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If suitable quantum optical interactions were available, transforming the field mode operators in a nonlinear
fashion, the all-photonics platform could be one of the strongest contenders for realizing a quantum computer.
While single-photon qubits may be processed directly, “brighter” logical qubits may be embedded in individual
oscillator modes, using so-called bosonic codes, for an in-principle fault-tolerant processing. In this paper, we
show how elements of all-optical, universal, and fault-tolerant quantum computation can be implemented using
only beam splitters together with single-mode cubic phase gates in reasonable numbers, and possibly off-line
squeezed-state or single-photon resources. Our approach is based on a decomposition technique combining
exact gate decompositions and approximate Trotterization. This allows for efficient decompositions of certain
nonlinear continuous-variable multimode gates into the elementary gates, where the few cubic gates needed may
even be weak or all identical, thus facilitating potential experiments. The final gate operations include two-mode
controlled phase rotation and three-mode Rabi-type Hamiltonian gates, which are shown to be employable
for realizing high-fidelity single-photon two-qubit entangling gates or creating high-quality Gottesman-Kitaev-
Preskill states. We expect our method to be of general use with various applications, including those that rely on
quartic Kerr-type interactions.
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I. INTRODUCTION

The photonics platform offers some clear advantages to
quantum computing in terms of scalability and general error
robustness, depending on the encoding of the quantum infor-
mation. In particular, unlike other, matter-based, solid-state or
atomic platforms, photonic qubits can be operated at room
temperature and high clock rates—as high as GHz or, in
principle, even THz. In addition, recent optical continuous-
variable time-domain approaches are extremely well scalable
[1,2].

However, there are also two main complications for the
universal processing of photonic qubits or, more generally,
quantum optical field modes: the presence of photon loss and
the lack of sufficiently strong interactions that transform the
mode operators in a nonlinear fashion. In many proposals,
the lack of suitable optical nonlinearities on the level of the
mode operator Hamiltonians is circumvented by introducing
measurement-induced nonlinearities, possibly supplemented
by an appropriately chosen nonclassical optical ancilla state
[3–5]. A similar, but particularly efficient approach avoiding
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large coupling losses is one that, although still relying upon
a nonclassical ancilla state, shifts part of the nonlinearity into
the classical feedforward operations [6–8]. Nonetheless, on
the level of the Hamiltonian of the field modes interacting with
a nonlinear medium, weak cubic mode interactions do occur,
and it has been known for long that, in principle, so-called
cubic single-mode gates in combination with two-mode beam
splitters as well as single-mode quadratic rotations and linear
shifts in phase space lead to a notion of universal continuous-
variable (CV) multimode quantum information processing
[9–12].

Still one problem remains that these naturally occurring
cubic nonlinearities, such as three-wave mixing [13], gen-
eralized “trisqueezing” [14,15], or certain cubic two-mode
Hamiltonians [16], are not easy to exploit experimentally
in a loss-tolerant and efficient way, exhibiting a suffi-
ciently strong effective nonlinearity [17]. Another problem
is that, even when assuming that robust, elementary cu-
bic gates are experimentally available, the existing schemes
require unrealistically many such cubic gates of sufficient
and variable interaction strength, which even in a well-
scalable time-domain approach would become impractical
taking into account experimental errors and loss per physi-
cal gate. Here we address this latter problem and, assuming
that cubic single-mode gates will be experimentally avail-
able [8], we propose gate decomposition techniques that
lead to gate sequences of cubic single-mode gates and beam
splitters of the order of ten gates, while demonstrating
their use in various relevant quantum applications. More-
over, the difficult cubic gates may be chosen either relatively

2643-1564/2024/6(2)/023332(25) 023332-1 Published by the American Physical Society

https://orcid.org/0009-0002-2189-0615
https://orcid.org/0000-0001-9445-0771
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023332&domain=pdf&date_stamp=2024-06-28
https://doi.org/10.1103/PhysRevResearch.6.023332
https://creativecommons.org/licenses/by/4.0/


BUDINGER, FURUSAWA, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 6, 023332 (2024)

FIG. 1. Schematic illustration of the hybrid decomposition method for optical non-Gaussian gates. The acronyms are as follows. CPG,
cubic phase gate; BS, beam splitter; QND, quantum nondemolition; PR, phase rotation; QC, quantum computation; QEC, quantum error
correction; IQP, instantaneous quantum polynomial [18,19]. Conversions between discrete and continuous variables (CV-DV conversion) can
also be achieved with the help of Rabi-type Hamiltonian gates [20]. The gates of step II and III are given in equations (2) and (1), respectively.

weak or all identical, thus facilitating potential experimental
implementations.

From a practical point of view, this approach means that
methods to optically realize the simplest, lowest-order non-
Gaussian single-mode CV operation, which is the cubic phase
gate [6], are sufficient to perform all kinds of advanced
optical quantum information processing, including discrete-
variable (DV), entangling gates on two standard photonic
qubits, which are otherwise unavailable via only linear mode
transformations. Note that it has been shown that naturally
occurring “trisqueezed” states, which were experimentally al-
ready demonstrated in a nonoptical, superconducting platform
[21], can be converted into cubic phase states, as typically
used as a resource state to implement a cubic phase gate, via
Gaussian operations [22].

More specifically, we show in this paper how certain el-
ements of all-optical, fault-tolerant, and universal quantum
computation can be implemented using primarily Gaussian
resources together with cubic phase gates in reasonable num-
bers. Our approach is based on the efficient decomposition of
two non-Gaussian CV multimode gates, namely the two-mode
controlled phase rotation gate and the three-mode Rabi-type
Hamiltonian gate

eiαx̂1n̂2 and eiβ x̂1σ̂x,S , (1)

respectively, where σ̂x,S refers to spin operators as expressed
by an optical Schwinger representation, i.e., one spin rep-
resented by two oscillator modes. As an intermediate set
of multimode gates, we consider so-called two-mode cubic
quantum nondemolition (QND) gates and three-mode CV
Toffoli gates

eiαx̂1 x̂2
2 and eiβ x̂1 x̂2 x̂3 , (2)

respectively. These nonlinear multimode gates have the ad-
vantage that they do not mix the two phase-space variables x
and p, thus allowing for an exact decomposition into single-
mode cubic phase gates and beam splitters. In contrast, the
finally obtained nonlinear multimode gates, as needed for our
examples of important elements in photonic quantum infor-
mation processing, do mix x and p, and so these require an
additional approximation step.

Overall, our efficient decomposition method (see Fig. 1)
then relies on a combination of exact decomposition tech-
niques and approximate Trotterization—a kind of hybrid
decomposition technique, which we show works remarkably
well. We analyze the performance of these hybrid decomposi-
tions for a single-photon two-qubit controlled-Z gate and for
two distinct variants of an optical generation of various man-
ifestations of Gottesman-Kitaev-Preskill (GKP) states [4].
Generally, we expect our decomposition method to be of po-
tential use in various other applications, including those based
on Kerr-type interactions. One example is a Kerr-interaction-
based photon-number QND measurement in a completely
transparent photon detector [23,24], which, however, can also
be realized directly via a cubic, two-mode controlled phase
rotation gate, like that for which we derive efficient decompo-
sitions, eiαx̂1n̂2 .

As for the non-Gaussian continuous-variable GKP state
examples, our approach is highly compatible with concepts
of measurement-based quantum computing with continuous-
variable cluster states for which the single-mode cubic phase
gate is the canonical non-Gaussian gate [11,25]. In this case,
the cubic elements may either be introduced on the level
of the measurements, allowing to measure observables that
are no longer linear combinations of x and p, i.e., going
beyond Gaussian homodyne measurements, or on the level
of the “off-line”-prepared cluster state by replacing some
of the squeezed-vacuum-state nodes by cubic phase states—
achieving universal continuous-variable “on-line” operations
solely by means of Gaussian homodyne measurements. In the
former case, the non-Gaussian measurements may be based
on the detection of photon numbers, which is generally a
common current approach to the engineering of non-Gaussian
optical states, i.e., an approach similar to “Gaussian boson
sampling” [26,27] employing Gaussian squeezed-state re-
sources, linear optics, and photon counting [28,29].

Similarly, non-Gaussian states may then be directly real-
ized within a Gaussian cluster state through photon number
measurements [30]. A potentially useful feature of our ap-
proach, based on the lowest-order non-Gaussian states and
gates, could be that in order to engineer these simplest
nonlinear elements, for instance, via non-Gaussian photon
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measurements, full photon-number resolution of the optical
detectors up to a sufficiently high number may not be needed
[6], similar to the results of Ref. [31], which, however, are still
based on an approach close to Gaussian boson sampling.

With our approach, canonical cubic phase gates realized
via a CV cluster state can be directly used to obtain standard
GKP qubit states as well as GKP “magic states” within the
cluster state, independent of photon measurements beyond
the level of, for instance, cubic-phase-state generations. This
would allow to obtain logical non-Clifford gates for GKP
qubits via magic gate teleportation and nonlinear feedforward
[7], despite the recent result that a single CV cubic gate acting
directly upon a physical GKP qubit cannot provide a near-
unit fidelity non-Clifford gate operation [32]. Alternatively,
nonlinear gates diagonal in the number operator, such as those
based on a quartic Kerr interaction, may be employed in order
to obtain an efficient and robust non-Clifford gate for GKP
qubits [33]. For this type of quartic gate our decomposition
method into cubic and quadratic gates can also be used.

The paper is structured as follows. In Sec. II, we review the
most important elements of the different approaches to optical
quantum computing with a particular focus on single-photon
qubits and GKP qubits. However, the latter will be introduced
in a little more detail in the later section on applications of our
methods, Sec. IV. Our methodology itself will be described
in Sec. III. Sections V and VI include a brief discussion of
the effects of photon loss on our schemes and a conclusion,
respectively. Two extra appendices present more details on the
calculations and the parameter optimizations.

II. OPTICAL QUANTUM COMPUTATION

Photons are robust to decoherence; however, they get
easily lost, being reflected into the wrong path or even ab-
sorbed by the environment. Moreover, for photonic two-qubit
gates based on standard photonic qubits, such as a CNOT
or CZ gate, the necessary nonlinear interaction ∼π n̂ ⊗ n̂ is
hard to obtain. In this section, we briefly review notions
of universality and fault tolerance in the context of optical
encodings and quantum error correction codes, including so-
phisticated “hardware-efficient”, highly nonclassical “bosonic
codes”. In the CV setting, for processing quantum oscillators
or “qumodes”, we briefly discuss known decomposition tech-
niques as well as optical approaches to cubic-phase state and
gate implementations as the lowest-order nonlinear resources
to introduce a non-Gaussian element and complete the univer-
sal gate sets.

A. Universal quantum computation

Independent of a physical realization, there are various
choices for encoding and processing quantum information.
The most common one is that based on qubits and qudits,
commonly referred to as DV approach. Another one is that ex-
ploiting continuous quantum variables, as, for instance, given
in a quantized harmonic oscillator, typically referred to as a
“qumode”. Such latter schemes, processing qumodes, are also
known as CV quantum information processing or computing.
In either approach, DV or CV, distinct models of universal
quantum computing have been proposed, most notably the

circuit model [9,34] based on a reversible sequence of unitary
gate operations and the measurement-based model [11,35]
based on an irreversible sequence of measurements performed
on a universal, so-called cluster state.

In the context of DV quantum computing with qubits, the
most common universal gate set, approximating, in principle,
any multiqubit operation to arbitrary precision, is

{Ĥ, Ŝ, T̂ , CNOT}, (3)

where Ĥ is the Hadamard gate with Ĥ |0〉 = (|0〉 + |1〉)/
√

2,
Ĥ |1〉 = (|0〉 − |1〉)/

√
2, and the other two single-qubit gates,

Ŝ = exp(−iπ Ẑ/4) and T̂ = exp(−iπ Ẑ/8), lead to rotations
around the Z axis of the Bloch representation where Ẑ is a
Pauli operator. The two-qubit CNOT gate applies a bit flip on
the second, target qubit only when the first, control qubit is in
the state |1〉.

Note that the set of Eq. (3) contains a redundant gate,
Ŝ = T̂ 2. It is, however, convenient to keep the gate Ŝ in the
universal set, because it allows to complete the set of so-
called Clifford gates {Ĥ , Ŝ, CNOT}, which are known to be
efficiently simulable by a classical computer [34]. Towards
implementations and fault tolerance, it is useful to reserve the
T̂ gate only for the non-Clifford part of a quantum computa-
tion, which is the crucial part to accomplish universality and to
circumvent classical simulability for a “quantum advantage”.
Not to waste non-Clifford gates for Clifford quantum comput-
ing becomes particularly striking in the CV case.

In this CV case, the most common universal gate set to pro-
cess a multiqumode system and obtain a notion of universal
CV quantum computing is{

F̂ , eit x̂, eisx̂2
, eirx̂3

, CSUM
}
. (4)

Using the convention h̄ = 1 throughout this paper, the Fourier
gate F̂ is given by F̂ = exp(i π

2
x̂2+p̂2

2 ), allowing to switch
between the position and momentum variables x̂ and p̂, similar
to a qubit Hadamard gate. The other single-qumode gates
are eit x̂, generating momentum shifts, and the quadratic and
cubic phase gates, eisx̂2

and eirx̂3
, respectively. The Gaussian

quadratic gate involves a single-qumode phase rotation and
“squeezing”. The two-qumode gate CSUM = e−ix̂1 p̂2 plays
the role of a CV entangling gate, analogous to the two-qubit
CNOT, transforming the second, target qumode as x̂2 → x̂2 +
x̂1, the first, control qumode as p̂1 → p̂1 − p̂2, while x̂1 and
p̂2 remain invariant.

