.
Note that the term 〈Nads(x, y, z)〉 is not the actual number
of molecules at a given position but the expected number.
Therefore the expected total number of molecules in the unit

cell is

〈Nads〉 = 1

V

∫
V
〈Nads(x, y, z)〉dxdydz. (35)

The number of molecules confined within a system is
influenced by two factors: intermolecular interactions and het-
erogeneous interactions. The maximum number of molecules
is capped by the volume of the unit cell. These interactions
collectively contribute to the effective potential experienced
by the adsorbate molecules. Equation (26) uses a decoupling
approach to separate these two interactions. The intermolec-
ular interaction among the confined molecules is considered
independently, following which the heterogeneous interac-
tions are incorporated as an additional potential term. The
volume constraint is accounted for by capping the summation
in Eq. (34) at Nmax such that

Nmax =
⌊

Vcell − Vm − Vl

b

⌋
, (36)

where �·� is the floor function, Vcell is the unit-cell volume,
Vm and Vl are the volume of the unit cell occupied by the
metal and ligand, respectively, b = √

2σ 3
a is the volume of

each molecule according to van der Waals theory, and σa is
the Lennard-Jones size parameter for adsorbates.

4. Other thermodynamic functions

The following standard thermodynamic relations still apply
to the integral values:

Entropy: (S̄ads) =
(∂
̄ads

∂T

)
p,μads

, (37)

Gibbs free energy: (Ḡads) = μads〈Nads〉, (38)

Helmholtz free energy: (F̄ads) = 
̄ads + μads〈Nads〉, (39)

Enthalpy: (H̄ads) = Ḡads + T S̄ads. (40)

III. RESULTS AND DISCUSSIONS

A. Benchmarking

We assume that bulk argon behaves as a van der Waals
fluid, so we can write the canonical partition function of the
bulk fluid as

Zbulk = 1

N!

(
V − Nb

λ3
T

)N

exp

(−aN2

V τ

)
, (41)

where a and b are the van-der Waals coefficients for argon and
λT is the thermal de Broglie wavelength [70]. Based on this
assumption various cases with different pore sizes and tem-
peratures were analyzed using an in-house GPU-accelerated
Python code (available upon request).

This proposed model is benchmarked using a GCMC
simulation for a model MOF with a cubic unit cell. Metal
oxides occupy the vertices of the cube and ligands are lo-
cated on the edges of the cube, as shown in Fig. 2(a). To
maintain the consistency with the statistical model, we used
averaged LJ parameters for metal-oxide and aromatic rings
to model this framework [71]. The GCMC simulations were
performed using the RASPA [72] simulation software pack-
age. All simulations included a 50 000-cycle equilibration
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FIG. 2. Benchmarking of the model with GCMC simulations.
(a) Model metal-organic framework (MOF) with metal oxides and
ligands; a is the unit-cell length. (b) Potential-energy distribution
inside the unit cell of this MOF. (c) Adsorption isotherm for argon
obtained from the model (green line) and the GCMC simulations
(pink diamonds). Capillary condensation occurs at relative pressure
p/p0 ≈ 0.6. Insets (i)–(iii) show the distribution of argon atoms
inside the unit cell obtained from the GCMC simulation and the
expected relative density distribution (obtained from the Eq. (34b)
and normalized with the maximum local density for a better con-
trast) presented at the corresponding locations in the isotherm. The
benchmarking is done for argon adsorption in a model MOF with
unit-cell length a = 24 Å, LJ parameters σm = 5 Å, εm = 120 K, and
temperature T = 120 K.

period and a 100 000-cycle production run. In these simula-
tions, the structure of all the frameworks is considered rigid;
that is, all species of the framework are held fixed at their
crystallographic positions. The argon atoms can move in
three different ways in the GCMC simulation: translation,
rotation, and swap. The interaction between MOF and argon
and between argon atoms was modeled using the LJ poten-
tial function and the Lorentz–Berthelot mixing rule. Sample
crystallographic information (.cif) files and the LJ parameters
are listed in the electronic supporting information (ESI) [66]
Sec. S1 A.

