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Influence of catastrophes and hidden dynamical symmetries on ultrafast
backscattered photoelectrons
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We discuss the effect of using potentials with a Coulomb tail and different degrees of softening in photo-
electron momentum distributions (PMDs) using the recently implemented hybrid forward-boundary CQSFA
(H-CQSFA). We show that introducing a softening in the Coulomb interaction influences the ridges observed in
the PMDs associated with backscattered electron trajectories. In the limit of a hard-core Coulomb interaction,
the rescattering ridges close along the polarization axis, while for a soft-core potential, they are interrupted at
ridge-specific angles. We analyze the momentum mapping of the different orbits leading to the ridges. For the
hard-core potential, there exist two types of saddle-point solutions that coalesce at the ridge. By increasing the
softening, we show that two additional solutions emerge as the result of breaking a hidden dynamical symmetry
associated exclusively with the Coulomb potential. Further signatures of this symmetry breaking are encountered
in subsets of momentum-space trajectories. Finally, we use scattering theory to show how the softening affects
the maximal scattering angle and provide estimates that agree with our observations from the CQSFA. This
implies that, in the presence of residual binding potentials in the electron’s continuum propagation, the distinction
between purely kinematic and dynamic caustics becomes blurred.
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I. INTRODUCTION

Caustics and catastrophes describe divergent phenomena,
in which gradual changes in the input parameters lead to
abrupt changes in a dynamical system’s response. They have
been observed and studied in a wide range of areas, such
as optics [1,2], mechanics [3], and even biological sciences
[4]. Within strong-field laser-matter interaction, catastrophe
theory has been used in high-order harmonic generation, to
identify regions of exceptional brightness in the high-order
harmonic spectra, which can be tuned in order to enhance
specific groups of harmonics [5,6], and employed to probe
multielectron dynamics at a giant resonance [7]. In strong-
field ionization, catastrophe theory has been used to explain
a series of sharply peaked low-energy structures observed in
photoelectron spectra with low frequency, typically mid-IR
driving fields [8–13]. Furthermore, caustic-type (Glory) tra-
jectories have also been identified in ultrafast photoelectron
holography [14–16].

Thereby, a key aspect is that, similarly to the geomet-
rical optics scenario in which rays of light coalesce, in
strong-field and attosecond physics caustics are associated
with coalescing electron trajectories. This picture builds up
on the paradigm that describes strong-field phenomena as
the result of the laser-induced recollision of a previously
freed electron with its parent ion [17,18]. Coalescing trajec-
tories are observed near the high-order harmonic (HHG) or
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high-order above-threshold ionization (ATI) cutoff [19], as
well as in laser-induced nonsequential double ionization
[20–22]. Cutoffs mark the maximal kinetic energy a rescat-
tering photoelectron may have. For lower energies, electron
trajectories occur in pairs. For each pair, there is a short and
a long trajectory, arriving before and after a field zero cross-
ing, respectively. Coalescence of more than two trajectories
has also been observed in specific scenarios, such as Glory
scattering [16].

Possibly the best-known caustics in high-order ATI are the
rescattering ridges, which occur when pairs of backscattered
trajectories coalesce. These ridges may extend up to a high
photoelectron energy, which, for the shortest trajectory pair
and linearly polarized monochromatic fields, is around 10Up,
where Up is the ponderomotive energy.1 The prevalent ar-
gument, backed by classical models [23,24], the strong-field
approximation (SFA) [25] and the adiabatic approximation
[26], is that the rescattering ridge is primarily a kinematic
caustic. One should note, however, that, for such methods, the
acts of rescattering are spatially localized and well defined,
as they are either constructed for short-range potentials [26],
or as a Born-type expansion around field-dressed plane waves
[25]. The latter assumption restricts the influence of the rescat-
tering potential to a single point, to which the electron returns.

If, on the other hand, the residual binding potential is
incorporated in the electron’s continuum propagation, can

1The ponderomotive energy is the time-averaged kinetic energy
acquired by an electron in a strong laser field. For long enough
pulses or monochromatic fields and atomic units, it is given by
Up = I/(4ω2), where I and ω are the driving-field intensity and
frequency, respectively.
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one really say whether the electron is rescattered, merely de-
flected, or minimally influenced by it? In the SFA, an electron
can be unambiguously classified as “direct” or “rescattered,”
depending on whether it reaches the detector without or with
further interaction with the core. However, orbit-based meth-
ods beyond the strong-field approximation have revealed that
this distinction is often blurred. There are, for instance, hybrid
orbits, which fit neither classification [8,27–29], and, even
for orbits that can be neatly classified, the binding potential
may lead to considerable differences from their Coulomb-free
counterparts [30–32].

A wide range of examples can be found in ultrafast
photoelectron holography, in which well-known holographic
structures such as the fan [33,34] and the spider [35,36]
can only be reproduced accurately if the binding poten-
tial and the driving field are incorporated on equal footing
(see Ref. [37] for a review). Important breakthroughs in
the interfering orbits leading to these structures have been
achieved in our previous work using the Coulomb quantum-
orbit strong-field approximation (CQSFA). We have shown
that, by introducing angle-dependent distortions in direct ATI
orbits, the long-range tail of the Coulomb potential leads to
fan-shaped fringes [30,31]. Furthermore, obtaining spider-like
structures required hybrid types of orbits, which do not fall
into the binary direct-rescattered description [28,29,38]. Other
important examples are carpet-like structures, which, in high
photoelectron energy ranges, have been interpreted as caused
by direct SFA orbits [39]. Comparisons of the CQSFA with
experiments [40] and probing the interference carpets with
filtering techniques [41] have shown that this was a case of
mistaken identity and that, in reality, the carpets are formed
by the interference of hybrid and rescattered orbits. It is also
noteworthy that only a subset of Coulomb-distorted rescat-
tered orbits has a clear rescattered SFA counterpart. These
orbits have been identified recently in Ref. [32] and lead to
the caustics associated with forward-scattering and backscat-
tering orbits. Thereby, a legitimate question is whether the
rescattering ridges are purely kinematic, or if they are affected
by the shape of the scattering potential. For instance, soft-core
potentials are widely used due to their Coulomb-like tail, but
lack the Coulomb singularity. Remnants of ridges and the
role of softening have been found elsewhere, and discussed
employing classical-trajectory arguments [42]. However, the
focus was placed on holographic structures instead of the
ridges.

In the present paper, we study the rescattering ridge due
to backscattered electron orbits considering binding poten-
tials with different degrees of softening using the hybrid
forward-boundary CQSFA (H-CQSFA) recently developed in
Ref. [43]. We perform a comprehensive study of the role of the
Coulomb singularity in obtaining closed backscattered ridges
and show how using a soft-core Coulomb potential affects
the maximum rescattering angle leading to open ridges. We
perform the initial to final momentum mapping to separate
the different sets of solutions contributing to the ridges. Using
elements of catastrophe theory, we find that softening the
potential gives rise to two additional sets of solutions, which
are associated with breaking a dynamical symmetry that exists
for the Coulomb potential but not for its soft-core counterpart.
This symmetry is associated with the conservation of the

Laplace-Runge-Lenz (LRL) vector. We also analyze electron
trajectories corresponding to each of these branches and find
that, for a hard-core potential, they are approximately circular
in momentum space, which is a signature of the LRL vector
being conserved. In contrast, for the soft-core potential non-
Coulomb dynamics alters these features and some of these
orbits become elliptical. Finally, we use scattering theory to
understand how the softening parameter influences the max-
imum scattering angle in a field-free scenario. We show that
the maximum angle observed in the rescattering ridges agrees
well with the predictions of the scattering model.

The article is organized as follows: In Sec. II A we in-
troduce the general theoretical framework of the H-CQSFA.
Subsequently, we discuss the concept of focal points and
caustics in Sec. II B. Section III contains the main results
showing photoelectron momentum distributions and momen-
tum mapping, and in Sec. IV, we present a trajectory and
scattering angle analysis. Then, in Sec. V, we draw the main
conclusions of our work. Atomic units are used throughout
unless otherwise stated.

II. BACKGROUND

Throughout, we employ the Coulomb quantum orbit
strong-field approximation (CQSFA) and saddle-point meth-
ods. Here we only provide a brief outline of this method
with only the equations that are essential for understanding
the results in the subsequent sections. For extensive discus-
sions and more details we refer to our previous publications
[27,30,31,38,43,44].

A. General Coulomb quantum-orbit strong-field
approximation expressions

Within this framework, the CQSFA transition amplitude
from a bound state |ψ0〉 to a continuum state with final mo-
mentum p f reads

M(p f ) ∝ lim
t→∞

∑
s

D−1/2C(t ′
s )eiS(ps,rs,t,t ′

s )−iπνs/2, (1)

where D = det[∂ps(t )/∂ps(t ′
s )], and νs is the Maslov phase

associated with a solution s as calculated by the prescription
given in Refs. [45] and [46].