Note that both F̂ and CSUM are not diagonal in the x
variable, whereas all the other gates are. The latter is useful
to construct a model for CV measurement-based quantum
computing with CV cluster states [11] and consequently the
CSUM gate is also commonly replaced by CZ = eix̂1 x̂2 . The
Fourier gate occurs naturally in CV cluster-state quantum
computing via the elementary teleportations in the cluster
state.

Similar to the discussion above for qubits, the set of Eq. (4)
also contains a redundant gate, the quadratic phase gate eisx̂2

,
which is obtainable from the cubic phase gate eirx̂3

[36],
as pointed out in Refs. [37,38]. However, it is preferred to
keep the quadratic gate in the universal set, because it al-
lows to complete the “Clifford set” for continuous variables,
{F̂ , eit x̂, eisx̂2

, CSUM}. This nonuniversal gate set allows to
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perform any multiqumode Gaussian operation, corresponding
to all linear mode operator transformations generated by an ar-
bitrary quadratic multimode Hamiltonian. Similar to the qubit
case, there are efficient classical representations to simulate
the Gaussian evolution of Gaussian multimode states [39].

Especially in the optics context, it is better to employ the
non-Gaussian cubic gates as little as possible, and hence the
Gaussian processing should be done entirely independent of
cubic or any higher nonlinear gates. This minimal use of only
the simplest nonlinear gate operations in optical implemen-
tations is one of the main motivations for the models in the
present paper. Next, we shall briefly discuss the notions of
quantum error correction and fault tolerance, before looking
at the most common ways to combine all these abstract,
implementation-independent concepts in all-optical, univer-
sal, and fault-tolerant quantum computing.

B. Quantum error correction and fault tolerance

The physical CV errors are continuous and hence the CV
states can be subject to very small, diffusive errors. In fact,
the most common and practically relevant qumode errors are
Gaussian errors such as excitation loss or thermal noise. In
the optics context, excitation loss means photon loss. Such
Gaussian errors generally cannot be suppressed by employing
quantum error correction codes that are solely based upon
Gaussian states and operations [40,41].

In the DV approach, sufficiently many physical qubits can
be used to form one logical qubit and for the most common
quantum error correction codes, known as stabilizer codes, the
Clifford gate set {Ĥ, Ŝ, CNOT} is sufficient to construct the
logical qubit states as well as to perform the error correction.
In the CV setting, however, fault tolerance and effective quan-
tum error correction require an additional discretization of
the qumode. A very powerful and prominent code to achieve
this is the so-called Gottesman-Kitaev-Preskill (GKP) code,
encoding a logical qubit in a physical qumode. This approach
is not only “hardware efficient”, directly making use of the
infinite-dimensional oscillator Hilbert space with no need for
adding extra auxiliary states or modes unless the GKP qubit
code is concatenated with standard multiqubit codes for an
enhanced error robustness [33,42–48]. It also circumvents
the no-go results on Gaussian CV quantum error correction,
enabling one to detect small diffusive errors and correct them
at the expense of a logical error, which then requires an
additional higher-level multi-GKP-qubit stabilizer code. The
syndrome measurement of the GKP code is a non-Gaussian
operation, projecting on the GKP code and error spaces, which
can be implemented by Gaussian operations together with the
non-Gaussian GKP qubit ancilla states.

Thus, bosonic quantum error correction codes [49–54],
and among them, in particular, the GKP code [4,55], are an
efficient means to protect quantum information embedded into
a discretized code space against CV errors of the physical
qumodes. The GKP code is resource efficient using only
a single qumode and it only requires Gaussian operations
for entangling and encoding qubits, which is of particular
practical significance in optics for the photonic GKP code.
It was shown recently that an extra non-Gaussian element,
beyond that given by a supply of GKP qubits, is not even

needed for full multiqubit universality [56,57]. Later, as one
possible application of our CV gate decompositions in the
context of all-optical implementations, we will see that the
non-Gaussian cubic phase gate eirx̂3

, together with some initial
Gaussian states, Gaussian homodyne measurements, Fourier,
and beam-splitting operations, allows to generate GKP qubits.
For the nonlinear cubic gate to be experimentally available, it
may have to be weak. For it to be robustly implementable, it
should not depend on its continuous, fully tunable operation.
Preferred is a fixed cubic gate with a fixed interaction strength,
for reasons that we discussed in this subsection. We shall
address these issues in our GKP generation scheme.

C. Photonic codes and gates

The conceptually simplest way to encode a photonic qubit
is to only make use of a two-dimensional subspace of an
optical mode’s Hilbert space that is spanned by the vacuum
and the single-photon states. More common and convenient
than qubit superposition states of |0〉 and |1〉 in a single
optical mode (single-rail) is to construct a qubit subspace
{|1〉|0〉, |0〉|1〉} on two optical modes (dual-rail). Typically, po-
larization or temporal modes are employed for such dual-rail
photonic qubits. While all single-qubit gates on photonic dual-
rail qubits can be realized via linear mode transformations of
the two modes, a two-qubit entangling gate cannot. Thus, from
the universal gate set {Ĥ, Ŝ, T̂ , CNOT}, only CNOT is hard to
obtain directly requiring a quartic, Kerr-type ∼π n̂ ⊗ n̂ inter-
action of sufficient strength ∼π . Applying the corresponding
unitary gate eiπ n̂⊗n̂ upon two optical modes with states |0〉|0〉,
|1〉|0〉, |0〉|1〉, or |1〉|1〉 only gives a sign flip for the input
state |1〉|1〉 and otherwise acts as the identity—a CZ gate.
Together with 1-qubit Hadamard gates, on two-mode qubits
simply implementable as a beam splitter, one can construct a
CNOT gate from this. The CZ then acts upon modes 2 and 4
of the two dual-rail input qubits encoded into modes 1, 2 and
3, 4, respectively.

Thus, efficient photonic quantum computation based on
single-photon qubits, each encoded into two modes, if directly
implemented in a unitary circuit model, would depend on
the availability of a robust, loss-tolerant, sufficiently strong,
nonlinear two-mode gate. An alternative is a single-mode,
nonlinear or Kerr-type gate ∼π n̂2 of similar strength ∼π

in combination with beam splitters [3,58], which can either
provide a near-deterministic, heralded nonlinear single-mode
gate or correspond to a, in principle deterministic, quartic CV
single-mode interaction gate. We will see that our CV gate
decompositions allow to obtain photonic two-qubit entangling
gates from single-mode cubic phase gates.

Probabilistic nonlinear gates can be combined with
gate teleportation techniques. In fact, to circumvent the
“on-line” implementation of a photon-photon CNOT gate,
measurement-based schemes have been proposed making use
of multiphoton ancilla states [3], for instance, in the form of
cluster states [35,59,60]. The entangling gates to build a suffi-
ciently large cluster state “off-line” may then be probabilistic.
Similar approaches can be used in order to incorporate quan-
tum error correction codes and a notion of loss and even fault
tolerance into the schemes [61]. Nonetheless, for a large-scale
quantum computer, besides the experimental complication of
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multiplexing and at least short-term storage of quantum in-
formation, a large resource overhead is expected. In a DV
time-domain approach, high experimental source clock rates,
for example using quantum dots, are a promising element to
create this overhead in a practical fashion.

A more direct approach would be based on processing
continuous variables, i.e., the mode’s continuous degrees of
freedom. In quantum optics this is typically done by relating
the in- and out-of-phase amplitudes of the electromagnetic
field to the quadrature operators x̂ and p̂. Then the Gaussian
gates, {F̂ , eit x̂, eisx̂2

, CSUM}, can be efficiently realized exper-
imentally. The quadratic phase gate can be replaced by an
optical, single-mode squeezing operation eis(x̂ p̂+p̂x̂) and CSUM
may be substituted by an optical beam splitter eiθ ( p̂1 x̂2−x̂1 p̂2 )

as it is decomposable into beam splitters and single-mode
squeezers [62]. In contrast, the non-Gaussian, single-mode
cubic phase gate to achieve CV universality eirx̂3

is more
difficult to obtain, requiring a nonlinear optical mode trans-
formation. We shall address this in Sec. II E. Note that the
Gaussian entangling gates, CSUM or a beam splitter, are,
unlike the CNOT gate for single-photon qubits, relatively easy
to implement. Other optical CV encodings exist as well, most
notably utilizing the continuous time-frequency degrees of
freedom. Here, non-Gaussian operations as well as GKP states
have been experimentally demonstrated [63,64]; however,
performing interactions between modes remains challenging,
exhibiting a closer resemblance to the DV than to the CV
approaches described above.

Conceptually different from a direct processing of logi-
cal, CV quantum information is to encode logical DV states
or especially qubits into physical, optical CV systems. This
leads to new possibilities of photonic quantum information
processing, in particular, in the context of quantum error cor-
rection, but also to new types of complications. Below, when
discussing various applications of our approach, we will con-
sider the GKP code, which as an instance of a shift-invariant
bosonic code is an example of such a photonic code. Its optical
manipulation is based on a translation of the CV quantum
optical gate operations into logical gates acting on the GKP
code space. This results, in principle, in a higher level of
scalability, especially when the modes to be processed are
primarily defined in the time domain [1,2]. The GKP states
are still hard to obtain on demand, but nonetheless allow for
a loss- and fault-tolerant processing that goes beyond simple
quantum error detection and allows for photonic quantum er-
ror correction. Particularly attractive is that the use of efficient
Gaussian two-mode gates for entangling two qumodes from
the CV setting directly translates to GKP qubits and their log-
ical CNOT gates. However, single-qubit universality for GKP
qubits is harder than that for single-photon qubits, requiring
nonlinear mode operator transformations. Next let us take a
look at the most common methods for gate decomposition.

D. Gate decomposition techniques

In the year 1999, Lloyd and Braunstein demonstrated
that every multiqumode operation could, in principle, be ap-
proximated to arbitrary precision using only gates from the
universal gate set of Eq. (4) [9]. However, for the experimental
feasibility of a given operation, the number of elementary

gates required for its approximation is no less important.
Consequently, various CV gate decomposition schemes have
been developed enabling certain groups of qumode operations
to be implemented more efficiently. We shall briefly discuss
the Trotter-Suzuki decomposition [65,66], the commutator-
based approach proposed by Lloyd and Braunstein [9] and
optimized in Ref. [38], as well as the exact gate decompo-
sition scheme [67] as developed in Ref. [68]. An efficient and
exact decomposition of Gaussian operations can be found in
Ref. [69] adapted to CV cluster computation.

The Trotter-Suzuki decomposition can be used to obtain
the operation eit (Â+B̂) from the two gates eitÂ and eitB̂. It relies
upon the Lie-Trotter product formula,(

ei t
n Âei t

n B̂
)n n→∞−→ eit(Â+B̂). (5)

By introducing and adapting individual gate strengths ti of
the n repetitions, the order of convergence can be chosen
arbitrarily high as shown in Refs. [65,66]. Similarly, in the
commutator-based decomposition schemes [9,38], the opera-
tor et[Â,B̂] is approximated using the relation

(e−i
√

t/nÂe−i
√

t/nB̂ei
√

t/nÂei
√

t/nB̂)n n→∞−→ et[Â,B̂], (6)

given the operators eitÂ and eitB̂. Repeating this procedure then
also enables the creation of operations with nested commuta-
tors. In combination with the Trotter-Suzuki decomposition
and the universal gate set, this then allows for the implemen-
tation of any polynomial of the bosonic mode operators x̂i

and p̂i and hence any multiqumode operation [9]. Again, by
adapting the gate strengths ti of the different repetitions, the
order of convergence can be increased, which significantly
enhances the efficiency of the decomposition when targeting
large gate strength t along with high accuracies. Nevertheless,
the number of approximate steps needed to arrive at the de-
sired operation lets the amount of required elementary gates
rise rapidly. Therefore, whenever possible the exact decom-
position of gates is preferable.

The exact gate decomposition scheme by Kalajdzievski
and Arrazola [68] enables the decomposition of operators of
the general form

exp

⎛
⎝it

⎛
⎝N−1∏

j=1

x̂ j

⎞
⎠x̂n

N

⎞
⎠, (7)

where N as well as n · N must be divisible by either two or
three. As this is based on the relation [38,68,70]

eiαx̂m
j p̂k eit x̂n

k e−iαx̂m
j p̂k = eit (x̂k+αx̂m

j )n
(8)

and the eventual cancellation of unwanted polynomial terms
of the right-hand side, the optical position and momentum
operators x̂i and p̂i must not be mixed. Hence, the subgroup of
exactly decomposable gates is rather small. Nevertheless, if a
given quantum operator is in the form of Eq. (7), its exact de-
composition is generally superior to approximate approaches
in gate count and accuracy.