Figure 2 shows the benchmarking results for the 24 Å
unit cell. Figures 2(a) and 2(b) show the unit-cell structure
and the potential-energy distribution, respectively. Figure 2(c)
compares the adsorption isotherm derived from the GCMC
simulation with that produced by the proposed model [ob-
tained from Eqs. (34) and (35)], showing that the two curves
are consistent. Additionally, Fig. 2(c) shows in the three lower
panels the molecular distribution obtained through the GCMC
simulation along with the density distribution within the pore
at positions (i)–(iii). The proposed model correctly captures
the previously observed trend of layered adsorption [15–19].
Specifically, at lower relative pressures, adsorption predomi-
nantly occurs near the heterogeneity, as shown in Fig. 2(c)(i).
As the relative pressure increases but before capillary conden-
sation, a distinct layering of adsorbed molecules is evident in
Fig. 2(c)(ii). Finally, beyond capillary condensation, the pore
becomes saturated with a density distribution resembling that
of the bulk liquid [Fig. 2(c)(iii)]. Additional benchmarking
results are presented in Sec. S1. Moreover, Sec. S2 of the
ESI [66] provides a brief parametric investigation that sup-
ports the hypothesis made in our previous paper [73] that the
thermodynamic properties of confined fluids are a function of
the confinement parameter � ≡ σma/a.

Figure S1 of the ESI [66] shows that the isotherms for
ultrasmall pore size (10 Å) and larger pore sizes (24 Å) are
consistent with the results obtained from GCMC simulations.
This result is attributed to the assumption of a uniform field
generated by the fluid molecules adsorbed in the cavity. In
ultrasmall pores, the variability in the field resulting from
argon adsorption at different positions is effectively equivalent
to a uniform distribution. Similarly, for larger pore sizes, the
distribution of molecules near adsorption sites remains inde-
pendent at lower concentrations, thereby creating a uniform
field inside the cavity, as depicted in Fig. 2(c)(i). At higher
concentrations (that is, post capillary condensation), argon
molecules densely occupy the cavity, resulting in a uniform
field, as shown in Fig. 2(c)(iii). For concentrations between
these extremes, the adsorption isotherm slightly deviates from
the GCMC values, as shown in Fig. 2(c)(ii).

Likewise, for the medium pore sizes shown in Figs. S1(b)–
S1(e) of the ESI [66], the isotherm produced by the proposed
model deviates from the GCMC isotherm. This discrepancy
arises when the assumption of a uniform field in the cavity is
no longer valid. This problem could be addressed through an
iterative process, where the density distribution obtained from
the proposed model serves as the initial guess. However, this
problem is beyond the scope of present paper.
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Moreover, this model is inadequate for predicting the ad-
sorption properties of polar molecules (e.g., NH3 and H2O),
as the first-order assumption in Eq. (16) becomes invalid due
to stronger attractive forces. The resulting nonlinearity com-
plicates the analytical solution of the model.

B. Phase transition in confinement

1. Types of phase transitions

Since the inception of fullerenes and 3D carbon nanotubes
with cylindrical pores, the phase-transitions inside these struc-
tures have been discussed [74]. Multiple studies show that
freezing of water confined in these structures may occur
continuously or discontinuously [75,76]. The results in this
section show that this transition depends on the pore size.
Smaller pores produce continuous phase transitions, whereas
larger pores produce discontinuous (first-order) phase
transitions.