Here, the semiclassical action is

S(p, r, t, t ′) = Ipt ′ −
∫ t

t ′
[ṗ(τ ) · r(τ ) + H (r(τ ), p(τ ), τ )]dτ,

(2)

where t ′ denotes the ionization time, t is the time at which the
electron reaches the detector, Ip gives the target’s ionization
potential, r and p are the electron’s intermediate coordinate
and momentum, respectively, parametrized as functions of the
intermediate time τ .

The electronic Hamiltonian is given by

H (r(τ ), p(τ ), τ ) = 1
2 [p(τ ) + A(τ )]2 + V (r(τ )), (3)

where A is the vector potential. The atomic potential is
taken as

V (r) = −1/
√

r2 + α2, (4)
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with a parameter α to soften the Coulomb singularity. In this
work, we vary this parameter to assess its influence on the
dynamics. Equation (4) represents the three-dimensional soft-
core potential, although, in practice, the problem is solved in
the polarization plane.

The variables t ′
s, rs, and ps in Eq. (1) are the solutions of

the saddle-point equations

[p(t ′) + A(t ′)]2 = −2Ip, (5)

ṙ(τ ) = p(τ ) + A(τ ), (6)

ṗ(τ ) = −∇rV (r(τ )), (7)

which have been derived by taking the action to be stationary
as indicated by the subscripts in Eq. (1).

Equations (6) and (7) are coupled and give the electron’s
propagation in the continuum, and, in the limit of vanishing
ionization potential, can be associated with classical equa-
tions of motion. Equation (5) gives the conservation of energy
upon tunnel ionization. It is convenient to use a two-pronged
contour, whose first part starts at t ′ and extends vertically
along the imaginary axis up to Re[t ′], and whose second part
starts in Re[t ′] and extends along the real axis up to t . This
choice allows a neat visualization of the subbarrier and the
continuum dynamics, and to define a tunnel exit as the point
in space for which the electron reaches the continuum. One
should bear in mind that this concept is somewhat arbitrary, as
discussed in Refs. [44,47]. The sum in Eq. (1) is over the dis-
tinct saddle-point trajectories which have final momentum p f .

In principle, one may solve the full complex problem,
which, however, brings the difficulty of branch cuts [37,44,48]
and does not change the PMDs significantly. For that reason,
we perform a further approximation, namely, take the tunnel
exit z0 to be real. Explicitly, this gives

z0 = Re[r0||(Re[t ′])], (8)

where r0(Re[t ′]) is the tunnel trajectory

r0(τ ) =
∫ τ

t ′
[p0 + A(τ ′)]dτ ′ (9)

integrated along the imaginary axis up to τ = Re[t ′] and the
subscript indicates its component along the driving-field po-
larization direction. In the tunnel trajectory equation, p0 is the
electron’s under-the-barrier momentum, which has been taken
as constant from t ′ to Re[t ′].

The prefactor det[∂ps(t )/∂ps(t ′
s )] comes from the quadratic

fluctuations around the saddle points and gives information
about the stability of specific orbits. The prefactor

C(t ′
s ) =

√
2π i

∂2S(p̃s, rs, t, t ′
s )/∂t ′2

s

〈p + A(t ′
s )|r · E(t ′

s )|ψ0〉,
(10)

where E(t ) = −dA(t )/dt is the electric field, stems from the
saddle-point equation (5) and p̃s = ps + A(t ′

s ). The matrix
element contains information about the initial bound-state
geometry and also occurs in the standard strong-field approx-
imation.

B. Model and orbit types

Here we consider a monochromatic, linearly polarized
driving field so that the vector potential reads

A(t ) = A0 cos(ωt )ẑ = 2
√

Up cos(ωt )ẑ, (11)

where ẑ is the polarization direction of the electric field, and
Up is the ponderomotive energy. We assume the target to be
hydrogen (Ip = 0.5 a.u.) and take the electron to be initially
in a 1s state. Information about how the prefactor is set up
in this case is provided in Ref. [27]. For other targets and
initial states, see, for instance, our publications [29,40,41,49].
Instead of using the original implementation of the CQSFA
in Refs. [27,31], which solved a purely boundary problem
using as initial guesses orbits with predetermined dynamics,
in this work we use the hybrid forward-boundary version of
the CQSFA (H-CQSFA) discussed in Ref. [43], in which an
initial forward ensemble of orbits is launched, and they are
subsequently used as guesses for a boundary problem.

The main focus of this work will be the backscattered tra-
jectories leading to the ridges. Below we explain how they can
be singled out in the CQSFA framework. The standard clas-
sification of trajectories introduced for the CQSFA [27] uses
the product 	⊥ = p f ,⊥ p0,⊥ of the initial and final momentum
components perpendicular to the driving-field polarization,
and 	‖ = z0 p f ,‖ of the tunnel exit and the final parallel mo-
mentum component.

For orbits type 1, 	⊥ > 0 and 	‖ > 0, for orbits type 2,
	⊥ > 0 and 	‖ < 0, for orbits type 3, 	⊥ < 0 and 	‖ < 0
and for orbit 4, 	⊥ < 0 and 	‖ > 0. This classification was
very appropriate for the original boundary problem imple-
mentation of the CQSFA, as it essentially started recursively
from the standard SFA without rescattering (for details see
Ref. [28]). It happens that, for such a restricted manifold of
solutions, the aforementioned classification separates nicely
trajectories which have qualitatively different characters. Or-
bit 1 reaches the detector without further interaction, orbits 2
and 3 are field-dressed hyperbole and orbit 4 essentially goes
around the core in a slingshot-type motion. However, this clas-
sification is not sufficient if it is used in conjunction with the
solutions found using the forward-boundary implementation
of the CQSFA [43]. To rectify this, it is necessary to consider
in the classification more information about the trajectory than
merely its endpoints.

In Ref. [32], we have shown that a subset of these tra-
jectories compares very closely with the SFA backscattered
trajectories, which are known to lead to the ridge [25]. One
of the parameters used in the classification is the rescattering
time. Structurally, the SFA is a Born-type expansion that will
lead to, along with the ionization time, a series of times where
instantaneous interactions with the core occur: the rescattering
times. In the CQSFA, the only time which is given by the
saddle-point equations is the ionization time. However, the
lack of a predefined rescattering time does not mean that there
are no trajectories which behave similarly to the backscattered
trajectories of the SFA. Their dynamics are such that, after
ionization, they travel for some time under the combined
influence of the electric field and the central potential, return
to a close vicinity of the core, change momentum over a very
short time interval and then travel away from the core. We
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define an analog of the rescattering time, tresc, in the CQSFA
to be the time at which the position of the photoelectron is
closest to the core.

To choose this subset of CQSFA orbits, we must first select
orbits 3 and 4 according to the condition dictated by 	⊥ and
	‖. Subsequently, we filter out those that cross the polariza-
tion axis more than once. Finally, one compares the range
of rescattering times to those obtained for the SFA backscat-
tered orbits. For a more detailed discussion see our previous
paper [32].

C. Focal points and caustics

Next, we briefly introduce the concept of caustics and focal
points and explain their importance to our studies. Caustics
separate different sheets of solutions and, in their vicinity,
large deviations from the expected amplitude arise. The focal
behavior of solutions in separate sheets will be different. Thus,
focal points provide a road map for identifying them in the
parameter space.

The trajectories defined by the saddle-point equations (5)–
(7) exhibit focal points at times t such that the Jacobian matrix
Js(t ) = ∂ps(t )/∂ps(t ′

s ) has zero determinant. This determinant
is present in Eq. (1) as a stability factor, but here, instead of
using the asymptotic limit it is useful to assess its behavior
along the whole trajectory. The Maslov phase νs, included in
Eq. (1), associated with a specific semiclassical trajectory, is
the asymptotic value of a time-dependent phase factor which
takes integer values and changes only at focal points of the tra-
jectory [50]. Recently, prescriptions for computing this phase
have been provided for semiclassical treatments of strong field
ionization [45,46]. Additionally, since this formulation of the
CQSFA considers only trajectories confined to the plane con-
taining the polarization vector and an additional perpendicular
vector chosen without loss of generality due to the cylindrical
symmetry of the Hamiltonian, additional phases may have to
be inserted by hand to account for focal points which exist in
the full three-dimensional ensemble of trajectories [46,49].

The dependence of the amplitude in Eq. (1) on the negative
square root of Js(t ) leads to a divergence at focal points of
the trajectory. When a focal point occurs as t → ∞, this
divergence manifests itself in the photoelectron momentum
distributions of the amplitude M(p f ) calculated from Eq. (1)
as bright regions known as caustics. This is due to the theory
only being accurate under the assumption that solutions of
the saddle-point equations (5)–(7) are well separated. This
assumption fails, if a focal point occurs at the end of the
saddle-point trajectory, due to the coalescence of two or more
saddle point solutions. This can be understood by associating
singularities in the momentum mapping p0 → p f with folds
and cusps in the manifold of saddle-point solutions. These
folds can occur at classical high-energy cutoffs analogous
to the high-energy cutoffs which are seen in the strong-field
approximation (SFA) for the backward-scattered, high-order
above-threshold ionized photoelectrons [32,51]. Additionally,
caustics occur in the low-energy regions and have been associ-
ated with low-energy structures observed in theory [12,13,52]
and experiment [53,54].