E. Optical cubic phase states and gates

The hardest gate of the universal gate set of Eq. (4) to
realize quantum optically is the single-mode cubic phase gate
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[4], eirx̂3
, which is the only non-Gaussian gate of the set. It

acts trivially on the position operator, e−irx̂3
x̂eirx̂3 = x̂, while

the momentum operator is transformed by it in a nonlinear
fashion [37],

e−irx̂3
p̂ eirx̂3 = p̂ + 3rx̂2, (9)

shifting the momentum by the squared position [71]. This gate
was originally introduced as one option to add a non-Clifford
element and complete the logical universal gate set for GKP
qubits [4]. We will come back to this later. While the gate
is also the canonical choice to achieve CV universality, it is
particularly well suited to incorporate a non-Gaussian element
into the concept of CV cluster computation [11,25]. Earlier
it was considered in another variant of measurement-based
quantum computation, namely a version of CV optical gate
teleportation [5].

The original idea to optically obtain a cubic phase gate
was based on photon measurements on parts of Gaussian
states [4,25,28], which conditionally prepares a cubic phase
state

∫
dx eirx3 |x〉 that can be used as a resource for cubic-

phase-gate teleportation. Alternatively, small-number Fock
superposition states, being approximations of cubic phase
states, may be directly used as single-mode ancilla states for
weak cubic-phase-gate teleportation [72]. Later, the concept
of nonlinear squeezing was introduced, which is related to the
non-Gaussian and nonclassical properties of a nonlinear, cubic
phase state [73]. The higher the nonlinear squeezing, corre-
sponding to a higher average number of photons, the stronger
the cubic phase gate becomes that can be obtained with the
help of the approximated cubic phase state. Eventually, it was
shown that nonlinear feedforward operations based on the
results obtained from homodyne detectors allow to effectively
measure nonlinear quadrature combinations. Combined with
the nonclassical photon ancilla states, this offers an efficient
way to optically realize a single-mode cubic phase gate [6].
The technique of nonlinear feedforward can also be employed
to achieve magic gate teleportation using magic states for
GKP qubits [7].

Most recently, the nonlinear feedforward operation for cu-
bic phase gate teleportation was experimentally demonstrated
[8]. The degree of nonlinear squeezing of the non-Gaussian
ancilla state experimentally achieved is related to the cu-
bic phase gate strength parameter r in Eq. (9) as r ≈ 0.17.
An ancilla state with a higher photon number would exhibit
larger nonlinear squeezing, and this can be used to make the
resulting cubic phase gate stronger. We will show that our
decomposition method, when applied and optimized for GKP
state generation of fairly high fidelity above 90% using single-
mode cubic phase gates and beam splitters, yields parameter
values all below r = 0.17. Thus, our decomposition-based
scheme is fully compatible with the recent experimental
nonlinear-feedforward demonstration. In order to achieve bet-
ter fidelities, we would apply a larger sequence of gates where
each gate is typically even weaker. The remaining compli-
cation in a practical application of these schemes would be
loss and noise as well as relatively low gate fidelities, so
that a smaller sequence of imperfect gates is preferable. We
leave a complete analysis of the experimental scheme of
Ref. [8], including loss and imperfections, applied to our gate

decompositions for, especially, GKP state generation to future
work. The important conclusion here is that the methods of
Refs. [6–8,72,73] can be very well combined with our present
approach.

III. HYBRID DECOMPOSITION SCHEME FOR OPTICAL
NON-GAUSSIAN GATES

The basis of all subsequent considerations is the universal
gate set given by{

eiπ (x̂2+p̂2 ), eit x̂, eis(x̂ p̂+p̂x̂), eiθ ( p̂1 x̂2−x̂1 p̂2 ), eirx̂3}
(10)

with t, s, θ, r ∈ R and the quadrature operators x̂k = 1√
2
(âk +

â†
k ) and p̂k = 1√

2i
(âk − â†

k ). The Gaussian operations, namely
phase rotation, displacement, squeezing, and beam splitting
are all readily available in experimental quantum optics, as
discussed in Sec. II. The cubic phase gate, on the other hand,
is experimentally more challenging to implement, but also for
this very recent demonstrations exist, as described in Sec. II E.

Using only gates from this set we want to approximate
two multimode gates, the controlled phase rotation gate eiαx̂1n̂2

and the Rabi-type-Hamiltonian gate eiβ x̂1σ̂x,S , where the latter
refers to spin operators as expressed by an optical Schwinger
representation, i.e., one spin represented by two oscillator
modes. Both types of gates can be used to achieve universal
quantum computing in an optical setting, as we will see later.
As the given gate set is universal, it is possible to approximate
any multiqumode quantum gate using only a finite number
of gates from the set. However, the experimental feasibility
of any gate approximation depends heavily on the amount
of concatenated gates. Hence the focus of this paper lies on
obtaining good approximations while also minimizing the
number of basic operations needed.

To achieve this, we use a hybrid decomposition approach,
which is based on exact decomposition schemes followed
by one step of the approximation technique known as Trot-
terization, as illustrated in Fig. 1. This way, we are able to
decompose nonlinear multimode gates, which mix x̂ and p̂
while still utilizing the low gate counts and unit fidelities
of exact decompositions. While the general efficiency of a
gate decomposition is difficult to quantify as it depends on
the specific application as well as the required accuracy, we
presume this combination of exact decompositions with only
one approximate step to be generally more efficient than
commutator-based approximations. Let us now discuss these
individual techniques.

A. Exact decomposition of cubic multimode gates

The first step of the presented approximation scheme is the
exact decomposition of two cubic multimode gates, namely
the cubic QND gate eiαx̂1 x̂2

2 and the CV Toffoli gate eiβ x̂1 x̂2 x̂3 .
These gates will be the basic elements of the following Trot-
terization. Using a lemma to the Baker-Campbell-Hausdorff
formula,

eÂB̂e−Â =
∞∑

n=0

1

n!
[Â, [Â, ...[Â︸ ︷︷ ︸

n

, B̂]...]], (11)
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TABLE I. Comparison of the number of elementary gates needed
for the exact decomposition of the cubic QND gate eiαx̂1 x̂2

2 and the
CV Toffoli gate eiβ x̂1 x̂2 x̂3 with the corresponding gate counts from
Kalajdzievski et al. [68]. The quadratic QND gates required in [68]
are either CZ or CSUM gates.

Present paper Kalajdzievski et al.

Cubic phase Beam Cubic phase QND
Target gate gates splitters gates gates

Cubic QND 3 3 5 4
CV Toffoli 4 9 7 10

and the beam splitter B̂kl (s) = eis( p̂k x̂l −x̂k p̂l ), we easily obtain

B̂12(s)x̂1B̂12(−s) = cos(s)x̂1 + sin(s)x̂2, (12)

and thus

B̂12(s)eirx̂3
1 B̂12(−2s)eirx̂3

1 B̂12(s)

= eir(cos(s)x̂1+sin(s)x̂2 )3
eir(cos(s)x̂1−sin(s)x̂2 )3

= e2ir cos3(s)x̂3
1 e6ir cos(s) sin2(s)x̂1 x̂2

2 . (13)

This leads us to the exact decomposition of a cubic QND gate,

eiαx̂1 x̂2
2 = B̂12(s)eirx̂3

1 B̂12(−2s)eirx̂3
1 B̂12(s)e−iβ x̂3

1 , (14)

with α = 6r cos(s) sin2(s) and β = 2r cos3(s) using a total of
three single-mode cubic phase gates and three beam splitters.
Continuing with the result of Eq. (14) we directly obtain

B̂23(u)eit x̂1 x̂2
2 B̂23(−2u)e−it x̂1 x̂2

2 B̂23(u)

= eit x̂1(cos(u)x̂2+sin(u)x̂3 )2
e−it x̂1(cos(u)x̂2−sin(u)x̂3 )2

= e4it sin(u) cos(u)x̂1 x̂2 x̂3 = e2it sin(2u)x̂1 x̂2 x̂3 . (15)

Note that the last term of Eq. (14) can be omitted in the above
calculation. Hence we get a CV Toffoli gate at the expense of
four single-mode cubic phase gates and nine beam splitters. In
comparison to existing exact decomposition schemes [68] this
not only reduces the number of especially single-mode cubic
phase gates, but it also works using only simple beam split-
ters instead of the experimentally more challenging quadratic
QND gates that involve additional squeezing operations. Ta-
ble I lists the number of elementary gates needed for the exact
decompositions of [68]. Note that the name CV Toffoli gate is
usually assigned to the gate eiβ x̂1 x̂2 p̂3 instead of the gate eiβ x̂1 x̂2 x̂3

used in this paper. Analogous to a DV three-qubit Toffoli gate,
which applies a bit flip to the third qubit only when the two
first qubits are both in the logical state |1〉, this commonly
defined CV Toffoli gate shifts the position of mode 3, x̂3, by an
amount proportional to the product of the positions of modes 1
and 2, x̂1x̂2. However, both definitions only differ by a Fourier
gate, which is easily implemented optically.

B. Efficient Trotter-Suzuki decomposition of the controlled
phase rotation gate

Concatenating several cubic QND gates, while Fourier
transforming the second mode of every second gate, we obtain

Sλ(t ) =
m∏

j=1

exp

(
itλ j x̂1

x̂2
2

2

)
exp

(
itμ j x̂1

p̂2
2

2

)
, (16)

with the indexation of the product going from right to left and
λ = (λm, μm, ..., λ1, μ1)T . The first-order Trotter-Suzuki de-
composition is then given by the Lie-Trotter product formula

exp

(
iαx̂1

x̂2
2 + p̂2

2

2

)
=
[

S(1,1)T

(
α

b

)]b

+ O
(

1

r

)
, (17)

with b ∈ N. Higher orders of convergence can be achieved by
using specific sets of parameters λ as provided by Suzuki in
Refs. [65,66]. However, for small b the order of convergence
should not surpass its role of guidance: As demonstrated in
Ref. [74], finding the right set of parameters for a specific
problem instead of using the common Trotter-Suzuki decom-
positions can significantly enhance the approximation. But
before we can attempt such a parameter optimization, we need
to determine the impact of different parameter sets λ on the
different applications. In order to do this analytically, a change
in representation will prove to be useful:

Let us regard the impact of the operator on the differ-
ent quadratures of the two modes. Note that, up to a global
phase, this defines an arbitrary operator unambiguously (see
Appendix A). Starting with the second mode and using
ei t

2 x̂2
p̂ e−i t

2 x̂2 = p̂ − t x̂ and ei t
2 p̂2

x̂e−i t
2 p̂2 = x̂ + t p̂, it is easily

seen that

Sb
λ(t )x̂2Sb

λ(−t ) = Pxx[t x̂1]x̂2 + Pxp[t x̂1] p̂2,

Sb
λ(t ) p̂2Sb

λ(−t ) = Ppx[t x̂1]x̂2 + Ppp[t x̂1] p̂2. (18)

The thereby defined polynomials Pxx, Pxp, Ppx, and Ppp are
all of the order 2mb ≡ L and can easily be calculated for a
given λ. The corresponding recursive formulas are presented
in Appendix A.

While the operator’s impact on the first mode’s quadratures
is slightly more complex, it is also solely dependent on these
four polynomials. Consequently, Pxx, Pxp, Ppx, and Ppp define
the approximated controlled phase rotation gate up to a global
phase and provide an equal yet far more intuitive represen-
tation of Sb

λ than λ and b: the operator Sb
λ approximates the

controlled phase rotation gate eit x̂1n̂2 with

eit x̂1n̂2 x̂2e−it x̂1n̂2 = cos(t x̂1)x̂2 + sin(t x̂1) p̂2,

eit x̂1n̂2 p̂2e−it x̂1n̂2 = − sin(t x̂1)x̂2 + cos(t x̂1) p̂2 (19)

if and only if the four polynomials approximate the four
functions cosine, sine, -sine, and cosine, respectively. The
best approximation for a given L is thus obtained by simply
choosing the truncated Taylor expansions of sine and cosine.
Following directly from the recursive formulas is also the
common as well as useful relation

Pxx[t]Ppp[t] − Pxp[t]Ppx[t] = 1, ∀t ∈ R. (20)
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C. Decomposition of the Rabi-type Hamiltonians

The Trotter-Suzuki decomposition of the Rabi-type Hamil-
tonian gate eiαx̂1σ̂x,S works rather similar. When replacing the
cubic QND gates with CV Toffoli gates we obtain the operator

Tλ(t ) =
m∏

j=1

exp(itλ j x̂1x̂2x̂3) exp(itμ j x̂1 p̂2 p̂3), (21)

with the indexation of the product going from right to left and
λ = (λm, μm, ..., λ1, μ1)T as before. Using modes 2 and 3 as
a dual-rail qubit

β|0〉DR + γ |1〉DR = β|1〉2|0〉3 + γ |0〉2|1〉3, (22)

together with the Schwinger representation of the Pauli oper-
ator

σ̂x,S = â†
2â3 + â†

3â2 (23)

the Rabi-type Hamiltonian gate can be written as

eiαx̂1σ̂x,S = eiαx̂1(â†
2 â3+â†

3 â2 ) = eiαx̂1(x̂2 x̂3+p̂2 p̂3 ), (24)

and from the Lie-Trotter product formula it follows that[
T(1,1)T

(
α

b

)]b
b→∞−→ eiαx̂1(x̂2 x̂3+p̂2 p̂3 ) = eiαx̂1σ̂x,S . (25)

Furthermore, with similar impact on the different quadratures,

T b
λ (t )x̂2T b

λ (−t ) = Pxx[t x̂1]x̂2 + Pxp[t x̂1] p̂3,

T b
λ (t ) p̂2T b

λ (−t ) = Ppx[t x̂1]x̂3 + Ppp[t x̂1] p̂2,

T b
λ (t )x̂3T b

λ (−t ) = Pxx[t x̂1]x̂3 + Pxp[t x̂1] p̂2,

T b
λ (t ) p̂3T b

λ (−t ) = Ppx[t x̂1]x̂2 + Ppp[t x̂1] p̂3, (26)

the same polynomials as before, Pxx, Pxp, Ppx, and Ppp can be
used to define the approximated Rabi-type Hamiltonian gate
up to a global phase (see Appendix A).