The Helmholtz free energy can be expressed in terms of the
canonical partition function [Eq. (22)]:

Fads(N,V, T ) = −τ ln[Zbulk(1 + Nφ)]

= −Nτ

{
ln

[
(V − Nb)

λ3
T N

]
+ 1

}
− N2a

V

− τ ln[1 + Nφ(x, y, z)]. (42)

Therefore we define the differential chemical potential μads

and integral chemical potential μ̂ads as follows:

μads =
(

∂Fads

∂N

)
V,T

,

μ̂ads =
(

∂F̄ads

∂N

)
V,T

=
(

F̄ads

N

)
V,T

. (43)

Using the formulation in the canonical ensemble, we cal-
culate the grand potential ω as follows:

ω = F̄ads − Nμ̂ads
sat , (44)

where μ̂ads
sat is the chemical potential at which capillary con-

densation occurs for a given temperature.
Figures 3(a) and 3(b) show the grand potential thus ob-

tained plotted as a function of density. For the small pore size
(11 Å), two phenomena occur. First, the double well vanishes
at a much lower temperature than for the large pore size,
indicating a lower critical temperature for fluids confined in
small pores. Consequently, the entropy variation in Fig. 3(c)
shows that a continuous phase transition occurs beyond 130 K.
Second, the energy barrier to cross the well is less than the
thermal noise (�Ea ≈ 0.015kBT for 110 K), implying that the
system spontaneously jumps between the wells. As a result, a
minute step occurs in the entropy variation at 110 K at a lower
relative pressure, as shown in Fig. 3(c). This implies that two
different phases exist. However,

PA1/PA2 = exp(�Ea/kBT ) ≈ 1, (45)

implying that the probability of the system being in state A1 or
A3 (PA1) approximately equals the probability of the system
being in state A2 (PA2). Therefore these two phases are prac-
tically indistinguishable. In addition, we hypothesize that the
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FIG. 3. Types of phase transitions. Potential wells for fluid con-
fined in (a) 11 Å pores and (b) 24 Å pores. Entropy variation is
plotted as a function of relative bulk pressure confined in (c) 11 Å
pores and (d) 24 Å pores at temperatures ranging from 110–150 K.

absence of hysteresis during the adsorption-desorption loop
is because the required activation energy is negligible. This
hypothesis is consistent with published data that show that
the type-I adsorption isotherm for H2 adsorption in IRMOF-1
(generally observed for small pores) has no hysteresis [77].

Moreover, as shown in Fig. 3(c), the entropy at 150 K
abruptly decreases, breaking the trend of increasing entropy
with rising temperature. Our hypothesis for this observation is
that the amount adsorbed at 150 K is less than one molecule
per unit cell. Consequently, some unit cells remain empty and
are excluded from the entropy calculation, thereby reducing
the overall entropy.

In contrast, for the large pore size (24 Å), the barrier height
is significantly larger (�Ea ≈ 15kBT ), highlighting a clear
distinction between the “gaslike adsorbed phase” (i.e., state
B1) and the “capillary condensed phase” (i.e., state B3), as
shown in Figs. 3(b) and 3(d). However, at 150 K, the double
well completely vanishes, and the adsorbed fluid exhibits a
single well, which is characteristic of the supercritical bulk
fluid, suggesting that the confined fluid has a critical point.
Furthermore, based on the activation energy required for cap-
illary condensation, we hypothesize that hysteresis occurs
during the adsorption-desorption process for large pores. As
seen for the adsorption of H2 in MOF-253 with a type-V
adsorption isotherm (generally observed for large pores), sig-
nificant hysteresis occurs in the adsorption-desorption loop
[78].

2. Capillary condensation

Figure 4(a) shows that the phase transition for the adsorbed
fluid occurs at a lower relative pressure than for the bulk phase
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FIG. 4. Energy barrier for capillary condensation. (a) Isotherm of
relative number density vs relative pressure for adsorbed argon and
the bulk argon. Adsorbed argon condenses at a lower pressure than
bulk argon (p/p0 ≈ 0.6). Nmax is the maximum number of molecules
that can be adsorbed. (b) The energy barrier for the phase transition
of bulk argon is higher than that for confined argon (�Eb > �Ea).

transition. To elucidate this, we compare the nucleation of
droplets in a bulk fluid with that in a confined fluid.