In addition to the effects associated with the final momenta
and the breakdown of specific asymptotic expansions, one

FIG. 1. Schematic representation of the dynamical behavior
around focal points. Panel (a) contains a momentum space path
(yellow solid line) for a typical backscattered trajectory in a Coulomb
potential. The capital letter I indicates the initial momentum of tra-
jectory at the time of ionization. The red and black arrows along this
path are a schematic representation of the vectors which define the
deformation in time of a square area element, centered around the
initial momentum of the trajectory represented by the yellow line,
as the trajectories are propagated. When these vectors are linearly
dependent and hence the area defined by the two vectors is zero,
the trajectory has a focal point. The two focal points along this
example trajectory have been indicated using a green scatter point.
In panel (b), the focusing of the path around a focal point has been
illustrated. An ensemble of trajectories, displaced in the direction of
the eigenvector associated with the zero eigenvalue of the Jacobian
at the time at which the first focal point occurs, starting from the
initial momentum of the trajectory displayed in panel (a), have been
plotted (scale adjusted for visibility). At the time of the focal point,
the ensemble of trajectories all focus at a single point in momentum
space and this bunching is illustrated more clearly in the enlarged
region shown within the black dashed line.

may associate focal points to semiclassical trajectories during
their propagation. To gain an intuitive understanding of what
exactly is happening at a focal point of a given semiclassical
trajectory, it is necessary to consider the trajectories in its im-
mediate neighborhood as well. In Fig. 1, the momentum path
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of a trajectory containing a focal point is shown, to which we
have associated two arbitrary basis vectors. If the dimension
of the space spanned by these vectors decreases with regard
to the initial spaces dimension after a linear mapping, Js(t ′),
is performed, we have encountered a focal point at t ′.

For a selection of times t during the trajectories’ propaga-
tion, the direction of the vectors Js(t )û and Js(t )v̂ has been
illustrated at the points p(t ) along the momentum path where
û = [1 0]T and v̂ = [0 1]T, where T indicates the transpose
[see Fig. 1(a)]. For the start time, the Jacobian is equal to the
identity matrix so the vectors define a square area element.
For all other times which do not happen to be at focal points
of the trajectory, the vectors Js(t )û and Js(t )v̂ define a parallel-
ogram and illustrate the linear deformation of the trajectories
in the immediate neighborhood of the one illustrated in Fig. 1
under the momentum mapping at time t . At a focal point, the
dimension of the vector space spanned by the vectors Js(t )û
and Js(t )v̂ is less than two. This means that the collection of
trajectories which come from a neighborhood of a trajectory
with a focal point as shown in Fig. 1(b), are focused down
into a one-dimensional line or to a single point. This picture
clarifies why the existence of a focal point as t → ∞ leads to a
caustic, since the finite probability associated with trajectories
coming from a specific area in initial momentum is squeezed
into a subset of the final momentum which has zero measure.
In the present problem, an example of a focal point is when
the momentum component changes sign due to the influence
of the binding potential. This is a focal point because neigh-
boring trajectories will undergo a bunching once this change
occurs. However, this is not the only physical mechanism
leading to focal points.

III. PHOTOELECTRON MOMENTUM DISTRIBUTIONS
AND MOMENTUM MAPPING

In this section, we address how specific contributions to
photoelectron momentum distributions (PMDs) relate to caus-
tics and different sheets of solutions, populating different
regions in momentum space.

A. Photoelectron momentum distributions

In Fig. 2, we plot the full photoelectron momentum dis-
tributions (PMDs) computed using the H-CQSFA for three
specific values of the softening parameter α [see Eq. (4)]. A
small value, α = 10−6 [Fig. 2(a)], that gives a good approx-
imation for the exact Coulomb potential, and hence we call
it hard-core Coulomb potential, and the much larger values
α = 10−4 [Fig. 2(b)] and 10−2 [Fig. 2(c)] to obtain a soft-
core Coulomb potential. Throughout, we consider ionization
times within a single field cycle in order to avoid prominent
above-threshold ionization (ATI) rings arising from intercycle
interference. These rings are irrelevant to the present work and
have been studied elsewhere [28,30,31,37,44,55].

All panels exhibit the key holographic patterns, such as
the fan, the spider, and the spiral, and a caustic whose apex
is around (p f ‖, p f ⊥) = (0, 1.3). For simplicity, we have con-
sidered a unit cell from ωt = 0 to ωt = 2π . This is an
arbitrary choice of endpoints, which leads to the asymmetries
in holographic patterns seen in the figure. This artifact can

FIG. 2. Photoelectron momentum distributions for atomic hydro-
gen (Ip = 0.5 a.u.) in the presence of an 800 nm wavelength, 1.5 ×
1014 W cm−2 intensity, linearly polarized and monochromatic field,
computed using the H-CQSFA, as functions of the final momentum
components pf ‖ and pf ⊥ parallel and perpendicular to the laser-field
polarization. Panels (a), (b), and (c) correspond to Coulomb soften-
ing parameters of α = 1 × 10−6, α = 1 × 10−4, and α = 1 × 10−2,
respectively, shown in the upper right corner of the figure panels.

be eliminated by setting ωt → ωt + φ therein, with 0 � φ �
2π , in Eq. (11) and performing an incoherent sum of the
resulting PMDs [41,49], but this has not been done as it is
not essential to the present discussion. Furthermore, it has
practically no influence in the orbits leading to the ridges.

Moreover, one may identify at least three ridges, which
intersect at p f ‖ = 0, and annular-like interference fringes that
follow them. The ridges are classical features related to the
electron’s maximal energy upon reaching the detector, with
the outermost ridge corresponding to the shortest pair of
backscattered orbits. This specific pair gives the kinetic energy
of approximately 10Up, which is the well-known rescattered
ATI cutoff. At least two other ridges at lower energies, as-
sociated with longer returns, are also present. In the CQSFA
framework, these ridges have been identified in Ref. [43] and
directly compared with the SFA in Ref. [32].

A noteworthy feature is that, depending on the potential
softening, the ridges may or may not close. Indeed, the mini-
mal angle, with regard to the p f ‖ axis, will vary according to
this parameter. For a hard-core potential [Fig. 2(a)], the rescat-
tering ridges will close, and this angle will be approximately
0◦, while for the soft-core potentials [Figs. 2(b) and 2(c)], they
are interrupted by caustics at ridge-specific angles with regard
to the polarization axis. These angles increase with the soften-
ing parameter. For clarity, in Table I we provide the electron’s
excursion times in the continuum and the ridges’ energies for
the shortest three pairs of returning backscattered trajectories,
calculated for the parameters of Fig. 2. This information will
facilitate the subsequent discussion.

Next, we focus on the three specific pairs of orbits leading
to the rescattering ridges observed in Fig. 2. In the CQSFA

023329-5



ROOK, RODRIGUEZ, AND FARIA PHYSICAL REVIEW RESEARCH 6, 023329 (2024)

TABLE I. Classical excursion times and approximate maximum
kinetic energies Eridge at the rescattering ridges for the three shortest
pairs of backscattered electron orbits, calculated for the parameters
in Fig. 2. According to the H-CQSFA classification based on 	‖ and
	⊥, the first and third shortest pairs are type-4 orbits, and the second
shortest pair are type-3 orbits. In principle, these energies apply for
both hard- and soft-core potentials. However, for the soft potential,
these values do not hold for all angles due to the additional constraint
imposed by the softening. The rescattered times in the H-CQSFA
have been determined according to our previous publication [32].

Pair Re[tresc − t ′] Eridge

1st shortest 0.72T 10.9Up

2nd shortest 1.25T 6.8Up

3rd shortest 1.77T 9.8Up

framework, these are orbits type 3 and 4 which have been
selected according to the additional criteria in Sec. II B to
single out backscattered orbits [32]. They lead not only to the
ridges but also to ring-shaped patterns following them. These
rings stem from the quantum interference of the short and the
long orbit in each pair.