Note that with the Schwinger representation of the remain-
ing Rabi-type Hamiltonian gates,

eiαx̂1σ̂y,S = eiαx̂1(iâ†
3 â2−iâ†

2 â3 ) = eiαx̂1(x̂2 p̂3−p̂2 x̂3 ), (27)

eiαx̂1σ̂z,S = eiαx̂1(â†
2 â2−â†

3 â3 ) = eiαx̂1
x̂2
2+ p̂2

2
2 −iαx̂1

x̂2
3+ p̂2

3
2 , (28)

it is easily seen that the operators Sλ(t ) and Tλ(t ) are sufficient
to approximate the full set of Rabi-type Hamiltonian gates.
More precisely, we have

F̂3

[
T(1,1)T

(
α

b

)]b

F̂ †
3

b→∞−→ eiαx̂1(x̂2 p̂3−p̂2 x̂3 ), (29)[
S(1,2)

(1,1)T

(
α

b

)
S(1,3)

(1,1)T

(
− α

b

)]b
b→∞−→ eiαx̂1

x̂2
2+ p̂2

2−x̂2
3− p̂2

3
2 , (30)

with the Fourier transform F̂3 = exp(i π
2

x̂2
3+p̂2

3
2 ) and the super-

scripts of Sλ here and in the following denoting on which
modes the gates act upon. As an overall result, we have
effectively obtained an efficient decomposition of general
Rabi-type Hamiltonian gates based on CV Toffoli gates and
their exact decompositions into a set of elementary CV op-
erations that solely contains single-mode cubic phase gates
and beam splitters. Though an approximation, in principle,
this allows to deterministically simulate a general Rabi-type
Hamiltonian interaction by optical means [75].

D. Optimizing the Trotter-Suzuki decomposition
for different applications

One advantage of focusing on the four polynomials, as
introduced above, is the simplicity with which they allow us
to check for the order of convergence of the approximations.
As the Taylor expansions of sine and cosine are well known, a
simple comparison of all terms of corresponding order is suffi-
cient. Consequently, the order of convergence n of a parameter
set λ is coupled to a system of equations

∑
0�k1�l1<k2�l2<...�m

n︷ ︸︸ ︷
μk1λl1μk2λl2 · · · =

∑
0�l1<k2�l2<k3�...�m

n︷ ︸︸ ︷
λl1μk2λl2μk3 · · · = 1

n!
,

(31)

where the left-hand side gives the two nonzero coefficients
of nth order of the four polynomials and the right-hand
side the corresponding coefficient of sine and cosine. While
the common Trotter-Suzuki decomposition builds upon the
symmetric operator S( 1

2 ,1, 1
2 ,0) resulting in only even orders

of convergence, this allows us to also test odd orders. For
example, the third order, after choosing its one degree of
freedom appropriately, was found to be superior to compa-
rable even orders in many of the applications tested in the
scope of this paper. On the other hand, leaving the restrictions
of Eq. (31) behind and conducting a free parameter search
significantly improved results further. Therefore, unless stated
otherwise, all presented approximations are optimized using
the Basin-hopping algorithm as implemented by SciPy with
starting points fulfilling Eq. (31), maximizing the fidelity to
the respective target state. The explicit sets of parameters λ

can be found in Appendix B.
The two separate steps of the hybrid decomposition scheme

are illustrated in Fig. 2, where three exactly decomposed cubic
QND gates are concatenated with optimized gate strengths in
order to approximate a GKP state. Such GKP state generations
are one of the possible applications of our method, which we
shall treat in more detail next.

IV. APPLICATIONS

A. Approximating the qubit CZ gate

As a first application of our method we are going to look
at a controlled-Z gate for photonic qubits, realizable via the
two-mode gate eiπ n̂1n̂2 . While single-qubit operations on pho-
tonic qubits are easily implemented experimentally using the
gates from the universal gate set, as discussed in Sec. II,
an additional two-qubit entangling gate is needed to achieve
universality. For this, there are various approaches [3,58–60],
and already several experimental demonstrations too [76–83],
which typically, however, are either destructive or heralded
and probabilistic.

On the other hand, the two-mode interaction for a
controlled-Z gate can be decomposed as

eiπ n̂1n̂2 = ei
√

π x̂an̂1 e−i
√

π p̂an̂2 e−i
√

π x̂an̂1 ei
√

π p̂an̂2 , (32)

with the subscript a denoting an extra ancilla mode. Combin-
ing the approximated controlled phase rotation gate Sλ(t ) with
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FIG. 2. Exemplary implementation of the presented hybrid decomposition scheme. Three exactly decomposed cubic QND gates are
concatenated and their gate strengths are optimized based on the Trotter-Suzuki decomposition. Using an off-line squeezing of 12.2 dB
(violet), two displacements (yellow), two Fourier gates (green), nine beam splitters (blue), seven cubic phase gates (red), and a conditional
homodyne measurement with a success probability of 0.2% gives a |0〉GKP state with a fidelity of �90.5%. Explicit gate strengths can be found
in Appendix B.

a displacement gate,

M̂ ( j) := e−i
√

π x̂a/2S(a, j)
λ (

√
π ) ≈ ei

√
π x̂an̂ j , (33)

we can thus approximate the controlled-Z gate by simply
applying the same gate four times,

eiπ n̂1n̂2 ≈ M̂ (1)F̂ †
a M̂ (2)F̂ †

a M̂ (1)F̂ †
a M̂ (2)F̂ †

a . (34)

Here the Fourier gate F̂a = exp(i π
2

x̂2
a+p̂2

a
2 ) is performed on the

ancilla and the superscripts indicate the different qubits and
qumodes the operators act upon. A simple calculation shows
that the four displacements combined just perform the opera-
tion F̂ †

1 F̂ †
2 and can thus be replaced by two additional Fourier

gates. In order to evaluate the quality of the approximated
controlled-Z gate, we use the worst-case fidelity after tracing
out the ancillary mode,

Fwc = min
|ψ〉,|φ〉

F (tra[CZ≈|0〉a|ψ〉1|φ〉2], CZ|ψ〉1|φ〉2),

|ψ〉, |φ〉 ∈ {α|0〉 + β|1〉||α|2 + |β|2 = 1}, (35)

with the fidelity of a density matrix and a pure state

F (ρ̂, |χ〉) = 〈χ |ρ̂|χ〉. (36)

In Fig. 3 this worst-case fidelity is calculated for optimized
parameter sets λ of different length L. The exact number of
the different elementary gates and the maximal required cubic
phase gate strength can be found in Table II. The explicit
parameter sets as well as the numerical calculations can be
found in the Appendix.

The results show that it is possible to achieve a high-
fidelity controlled-Z gate with close to ten cubic QND gates.

FIG. 3. Worst-case fidelity Fwc of the approximated controlled-Z
gate for optimized parameter sets λ of different length L.

Provided a source of deterministic single-mode cubic phase
gates is available, this approximation could supersede the
probabilistic controlled-NOT gates and allow for determinis-
tic and universal quantum computing using photonic qubits.
Moreover, Eq. (32) can, with little to no modification, be used
to implement a CV self-Kerr as well as cross-Kerr gate when
acting on CV states beyond just single-photon states like in
the above scheme. While not further investigated in this paper,
both have a wide array of applications.

For instance, a unit-fidelity, non-Clifford gate on physi-
cal GKP qubits is possible with a self-Kerr-based interaction
∼n̂2 [33]. The CZ gate as discussed in this section could
also be realized near-deterministically based on a cross-Kerr-
interaction number-QND approach including feedforward
[84], though the single-mode model for treating the naturally
available nonlinear optical interactions in this case must be
handled with care [85]. Compared with other schemes that
aim at obtaining quartic Kerr-type interactions and either
employ large numbers of elementary cubic or quartic gates,
starting in the thousands for similar fidelities [9,38,86], or
a smaller number of then absolutely necessary quartic gates
[70], our scheme only requires about a hundred elementary
cubic single-mode gates. This is also distinct from the ap-
proach of Ref. [87] where a CV single-mode self-Kerr gate
is obtained conditionally with Gaussian ancilla states and
operations including homodyne measurements, assuming a
two-mode controlled phase rotation gate is available, e.g.,
from Faraday interactions in atomic ensembles. Complemen-
tary to this, our paper demonstrates how to optically get the
controlled phase rotation gate in the first place and then how
to combine four such gates, instead of just a single one as

TABLE II. Number of elementary gates, required cubic phase
gate strength rmax and worst-case fidelity Fwc of the approximated
controlled-Z gate given by Eq. (34) for the optimized parameter sets
of different length L.

Cubic phase Beam Fourier Worst-case
L gates rmax splitters gates Fidelity

6 4 × 18 0.069 4 × 18 4 × 6 + 6 0.806
7 4 × 21 0.062 4 × 21 4 × 6 + 6 0.901
9 4 × 27 0.052 4 × 27 4 × 8 + 6 0.980
11 4 × 33 0.044 4 × 33 4 × 10 + 6 0.993
13 4 × 39 0.039 4 × 39 4 × 12 + 6 0.997
15 4 × 45 0.035 4 × 45 4 × 14 + 6 0.998
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in [87], to obtain CV Kerr gates in an unconditional and
measurement-free fashion. Nonetheless, our decompositions
for controlled phase rotation gates could also be applied to the
scheme of Ref. [87].

Quantum error correction based on a system of sufficiently
many physical, photonic qubits, for which the entangling gate
discussed in this section works, would nevertheless come with
a large experimental overhead. A more hardware-efficient,
and hence potentially promising approach, makes use of
bosonic quantum error correction codes with physical oscil-
lator states clearly beyond average photon numbers of one.
An important candidate for this is the GKP code, which we
treat next.

B. GKP state generation

In general, quantum error correction on a system of qubits
typically comes with a large computational and hence ex-
perimental overhead. In this context, an interesting approach
towards an optical fault-tolerant quantum computer employs
“brighter” optical oscillator states rather than optical dual-
rail qubits to encode the logical qubits. The probably most
prominent of these encodings is the GKP code presented
by Gottesman, Kitaev, and Preskill in 2001 [4], which al-
ready includes the possibility to correct errors that become
manifest—and can be formally expanded—as small shifts in
phase space. While experimental demonstrations of GKP-type
states have been generally out of reach for many years and
only happened very recently in the circuit-QED [88] and
ion-trap [89] platforms, an optical, photonics-based realiza-
tion of these highly non-Gaussian, nonclassical states appears
very challenging [90], though some theoretical proposals exist
(see, e.g., Refs. [30,31,91–93]), some of which depending on
Kerr-type “elementary” or other quartic gates [91,94,95]. Our
schemes are solely based upon single-mode cubic gates and
passive linear optics, unlike, for instance, the recent proposal
of Ref. [16] that requires suitable quantum optical multimode
Hamiltonians of cubic order.

In this section, we give a brief overview of GKP states,
codes, and gates, before we apply our optical gate de-
composition method to a measurement-based [4] and a
measurement-free [96] GKP state generation method. We
shall also consider the creation of arbitrary logical GKP states
including the so-called magic states.