As with macroscale condensation, capillary condensation
starts with the heterogeneous nucleation of drop clusters
that subsequently grow to form droplets [79–81]. Consistent
with classical nucleation theory [82], the nucleation rate de-
pends on the nucleation barrier �G∗, which is the difference
between the interface free energy and the fluid free energy. A
lower nucleation barrier corresponds to a higher nucleation
rate. Figure 4(b) compares the energy barrier �Eb for the
bulk fluid with that for the adsorbed fluid (�Ea). The result
shows that the free energy for the adsorbed fluid is notably
lower than that for the bulk fluid, implying that the free-energy
barrier �G∗ for the confined drop nucleation is less than that
for nonconfined drop nucleation. Consequently, at a given
temperature, the condensation pressure for the adsorbed fluid
is less than that for the bulk fluid, as shown in Fig. 4(a).

This discussion can be further extended to the case of het-
erogeneous nucleation during boiling. Discrepancies between
experimental and theoretical nucleation temperatures persist
despite existing models [83–86]. By considering wall effects,
we can elucidate the lower nucleation temperatures attributed
to the reduced free energy barrier for phase transition. Con-
sequently, less wall superheat is required for bubble cluster
formation near a wall, thereby reducing the heterogeneous
nucleation temperature.

C. Phase diagram of adsorbed fluid

From an application perspective, the phase diagram is an
essential tool for designing engineering processes. For ex-
ample, Lilley and Prasher [87] presented a qualitative phase
diagram for crystallization of salts in an ionocaloric refrigera-
tion cycle. In a previous paper [1], we introduced the concept
of a 3D phase diagram as a valuable tool for the design
of hybrid compression-adsorption heat-pump systems. The
statistical model discussed earlier provides a framework for
constructing such a phase diagram. Previous research has also
aimed to construct phase diagrams for confined fluids. For ex-
ample, numerous attempts have been made to construct such

phase diagrams by using Monte Carlo simulations [39,88–90].
However, such simulations are computationally demanding,
limiting the number of adsorption isotherms that can be gen-
erated. Consequently, acquiring the requisite thermodynamic
properties to create a phase diagram for adsorbed fluids is a
significant challenge.

Radhakrishnan et al. [39] solved this problem by applying
umbrella sampling and bias potentials to compute the system’s
free energy. However, such an approach necessitates a pri-
ori knowledge of the process, and the convergence of their
method depends heavily on the selected collective variables.
Lum and Chandler [91] addressed this issue within the frame-
work of statistical mechanics, albeit for a specific scenario,
by deriving a phase diagram for vapor confined within a
cylindrical pore. Unfortunately, this approach overlooks the
nonuniform characteristics inherent in the external field at
this length scale, thus lacking generalizability. In contrast,
Travalloni et al. [55] constructed a phase diagram employing
square-well potentials to account for external heterogene-
ity. Nevertheless, this particular study does not consider
the excess chemical potential induced by external interac-
tions, leading to unrealistically high pressures during capillary
condensation.

Figure 5(a) illustrates the 3D phase diagram of adsorbed
argon within a 24 Å model of an MOF. The three axes cor-
respond to distinct state variables: the external pressure is
denoted pbulk, the enthalpy per unit mass of adsorbed argon is
denoted hads, and the number of argon molecules adsorbed per
unit cell of the model MOF is denoted Nads. Figures 5(b)–5(d)
portray the projections of this phase diagram from three dis-
tinct orientations, generating the p-h, N-p, and N-h diagrams.
Notably, the isotherms displayed contain discontinuities up
to a certain temperature, indicating that two distinct phases
coexist. The connection of these discontinuous points yields
saturation lines, which are accentuated in red. The high-
lighted area signifies the coexistence region corresponding
to the capillary condensed phase and the gas-like adsorbed
phase. In this phase diagram, A → B adsorption occurs near
the heterogeneity-forming layered structure inside the pore,
whereas B → C → D → E depicts the coexistence region.
E → F shows that the capillary condensed liquid density in-
creases with pressure. Finally, beyond the bulk saturation line
F → G, the pore is completely filled.