In Fig. 3(a), we show the PMD constructed using only
the first shortest backscattered orbit pair for the hard-core
Coulomb potential. This leads to the primary rescattering
ridge that goes up to over 10Up and extends up to the laser
polarization axis, as indicated by the red dotted arrow in the
figure. We have omitted the PMD for the next two returns as
they will present similar behavior. For the soft-core Coulomb
potential shown in Fig. 2(c), we isolate the contributions from
the three shortest pairs of orbits in Figs. 3(b)–3(d). We observe
that the ridges seem to fold around a minimal rescattering an-
gle θ

(−2)
i , as represented by the red arrows in the figure. Both

the ridges’ energies and the folding angles vary according to
the specific orbit pair, as indicated by the subindex i in the
angle. The superscript indicates the exponent of the soften-
ing parameter. Furthermore, the annular interference patterns
caused by the interference within specific backscattered orbit
pairs have been singled out and are now very clear. Nonethe-
less, there is a key difference: while for a hard-core potential
[Fig. 3(a)] the fringes follow the ridge up to the polarization
axis, for a soft-core potential [Figs. 3(b)–3(d)] interference
patterns are only present up to the region for which the ridges
start to fold. This is a consequence of both interfering orbits
only extending up to a specific angle.

For a full TDSE computation, performed with the freely
available software Qprop [56], the effect of the ridges remain-
ing open up to a specific angle is also present although it is
more subtle. This is illustrated in Fig. 4, for which one can
see a backscattered ridge for small softening [Fig. 4(a)], and a
strong suppression for the outermost ridge if a larger softening
parameter is taken [Fig. 4(b)].

The difference in subtlety is possibly due to several causes.
First, the constraints associated with the ridges are more
blurred, so that they are more visible in the CQSFA. Sec-
ond, the initial wave packet has a width that will influence
the electron-momentum distributions and the patterns ob-
served: narrower wave packets will favor scattering ridges and
broader wave packets will probe holographic structures such

FIG. 3. Photoelectron momentum distributions as functions of
the final momentum components pf ‖ and pf ⊥ parallel and perpendic-
ular to the laser-field polarization, produced for the same atomic and
field parameters as Fig. 2 using the H-CQSFA but considering only
the specific contributions of the different pairs of backscattering tra-
jectories. In panel (a), we employ the same softening as in Fig. 2(a),
and in panel (b) we use the same softening as in Fig. 2(c). Panels
(b), (c), and (d) have been calculated for the first, second, and third
shortest pair of backscattered orbits as given in Table I. The white
arrows indicate the minimal scattering angles θ

(i)
j observed directly,

while the red arrows indicate those obtained from the estimates in
Sec. IV. Thereby, the superscript gives the exponent of the softening
parameter, while the subscript denotes the orbit pair according to
Table I.

as the spider and the fan [43]. We can predetermine this in the
CQSFA, but in TDSE computations, there are other factors,
such as the influence of excited bound states and bound-state
depletion. Third, because the TDSE is not an orbit-based
method, it is not straightforward to disentangle the ridges
associated with different electron returns and also to single
out other structures such as holographic patterns. Fourth, it is
easier to probe the behavior near the potential minimum in the
CQSFA than in the TDSE due to the orbits providing a precise
pathway, while the returning wave packet will exhibit a larger
degree of uncertainty.

B. Momentum mapping and catastrophes

The PMDs in Fig. 3 can be better understood by looking at
the final-to-initial momentum mapping. This mapping relates
the final momentum region occupied by the electron at the
detector to specific regions in momentum space from which
the orbits are launched. Momentum maps have been used by
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FIG. 4. Photoelectron momentum distributions calculated with
the freely available software Qprop using the same field parameters
as in Fig. 2 and softening parameters α = 10−6, α = 10−2 (top and
bottom panel, respectively). For clarity, the ridge for the hard-core
potential is indicated by the dotted white line. The orange line is
meant as guidance to facilitate seeing that the ridges change.

us in Ref. [43] to identify different types of electron orbits and
their signatures. Here, we employ them as a tool to determine
momentum constraints, as the different ridges for hard- and
soft-core potentials are classical features.

For simplicity, in the figures that follow, we focus on the
orbits leading to the primary rescattering ridge whose energy
is around 10Up, but the arguments employed in the subsequent
analysis are general and can be applied to the remaining pairs
of orbits. Furthermore, we have considered the initial mo-
menta in the upper half plane. For the orbits associated with
the primary rescattering ridge, this leads to final momenta in
the lower half plane, of which we just show a single quadrant
(see upper panels in Fig. 5, all panels in Fig. 6, and upper
panels in Fig. 7). In Fig. 3, we have used the upper half plane
for the final momenta to construct the PMD, which means that
the initial momenta are in the lower half plane. However, this
does not alter the subsequent conclusions as the PMDs are
symmetric with regard to a reflection upon the p f ‖ axis. For
the specific case of a monochromatic field, we also expect
a reflection symmetry with regard to the p f ⊥ axis for the
momentum mapping. Therefore, we have only included ion-
ization times in a single half-cycle without loss of generality.

Figure 5 displays this mapping for the hard-core potential.
Because the mapping is multivalued, it is useful to separate
the different types of orbits leading to the ridge. It is also
useful to initiate the discussion from the final momenta, as the
region they occupy can be traced more readily to the PMDs.
The final momenta associated with the two types of interfering
orbits, short and long, are given by the yellow [Fig. 5(a)(i)]
and black [Fig. 5(a)(ii)] scatter points in the upper panels
of the figure, respectively. An electron following the long
orbit is freed shortly after the maximum of the field and
returns after a field zero crossing, while an electron along the
short orbit is released comparatively later and returns before
the zero crossing. For the hard-core potential, this pair of
orbits coalesce at the rescattering ridge, as indicated by the
dashed lines at the edges of the scatter plots. Because, in the

FIG. 5. Final [panels (a)] and initial [panel (b)] momentum grid
points that are reached by trajectories in the two branches of solutions
which contribute to the rescattering ridge for a softening parameter
α = 1 × 10−6 and all other parameters as described in Fig. 2, shown
by yellow (short orbit) and black (long orbit) scatter points. The
initial momentum of trajectories for the field parameters described
in Fig. 2 which have softening parameter α = 1 × 10−6 and final
momenta as shown in panels (a)(i) and (a)(ii) are displayed in panel
(b). The dashed lines in the upper panels of the figure indicate the
rescattering ridge, for which the long and short orbit coalesce. The
types of orbits resulting in the final momenta in panels (a)(i) and
(a)(ii) are indicated by the red labels in the lower right corners.

FIG. 6. Three-dimensional representation of the initial perpen-
dicular momentum map as a function of the electron’s final
momentum components, calculated for the same parameters as in
the previous figures, and (a) a softening of α = 1 × 10−6 and (b)–
(d) α = 1 × 10−2. The colors of the surfaces match those used in the
two-dimensional projections in Figs. 5 and 6, and the arrows indicate
the merging of two or more sheets.
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FIG. 7. (a) Final and (b) initial momentum grid points reached
by trajectories in the four branches of solutions which contribute to
the rescattering ridge for a softened potential (α = 1 × 10−2) and all
other parameters as described in Fig. 2. The momentum regions as-
sociated with the trajectories 4(s)

s , 4(s)
s′ , 4(s)

l , 4(s)
l ′ are shown by yellow,

green (short), black and red (long) scatter points, respectively. In pan-
els (a) the red labels in the top right corners indicate the orbit types.
The dashed lines at the boundaries of the scatter graphs indicate the
merging of two or more sheets of solutions, and the colors indicate
with which sheet the merging occurs. In panel (a)(i), the upper
(lower) dashed lines indicate a merging with the solution 4(s)

s′ (4(s)
l ).

In panel (a)(ii) the upper (lower) dashed lines indicates a merging
with the solution 4(s)

l ′ (4(s)
s ). In panel (a)(iii) the upper (lower) dashed

lines indicate a merging with the solution 4(s)
s (4(s)

l ′ ). In panel (a)(iv)
the upper (lower) dashed lines indicate a merging with the solution
4(s)

l (4(s)
s′ ). Panel (b) displays the initial momenta corresponding to the

four sheets of solutions, with the additional solutions occupying the
regions of very small perpendicular momenta p0⊥. Both yellow and
red points correspond to trajectories with an odd number of focal
points while the black and green points correspond to trajectories
with an even number of focal points.

H-CQSFA framework, they correspond to two types of orbit
4, we refer to them as orbits 4(h)

s and 4(h)
l , respectively, where

the superscript (h) indicates a hard-core potential and the
subscripts l, s specify the type of orbit. The short and long
trajectories are separated by a caustic in the momentum space.

We have observed that, for this particular pair of orbits and
potential, the short (long) orbits have an odd (even) number
of focal points, each of which occurs at a time when the
Jacobian is vanishing. Although we cannot yet make concrete

TABLE II. Orbit classification for the first shortest pair of
H-CQSFA backscattered orbits (second column), computed using
residual binding potentials of different softening (first column), to-
gether with the number of focal points and spikes in the Jacobian
(third and fourth column, respectively). The potential with α = 10−6

behaves practically like a hard-core Coulomb potential, while for
α = 10−2 the dynamics associated with the soft-core potential pre-
vail. The classification 4(i)

j , with i = h, s and j = s, l, s′, l ′ indicates
that we are dealing with H-CQSFA orbits associated with potentials
of different softening (hard- or soft-core) and length (long or short).