1. GKP states, codes, and gates

The ideal GKP codewords are given by

|0L〉 =
∑
s∈Z

|x = ds〉, |1L〉 =
∑
s∈Z

∣∣∣∣x = d

(
s + 1

2

)〉
, (37)

where 〈x|x = x0〉 is the Dirac delta function δ(x − x0) and
d ∈ R. They are unnormalizable and clearly unphysical states.
However, they are orthogonal and can easily be distinguished
by a homodyne measurement. Moreover, displacement errors
in x̂ below a threshold of d

4 preserve the logical information.
Using the Poisson summation formula we find that

|0L〉 =
∑
s∈Z

∣∣∣∣p = 2π

d
s

〉
, |1L〉 =

∑
s∈Z

(−1)s

∣∣∣∣p = 2π

d
s

〉
, (38)

with 〈p|p = p0〉 = δ(p − p0). Therefore the same holds true
for displacement errors in p̂ below a threshold of π

d . This
is remarkable, as an arbitrary error in a CV system can be
expanded in terms of displacements,

E (ρ̂ ) =
∫
C2

dβ dβ ′ c(β, β ′) D̂(β )ρ̂D̂†(β ′), (39)

with the displacement operator D̂(α) = exp(αâ† − α∗â) [4].
The ideal GKP code can thus correct any error with suffi-
ciently small support of c(β, β ′). Choosing d = 2

√
π so that

π
d = d

4 is referred to as square GKP code. The logical gates
of the DV universal gate set of Eq. (3) for the square code are
given by

ĤL = ei π
2

x̂2+ p̂2

2 , ŜL = ei x̂2

2 , CNOTL = e−ix̂1 p̂2 . (40)

Moreover, the Pauli operators X̂L, ŶL, and ẐL can be straight-
forwardly realized using displacements, especially X̂L =
e−i

√
π p̂ and ẐL = ei

√
π x̂. The stabilizers of the code can then

be written as X̂ 2
L and Ẑ2

L . The syndrome measurements for
displacement errors in x̂ and p̂ can be done subsequently by
linearly coupling the GKP-encoded signal qubit with a suit-
able GKP ancilla qubit followed by corresponding homodyne
detections. Notably, provided GKP states are available, all
these operations are Gaussian and thus comparably easy to
realize experimentally. This is one of the main advantages of
the GKP code.

One gate from the DV universal gate set that still has not
been considered yet is the non-Clifford gate T̂ . In the original
proposal, it was suggested to employ the relation

T̂L = exp

(
iπ

4

(
2

(
x̂√
π

)3

+
(

x̂√
π

)2

− 2

(
x̂√
π

)))
, (41)

which holds true for the ideal GKP states. However, it was
recently demonstrated that this operator is unsuitable for ap-
proximate finite-energy GKP states [32]. Instead, a “magic
gate” can be obtained by “magic state injection”, a technique
similar to gate teleportation using a logical magic state |TL〉 =
|0L〉+ei π

4 |1L〉√
2

as off-line resource [7]. In general, it is possible

to choose d �= 2
√

π . For example, the so-called “qunaught
state” |q〉GKP with d = √

2π fulfils F̂ |q〉GKP = |q〉GKP and is
useful when entangling two GKP states using a beam splitter
to obtain a GKP Bell state [97]. Another common choice is the
hexagonal GKP code with d = 2(2π/

√
3)

1
2 and ĤL = F̂ ( π

3 ),
which can correct arbitrary displacements below the threshold
( π

2
√

3
)

1
2 , related to the closest packing of circles in two dimen-

sions. The Wigner functions of different GKP states are shown
in Fig. 4.

The most common and practical approach to obtain phys-
ical approximations of the ideal GKP states is to replace the
Dirac delta functions by Gaussian curves of width k−1 and
introduce an overall Gaussian envelope of width k. Therefore,
the resulting states

〈x|0〉GKP(k, d ) ∝
∑
s∈Z

exp

(
− (ds)2

2k2
− k2(x − ds)2

2

)
(42)

can be referred to as Gaussian GKP states, despite be-
ing highly non-Gaussian. In the case of high squeezing,
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(a) (b) (c)

FIG. 4. Wigner functions of different approximated GKP states. (a) Approximated |0〉GKP state for d = 2
√

π , 12.2 dB squeezing (n = 5),
and L = 7 cubic QND gates. (b) Approximated qunaught GKP state for d = √

2π , 11.5 dB squeezing (n = 2), and L = 9 cubic QND gates.
(c) Approximated hexagonal GKP state for d = (2π

√
3)1/2, 11.9 dB squeezing (n = 4), L = 9 cubic QND gates, δ = π

2 , and a −30◦-phase
rotation gate.

where k is large, these Gaussian GKP states approach the
ideal codewords and the probability to misidentify the two
nonorthogonal states |0〉GKP and |1〉GKP becomes exponen-
tially small,

PError <
2

πk
e− π

4 k2
. (43)

Moreover, they fulfill the relation

| j〉GKP ∝
∫
C

dα exp(−|α|2k2)D̂(α)| jL〉, (44)

with j = 0, 1 [98]. Hence, the Gaussian GKP states can be
regarded as ideal GKP states that have undergone a coherent
displacement error of Gaussian distribution. This implies that
the presented operators do approach their corresponding logi-
cal gates for large k, as Gaussian gates act only linearly on the
operators x̂ and p̂. At the same time, this illustrates why the
nonlinear operation defined in Eq. (41) does not converge to
the gate T̂L even for high squeezing.

The process of error correction also stays unchanged for
approximate GKP states, as the code was designed to cor-
rect small displacements. Although the intrinsic error of the
approximation reduces the margin of external errors that can
be successfully corrected, simulations show that even for rel-
atively low squeezing, the GKP code outperforms other CV
error correction codes when considering photon loss as source
of error [99].

2. GKP state generation with conditional measurement

While basic operations on the GKP code space as well
as error correction are easily implementable in an optical
context, the creation of high-quality optical GKP codewords
still has not been accomplished 20 years after the original
proposal.1 However, a creation scheme as old as the code itself
can also be found in the original Ref. [4]: Let a controlled
phase rotation gate act upon a squeezed vacuum together
with a “meter” and then measure the meter’s phase. More

1However, note that there is a very recent quantum optical exper-
iment demonstrating the creation of photonic states with GKP-type
features [90].

recently, in Ref. [100], this idea was revisited with a focus
on an implementation in the circuit-QED platform. We shall
discuss this particular concept for GKP state generation in a
little more detail.

Here, we intend to propose a slightly altered version,
tailored to work in a purely optical setting, based on the
presented decompositions. First, we start with a squeezed
vacuum together with a displaced state as a meter. Second,
we replace the controlled phase rotation gate with our approx-
imation to obtain

|ψk,α (t )〉 := Sλ(t )
(
e−i ln(k)

2 (x̂ p̂+p̂x̂)|vac〉)1(e−iα p̂|vac〉)2. (45)

Third, instead of phase estimation [100], we use a simple
homodyne measurement in the quadrature p̂2 whilst condi-
tioning the measurement result to p0 ≈ 0. In the ideal case of
an infinite displacement and exactly p0 = 0, this measurement
will then fix the strength of the performed controlled phase
rotation to multiples of π resulting in periodic peaks in the
position wave function of mode 1 with a Gaussian envelope
given by its initial squeezing. The case of a finite displacement
and general measurement outcomes p0 can also be treated
analytically. Regarding the equations

0 = Sλ(t )(
√

2â2 − α)Sλ(−t )|ψk,α (t )〉, (46)

0 = Sλ(t )(k−2x̂1 + i p̂1)Sλ(−t )|ψk,α (t )〉 (47)

in momentum and position space, replacing x̂1 with i∂p1 and
p̂2 with −i∂x2 , respectively, gives us two differential equa-
tions with the normalized solution

〈x1, p0|ψk,α (t )〉 = N√
A

exp

(−x2
1

2k2
− B

2A
p2

0 − i
α

A
p0

)

× exp

(
α2Pxx[tx1]

2A

)
, (48)

N = 1√
πk

exp

(
iϕ − α2

R

2

)
, (49)

with A = Pxx[tx1] + iPpx[tx1], B = Ppp[tx1] − iPxp[tx1], the
real part αR and a global phase ϕ. Here the notation

√
A is

used for the solution to the differential equation

f ′(x)

f (x)
= 1

2

A′(x)

A(x)
. (50)
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FIG. 5. Performance of the approximation for d = 2
√

π . (a) Fidelity to the target state |0〉GKP of the absolute value (blue) and after
the phase correction (green) given p0 = 0. The vertical green lines indicate the different n’s of Eq. (54). (b) Probability distribution of the
homodyne measurement for a squeezing of 12.2 dB (n = 5). (c) Threshold fidelity against the success probability for different p0-conditionings
|p0| � const. for a squeezing of 12.2 dB (n = 5) and different approximations to the controlled phase rotation gate. L represents the number
of cubic QND gates used.

The imaginary phase of the function
√

A(x) thus covers the
full range of (−π, π ] instead of the common (−π

2 , π
2 ].

Before we look at the approximation’s impact on the
scheme, let us consider the case of an ideal controlled phase
rotation gate. Replacing the polynomials with sine and cosine,
respectively, we get

〈x1, p0|ψk,α (t )〉 ∝ exp

(
− x2

1

2k2
− |α|2

2
sin2(tx1 + δ)

)

× exp

(
i
tx1

2
+ i

|α|2
4

sin(2tx1 + 2δ)

)

× exp (−ip0|α| exp(itx1 + iδ)), (51)

with α = |α| eiδ . In order to obtain the correct spacing and
squeezing of the GKP code, we must have t = π/d and |α| =
k/t . The initial phase of the displaced state δ provides an
elegant way of shifting the peaks, while keeping the Gaussian
envelope centered. For the state |0〉GKP, however, we will be
setting it to δ = 0.

With these parameters set, let us look at the terms of
Eq. (51) line by line. The first line gives the absolute value
of the waveform and approximates 〈x|0〉GKP quite well for
k � 1, since

exp

(
−k2d2

2π2
sin2

(
πx

d

))
k�1≈

∑
s∈Z

exp

(
−k2(x − ds)2

2

)
.

(52)

The second line gives the phase of the waveform. On the
one hand, the first term is due to the negligence of the − 1

2
term in n̂ = x̂2 + p̂2 − 1

2 and easily corrected by introducing a
corrective displacement of t/2. On the other hand, the second
term arises from the homodyne measurement and needs a bit

more attention. As it takes the same form for every peak, it
is sufficient to regard its impact on the fidelity of two single
Gaussians,∣∣∣∣
∫

e−k2ε2
exp

(
i
k2d2

4π2
sin

(
2πε

d

)
− iε · c

)
dε

∣∣∣∣
≈
∫

e−ε2
cos

(
c′

k
ε − π

3kd
ε3 + O

(
1

k3

))
dε

k

=
∫

e−ε2

(
−c′2

k2

ε2

2
+ c′

k2

πε4

3d
+ O

(
1

k4

))
dε

k
+ const.

=
√

π

k3

(
−c′2

4
+ c′ π

4d
+ O

(
1

k2

))
+ const., (53)

with an additional displacement c and c′ = −c + k2/2t . Con-
sequently, given k � 1, the approximation is best for c =
k2/2t − t/2 and a total corrective displacement of k2/2t . On
the other hand, in order to take the same form for every
peak, the additional displacement must fulfill c = 2t · n with
n ∈ Z. This leads us to the following condition for the optimal
squeezing parameter:

k = 2t
√

n + 1/4, n ∈ Z. (54)

When states with different spacing t but identical squeezing
k are needed, it is useful to choose a squeezing parameter for
which both states show minimal deviation from the optima,
for example 2

√
n + 1/4 + 1/20) = √

n′ + 1/4 − 1/20. The
performance of this phase correction compared to that of the
absolute value can be seen in Fig. 5(a). A change of the fixed
peak spacing d whilst keeping n constant is found to have a
negligible effect on the calculated fidelities.

The third line gives the error introduced by a measurement
result of p0 �= 0. Although this term will later prove useful
in the creation a GKP magic state, here it is nothing but
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TABLE III. List of resources needed for the different presented GKP state generation schemes. The maximal required cubic phase gate
strength of each scheme is denoted by rmax.

Target Squeezing Cubic phase Beam Fourier Displacements
Figure state Fidelity [dB] gates rmax splitters gates Other

2 |0〉GKP 0.909 12.2 7 0.130 9 2 2
4(a) |0〉GKP 0.985 12.2 15 0.068 21 6 2
4(b) |q〉GKP 0.969 11.5 19 0.066 27 8 2
4(c) hex. |0〉GKP 0.988 11.9 19 0.100 27 8 2 e−i π

6 n̂

6(b) |T 〉GKP 0.927 12.0 33 0.036 48 16 2
7 |1〉GKP 0.972 11.5 4 × 10 × 24 0.061 4 × 10 × 54 4 × 10 × 12 + 8 |0〉DR

9 |T 〉GKP 0.991 11.7 19 + 2 × 44 0.153 27 + 2 × 99 8 + 2 × 22 + 4 3 |T 〉DR

an uncorrectable but preventable error. Accepting a larger
interval of measurement results p0 increases the maximum
error, while a smaller acceptance interval lowers the success
probability. The introduced errors and success probabilities
for a squeezing of 12.2 dB (n = 5) can be found in Fig. 5(c).
Larger n, whilst leading to an increased maximum fidelity, are
found to be accompanied by smaller success probabilities.

Up to now we have not considered the impact of an ap-
proximated controlled phase rotation gate yet. In order to
do so, we optimize parameter sets λ of different length L to
maximize the fidelity of the approximation and its target state
for p0 = 0. The results are plotted in Fig. 5(c). They show that
it is possible to achieve a practically perfect approximation to
the controlled phase rotation gate with less than ten as well
as fidelities over 96% with merely five cubic QND gates. As
a general rule, the more peaks the target state has, the more
gates are needed to approximate it properly. Hence, states
such as +, −, qunaught, and hexagonal GKP states tend to
need a higher squeezing as well as a higher operator count to
achieve the same fidelities as the |0〉GKP state. The parameters
needed to obtain the different GKP states and encodings are
summarized in Table IV, while the resulting Wigner functions
of the GKP states considered here, given similar squeezing
and operator counts, are shown in Fig. 4.