Furthermore, a detailed examination of the p-h diagram
in Fig. 5(b) shows that, at low pressure, the enthalpy of the
adsorbed fluid contrasts with that of the bulk fluid. As the pres-
sure decreases, the magnitude of the enthalpy of the adsorbed
fluid increases. This phenomenon can be understood by con-
sidering the occurrence of layered adsorption near the metallic
heterogeneous site. The heightened cohesive interaction with
the adsorption site liberates additional energy, increasing the
enthalpy at lower pressures. ESI Fig. S8 shows the bulk argon
p-h diagram.

An important observation from the phase diagram is the
absence of discontinuities in the isotherms beyond a specific
temperature, resembling the behavior of bulk fluids. This
temperature is denoted the critical point for capillary con-
densation. Beyond this critical point, capillary condensation
for the adsorbed fluid ceases, resulting in a lack of stepwise
behavior in the adsorption isotherm. Notably, the critical point
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FIG. 5. Phase diagram for argon adsorbed in a 24 Å model of a metal-organic framework (MOF). The integral properties are plotted in the
form of a phase diagram for the adsorbed fluid. Different perspectives of the (a) 3D N-p-h diagram are plotted in the insets: (b) p-h, (c) N-p,
and (d) N-h. The red highlighted areas are the phase-coexistence region constructed using the boundaries of discontinuities on either end of
each isotherm. Using this coexistence region, a critical point for capillary condensation is depicted with a red dot. The isotherms are plotted
every 6 K and one isotherm in each inset is highlighted with green, to show the shape of the isotherm. Each isotherm follows the direction
A → B → C → D → E → F → G.

for capillary condensation is positioned at a lower tempera-
ture compared with the bulk critical point of argon (151 K,
48.5 bar). This difference is attributed to the excess chem-
ical potential of the adsorbed fluid vis-á-vis the bulk fluid,
a consequence of heterogeneous interactions. Similar results
of reduction in critical pressure of the liquid-liquid phase
transition have been observed for water in a salt solution,
where the salt ions act as the heterogeneity [92,93].

This phase diagram provides a basis to understand the
phase transition of confined fluids. Note that a critical order

parameter analysis for the “gaslike” adsorbed phase (LDAF)
to “capillary-condensed” liquid phase (HDAF) and the
analytical construction of the co-existence region still remains
to be addressed.

IV. CONCLUSIONS

In conclusion, our investigation offers a statistical ap-
proach to address the 3D Ising model of phase transitions
in confined fluids, producing reasonably accurate results. By
applying the proposed model and integrating Hill’s theory of
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nanothermodynamics, we derive both the differential (local)
and integral (global) thermodynamic properties of the ad-
sorbed fluid. The proposed model has practical utility for
predicting the behavior of adsorbed fluids within porous struc-
tures, facilitating the design of materials tailored to specific
requirements. The key insights derived from this model are
outlined as follows:

First, the nature of the phase transition in the confined
fluid is determined by the extent of confinement, specifically
the pore size. In small pores, the activation-energy barrier for
phase transition is approximately 0.01 kBT , significantly less
than the thermal noise. Consequently, the phase transition oc-
curs spontaneously. Additionally, the unstable and metastable
states, while theoretically existent, are practically indistin-
guishable from the stable state. Conversely, in the case of large
pores, the activation-energy barrier for phase transition is of
the order of 10 kBT , clearly distinguishing between the gaslike
adsorbed phase and the capillary condensed phase.

Second, owing to additional interactions with the surface,
the free-energy barrier for phase transitions in confined fluids
is lower than in bulk fluids. This reduced energy barrier im-
plies that condensation inside MOF pores occurs at a lower
pressure for a given temperature, explaining the lower capil-
lary condensation pressure.

Finally, the model proposed in this paper consolidates the
integral thermodynamic properties in the form of a phase
diagram for confined fluids. The phase diagram resembles
the bulk fluid phase diagram except for the higher enthalpy
released at lower pressure and the lower critical temperature
and pressure due heterogenous interactions.
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