Softening Orbit Focal points Spikes (Jacobian)

α = 10−6 4(h)
s Odd 1

4(h)
l Even 1

α = 10−2 4(s)
s Odd 1

4(s)
l Even 1

4(s)
s′ Even 2

4(s)
l ′ Odd 2

statements about the physics, an electron returning before
or after a field zero crossing may influence its dynamics in
relation to focal points. That being said, the existence of the
fold catastrophe between the respective sheets of solutions
containing the long and short trajectories, does require the
existence of an additional focal point in one of them.

It is worth noting that not all focal points will cause rel-
evant dynamical changes in the system. Some focal points
occur in pairs, so that the Maslov phases associated with them
will cancel each other. They are not directly related to rescat-
tering. However, the remaining focal points will appear at the
same time as a spike in the Jacobian, which is associated with
rescattering and is important for the dynamics. Both orbits
undergo one act of rescattering, and exhibit a single spike
in the Jacobian. Physically, a spike indicates sudden changes
in the electron momentum. A summary of these findings is
provided in Table II.

The corresponding initial momentum maps for the hard-
core potential are given in Fig. 5(b), where the same color
code as for the final momenta was used. The overall momenta
for the long orbit is much smaller, which is consistent with
ionization times being closer to the peak of the field. More-
over, the density of points is highest close to the polarization
axis and is lowest near and at the boundary between the
black and yellow regions. The high density is in line with the
expected dynamics for a linearly polarized field, as ionization
will happen predominantly close to the axis. Nonetheless,
these regions are distorted by the presence of the Coulomb
potential.

In summary, for a hard-core potential, there is a fold in the
initial to final momentum mapping. The two different sheets
of solutions obtained for the final momentum are stitched
together via the rescattering ridge and go all the way to the
polarization axis. In Fig. 6(a), we present a three-dimensional
representation of this mapping. The figure shows that the yel-
low and the black branches determined by the short and long
orbits fold around the caustic associated with the cutoff, in
agreement with the dashed lines in Fig. 5(a). The two branches
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on the surface reflect the fact that two returning backscattered
trajectories lead to the same energy.

The remaining panels in Fig. 6, obtained with the soft-core
potential employed in Fig. 3(c), show that softening adds com-
plexity to the problem, and that two additional solutions have
emerged. Indeed, Figs. 6(b) to 6(d) depict four distinct sur-
faces, which fold at constraints defined either by the maximal
rescattering angle or by the backscattering ridges. The four
surfaces intercept at a single point. Similarly to the hard-core
potential case, we employ projections of this surface to better
understand the electron’s dynamics and, whenever possible,
link the projections to the actual surface. These projections
are given by the momentum maps in Fig. 7.

For the soft-core potential, the number of focal points
along a trajectory is now insufficient to completely classify
the solutions. As specified in Table II, now there are short
orbits with an even number of focal points, and long orbits
with an odd number of focal points. Two of these solutions,
displayed in black and red in Fig. 7, are long trajectories, but
the number of focal points associated with them has different
parity. Both types of orbits are being focused by the potential,
but the trajectories starting in the red region are subsequently
being defocused due to the softening. The solutions displayed
in yellow and green are classified as short orbits, and behave
similarly, with the trajectories starting in the green region
undergoing subsequent defocusing. For the red and green
solutions, there exist two spikes in the Jacobian, while a
single spike exists for the remaining solutions. A spike in the
Jacobian happens when the rate of change in the momentum
is high, and this can be associated with rescattering.

In the H-CQSFA framework, the soft-core solutions cor-
respond to four types of orbit 4. Therefore, similarly to what
has been done for the hard-core case, we refer to them as or-
bits 4(s)

s , 4(s)
s′ , 4(s)

l , and 4(s)
l ′ , respectively, where the superscript

(s) denotes a soft-core potential and the subscripts l, l ′, s, s′

specify the type of orbit (long or short). The primes have been
introduced to refer to the two additional solutions that exist in
the soft-core case. For clarity, a summary of the types of orbits
4 investigated in this work is also given in Table II.

Figures 7(a)(i)–7(a)(iv) show the final momentum maps
associated with each of these solutions. A noteworthy fea-
ture is that there are no solutions close to the polarization
axis. This confirms that the behavior observed for the PMD
in Fig. 3 is due to a change in kinematic constraints. The
figure also shows that, for the soft-core case, different sheets
of solutions obtained for the final momenta merge in several
places, not only the rescattering ridge. The boundaries at
which different solutions are glued together are represented
by the dashed lines in each panel, and the color indicates to
which solution it is connected. For instance, in Fig. 7(a)(i),
we see that the solution 4(s)

s , whose final momenta are rep-
resented by the yellow scatter plot, still merges at the ridge
with the long orbit 4(s)

l , whose final momentum mapping is
given by the black scatter plot in Fig. 7(a)(ii). This behavior
resembles that of their hard-core counterparts. However, in
addition to that, 4(s)

s is also connected to the solution 4(s)
s′

[Fig. 7(a)(iii)] as the green dashed line indicates. The solution
4(s)

s′ , on its turn, is also connected to the 4(s)
l ′ solution [shown in

Fig. 7(a)(iv)] via the rescattering ridge. Solutions 4(s)
l ′ and 4(s)

l

coalesce at the boundary defined near the minimal rescatter-
ing angle. All four solutions merge at a single point, where
the four folds which characterise the surface of solutions
intersect.

This merging is better seen in the full three-dimensional
surface, displayed in Figs. 6(b) to 6(d). The arrows in Fig. 6(b)
indicate the coalescence of two solutions along the fold in-
troduced by the softening. The left arrow shows the merging
of the red and black branches of solutions, closest to the
p f ,‖ axes, while the right arrow indicates the fusion of the
yellow and green branches. The coalescence of these sheets
is determined by the minimal rescattering angle. In Fig. 6(c),
we emphasize the merging of two sheets of solutions along
the rescattering ridges: the red and green sheets, in agreement
with Figs. 7(a)(iii) and 7(a)(iv) (lower arrow), as well as the
yellow and black solution in agreement with Figs. 7(a)(i) and
7(a)(ii) (upper arrow). Finally, the arrow in Fig. 6(d) shows
the point at which all four sheets merge.

The initial momentum map, shown in Fig. 7(b) for the
soft-core potential, is practically identical to its hard-core
counterpart in the regions of large perpendicular momenta.
However, close to the laser-polarization axis, there are signif-
icant differences, with the appearance of two more branches.
This is expected from the discussion of Fig. 7(a). An interest-
ing feature is that the red and green regions are much more
localized in the p0‖ p0⊥ plane than the black and yellow ones
and approach them from below. This suggests a much stronger
interaction with the core, with lower perpendicular momen-
tum components. As the softening is increased, the region
occupied by the green and red solutions widens. Furthermore,
in contrast with what happens for the hard-core potential, they
never touch the p0‖ axis. These are precisely the momentum
regions that would close the ridge in Figs. 7(a)(i)–7(a)(iv) and
Fig. 3(b).

IV. TRAJECTORY ANALYSIS
AND RESCATTERING ANGLES

Next, we discuss why the softening of the potential in-
fluences the rescattering angle. We start by looking at the
electron trajectories in position and momentum space for the
soft-core and the hard-core Coulomb potentials. These trajec-
tories are displayed in Figs. 8(a) to 8(c), together with the
Jacobian associated with each solution [Fig. 8(d)]. Although
the hard-core potential exhibits only two branches of solu-
tions, whose initial conditions are indicated in Figs. 5 and
7 by black and yellow scatter plots, in order to facilitate a
comparison with the soft-core potential, in the figure we have
changed this convention and employed the same colors for
orbits with the same initial conditions. However, physically,
the red (green) dashed orbits associated with the hard-core
potential in Fig. 8 leave from the black (yellow) momentum
regions in Fig. 5(b). Figure 8(a) shows that the trajectories
corresponding to the green and the red branches of solu-
tions interact more strongly with the core than those given
by the black and yellow curves. For the soft-core potential,
this behavior is easily understood in conjunction with the
initial-momentum mapping in Fig. 7(b), which indicates that
they are released in the continuum with much lower trans-
verse momenta. Therefore, we expect that they will be more
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FIG. 8. (a) Position and (b) momentum space trajectories and
(d) the inverse arcsinh of the Jacobian determinant along these
trajectories are plotted for a softened potential with α = 1 × 10−2

(hard potential with α = 1 × 10−6) using solid (dashed) lines
with field parameters as described in Fig. 2. For the softened
potential, the colors of the trajectories correspond to the color
of the scatter point in Fig. 7 representing the boundary values
of the trajectories momentum and the final momentum of each
trajectory shown for the softened potential is (pf ‖, pf ⊥) = (1, −1.2)
atomic units. For the hard-core potential, we have used the
same color codes for trajectories with the same initial conditions
to facilitate direct comparison with the soft-core counterparts,
although, physically, the initial conditions of the green and red
dashed trajectories occupy the yellow and black regions of the
mapping in Fig. 5(b). The same convention has been used for the
Jacobian determinants in panel (d) of the present figure. The initial
momenta for the trajectories shown with the yellow, black, green
and red lines are (p0‖, p0⊥) = (−0.3949, 0.01005), (p0‖, p0⊥) =
(0.09192, 0.008766), (p0‖, p0⊥) = (−0.3903, 0.003019), and
(p0‖, p0⊥) = (0.09549, 0.001135) atomic units, respectively for
both the softened and hard potential. For the black and yellow
trajectories used in this figure, there is a good similarity between
the trajectories from the soft and hard potentials, which is why
they overlap and it appears as if there are only two trajectories
plotted for the hard potential. In panel (c), a contour plot of the
difference between the soft and Coulomb potential (labeled as the
Coulomb deviation) is shown with a more detailed view of some of
the position space paths shown in panel (a) for which the same color
and line-style scheme has been used. The parameters of the field are
the same as those used in Fig. 2.

influenced by the softening, while the remaining orbits will be
more affected by the potential tail.