Note that all these GKP states can be created using 2L + 1
cubic phase gates of the same gate strength. This is demon-
strated in the exemplary circuit of Fig. 2 and is likely to
be significant for their experimental feasibility. In fact, a re-
cent experimental demonstration [8] would correspond to a
cubic-phase-gate strength parameter r in Eq. (9) as r ≈ 0.17.
In Appendix B we present optimized parameter sets for the
scheme of Fig. 2 where we can choose all gate strengths
identical and below a value of 0.17. Weaker gate strengths
may allow to improve the final state fidelities for larger gate
concatenations. When sticking to the scheme of Fig. 2 the
optimized nonidentical gate strengths include a maximal value
of 0.13 (see Appendix B). For an easy comparison the amount
of elementary gates as well as the maximal cubic-phase-gate
strength rmax needed to generate the different GKP states are
also summarized in Table III.

3. Creating a GKP magic state

Besides creating the logical GKP codewords, there is one
more obstacle to overcome in order to achieve full universality
with optical GKP qubits: a qubit non-Clifford gate such as
T̂ that acts logically in the corresponding way when applied

upon GKP states, like T̂L of Eq. (41) as originally proposed in
Ref. [4] and discussed in Secs. II A and IV B 1. The original
approach though performs rather poorly on finitely squeezed
states [32] and an optimized version was found to saturate at
a logical fidelity of about 95% for high squeezing [7]. The
more promising approach is therefore the gate teleportation of
a magic state |0〉GKP + ei π

4 |1〉GKP [4,7], as was also mentioned
before. Here we want to discuss how our optical GKP creation
scheme can be used to approximate a GKP magic state. The
underlying idea is to change the p0 conditioning and make use
of the introduced error.

Let us take a look at the p0 dependence of Eq. (51),

exp

(
−ip0

kd

π
exp(itx1)

)
. (55)

Accepting the measurement result only when p0 ≈ π2

8kd we
obtain a phase of

exp

(
i
π

4

1 − cos(tx1)

2

)
, (56)

up to a global phase. This is a fairly good approximation of a
logical T̂ gate in the sense that every second GKP peak obtains
a phase of ei π

4 . This means, however, that in order to get a
magic state, we need to start with a peak spacing of d = √

π

provided with a |+〉GKP state. When using the same squeezing
as for the |0〉GKP state, this implies that the fidelity of the
magic state will be inherently worse. The resulting fidelity
saturates at 94.8% for a comparable squeezing of 12.0 dB
(n = 1) independent of the operator count L, but with a higher
success probability (see Fig. 6). In order to obtain higher
fidelities, a higher squeezing must be chosen, for example, a
squeezing of 14.5 dB (n = 2) allows for fidelities up to 97.7%.
It might also be possible to use the more accurate logical GKP
states in order to distil magic states of higher fidelity. On the
other hand, the scheme presented in the next section can be
used to create a magic state from a high-fidelity |0〉GKP state.
Let us finally mention that when using |+〉GKP states to initiate
the logical qubits, logical qubits and magic states could be
generated in parallel given a two-part acceptance interval for
the measurement outcomes.

4. Measurement-free GKP state generation

One of the main advantages of a purely optical quan-
tum computer is the achievable clock rate. Therefore it
would be desirable to have a deterministic, measurement-free
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FIG. 6. Approximating a GKP magic state. (a) Fidelity to the target state |T 〉GKP plotted against the success probability for a squeezing of
12.0 dB (n = 1) and different approximations to the controlled phase rotation gate. L represents the number of cubic QND gates employed. As
the fidelity is not symmetric around p0 = π2

8kd , success is defined one-sided: const. � p0 � π2

8kd to the left and π2

8kd � p0 � const. to the right.

(b) Approximated |T 〉GKP state using d = √
π , p0 = π2

8kd , 12.0 dB squeezing (n = 1) and L = 16.

scheme as opposed to the probabilistic GKP state creation
of the preceding sections. In Ref. [96], the authors present a
measurement-free GKP creation scheme using the Rabi-type
Hamiltonian gates eip̂σ̂x and eix̂σ̂y , which are readily available
in trapped-ion and superconducting circuit platforms, where
the spin operators can either act upon a real or an “artifi-
cial” two-level atom. In fact, there are already experimental
demonstrations in these platforms based on similar concepts
[101,102]. Here, however, we shall apply our decomposition
results for purely optical Rabi-type Hamiltonians of Sec. III C
to the GKP state generation scheme of Ref. [96].

Using the gates Uk = eiuk x̂σ̂y , Vk = eivk p̂σ̂x , and Wk = eiwk x̂σ̂y

and applying them on an infinitely squeezed state |x0〉 and a
qubit ancilla state α|+〉a + β|−〉a as an input, one obtains

WkVkUk|x0〉(α|+〉a + β|−〉a)

= WkVk|x0〉(A|+〉a + B|−〉a)

= Wk (A|x0 − vk〉|+〉a + B|x0 + vk〉|−〉a)

= cos(wkx0)(A|x0 − vk〉 ∓ B|x0 + vk〉)

{|1〉a
|0〉a

}
+ sin(wkx0)(±A|x0 − vk〉

− B|x0 + vk〉)

{|0〉a, if vkwk = +π
4

|1〉a, if vkwk = −π
4

(57)

TABLE IV. Parameters used to approximate GKP states of dif-
ferent encodings.

Encoding State t p0 δ

Square |0〉GKP
√

π/2 0 0
Square |1〉GKP

√
π/2 0 π

2
Qunaught |q〉GKP

√
π/2 0 0

Hexagonal |0〉GKP (π/(2
√

3))1/2 0 π

2
Square |T 〉GKP

√
π π

8|α| 0

with

A = α cos(ukx0) − β sin(ukx0), (58)

B = β cos(ukx0) + α sin(ukx0). (59)

As we can see, the displacement gate Vk displaces |x0〉 depend-
ing on the state of the qubit, effectively splitting it in two. The
disentangling gate Wk then disentangles qubit and qumode
again if and only if vkwk = ±π

4 and wkx0 = m · π
2 with m ∈

Z. The preparation gate Uk , on the other hand, rotates the
ancilla qubit depending on the position x0 and together with
the original qubit state determines the amplitudes of the two
resulting squeezed states |x0 − vk〉 and |x0 + vk〉.

When repeating this procedure N times it is thus possible
to split the original |x0〉 state into a sum of 2N distinct position
states. Starting with |x0 = 0〉|0〉a and choosing the vk and wk

to be

vk =
{

−√
π2N−1, if k = 1,

+√
π2N−k, if k > 1,

(60)

wk =
{

−
√

π

4 2−(N−k), if k < N,

+
√

π

4 , if k = N,
(61)

we obtain the state⎛
⎝ 2N∑

k=1

ck|(2k − 1 − 2N )
√

π〉
⎞
⎠|0〉a ≈ |1〉GKP|0〉a. (62)

The weights of the different peaks ck are determined by the
strengths of the preparation gates uk . Different sets of the
latter optimized for different figures of merit can be found in
Ref. [96]. Note that generally setting u1 = 0 and combining
the operators Wk and Uk+1 reduces the number of required
Hamiltonians to 2N . When introducing finitely squeezed
states as an input, the preparation and disentangling gates are
no longer exact. After tracing out the qubit ancilla, this leads
to a mixed final state. Measuring the ancilla qubit after each
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FIG. 7. Approximating a |1〉GKP state using the measurement-
free protocol of Ref. [96] with N = 2, a squeezing of 11.5 dB,
u2 = 0.093, and L = 60 CV Toffoli gates for each of the four ap-
proximated Rabi-type Hamiltonians.

iteration could therefore provide pure final states together with
overall higher fidelities. However, this is not necessary, as
the measurement-free scheme on its own is already able to
produce high-fidelity states for simply N � 2.

Replacing the Rabi-type Hamiltonian gates with the pre-
sented approximations using the Tλ(t ) gate on an optical
qumode together with an optical dual-rail qubit, we are able
to translate this protocol into a purely optical setting. The
resulting |1〉GKP state for N = 2, a squeezing of 11.5 dB,
u2 = 0.093, and L = 60 CV Toffoli gates for each of the
four approximated Hamiltonians can be seen in Fig. 7. The
results show that it is possible to deterministically create GKP
states using only single-mode cubic phase gates, beam split-
ters, phase rotations, and off-line squeezing together with an
off-line single-photon qubit ancilla state.

However, the number of gates needed to properly ap-
proximate this protocol is significantly higher than for the
probabilistic one. This can be attributed to two factors. On
the one hand, due to an already computationally expensive
fidelity calculation, in this case we refrained from doing a pa-
rameter optimization and instead used the third-order set λ =
(0.397,−0.794,−0.0325, 1.54, 0.636, 0.254)T , which had
proven effective in previous applications. On the other hand,
the relatively high gate strength v1 = 2

√
π , corresponding

to a d =
√

π

2 in the probabilistic scheme, is generally harder
to approximate, as this increases the number of relevant
sine/cosine periods.

5. Creating arbitrary logical GKP states

Another useful application of the above protocol is the
creation of arbitrary logical states. While simple changes in
the parameters uk , vk , and wk are sufficient to obtain states
of nonsquare encodings such as rectangular and hexagonal
|1〉GKP states [96], modifying the initial state of the ancilla
qubit enables us to create arbitrary logical states. Choosing
u1 = 0, v1 = −

√
π

2 , and w1 =
√

π

2 together with an additional

FIG. 8. Performance of the protocol of Eq. (63) applied on a
Gaussian |0〉GKP state as in Eq. (42) with alternately signed peaks
and varying squeezing as an input. The green line gives the fidelity
to the magic state 1√

2
|0〉GKP + (1+i)

2 ei
√

π p̂|0〉GKP after tracing over the
ancilla qubit. The blue and orange dotted lines, respectively, show the
fidelity and success probability when measuring the ancilla qubit.

displacement and a |0〉GKP state as an input, we have

exp

(
i

√
π

2
p̂

)
W1V1U1

⎛
⎝∑

k∈Z
ck|2k

√
π〉
⎞
⎠(α|+〉a + β|−〉a)

=
∑
k∈Z

ck (−1)k (α|2k
√

π〉 + β|(2k − 1)
√

π〉)|0〉a. (63)

Alternatively, the same result can be obtained for a |1〉GKP

state as an input by straightforward modifications to the pa-
rameters.

Two aspects of the final state still need to be addressed.
First, the term (−1)k is clearly unwanted and in the original
proposal of Ref. [96], it gets corrected by a displacement
in p. This, however, introduces linear error terms. Another
option is to run the protocol twice using a |+〉 ancilla on
the first and an ancilla in the sought after logical state on the
second run. Moreover, both GKP creation schemes presented
in this paper can naturally compensate for this term: in the
probabilistic scheme this is done by choosing n = n0 + 1

2 with
n0 ∈ N, while in the deterministic protocol it is sufficient to
invert the sign of wN . Second, shaping the overall form of the
peaks using U1 mixes the coefficients α and β, and is thus
problematic for some aspired states. Moreover, while using a
|0〉GKP state displaced by

√
π as |1〉GKP state has a negligible

effect on the fault tolerance of the code, it heavily influences
the calculated fidelities (as much as 10% for a squeezing
of 11.5 dB). In order to not distort the results, the fidelities
are therefore calculated towards the target state α|0〉GKP +
β exp(i

√
π p̂)|0〉GKP instead of the usual α|0〉GKP + β|1〉GKP.

In order to test the protocol we are again going to look
at the creation of a GKP magic state. Not yet considering
the gate approximations, its core performance for different
squeezing levels when choosing α = 1/

√
2 and β = (1 +

i)/2 is plotted in Fig. 8. The results show that when trac-
ing over the qubit ancilla the fidelity of the resulting mixed
state is highly dependent on the squeezing level of the input.
Measuring the qubit ancilla, on the other hand, gives a pure
state with significantly increased fidelity.
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FIG. 9. Approximating a GKP magic state using a combination
of the two presented creation methods. First, a |0〉GKP state with
alternately signed peaks is created using the probabilistic scheme
with d = 2

√
π , 11.7 dB squeezing (n = 4.5), and L1 = 9 cubic

QND gates. Then the protocol of Eq. (63) with α = 1/
√

2 and β =
(1 + i)/2 is approximated using L2 = 11 CV Toffoli gates for the
two Rabi-type Hamiltonians. Finally, the dual-rail qubit is measured
with a success probability of 93.7%. Without the measurement the
same procedure gives a mixed state with a fidelity of 95.3%.

Incorporating the gate approximations of the optical set-
ting, the operators of Eq. (63) can be rewritten as

exp

(
i

√
π

2
p̂

)
F̂3Tλ

(√
π

2

)
F̂ †

3 F̂ †
1 Tλ

(√
π

2

)
F̂1. (64)

Consequently, creating a GKP magic state from a given |0〉GKP

state enables the repeated use of the same approximated
Rabi-type Hamiltonian gate Tλ(t ) and, as its gate strength is
comparably low, allows to approximate the results of Fig. 8
well using no more than 10 CV Toffoli gates. This is in stark
contrast to the creation of a |1〉GKP state from scratch using
the same protocol. It is therefore close at hand to combine
the probabilistic creation of a high fidelity |0〉GKP state with
Eq. (64). The resulting magic state after measuring the ancilla
qubit can be seen in Fig. 9. This shows that it is possible to
obtain high-fidelity GKP magic states even for relatively low
squeezing and a reasonable number of cubic QND as well as
CV Toffoli gates. At the same time, it emphasizes the notion
that, as opposed to the probabilistic schemes, the deterministic
creation of arbitrary logical GKP states, whilst possible, still
comes with high requirements on the amount of experimental
resources.

V. EXPERIMENTAL IMPERFECTIONS: PHOTON LOSS

Let us now consider the effect of experimental errors on
the presented approximations. In a purely optical setup, these
are primarily comprised of photon loss as well as imperfect
gates from the universal gate set. As an exhaustive analysis
of these errors and their impact on the different schemes goes
beyond the scope of this paper, we are going to focus on one

FIG. 10. Effects of photon loss on the circuit of Fig. 2. (a) Posi-
tioning of the different photon-loss channels. Each channel consists
of two loss beam splitters with a reflectivity of η, one per mode.
(b) Impact on the fidelity of the approximated GKP state for different
sets of active photon-loss channels.

exemplary case: the effect of photon loss on the circuit of
Fig. 2.

Photon loss can be modelled by introducing a beam splitter
B̂1a(s) with the reflectivity η ≡ sin(s) � 1, which reflects a
part of the given light mode out into a second mode |vac〉a

representing the environment. Two of these loss beam split-
ters are then needed to cover the two modes of the circuit.
For simplicity as well as computability, we will not consider
losses happening within the cubic QND gates, leaving us with
four places in the circuit where the beam splitters can be posi-
tioned, namely after each of the three cubic QND gates as well
as after the squeezed and displaced input states. This is shown
in Fig. 10(a). The impact of these eight loss beam splitters
on the fidelity of the resulting GKP state in dependence of
the reflectivity η can be seen in Fig. 10(b). Besides including
all these eight loss beam splitters, the effect of faulty input
states and a single erroneous cubic QND gate on their own is
also shown. On the one hand, we find that errors of the input
states impact the resulting GKP state less than errors occurring
later on in the circuit. On the other hand, even for photon loss
taking place throughout the scheme the fidelity of the final
state still converges to its no-loss value surpassing 90% for
η < 0.015. Note that the reflectivity parameter that represents
the effect of photon loss in our model describes the fraction
of the signal mode operator’s amplitude, which is subtracted
from the signal. The more standard photon loss probability
would then be η2, corresponding to a photon transmission of
1 − η2.

Another observation is that the impact of multiple errors
is less than the sum of their individual impacts. Thus several
small errors are less harmful than one large one. To which
degree these findings hold for other sources of error and the
different applications remains untested. It is crucial that the
circuits that we derived for various applications are suffi-
ciently short, i.e., contain only a small number of CV cubic
gates, unlike previous decomposition schemes that rely upon
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commutator approximations [9,38] or also higher nonlinear,
namely quartic elementary CV gates [70,86]. In particular, the
GKP state generations are not fault tolerant, since the initial
quantum optical resource states are not protected against lossy
or even faulty CV gates by a quantum error correction code—
the encoded, protected GKP state will only be the result of the
application of the CV gate sequences. Nonetheless, the tolera-
ble loss rates that we obtained above are comparable with the
values proposed in other schemes and error or loss rates of the
order 10−3 or 10−4 per gate are not an uncommon requirement
of fault-tolerant schemes that are already based on concate-
nated quantum error correction codes. These thresholds may
be reduced, but the necessary codes may then be more compli-
cated, which would in turn have a negative impact on potential
experiments.

Note that for some of the other applications that are pos-
sible with our decompositions, loss or fault tolerance can be
provided. An example for this would be a non-Clifford gate
on GKP qubits that approaches unit fidelity with high-quality
GKP states based on a self-Kerr interaction ∼n̂2 [33]. In
this case, the states are protected to some extent against the
effect of physical CV error channels, also when sequences
of CV gates are applied, provided the GKP states are of
sufficient quality [47,48,103]. Nevertheless, also for this ap-
plication, to combine fault tolerance with scalability, even
when a time-domain approach is employed [1,2], it is useful to
minimize the length of the CV circuits. In previous schemes,
decompositions for Kerr-type gates would be typically based
on long gate sequences involving commutator approxima-
tions [9,38,86] or at least quartic elementary CV gates [70].
Generally, the results give confidence that the approxima-
tions presented in this paper can function even within the
inherently noisy experimental setting, provided an appropriate
threshold.

VI. CONCLUSIONS

In conclusion, we have demonstrated that a limited number
of single-mode CV cubic phase gates—the canonical non-
Gaussian gate of standard CV quantum computation—is a
useful and sufficient resource for various elements in pho-
tonic quantum computation. This includes optical schemes
for DV and CV quantum information processing. Unlike
existing schemes that typically rely on complicated com-
mutator approximations and hence require long CV gate
sequences, our decomposition method is “hybrid”: it em-
ploys exact decompositions whilst possible and only reverts
back to efficient approximations for mixing the x and p
variables.

We have explicitly analyzed the performance of our
method for three applications: (i) a two-qubit two-photon,
entangling controlled-Z gate, (ii) a homodyne-measurement-
based, conditional, optical GKP state generation scheme
based on Gaussian resource states, and (iii) a measurement-
free, optical GKP state generation scheme based on Gaussian
and single-photon resource states. Our quantitative results
imply that tens of single-mode cubic phase gates together
with CV Fourier gates and beam splitters are sufficient to
create high-fidelity GKP states, in the form of standard logical
Pauli eigenstates or even “magic states”, and also to realize

a deterministic, two-qubit two-photon controlled-Z gate in
an optical setting. The GKP magic states can be employed
to obtain a GKP qubit non-Clifford gate by means of gate
teleportation techniques [7]. Another option would be to di-
rectly apply a quartic self-Kerr gate upon the GKP qubits,
which, in principle, would allow for a unit-fidelity GKP non-
Clifford gate operation [33]. We have demonstrated that our
efficient decomposition method can be applied to such Kerr
gates. Consequently, single-mode cubic phase gates are a suit-
able resource for all-optical, fault-tolerant, universal quantum
computing.

More specifically, it was shown that the hybrid gate decom-
position scheme consisting of exact decomposition techniques
and efficient Trotterization is a powerful tool in creating
non-Gaussian gates in an optical context. We were able to
build a two-mode controlled phase rotation gate eix̂1n̂2 as well
as the three Rabi-type Hamiltonians corresponding to the
three-mode unitaries eix̂1σ̂x,S , eix̂1σ̂y,S , and eix̂1σ̂z,S where the spin
operators refer to the two-mode Schwinger representation.
Testing their performance in different applications for pho-
tonic qubits, qumodes, as well as a mixture of both, it was
shown that in most cases less than 30 single-mode cubic phase
gates are already sufficient in providing a good approxima-
tion.

Regarding an optical creation of GKP states, this represents
a significant improvement over previously known optical gen-
eration schemes based on the application of CV circuits that
include nonlinear gates. Compared to a “Gaussian Boson
Sampling” setup, our presented schemes do not reach the
same fidelities to the target state but increase the success prob-
ability by multiple orders. In order to synchronize the optical
quantum states and make them available when needed—quasi
on demand, the effect of the calculated success probabilities
could be circumvented by the use of all-optical, cavity-based
quantum memories [104]. These would even allow to optically
store complicated, phase-sensitive, CV states such as GKP
states [105].

The all-optical quantum memories experimentally demon-
strated so far have “lifetimes” of the order of 100 ns. Thus,
an event rate of 107 Hz would effectively lead to an on-
demand source. Assuming a broadband source of especially
Gaussian resource states, considering our conditional GKP
state generation scheme, a 10 GHz repetition rate or equiv-
alently 1010 pulses per second would be feasible. A success
probability for the conditional state generation of the order
of 10−3 would then result in a quasi-on-demand GKP qubit
source. Our calculations suggest that GKP state fidelities
around 0.995 are possible for such values of the success
probability, though assuming an ideal, loss-free scheme. We
also presented a short loss analysis, which implies demanding
loss thresholds, but confirms the in-principle functioning of
our scheme. In order to fully realize such a scheme, the ele-
mentary single-mode cubic phase gates could be incorporated
quasi-on-demand by combining cubic phase gate teleportation
techniques with all-optical quantum memories of ∼100 ns
lifetime.

Considering the advances of experimental single-mode cu-
bic phase gates [8], it is hoped that these results may lead the
way towards an experimental realization of optical GKP states
as well as other applications. As all four relevant Hamiltonians
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of our schemes are experimentally available in trapped-ion
and superconducting circuit platforms, there is a multitude
of existing applications, which the presented approximations
could help bring into the optical context. The scope of this
hybrid gate decomposition scheme thus reaches far beyond
the creation of optical GKP states or two-qubit two-photon
entangling gates.
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APPENDIX A: CALCULATIONS

1. Representing the operators Sλ(t ) and Tλ(t ) by the polynomials Pxx, Pxp, Ppx, and Ppp

Given the unitary operator Û and the set of quadratures Q = {x̂1, p̂1, . . . , x̂n, p̂n} the operator Û is well defined by its impact
on the different quadratures Û q̂Û †, q̂ ∈ Q up to a global phase. This can easily be seen by regarding the operator V̂ with
V̂ q̂V̂ † = Û q̂Û † for all q̂ ∈ Q. Then q̂ = Û †Û q̂Û †Û = Û †V̂ q̂V̂ †Û and it follows that [q̂, Û †V̂ ] = 0 for all q̂ ∈ Q. Thus it must
be Û †V̂ = eiφ 1. Calculating the impact of the operator Sλ(t ) on the four quadratures, we obtain

Sλ(t )x̂1Sλ(−t ) = x̂1, Sλ(t ) p̂1Sλ(−t ) = p̂1 − P1[t x̂1]x̂2
2/2 − P2[t x̂1] p̂2

2/2 − P3[t x̂1](x̂2 p̂2 + p̂2x̂2)/2,

Sλ(t )x̂2Sλ(−t ) = Pxx[t x̂1]x̂2 + Pxp[t x̂1] p̂2, Sλ(t ) p̂2Sλ(−t ) = Ppx[t x̂1]x̂2 + Ppp[t x̂1] p̂2, (A1)

with the polynomials Pxx, Pxp, Ppx, Ppp, P1, P2, and P3. The former can be calculated recursively given the relations

P(0)
xx [t] = 1, P(0)

xp [t] = 0, P(0)
pp [t] = 1, P(0)

px [t] = 0, P(n)
xx [t] = (1 − λnμnt2) P(n−1)

xx [t] − λnt P(n−1)
xp [t],

P(n)
pp [t] = P(n−1)

pp [t] + μnt P(n−1)
px [t], P(n)

xp [t] = P(n−1)
xp [t] + μnt P(n−1)

xx [t], P(n)
px [t] = (1 − λnμnt2) P(n−1)

px [t] − λnt P(n−1)
pp [t].

(A2)

On the other hand, the latter are given by

P1[t] = (∂t Pxx[t]) Ppx[t] − Pxx[t] (∂t Ppx[t]),

P2[t] = (∂t Pxp[t]) Ppp[t] − Pxp[t] (∂t Ppp[t]), (A3)

P3[t] = (∂t Pxx[t]) Ppp[t] − Pxp[t] (∂t Ppx[t]).

This can be verified by comparing the recursion formulas of both sides of the equations while using the relation

Pxx[t]Ppp[t] − Pxp[t]Ppx[t] = 1 ∀t ∈ R. (A4)

The impact of the operator Tλ(t ) on the six quadratures is given by

Tλ(t )x̂1Tλ(−t ) = x̂1, Tλ(t ) p̂1Tλ(−t ) = p̂1 − P1[t x̂1]x̂2x̂3 − P2[t x̂1] p̂2 p̂3 − P3[t x̂1](x̂2 p̂2 + p̂3x̂3),

Tλ(t )x̂2Tλ(−t ) = Pxx[t x̂1]x̂2 + Pxp[t x̂1] p̂3, Tλ(t ) p̂2Tλ(−t ) = Ppx[t x̂1]x̂3 + Ppp[t x̂1] p̂2, (A5)

Tλ(t )x̂3Tλ(−t ) = Pxx[t x̂1]x̂3 + Pxp[t x̂1] p̂2, Tλ(t ) p̂3Tλ(−t ) = Ppx[t x̂1]x̂2 + Ppp[t x̂1] p̂3.

Therefore the operators Sλ(t ) as well as Tλ(t ) are both well defined by the four polynomials Pxx, Pxp, Ppx, and Ppp. Using this
alternative representation will simplify the following calculations.