For the hard-core potential, the trajectories shown have
the same initial momentum as the trajectories in the softened
potential, but the final momenta are all different. The differ-
ences between the 4(h)

s and the 4(s)
s trajectories, represented by

the yellow dashed and solid lines, respectively, are minimal,
so that the curves overlap in the figure. The same holds for
the 4(h)

l and 4(s)
l trajectories with the same initial momenta,

which are represented by black lines. This is expected as the
trajectories associated with the black and yellow branches
in Fig. 7 do not deviate strongly from their Coulomb-type
counterparts. However, there is a significant difference for the
4(h)

s (4(h)
l ) and the 4(s)

s′ (4(s)
l ′ ) trajectories (red and green lines).

For the softened potential, although the position space trajec-
tories in Fig. 8(a) begin on very different paths, eventually
the red (green) trajectory coincides precisely with the black
(yellow) trajectory. The pairwise convergence of trajectories
in different branches to the same asymptotic coordinates is
a consequence of their long-distance behavior only having
two possible branches of solutions, as it is determined by the
Coulomb tail.

The non-Coulomb influence is also visible in momentum
space, displayed in Fig. 8(b). The black and the yellow soft-
core trajectories are nearly circular, and behave like their
Coulomb counterparts. In contrast, the green and red trajecto-
ries are elliptical for the soft-core potential and nearly circular
for the Coulomb potential. The circular shape observed for
the Coulomb orbits stems from the conserved quantity associ-
ated with the dynamical symmetry of the Coulomb potential,
which is the Laplace-Runge-Lenz (LRL) vector. In the pure
Coulomb dynamics, LRL vector conservation implies that
paths in momentum space are circular and they have a radius
given by 1/L, where L is the angular momentum, and a cen-
ter defined by the LRL vector [57–59]. Because rescattering
occurs around a field zero crossing, this symmetry is approx-
imately observed for scenarios in which the Coulomb-type
dynamics are prevalent. This renders the momentum-space
orbit approximately circular and happens if, during the rescat-
tering process, the trajectory remains at a distance from the
core greater than the length scale comparable with the soft-
ening parameter α. Examples are the yellow and black orbits,
which remain very similar and nearly circular for both po-
tentials. However, this symmetry is unambiguously broken
once the non-Coulomb dynamics determined by the softening
become more important. This is observed for the green and
red orbits, which reach closer to the core than α, and whose
momentum paths vary dramatically from being circular.

Although the difference between the momentum paths for
the hard- and soft-core potential is very visible, the difference
between the position paths is less obvious as they differ on a
length scale much shorter than the electron excursion ampli-
tude.2 To show explicitly these differences, in Fig. 8(c), the
position-space paths close to the core, for the two new types
of trajectory that arise for a softened potential, are displayed
with solid lines.

Figure 8(c) shows that the green and red trajectories behave
in very distinct ways, depending on whether the potential
is hard or soft core. The trajectories associated with the
Coulomb potential, illustrated by dashed lines, are hyperbolic
and undergo a much stronger deflection than those related to
the soft-core potential. The difference between the Coulomb
and the soft-core forces, indicated by the shaded area in the
figure, is also significant. This is in agreement with the maxi-
mal angle obtained for the momentum maps, and also explains

2The excursion amplitude is given by
√

2Up/ω, and, for the param-
eters used in this work is around 14.2 a.u.
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the different asymptotic behavior for the hard- and soft-core
potential. In contrast, the yellow and black orbits are very
close in asymptotic momentum.

Finally, in Fig. 8(d) we present the Jacobian determinant
as a function of time for specific orbits around the instance of
rescattering. This is a very short time interval but it contains a
large amount of the electrons’ dynamics. For trajectories that
pass close enough to the core to be altered significantly by
the absence of the Coulomb singularity (green and red orbits),
there is a large spike in det(J ) towards −∞ followed by a
spike towards +∞. Conversely, for trajectories that do not
pass as close to the core, so that they are similar to those of
electrons in an actual Coulomb potential (black and yellow
orbits), there is just a single large spike in det(J ) towards −∞.
The first focal point is common to both hard- and soft-core
potentials and is associated with the momentum component
perpendicular to the driving-field polarization changing sign
due to the residual binding potential. This occurs at a length
scale in which the soft- and hard-core potentials are virtually
indistinguishable. For trajectories which pass closest to the
minimum of the soft-core potential, there exists an additional
focal point. While for the hard-core potential the trajectories
follow the standard hyperbola associated with Coulomb-type
behavior, for the soft-core potential the attracting force is
weaker, especially close to the core. Therefore, there will be
less deflection, some of the trajectories will disperse as seen
in Fig. 8(c) and defocusing will occur.

The role of the softening in the potential can be further
explored using scattering theory. Figures 9(a) and 9(b) show
the field-free trajectories for a hard-core (α = 10−6) and a
soft-core (α = 10−2) Coulomb potential, respectively, as a
function of the impact parameter, indicated by the color bar
in the figure. The figures show that, for a hard-core Coulomb
potential, as the impact parameter decreases, an incoming
electron can be rescattered up to an angle close to π . However,
for the soft-core potential, as the impact parameter approaches
zero, the trajectories pass through the core without deflection.

Explicit expressions for the scattering angles of a Coulomb
and soft-core potential have been provided in Ref. [60] for
the field-free case. A schematic representation of the scatter-
ing process, as well as the relevant parameters, is shown in
Fig. 10. In the center of mass frame, the scattering angle φ

can be expressed as

φ(b) =
∫ ∞

rmin

(b/r2)dr√
1 − (b/r)2 + 1/(ke

√
r2 + α2)

, (12)

where rmin is the largest root of the denominator, b is the im-
pact parameter, ke is the kinetic energy of the electron before
the collision and α is the softening parameter as defined in
Eq. (4). As shown in Ref. [60], for a pure Coulomb interaction,
it is possible to determine the value of the angle analytically,
and the electron reaches a maximum scattering angle of π

when the impact parameter goes to zero. When a softening pa-
rameter is included, we need to perform numerical estimates
of the angle as a function of the different parameters.

To evaluate the angle numerically, we start by first find-
ing the roots of the denominator in Eq. (12) to determine
rmin and then evaluate the integral numerically. We need to
introduce a few approximations to apply the scattering theory

FIG. 9. Field free trajectories with impact parameter represented
by the color of the line are shown for the hard (softened) potential in
panel (a) [panel(b)]. The black arrows indicate the direction of flow
of the trajectory. (c) The scattering angle φ is shown for a range of
values of the impact parameter for the softened (hard) [Coulomb]
potential with a solid red (dashed orange) (dot-dashed black) line.
(d) The minimum value of the angle θ across all values of the impact
parameter, is plotted against the energy of Eq. (14) for three dis-
tinct values of the softening parameter a. The vertical dashed black
lines indicate the energy which corresponds to the rescattering ridge
associated with the first, second, and third act of rescattering. The
red circles, blue squares and orange triangles indicate the observed
minimum angle at each of these rescattering ridges for a softening
parameter of 1 × 10−2, 1 × 10−4, and 1 × 10−6, respectively.