2. Impact of Sλ(t ) on different input states

Here we calculate the impact of Sλ(t ) on the general two-mode input

|in〉 = (Ŝ(−ξ )|vac〉)1(Ŝ(−ζ )D̂(α/
√

2)|vac〉)2, (A6)

with the squeezing operator Ŝ(ξ ) = exp( 1
2 (ξ ∗â2 − ξ â†2)) and the displacement operator D̂(α) = exp(αâ† − α∗â). Therefore we

consider the two differential equations given by

0 = Sλ(t )

(
x̂1

k1
+ ik1 p̂1

)
Sλ(−t ) Sλ(t )|in〉, (A7)

0 = Sλ(t )

(
x̂2

k2
+ ik2 p̂2 − α

)
Sλ(−t ) Sλ(t )|in〉 (A8)

when taking p̂1 → −i∂x1 and p̂2 → −i∂x2 in the position basis representation. Here, k1 and k2 are given by k1(ξ ) =
( cosh(|ξ |)+sinh(|ξ |) ξ/|ξ |

cosh(|ξ |)−sinh(|ξ |) ξ/|ξ | )
1
2 and k2(ζ ) = ( cosh(|ζ |)+sinh(|ζ |) ζ/|ζ |

cosh(|ζ |)−sinh(|ζ |) ζ/|ζ | )
1
2 . Solving Eq. (A8) using the relations of Eq. (A1), then employing
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Eq. (A7) and finally normalizing the result, we find that

〈x1, x2|Sλ(t )|in〉 = e− α2
I
2

√
k1π

√
B

exp

(
− x2

1

2k2
1

− A

2B
x2

2 + α

B
x2 − α2

2

k2Ppp[tx1]

B

)
, (A9)

with A = Pxx[tx1]/k2 + ik2Ppx[tx1] and B = k2Ppp[tx1] − iPxp[tx1]/k2. Here the notation
√

B is used for the solution to the
differential equation

f ′(x)

f (x)
= 1

2

B′(x)

B(x)
. (A10)

The imaginary phase of the function
√

B(x) thus covers the full range of (−π, π ] instead of the common (−π
2 , π

2 ]. Moreover,
the results are only fixed up to a global phase.

When setting ζ = 0 and applying a Fourier transform in x2 we arrive at Eq. (48) of the main text. On the other hand, setting
ξ = α = 0 and using

Sλ(t )|vac〉1

(
Ŝ(−ζ )|1〉)

2 = Sλ(t )Ŝ2(−ζ )â†
2Ŝ2(ζ )Sλ(−t ) Sλ(t )|in〉

= Sλ(t )

√
2x̂2

k2
Sλ(−t ) Sλ(t )|in〉

=
√

2Sλ(t )

(
x̂2

k2
+ iPxp[tx1]

k2B

(
x̂2

k2
+ ik2 p̂2

))
Sλ(−t ) Sλ(t )|in〉

=
√

2
x̂2

k2

(
Pxx[tx1] + iPxp[tx1]

A

B

)
Sλ(t )|in〉

=
√

2x̂2

B
Sλ(t )|in〉 (A11)

gives us

〈xa, y|Sλ(t )|vac〉1(Ŝ(−ζ )|n0〉)2 = π− 1
2√

B

(√
2y

B

)n0

exp

(
−A

B

y2

2
− x2

a

2

)
, (A12)

with n0 = 0, 1. Applying the operator M̂ ( j) = e−ix̂a/2S(a, j)
λ (

√
π ) and a Fourier transform in xa four times to two qumode states

and an ancilla ∣∣ψny,nz

〉 = M̂ (1)F̂ †
a M̂ (2)F̂ †

a M̂ (1)F̂ †
a M̂ (2)F̂ †

a |0〉a|ny〉|nz〉, (A13)

we get

ψny,nz (xa, y, z) = e−ixa/2
∫

d pa√
2π

eipaxa+ipa/2
∫

dx′
a√

2π
e−ix′

a pa+ix′
a/2
∫

d p′
a√

2π
eip′

ax′
a−ip′

a/2

(√
2y

B

)ny
(√

2z

D

)nz

× π− 3
4√

B D
exp

(
− p′2

a

2
− A

B

y2

2
− C

D

z2

2

)
, (A14)

with

A = Pxx[
√

πxa](Pxx[
√

πx′
a] − iPpx[

√
πx′

a]) + iPpx[
√

πxa](Ppp[
√

πx′
a] + iPxp[

√
πx′

a]),

B = Ppp[
√

πxa](Ppp[
√

πx′
a] + iPxp[

√
πx′

a]) − iPxp[
√

πxa](Pxx[
√

πx′
a] − iPpx[

√
πx′

a]),

C = Pxx[
√

π pa](Pxx[
√

π p′
a] + iPpx[

√
π p′

a]) − iPpx[
√

π pa](Ppp[
√

π p′
a] − iPxp[

√
π p′

a]),

D = Ppp[
√

π pa](Ppp[
√

π p′
a] − iPxp[

√
π p′

a]) + iPxp[
√

π pa](Pxx[
√

π p′
a] + iPpx[

√
π p′

a]). (A15)

The three Fourier transforms of Eq. (A14) can then be done numerically to obtain the output state of the approximate CZ gate.

3. Impact of Tλ(t ) on different input states

Next we are going to calculate the impact of Tλ(t ) on the general three-mode input

|in〉 = N
∫

dx
∫

dy
∫

dz φ(x) exp

(
−λ

y2

2
− μ

z2

2
− iρyz

)
|x〉1|y〉2|z〉3. (A16)
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As Tλ(t ) has no impact on φ(x), we can set φ(x) = exp(−x2/2) without loss of generality. This gives us three differential
equations arising from the position space representation of

0 = Tλ(t )(x̂ + i p̂)Tλ(−t ) Tλ(t )|in〉, (A17)

0 = Tλ(t )(λŷ + iq̂ + iρ ẑ)Tλ(−t ) Tλ(t )|in〉, (A18)

0 = Tλ(t )(μẑ + ir̂ + iρŷ)Tλ(−t ) Tλ(t )|in〉, (A19)

with the pairs of quadratures (x̂, p̂), (ŷ, q̂), and (ẑ, r̂). The solution is given by

〈x, y, z|in〉 = N√
A

φ(x) exp

(
−λ

y2

2A
− μ

z2

2A
− i

B

A
yz

)
, (A20)

with A = (Ppp[tx] + ρPxp[tx])2 + λμP2
xp[tx] and B = (Ppp[tx] + ρPxp[tx])(Ppx[tx] + ρPxx[tx]) + λμPxp[tx]Pxx[tx]. Similar to

Eq. (A11) we also obtain

Tλ(t )(αŷ + β ẑ)|in〉 =
(

α
(
Ppp[tx] + ρPxp[tx]

)+ iβλPxp[tx]

A
ŷ + β

(
Ppp[tx] + ρPxp[tx]

)+ iαμPxp[tx]

A
ẑ

)
Tλ(t )|in〉. (A21)

When setting uk = 0, one step of the protocol of Eq. (57) is given by∣∣ψvk ,wk

〉 = F̂3Tλ(wk )F̂ †
3 F̂1Tλ(vk )F̂ †

1 (αŷ + β ẑ)|in〉. (A22)

Besides the two operators Tλ(vk ) and Tλ(wk ) the Fourier transforms in z can also be calculated analytically. Overall this leaves
us with

ψvk ,wk (x, y, z) = N ′
∫

d p√
2π

eipx
∫

dx′
√

2π
e−ix′ p(α′ŷ + β ′ẑ)φ(x′) exp

(
−λ′ y

2

2
− μ′ z

2

2
− iρ ′yz

)
, (A23)

where

λ′ = μ

A[vk p]

[(
Ppx[wkx] − i

B[vk p]

μ
Pxx[wkx]

)2

+
(

λ

μ
+ B2[vk p]

μ2

)
P2

xx[wkx]

]
,

μ′ = μ

A[vk p]

[(
Ppp[wkx] − i

B[vk p]

μ
Pxp[wkx]

)2

+
(

λ

μ
+ B2[vk p]

μ2

)
P2

xp[wkx]

]
,

ρ ′ = i
μ

A[vk p]

[(
Ppp[wkx] − i

B[vk p]

μ
Pxp[wkx]

)(
Ppx[wkx] − i

B[vk p]

μ
Pxx[wkx]

)
+
(

λ

μ
+ B2[vk p]

μ2

)
Pxp[wkx]Pxx[wkx]

]
,

α′ = Pxx[wkx]
α(Ppp[vk p] + ρPxp[vk p]) + iβλPxp[vk p]

A[vk p]
− Ppx[wkx]

β(Ppp[vk p] + ρPxp[vk p]) + iαμPxp[vk p]

A[vk p]
,

β ′ = Ppp[wkx]
β(Ppp[vk p] + ρPxp[vk p]) + iαμPxp[vk p]

A[vk p]

− Pxp[wkx]
α(Ppp[vk p] + ρPxp[vk p]) + iβλPxp[vk p]

A[vk p]
and N ′ = N√

A[vk p]
. (A24)

This step can be repeated for each iteration of the protocol. Calculating the Fourier transforms numerically then leaves us with
the output state of the approximated measurement-free protocol.

APPENDIX B: OPTIMIZED PARAMETER SETS

In order to improve upon the Trotter-Suzuki decomposition the parameter sets λ are separately optimized for each application.
For this the Basin-hopping algorithm implemented in Python with starting points fulfilling Eq. (31) is used. For the approximated
CZ gate the worst-case fidelity defined in the main text is maximized. For the GKP states the state’s fidelity towards the
corresponding Gaussian GKP state is used as a figure of merit. The optimized gate sets approximating the CZ gate are

L = 6 : [0.1917, 0.3068, 0.3478, 0.3615, 0.3199, 0.1972]

L = 7 : [0.1453, 0.2971, 0.3045, 0.3139, 0.3057, 0.2976, 0.1485, 0]

L = 9 : [0.1163, 0.2294, 0.2462, 0.2440, 0.2304, 0.2442, 0.2464, 0.2302, 0.1168, 0]

L = 11 : [0.09535, 0.1918, 0.1981, 0.1946, 0.1926, 0.1985, 0.1926, 0.1946, 0.1980, 0.1920, 0.09504, 0]
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L = 13 : [0.08059, 0.1627, 0.1651, 0.1630, 0.1636, 0.1649, 0.1623, 0.1649, 0.1635, 0.1630, 0.1650, 0.1628, 0.08046, 0]

L = 15 : [0.06972, 0.1404, 0.1418, 0.1404, 0.1413, 0.1414, 0.1403, 0.1420, 0.1402, 0.1414, 0.1412, 0.1404, 0.1418,

0.1405, 0.06964, 0]

The optimized gate sets used for the probabilistic GKP creation scheme are
Square encoding

L = 3 : [0.6794, 0.4543, 0.3353, 0]

L = 5 : [0.5217, 0.3469, 0.2937, 0.2536, 0.1937, 0]

L = 7 : [0.3566, 0.2243, 0.2416, 0.2731, 0.2764, 0.2306, 0.1295, 0]

L = 9 : [0.02422, 0.7957, 0.4211, 0.2941, 0.2488, 0.2294, 0.2202, 0.1823, 0.08733, 0]

Qunaught encoding

L = 9 : [0.3433, 0.1839, 0.1593, 0.1827, 0.2088, 0.2074, 0.2037, 0.1716, 0.09903, 0]

Hexagonal encoding

L = 9 : [−0.05847,−0.2111, 0.5222, 0.3127, 0.2532, 0.2260, 0.2096, 0.1735, 0.08916, 0]

Magic state

L = 16 : [0.1038, 0.07294, 0.1861, 0.1610, 0.08781, 0.09327, 0.1317, 0.1501, 0.1380, 0.1348, 0.1213, 0.1173, 0.1105,

0.1096, 0.09671, 0.05178]

L = 21 : [0.04155, 0.08769, 0.1025, 0.05514, 0.1391, 0.1291, 0.06734, 0.07781, 0.1304, 0.1295, 0.09831, 0.07139, 0.08922,

0.1150, 0.1115, 0.08428, 0.07268, 0.09360, 0.1119, 0.09423, 0.04103, 0]

L = 25 : [0.02913, 0.09474, 0.1146, 0.05894, 0.09529, 0.09499, 0.06886, 0.07248, 0.09725, 0.09047, 0.07591, 0.07003,

0.08284, 0.08626, 0.08380, 0.07685, 0.07693, 0.07845, 0.08287, 0.08220, 0.07977, 0.07979, 0.08801, 0.07813,

0.03718, 0]

For the deterministic GKP creation scheme the optimized gate set is

L = 11 : [0.09506, 0.1881, 0.1951, 0.1963, 0.1907, 0.1945, 0.1919, 0.1943, 0.1972, 0.1870, 0.09451, 0]

The gates of the schematic circuit of Fig. 2 are given by

Sq = Ŝ(− ln(k)), D1 = D̂

(
kd√
2π

)
, D2 = D̂

(
−i

k2d

2
√

2π

)
, X 3 = exp(ir j x̂

3), (B1)

with d = 2
√

π and k =
√

21
4 π . The r j’s are dependent on the beam splitters and can thus be adapted. Following Eq. (14) and

choosing s = arccos( 1√
3

) leads to the weakest possible cubic phase gates with r1 = r2 = 0.0643, r3 = r4 = 0.0872, r5 = r6 =
0.1304, and r7 = −0.1085. On the other hand, setting s1 �= s2 �= s3 allows us to obtain r1 = r2 = r3 = r4 = r5 = r6 = −r7 =
0.1675.
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