FIG. 10. A schematic showing the simplified model used to un-
derstand the behavior of trajectories in the presence of a softened
potential. It shows the process of converting from the scattering
angle φ computed from the field-free spherically symmetric scatter-
ing problem, to the angle θ which we observe in our photoelectron
momentum distributions. The inset panel shows the type of shift that
occurs to the rescattering ridges by approximately A0 due to the field
dressing of the scattered electron.
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to our particular problem. We consider that the perpendicular
momentum component remains constant from ionization until
the rescattering event, p0⊥ ≈ p⊥(tresc), where the rescatter-
ing time has been determined as in Ref. [32]. Therefore,
the impact parameter is approximated as a linear function
of the initial transverse momentum and the travel time �t =
Re[tresc − t ′]. This gives

b ∝ p0⊥�t . (13)

To approximate the initial kinetic energy, we need to con-
sider the vector potential contribution in the final parallel
momentum. Considering that rescattering mainly occurs at the
maximum of the vector potential (minimum of the electric
field), we approach the vector potential at the time of rescatter-
ing by its maximum value, A0 = 2

√
Up. For each ridge, whose

maximum energy is given by Eridge according to Table I, we
approximate the initial kinetic energy required to evaluate the
angle in Eq. (12) using

ke = (
√

2Eridge − A0)2

2
. (14)

In Fig. 9(c), we plot the scattering angle as a function of
the impact parameter for initial kinetic energy corresponding
to the 10.9Up ridge. For both the hard-core and the soft-core
Coulomb potential, the angle exhibits a maximum and then
decays as the impact parameter approaches zero. The maxi-
mum is sharper and closer to π for the hard-core Coulomb
potential. As the softening increases, the maximum occurs
at a larger impact parameter, and as the impact parameter is
reduced further, the scattering angle decreases. In the limit
of vanishing softening, as we approach the exact Coulomb
potential, the angle decreases monotonically as the impact
parameter increases, reaching a maximum value of π as the
impact parameter approaches zero [shown with the dotted
brown line in Fig. 9(c)]. This sheds light on the behavior
observed in Fig. 9(b). For the soft-core potential, as the im-
pact parameter approaches zero, the scattering angle goes to
φ = π/2 [see solid line in Fig. 9(c)]. From the schematic
representation in Fig. 10, this corresponds to a straight line,
as those represented in Fig. 9(b).

In Fig. 9(d), the dots represent the minimum angle θ

defined by the red arrows in Fig. 3 and represented in the
schematic model in Fig. 10, for the three shortest pairs of
backscattered trajectories as a function of the initial kinetic
energy for each value of the softening parameter. For the
hard-core Coulomb potential, we have set the value to zero.
With lines, we plot the results obtained from our scattering
model, where θ can be approximately defined in terms of the
scattering angle φ, the peak of the vector potential A0 and the
scattering kinetic energy ke as

θ = tan−1

[ √
2ke sin (2π − 2φ)√

2ke cos (2π − 2φ) + A0

]
. (15)

The predictions of the scattering model follow the same
trends as the angle estimated from the PMDs in Fig. 3, al-
though the agreement is better for the first return leading to
the high-energy ridge. Intuitively this could be explained if
we consider that the trajectories contributing to the first return
are closer to the scattering model, while for later returns the

FIG. 11. Minimal θ determined by the scattering model outlined
in this section is plotted against the wavelength λ of the driving field,
for the outermost rescattering ridge. The different lines represent
different values of the photoelectron energy in units of UP which
itself depends on λ. The maximum photoelectron energy E (1)

ridge for
the shortest pair of orbits in units of Up has a λ dependence. For
λ = 2000 nm, E (1)

ridge = 10.13Up, for λ = 1300 nm, E (1)
ridge = 10.34Up

and for λ = 800 nm, E (1)
ridge = 10.86Up (see Table I). Lines are plotted

for the maximum photoelectron energy corresponding to each of
the values of λ for which PMDs were computed using the CQSFA.
The PMDs for λ = 1300 and 2000 nm are shown in the Appendix.
The scatter points correspond to the angle θ calculated directly
from the PMDs. The shaded areas indicate the angular range asso-
ciated with the maximum photoelectron energy (around 10.13Up �
E (1)

ridge � 10.86Up) for the outermost ridge in the range of wavelengths
considered in the figure.

influence of the residual potential for a longer time prior to
rescattering precludes determining a clear tresc. This issue also
implies that Born-type theories such as the SFA exhibit a
worse agreement with fully Coulomb-distorted approaches for
longer orbits [32]. The values obtained agree reasonably well
with the white arrows in Figs. 3(b)–3(d).

Figure 11 presents the outcome of the analytical model for
the minimal angle (lines) calculated for the outermost scat-
tering ridge, plotted against the results read directly from the
PMDs (scatter plots). Besides the very good agreement, the
results also show that the minimal angle θ increases with the
driving-field wavelength. This at first sight surprising result
is discussed in more detail in the Appendix and is caused
by longer wavelengths concentrating the initial momentum
distributions close to the polarization axis. This leads to a
stronger interaction with the core upon rescattering, so that
the non-Coulomb effects become more relevant.

V. CONCLUSIONS

In this work, we employ the hybrid version of the Coulomb
quantum orbit strong-field approximation (H-CQSFA) [43,45]
to assess how different binding potentials influence the
rescattering ridge in strong-field ionization. The ridge is a
well-known structure that occurs in the context of strong-
field ionization, which, in the existing literature, is interpreted
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as a kinematic constraint associated with backscattered
electron trajectories [23,25]. Because the H-CQSFA is a fully
Coulomb-distorted trajectory-based approach that considers
the binding potential and the external field on equal footing,
the full dynamics are incorporated. Therefore, the time inter-
val and spatial ranges for which rescattering occurs may or
may not be well defined. This is in stark contrast to Born-type
approaches such as the strong-field approximation (SFA), for
which rescattering is temporally and spatially confined. The
backscattered trajectories are singled out from the manifold of
existing trajectories by following the prescription in Ref. [32].

A key result of the present paper is that the maximal
scattering angle is strongly influenced by the potential soften-
ing. While, for a hard-core Coulomb potential, the maximum
rescattering angle is π and the ridges close, for a soft-core
potential the maximum rescattering angle is smaller and the
ridges fold. This angle differs for specific pairs or orbits,
and softening parameters, which suggests that the rescattering
ridge is not purely kinematic. These findings are interpreted
using catastrophe theory, which shows that the long and
short backscattered orbits within a pair, as functions of the
electron’s initial conditions, form a surface that folds where
the two orbits coalesce; that is, at the ridge. Introducing a
softening parameter creates two additional sets of solutions,
which are qualitatively different. These solutions never touch
the polarization axis, but have relatively low initial transverse
momentum components. This implies that they will interact
strongly with the core. This effect is also present for ab initio
computations, but it manifests itself more subtly.

Their appearance can be explained by the fact that the soft-
ening breaks a hidden dynamical symmetry of the Coulomb
potential, which is not present for the soft-core potential. The
Coulomb potential is not merely spherically symmetric but is
hyperspherically symmetric. This means that it is a basis of the
special orthogonal group in four dimensions, SO(4), while the
soft-core potential has the expected SO(3) symmetry [57–59].
The conserved quantity associated with this additional sym-
metry is the Laplace-Runge-Lenz (LRL) vector.

These symmetry arguments are exact in the field-free case,
and, for a field-dressed scenario, approximately hold during
rescattering. This can be intuitively understood by the fact
that rescattering occurs near a field zero crossing, so that
the dynamics are dominated by the Coulomb field. At a
zero crossing, the laser-driving forces will be close to zero,
while the vector potential will be at its maximum. Therefore,
it is reasonable to assume that the influence of the laser
field will be merely to shift the momentum constraints and
dress the Coulomb interaction via the vector potential. This
premise has been widely employed to construct approaches
such as the Coulomb-Volkov approximation [61–67], or
the quantitative rescattering theory [68,69], which dress
Coulomb-scattering waves and neglect the residual binding
potential when computing the electron orbits in the con-
tinuum, or to include Coulomb effects in electron-electron
interaction [21,70].

Signatures of the Coulomb hidden symmetry are circular
orbits in momentum space, which are caused by LRL vector
conservation. If the hard-core Coulomb potential is taken,
this holds for all orbits, while for the soft-core potential, this
only holds for orbits whose perihelium is in the region for

which the non-Coulomb effects are negligible. This will not
hold for two branches of solutions with very small initial
transverse momenta. These solutions are strongly interacting
with the core, and very sensitive to non-Coulomb effects. The
non-Coulomb orbits exhibit elliptical shapes in momentum
space. In position space, they are similar to their Coulomb
counterparts but are much less deflected upon return. For
those orbits, we have also identified an additional spike in
the Jacobian determinant, which is absent for their Coulomb
counterparts. The spikes in det(J ) are caused by the very rapid
change in momentum at the instant of rescattering meaning
that neighboring trajectories that lag behind or rush ahead
slightly will have a relatively large separation at a given time
during rescattering (even though they follow extremely simi-
lar paths).

Furthermore, analytical estimates of the scattering angles
show that, while Coulomb-type orbits behave like hyperbolae
and can be backscattered up to an angle π , orbits scattered by
a soft-core potential will be scattered up to a maximal angle.
Beyond that, they will just pass through. The outcome of the
estimates follows the same trend as the angles read directly
from the PMDs, although the agreement is only good for the
primary rescattering ridge. This possibly occurs because, in
this case, the joint influence of the field and the potential
is harder to disentangle before and during rescattering. This
assumption is supported by previous results, which show a
worse agreement between the SFA and H-CQSFA for longer
orbits or lower photoelectron energies [32].

For simplicity, our computations have been performed
for linearly polarized monochromatic fields, but our findings
hold for other driving-field scenarios, as long as recollision
with the core is appreciable. Nonetheless, ultrashort pulses
would add more complexity to the problem, as different half
cycles would no longer be identical. This would influence
the rescattering ridges and the PMDs’ centers [71,72]. The
unequal cycles would also lead to dominant events strongly
dependent on the field parameters, and different field gradi-
ents for each half cycle [73–75]. Still, the same arguments
could be applied in the few-cycle case, with the analysis
performed for each ionization event separately. This can be
understood by the fact that, upon rescattering, the field dresses
the system via the vector potential, but the atomic potential
dictates the dynamics. Furthermore, monochromatic waves
are a good approximation for long enough pulses, and have
successfully reproduced experimental findings in the context
of the CQSFA. This holds even for very subtle features such
as multipath holographic interference [41,49].

Moreover, we have verified that the folding due to the
symmetry breaking reported in our paper for the soft-core
potential also holds for longer wavelengths. This is impor-
tant, as it is often assumed that the residual potentials are
much less relevant in the longer wavelength regime. How-
ever, our studies show that the minimal scattering angle that
occurs when softening is incorporated increases with the
driving-field wavelength. Thus, even in the long-wavelength
regime, the rescattering ridge is not a purely kinematic feature.
This apparent counterintuitive result is caused by the initial
momentum maps being much more localized along the po-
larization axis. On the one hand, this localization means that
the long-range potential tail loses importance, which is often
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FIG. 12. Photoelectron momentum distributions, showing just
the contribution of the earliest rescattered trajectories, for a range of
softening parameter and wavelength with the remaining field param-
eters kept identical to those outlined in Fig. 2. The PMDs in panels
(a) and (b) [(c) and (d)] were calculated for a 1300 nm (2000 nm)
field with a softening parameter of α = 1 × 10−6 and α = 1 × 10−2,
respectively. The white arrow on the PMDs indicates the maximum
photoelectron energy, which occurs at an angle θ to the pf ,‖ axis.

used as a justification for employing Coulomb-free methods
such as the strong-field approximation. Nonetheless, this also
means that, upon return, a backscattered electron will get
much closer to the core than for near-IR driving fields. Conse-
quently, the non-Coulomb behavior will be felt more strongly
as the driving-field wavelength increases. An example of this
momentum map is provided in the Appendix.

Finally, our results show that, in the soft-core case, the
surface defined by the minimal angle acts as some kind of
cutoff, although it depends on the interplay between the bind-
ing potential and the laser field. This indicates once more
that, in a Coulomb-distorted scenario, it is hard to distinguish
between dynamic and kinematic constraints. The present work
revisits a well-known feature in laser-induced rescattering
and brings a fresh perspective on the limitations of soft-core
models. Early studies for reduced-dimensionality models have
meticulously investigated several properties of the soft-core
potential, and concluded that for practical purposes it behaves
like a Coulomb potential [76]. These studies encompass static
properties such as scaling, energy levels, asymptotic behavior,
threshold behavior, or the existence of a Rydberg-type series,
and dynamic properties in the context of weak external fields.
However, nowhere in this early paper it is mentioned how
an electron scatters with this potential. Several decades later,

FIG. 13. Momentum mapping of the earliest rescattering event
for the 2000 nm field with softening parameter 1 × 10−2 and all other
parameters as described in Fig. 2. The dashed colored lines and other
aspects of the figure have meanings analogous to those in Fig. 7.
Panels (a) and (b) give the final and initial momenta, respectively.

our results show that there are key differences regarding the
maximal scattering angles, which will reflect on the resulting
photoelectron momentum distributions. This is important due
to the widespread use of soft-core potentials in the modeling
of strong-field phenomena, and their resulting from laser-
induced rescattering.
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APPENDIX: WAVELENGTH DEPENDENCE

In this Appendix, we illustrate how the folding effect dis-
cussed in the main body of this article persists and even
becomes more pronounced for driving fields with longer
wavelengths. These wavelengths have received a great deal
of attention due to them unambiguously representing the qua-
sistatic ionization regime [77]. Furthermore, the strong-field
approximation is expected to work better in this regime.
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Figure 12 displays the PMDs obtained for the hard-core
[Figs. 12(a) and 12(c)] and soft-core [Figs. 12(b) and 12(d)]
potential, calculated with only the shortest pair of backscat-
tered trajectories using the wavelengths of λ = 1300 nm and
λ = 2000 nm (first and last two rows from the top, respec-
tively). The angles found in the figure correspond to the scatter
points in Fig. 11, in the main body of the paper.

The figure shows that the ridges do not close for the
soft-core case, and that the minimal rescattering angle in-
creases with λ. This is a counterintuitive result, which
illustrates that care must be taken when using softening in
the long-wavelength regime. The same trend is observed in
the approximate scan over the wavelengths shown in Fig. 11,
computed with our analytical model.

The initial to final momentum mapping for the 2000 nm
field and a softening parameter of α = 1 × 10−2 sheds light

on this behavior. This mapping is presented in Fig. 13 which
corresponds to the PMD shown in Fig. 12(d). The four sheets
encountered for the λ = 800 nm field are once more present,
with the final momenta being restricted to specific angular
regions [see Figs. 13(a)]. However, the initial momentum
mapping, displayed in Fig. 13(b), is much more localized
along the polarization axis than in the λ = 800 nm case. This
is expected, as the Coulomb tail will lose relevance for λ =
800 nm. On the other hand, a momentum distribution located
around vanishingly small perpendicular momenta means that
the interaction with the core will be stronger and that the
electron will assess a region in which the scattering properties
are markedly different for the hard- and soft-core potentials.
This implies that the non-Coulomb behavior arising from the
soft-core potential will play a more important role as the
wavelength increases.
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Paulus, and H. Walther, Above-threshold ionization: From clas-
sical features to quantum effects, Adv. At. Mol. Opt. Phys. 48,
35 (2002).

[26] T. Morishita and O. I. Tolstikhin, Adiabatic theory of strong-
field photoelectron momentum distributions near a backward
rescattering caustic, Phys. Rev. A 96, 053416 (2017).

023329-15

https://doi.org/10.1016/S0370-1573(01)00076-X
https://doi.org/10.1088/0034-4885/45/2/002
https://doi.org/10.1038/scientificamerican0476-65
https://doi.org/10.1038/nphoton.2011.353
https://doi.org/10.1103/PhysRevA.99.043413
https://doi.org/10.1103/PhysRevLett.117.093902
https://doi.org/10.1103/PhysRevLett.105.253002
https://doi.org/10.1103/PhysRevLett.105.113003
https://doi.org/10.1088/0953-4075/45/7/074011
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1103/PhysRevLett.121.143201
https://doi.org/10.1103/PhysRevA.100.023419
https://doi.org/10.1103/PhysRevA.105.053115
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevA.66.043413
https://www.homepages.ucl.ac.uk/~ucapcfi/lp2.pdf
https://doi.org/10.1103/PhysRevA.69.043405
https://doi.org/10.1103/PhysRevA.81.063413
https://doi.org/10.1088/0953-4075/27/21/003
https://doi.org/10.1103/PhysRevLett.100.143002
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1103/PhysRevA.96.053416


ROOK, RODRIGUEZ, AND FARIA PHYSICAL REVIEW RESEARCH 6, 023329 (2024)

[27] X. Y. Lai, C. Poli, H. Schomerus, and C. Figueira De Morisson
Faria, Influence of the Coulomb potential on above-threshold
ionization: A quantum-orbit analysis beyond the strong-field
approximation, Phys. Rev. A 92, 043407 (2015).

[28] A. S. Maxwell and C. Figueira de Morisson Faria, Coulomb-
free and Coulomb-distorted recolliding quantum orbits in
photoelectron holography, J. Phys. B: At. Mol. Opt. Phys. 51,
124001 (2018).

[29] A. C. Bray, A. S. Maxwell, Y. Kissin, M. Ruberti, M. F.
Ciappina, V. Averbukh, and C. F. D. M. Faria, Polarization in
strong-field ionization of excited helium, J. Phys. B: At. Mol.
Opt. Phys. 54, 194002 (2021).

[30] X. Y. Lai, S. Yu, Y. Huang, L. Hua, C. Gong, W. Quan,
C. F. D. M. Faria, and X. Liu, Near-threshold photoelectron
holography beyond the strong-field approximation, Phys. Rev.
A 96, 013414 (2017).

[31] A. S. Maxwell, A. Al-Jawahiry, T. Das, and C. F. d. M. Faria,
Coulomb-corrected quantum interference in above-threshold
ionization: Working towards multi-trajectory electron hologra-
phy, Phys. Rev. A 96, 023420 (2017).
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